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NOMENCLATURE

1c lateral cyclic pitch measured from hub plane and in "wind-hub'" system,
rad (or deg)

A,. lateral cyclic pitch measured from hub plane and in hub-body system, rad
- (or deg)

a blade lift-curve slope

1 longitudinal first-harmonic flapping coefficient measured from hub plane
and in "wind-hub" system, rad

~ a)g longitudinal first-harmonic flapping coefficient measured from hub plane
- and in hub~body system, rad

a, blade coning angle measured from hub plane, rad

1c longitudinal cyclic pitch measured from hut plane and in "wind-hub"
system, rad (or deg)

_} B, longitudinal cyclic pitch measured from hub plane und in hub-body system,
i rad (or deg)

| 1 lateral first-harmonic flapping coefficient measured from hub plane and
i in "wind-hub" system, rad

: bls lateral first-harmonic flapping coefficient measured from hub plane and
! in hub-body system, rad

H |

CH H force coefficient, CH -—F
onRz(QR)2
Qp j
C torque coefficient, C, = ——————o
‘ Q ¥ pmRZ(0R)2R
1 CT thrust cocfficient, CT = ——
i pTR2 (QR)2
i i

C Y force coefficient, C, = —————
Y S ¢ pﬂRZ(QR)z

c blade chord, m
e flapping hinge offset, m

H component of main rotor resultant force in the rotor disc plane in
F '
' = 0 direction, N

IF blade moment of inertia about flapping hinge, kg—m2
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shaft tilt w.r.t. fuselage, positive forward, deg
pitch-flap coupling ratio, tan &4

flapping hinge restraint, N-m/rad
33,4

BGL

desired longitudinal control sensitivity, k, =

b, g

L1y

desired lateral control sensitivity, k2 =
A

main rotor contribution to aircraft rolling moment about body axis
N-m
rolling hub moment in hub-body system
\j

main rotor hub moment about Xg axis, N-m

main rotor contribution to aircraft pitching moment about body axis vy,
N-m

pitching hub moment in hub-body systen
main rotor hub moment about ys axis, N-m
blade mass moment about the flapping hinge, kg-m

number of blades

main rotor contribution to aircraft yawing moment about body axis z,
N-m

ratio of flapping frequency to rotor system angular velocity

aircraft roll rate, rad/sec

aircraft roll rate in wind-hub system, rad/sec, py = p cos 8y * q sin Bu

aircraft roll acceleration, rad/sec2

main rotor torque about zg axis, N-m

aircraft pitch rate, rad/sec

aircraft pitch rate in wind-hub system, rad/sec, q, = P sin B, + q cos By

aircraft pitch acceleration, rad/sec?

rotor radius, m




aircraft yaw rate, rad/sec
radial station of the blade element measured from the flapping hinge, m
main rotor thrust force acting perpendicdlar to rotor disc plane, N

true airspeed, m/sec

CT(QR) /
uniform induced velocity, v, = - » Wm/sec

main rotor force along body axis, x, N

A e r'

nondimensional radial station of the blade element, x = ——%F——

wind-hub system

hub-body system

component of main rotor resultant force in the rotor disc plane in
v' = 90° direction, N

main rotor fcrce along body axis 2z, N
hub plane angle of attack, deg
blade flapping angle measured from hub plane, rad (or deg)

rotor sideslip angle, that is, the angle between x

y
Lock number, pacR’

Ig

and x!, deg

s s?

blade mean profile drag coefficient
lateral control displacement
longitudinal control displacement
e/R

blade pitch angle measured from hub plane,
8 = 90 ~ A, cos ¥ - B sin ¢ + x8, - K8, rad (or deg)




blade-root collective pitch measured from hub plane, rad

total blade twist (tip with respect to root), deg
Vsina-v
QR

i
inflow ratio,

V cos a
QR

advance ratio,
air density, kg/m3
rotor solidity ratio

control advance angle

azimuth angle measured from downwind in the sense of rotor rotation, rad
(or deg)

azimuth angle measured from -xé in the sense of rotor rotation, deg

rotor system angular velocity, rad/sec




A SIMPLIFIED ROTOR SYSTEM MATHEMATICAL MODEL FOR
PILOTED FLIGHT DYNAMICS STMULATION
Robert T. N. Chen

Ames Research Center
SUMMARY

This report documents a simplified analytical mathematical model of the
helicopter main rotor; the model was developed primarily for real-~time pilot-
in-the-loop investigation of helicopter flying qualities. The mathematical
model explicitly includes the tip-path plane dynamics and several primary
rotor design parameters, such as flapping hinge restraint, flapping hinge
offset, blade Lock number, and pitch-flap coupling. The model has been used
in several exploratory studies, recently performed at Ames Research Center, of
the flying qualities of helicopters with a variety of rotor systems,

The report describes the basic assumptions used and the major steps
involved in the development of the set of equations listed. The equations
consist of the tip-path plane dynamic equation, the equations for the main
rotor forces and moments, and the equation for control phasing required to
achieve decoupling in pitch and roll due to cyclic inputs.

INTRODUCTION

There is a need for an expanded flying-qualities data base for use in
developing design criteria for future helicopters. A safe and cost effective
way to establish such a data base is to conduct exploratory investigations,
using piloted ground simulation techniques, and to then substantiate the
results in-flight by using variable-stability research helicopters.

Mathematical models for real-time, piloted, ground simulation valid for
specific missions and tasks are therefore needed. Unfortunately, several
existing general purpose helicopter simulation models, such as the 'C-81"
(ref. 1) and "REXOR" (ref. 2), are not suitable for real-time applications.
These sophisticated btlade-element models are far beyond the capability of
current-generation computers for real-time simulation. Moreover, because they
are aimed at multidisciplinarv users, they are inefficient and often do not

provide the insight needed for designing experiments for investigating general
flying qualities.

Simpler flight dynamic models for piloted simulation exist (refs. 3, 4),
but they are for specific existing helicopters. Also, these models are quasi-
static in nature and do not explicitly account for the dynamic effect of rotor
modes, such as rotor-blade flapping, which can be important in studies of
flying qualities. Therefore, there is a need to develop general but simplified




flight dynamic models for exploratory studies of flying qualities and flight-
control systems and, especially, for use on ground simulators that have only
moderate computational speed and capacity.

This report presents a simplified general main rotor mathematical model
that has been used in experimental design analyses and ground-simulator inves-
tigations of helicopter flying qualities in visual terrain flying tasks and
instrument flight tasks at Ames Research Center (refs. 5-7).1 The model
explicitly contains rotor system design parameters, such as flapping hinge
restraint, effective hinge offset, blade Lock number, and pitch-flap coupling,
as shown in figure 1. These parameters have been used in appropriate combina-
tions to cover a wide variety of rotor systems.

! AIRCRAFT CENTER
OF GRAVITY

(dg )

Figure 1.- Main rotor configuration and parameters.

The report also describes the tip-path plane dynamic equation, the
developmeni of the main rotor force and moment expressions, and the control-
mixing equation for decoupling pitching and rolling moments due to cyclic
control displacement in the cockpit.

TIP-PATH-PLANE APPROXIMATION FOR FLAPPING DYNAMICS

Essential to the main rotor mathematical model is the description of the
blade~-flapping dyaamics. For the model described in this report, the flapping
dynamics were approximated using a tip-path plane representation. A detailed
description of the development was given in reference 8. For present pur-
poses, a brief summary of the basic assumptions used and the major steps
involved in the development 1s presented.

lMiyajima, K.; and Chen, R. T. N.: Analytical and Experimental Study of
an Advanced Stability and Control Augmentation System for a Hingeless Rotor
Helicopter (in preparation).
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Basic Assumptions '
The flapping equation of motion of the rotor blade was first developed '\
using the following assumptions. The assumptions are similar to those used L
for the "classical" equations (refs. 9 and 10).
1. Rotor blade was rigid in bending and torsion, and the twist of the
blade was linear.
2. The flapping angle and inflow angle were assumed to be small and the
analysis utilized a simple strip theory. ,
3. The effects of the aircraft motion on the blade flapping were limited
to those due to the angular acceleration P and q, the angular rate Py, q, and
the normal acceleration.
4. The reversed flow region was ignored and the compressibility and
stall effects disregarded.
5. The inflow was assumed to be uniform and no inflow dynamics were
used.
6. The tip loss factor was assumed to be 1.
The flapping equation of motion for a two-bladed teetering rotor and
N-bladed nonteetering rotors are given in appendix A. They explicitly contain
the primary design parameters, such as flapping hinge restraint, hinge offset,
blade Lock number, and pitch-flap coupling. The blade flapping, B(t), in
those equations was then approximated by the first harmonic terms with time-
varying coefficients; that is,
7. B(t) = ao(t) - al(t)cos v - bl(t)sin ¥
The first and second time derivatives of B(t) are therefore, N

B(E) = 45(6) - [4,(0) + b ()R0cos ¢ - [B,(€) - a (£)2)sin
B(t)

50 - (51 + 2519 - alf-)cos - (El - 2519 - lez)sin Y

Tip-Path Plane Dynamic Equaticen

For the nonteetering N-bladed rotor, the time-varying coefficients.
ag(t), a;(t), and b;(t) are obtained by equating the constant term and the
terms with sin ¢y and cos ¥ in the flapping equation (A2) using the above

equations. The result is the following set of tip-path plane dyramic
equations:
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where

and
T
a = (ao, ap, bl)

For a two-bladed teetering rotor, the tip-path plane representation loses its
physical meaning. However, if the approximation of item (7) above for the
blade flapping is employed, then ag 1s to be treated as a preset constant.

The coefficients a;(t) and b;(t} can then be solved by setting ¢ = éo = éo==0
in equation (1).

MAIN ROTOR FORCES AND MOMENTS

The main rotor thrust, the H and Y forces, the hub moments, and t.e
torque were developed for the rotor system of interest. In the development of
these forces and moments, the same set of basic assumptions (1 through 7,
above) discussed in conjunction with the development of the tip-path plane
dynamic equations was utilized. Thus, aerodynamically, momentum theory was
used in conjunction with the uniform inflow; simple strip theory was utilized
and the blade forces were analytically integrated over tlie radius. Because
the reversed flow region and the stall and compressibility effects were
ignored, the total rotor forces and moments were again analytically obtained
by summing the contributions, to each blade, that were analytical functions of
the azimuth. Because of these assumptions and simplifications, the results of
the analysis are valid only for a limited range of flight conditions. Never-
theless, a previous study (ref. 10) has shown that this type of analysis is
valid for stability and control investigations of the rotorcraft up to an
advance ratio of about 0.3. Also, similar to the development of the tip-path
plane dynamic equations, these rotor forces and moments were first obtained in

the wind-hub coordinate system. They were then transformed into the hub-body
system (see fig. 2).

The forces and moments thus developed contain periodic terms; the highest
harmonic terms correspond directly to the number of rotor blades. For example,
for a three-bladed rotor, the force and moment equations contain only 3/revolu-

tion harmonic terms, and for a four-bladed rotor, 4/revolution harmonic terms
(this is shown in appendix B).

With the harmonic terms dropped, the force and moment expressions for a
nonteetering rotor are as follows.
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Figure 2.- Coordinate systems for the main rotor.

Main Rotor Thrust
The main rotor thrust expression for a nonteetering rotor is:
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Mair Rotor H and Y Forces in Hub-Body System

The expressicns for the main rotor H and Y forces in the hub-body
system are:

£

CH
Hp = 5 pacR(QR)’ —= (3)

N
F 2
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Main Rotor Hub Moments E
The expressions for the main rotor hub moments are:
MHF = (Mﬂ)w cos B + (LH)w sin 8 (9) ‘ \‘
Lyp = —(MH)w sin B, + (LH)w cos B, (10) ’

where
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(Concluded)

For the case of a two-btladed teetering rotor, the forces and moments may
be obtained by setting € = 0, éo = a_ =0 1in the above equations. For a
teetering rotor without cyclic pitch, as is used in many tail rotor systems,
the forces and moments may be obtained by setting A;. = By, = 0. Further,
since the tail rotor flapping frequency is much higher than that of the main
rotor system, the tip-path plane Gynamics may be neglected. Thus, for tail
rotor applications, one simply sets éo = él = 51 =0, and a, = 51 =b, =0
in the above equations. The result is a2 set of basic quasi-static forces and
moment expressions similar to those in the classical work (refs. 9, 10).

These rotor forces and moments. which were then transformed to the center
of gravity of the aircraft, represent the contribution of the main rotor to the
total aerodynamic forces and moments in the body axes of the aircraft. From
figure 3 it can be seen that the transformation is simply:

XF = TF sin 1F - HF cos iF
Yp = Yg
Z.  -T_.cos i1_ - H_ sin 1
F F F F F
L (15)
L. =

F LHF cos iF - QF sin iF + YFhF + (TF cos iF + HF sin iF)dF

< 3
(]

F MHF - (TF sin 1F - HF “08 1F)hF + (TF cos iF + HF sin iF)lF

NF = QF cos 1F + LHF sin 1 YFQF + (TF sin iF - HF cos 1F)dF

10
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Figure 3.- Main rotor forces and hub moments diagram with respect to aircraft
center of gravity.

Table 1 shows the general configuration of the nine-degree—of-freedom
(DOF) mathematical model, which consists of three-DOF tip-path plane dynamics
and six-DOF rigid-body dynamics. Note that the aerodynamic force terms Ax,
4Y, and AZ, and the moment terms LL, &M, and AN are those contributed by the
tail rotor, fuselage, horizontal stabilizer and the vertical fin.

CONTROL PHASING

[t is evident from equations (A2) that the flapping frequency will gener-~
ally be different from the rotational frequency of the rotor system. There-
Jore, the maximum flapping response to a cyclic-control input will no longer
exhibit 90° lag in phase. Proper control phasing will be required to achieve
the desired flapping decoupling, that is, a longitudinal-control input

11




TABLE 1.~ GENERALIZED SINGLE ROTOR HELICOPTER MATHEMATICAL MODEL
(NINE DEGREES OF FREEDOM, FIRST HARMONIC)

Dynamic equations:

1y

v m G

w

a2y . (%
dt _é_ _ﬁ

1
- va + o FA(V,UJ,

Kinematic equations:

Ve = [LB_
9 0
¥ 0
where
V= (u,v
V. =

e - (Xe,)’e,‘h)

FG = mg(-
Fy = (X,Y
MA = (L,M
Iy

I = 0
_Ix

cos

LB—E = |sinf® sind¢ s

sin B cos ¢ cos Yy +sin¢siny

cos ¢
sin ¢ tan €

sin ¢ sec ©

,w)T ;
s T

€
"

gin 8, sin ¢ cos 6, cos ¢

]

2!

e

0 -1,

0 cos y

ipy-cos ¢ siny

(X, + X, Y

(L, + AL, MF

.
a,a; u)

T
(p,q,r)" 3

+ AY,

+ AM,

-1 W, To + I‘1MA(v,w; a,3; u)

-sin ¢
cos ¢ tan O

cos ¢ sec 9

(N]

Euler
equations

Tip-path-
plane
equations

T
a = (aO’al’bl)

ces G)T 3

T
ZF + AZ)

T
NF + AN)

cos B sin ¢y

sin @ sin ¢ sin y+ cos ¢ sin ¢

sin B8 cos ¢ siny - sin ¢ cos y

U= (BB 80,8,,

q
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J

-sin 6
sin¢ cos 6

cos ¢ cos 6
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produces only a steady-state longitudinal flapping, and a lateral-control input
will produce only the lateral flapping response, A detailed discussion on the
question of control phasirg (or control mixing) is given in reference 8.

A set of simplified equations based on hovering flight has been developed
to achieve the desired flapping-response decoupling. The equations relate the
required control phasing to the rotor system parameters, that is,

A aAls aAls s
ls 38A 8L A
= (16)
. aals BB]S )
ls 36A as8L L
Als 1 - (8/3)c + 2¢2 .
96A 1 - (4/3)¢ 2
aBls - 8(P2 - 1) K
d6A y{l - (4/3)e] 2
a17)
aAlS _ 8(?2 - 1) "
8L y[1 - (4/3)e] "1
aBls _-[1-(8/3)e + 252] K
asL 1 - (4/3)¢ 1
with
K
P2 -1 =_0b +eMB+YK1 1- 2%,
1,02 71, 8 3
B 8
The so-called control advance angle ¢ 1s given by
BBIS/BGA
ran ¢ = 3R 73%A
P2 -}
S Y(1/8 = /3 + €2/4) (18)

The control crossfeed given by equation (17) has

provided an accuracy adequate
for the entire low-speed flight regime.

13




]

CONCLUDING REMARKS

A simplified nine-degree-of-freedom, main rotor, mathematical model has
been developed for real-time, piloted simulation for exploratory investiga-
tions of helicopter flying qualities. The model explicitly contains the
dynamic effects of the tip-path plane and several primary design parameters of
interest, such as flapping hinge restraint, effective hinge offset, blade Lock
number, and pitch-flap coupling. Furthermore, being analytical, the model
provides insight useful for designing simulation experiments.

It should be emphasized, however, that the simplified mathematical model
is suitable only for stability and control applications. Because of the basic
assumptions used in its development, applications of the model should be
limited to an advance ratio of about 0. 3. Beyond that, the model must be
modified to account for the stall and compressibility effects. Incorporating
the rotor rotational degree of freedom, ground and turbulence effects, and
inflow dynamics would enhance the model's validity for a wider range of
applications.
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APPENDIX A

Flapping Equation of Motion

Given the basic assumptions noted in the text, the flapping equations of
motion have been developed in reference 8 for a rotor system containing design
parameters, such as flapping hinge restraint, hinge offset, and pitch-flap

coupling. For convenience, they are given here for both two-bladed teetering
rotors and nonteetering rotors.

Two-Bladed Teetering Rotor

. . 2 YK1U2
B+_S_28_Y_B+Qz[1,2+l;_sin 2y + —5— (1 - cos 2!!))]8

. . 'Y
= Q2 [2(% sin Bw - % cos Bw) + (Ez% cos Bw + 5q2~ sin Bw) + g ?z cos Bw
+% sin Bw)]sin Y + [2(% cos B, + % sin Bw) - (-S% sin By ~ ?;% cos Bw)

\
oo

(% sin Bw - % cos Bw)] cos y + (13‘i sin w)eo - %[(1 + % uz)cos V]

2 2
U Y 3 u
- 5 cos 3w]A1C - -é- [(1 + 2 uz)sin y - 5 sin 3w]Blc
+ 7 (stn oy + 2 (st ¢)x, (A1)

N-Bladed Nonteetering Rotor

- olfr 2 e? 1 2 .
Bi+2[(Z §e+-7)+u(§-e+e)sinwi]si
2lp2 4 Y (L _ &), pZ (L €2
+ Q ‘P + 7 [u(3 2)Los 11;1 + 2 (2 - € + 7 sin Zlbi
2 w2 (1 €?
[u(3 - e)sin vy + 5 (2 - €+ 2)(1 - cos 21111):” By

eM .
02 2(1 + —IB—B)[(% sin By % cos 8w)sin wi + (%cos Bw+% sin Bw)cos w;_]( )
A2

(Continued)
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+ (-P-: cos B, + -g-;lé' sin f’)w)sin wi - (}222_ sin B, - 4 cos Bw)cos wi

Q2 Q2

M
+.IBQZ[(w-uq+pv)-g]+ [4 )+(%—e)usinwi

+E.2_ 1 _ +£§)'1- 21‘;)9 )0 y, + ( )sinzw
7 \2 "€t L -cos Yy aacsi“z

+ —- (-— - € + - )(cos wi - cos 3wi]A1c - [4 3>sin ‘Pi

2
+ u(—]i‘; - -;—)(1 - cos Z\pi) + uT- (% - €+ —82—)(3 sin ¢, - sin 3¢i)
1 ¢ 1 2 2 (1 ¢
693 Jero v+ £ G- 5 - o2
2
[(% - %—) + u(—% - € +52—)sin ‘b]\ +*2‘ (— - 3)[(2 cos By

+
N =<

+
Nof =<

+ % sin Bw)sin wi ~ (% sin By - % cos Bw)cos wi]
+-;— u(—g— - )[(% cos B, + % sin Bw) (1 - cos Zwi) - (% sin B,
- % cos Bw)sin Zwi]

where

o
N
]
[
+
+
+
[
[
w|s
N

16

Blc

(A2}
(Concluded)




D - e - iy

‘. APPENDIX B

Derivation of Rotor Force and Moment Expressions

The derivations of the rotor forces and moments will be performed first
in the wind-hub system (see fig. 2). Then, they will be transformed into the
hub-body system to be added to the other components contributing to the total
aircraft forces and moments. Only the development of thrust is given here to
illustrate the procedure. The development of other forces and moments is
given in a forthcoming report.?2

|

The shear force for a single ith blade at azimuth wi is given by
S(wi) =F, - BMB - mq + m(w - uq + pv)

|

-

B Mg
+ | 2p 7;-+ em) + r q|cos Wi

F [ o LN
L + -2qﬂ(ﬂ? + em) + 5 Plsin ¥} (81)

where the aerodynamic force acting on the blade is again given by

R-e
- P 2 T2 0
F, = J; > (R) ac(UT 0 + UTUP)dr' (B2)

Substituting the following equations,

UT "R - €e{l - cos B) + u sin ¥ + x cos B8 (R3a)

U .
8 .
P aR A cos B~y sin B cos ¢ - Q {x - &)

!

+ x[(% cos 8, + —3 sin Sw)siu v+ (—% sin B, + % cos Bw)cos v
(B3b)

6 = 8y - Alc cos y - BIC sin § + xet - K8 (B3c)

into equation (B2) results in F, becoming

— b

— 2Chen, R. T. N.; and Decker, W. A.: Effects of Primary Rotor Parameters
on Helicopter Stability and Control Characteristics (in preparation),
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= % (2K) 2acR [—;—' + (1 -e)Q+ e+ u sin Yu sin w](eo ~ A, cos w—Blcsin ¥)
+ [%‘ + (% +-% - €2 4 sin tp)u sin w]et + [% (1-62)+(1-e)u sin w])\

- 'B;+ (1-€e)(X + €+ u sin Y)u sin lp]l(1 + [% (1-¢2)

+ (1 - €)u sin Ib]u cos W’B —%[%—%+% (1-¢)2 sin ‘P]B

+ [—% +% (1-¢2)sin ‘J);l[(‘g‘ cos B, +-g' sin Bw)sin v

+ (— % sin Bw +% cos Bw)cos w]

The flapping will be approximated by its tip-path plane representation:

B = ao(t:) - al(t)cos v - bl(t)sin ]

=4, - (3, + b,)cos ¥ - (by - a,2)sin y (B5b)
4 - (38) + 26,2 - a,22)cos y - (by - 24,2 - b,9%)s1n ¥ (BSc)
Noting that

N

Z sin wi

i=1
N
1-.:2:1 cos “’1
the thrust becomes
N
T = 121 Fa(wi) - N[QOMB +mg - m(w - ug + pv)) (B6)

The first term on the right-hand side of equation (B6) is a function of the

number of blades. For example, for N = 3 ang 4, the following expression was
obtained:




N

] 6, K,a a
1 U T | 2 1'o 7o .1.__5_)
(1/2)pacR(QR)Zz Falby) = N[z vt a2 (3 2]
1=1

N
+‘§{ 21 - 8)6 + = 2 (1 - 52)9t - u(l - eZ)B1C

a,
- [agu2@ - ¢) - bu(l - e?)IK, + 5 u(l - €?)

+5 G -awda- e
+5 Q- 52)(% cos B, + 3 sin sw)} + 0(N) (87)
where
0(4) =0 (for four-bladed rotor)
0(3) =‘% (w21 - E)Blc - bluz(l - s)l(1 + aluz(l - €)]sin 3y

- [v2Q - E)A (all(1 + bl)uz(l ~ €)]cos 3y

L\‘w

(for three-bladed rotor)

Finally, the thrust may be expressed as

2
T = g oacR(QR)z‘% 1 - eHr + [; = (1 - c)]e + [%+ 14— (1 - e2):|et

2
%(1- sz)Blc -ao[ +-yz— (1 - s:)]K1+a1 [%e(l— e)]

b
+ b, [% (1-52)x1]-—9—°(%-§)+7}[% (1-5)2]

+% (1 - e‘"—)(g- cos B, + 3 sin B, \ + O(N)}- N[aOM + mg - m(w - ug + pv)]

Wi

N
where

0(4)

n
(=]

(for N = 4)

0(3)

2 2 - 08, - bu(l - )X, + au2(1 - ¢)]sin 3y
' (B8)

3
+3 A - oA - e - €)(a;K, + b,)]cos 3y

(for N = 3)

)

LERY S NPy

19




By dropping the high harmonic contributions, the thrust can now be expressed as

2 2
=X pacR(QR)z{% (1 - e2)x + [%+ UT (1 - g)]eo +[}.+ “_4_ a - E2)]6':

(NY|

4

2
% a - 52)(Blc - Klbl) - a; [%-0—%— a - e)]Kl + a, [-;— e(l - e)]

80 (1 € P1 [y 2 u o 2y(P q
_T(§-5)+7 - (1-¢) +Z(1—e )(Q cos Bw+nsin Bw)
—N[50M8+mg-m(€v—uq+pv)] (B9)

Because the last two terms, mg - m(w - u

q + pv), are generally small compared
to other terms, they are dropped

» as was shown earlier in equation 2).
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