
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19790015825 2020-03-21T22:12:40+00:00Z



TIONAL SON-EARTH EXPLORER
fTSPV.. -11 S1TTT T T4r C in..-...a__

4

i

593 /
CSC/TM-79/a018

CONTINGENCY STUDY FOR THE
THIRD INTERNATIONAL SUN-EARTH

EXPLORER (ISEE-3) SATELLITE

P repared For
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Goddard Space Flight Center
G reenbelt, Maryland

CONTRACT NAS 5-24300
Task Assignment 802	 r

^^j IV
N R£^J^ 1,,,

9

C'

(NASA-CR-159931) CONTINGEN
THIRD INTERNA	

CT STODI FOR THE	 N79-23996

MAY 1979



0

#!!^'C^"a .^.ee	 , is	 .	
R	 j	 ,

CSC/TM-78/6018

CONTINGENCY STUDY FOR THE THIRD INTERNATIONAL

SUN-EARTH EXPLORER (ISEE-3) SATELLITE

Prepared for

GODDARD SPACE FLIGHT CENTER

By

COMPUTER SCIENCES CORPORATION

Under

Contract NAS 5-24300
Task Assignment 802

Prepared by:

rJ^wte3 13,	 S1y/T9
D. W. Dunham	 Date
Task Leader

Approved by:

.. t i A41L —S /79
R. W. Herder	 Date
Section Manager

k-

R. D. Headrick	 Date
Department Manager



ACKNOWLEDGE MENTS

The author wishes to acknowledge the valuable advice and direction provided by

Dr. R. Farquhar of Goddard Space Flight Center (GSFC) during the course of

this study. Important information was also supplied by other GSFC employees,

especially D. Muhonen and C. Newman. The intricacies of GMAS needed for

this study were patiently explained by Dr. G. Snyder of Computer Sciences

Corporation (CSC). Dr. C. Yang of CSC studiously performed most of the

detailed work needed to accomplish a comprehensive study.

ii

i'-



ABSTRACT

The third satellite of the International Sun-Earth Explorer program has been

inserted into a periodic halo orbit about L l , the collinear libration point between

the Sun and the Earth-Moon barycenter. This document presents a plan that

was developed to enable insertion into the halo orbit in case there had been a

large underperformance of the Delta second or third stage during the maneuver

to insert the spacecraft into the transfer trajectory. After one orbit of the

Earth, a maneuver would be performed near perigee to increase the energy of

the orbit. A relatively small second maneuver would put the spacecraft in a

transfer trajectory to the halo orbit, into which it could be inserted for a total

AV cost within the fuel budget. Overburns ("hot" transfer trajectory insertions)

were also studied.
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0	 SECTION 1 - INTRODUCTION

The International Sun-Earth Explorer Mission is a three-spacecraft joint

NASA - European Space Agency (ESA) program to monitor the Earth's magne-

tosphere and the interplanetary medium (References 1 and 2). The third space-
craft, ISEE-3, was planned to measure the solar wind from a halo orbit about

the L1 libration point between the Earth and the Sun. Strategies have been

designed to maximize the scientific return of ISEE-3 for several cases of pos-

sible poor engine performance during injection into the transfer trajectory.

Many of the basic ideas behind these strategies can be used for contingency

planning for other missions to the vicinity of the collinear libration points of
the Sun-Earth system.

The Goddard Mission Analysis System (GMAS) (Reference 3) was used to study

contigency situations which might occur. It was initially believed that it would

be necessary to use a gravitational assist from the Moon, probably involving

a close lunar swingby, to correct a large underperformance ("cold" burn)

at transfer trajectory insertion (see Reference 4). Software was developed

for targeting to the halo orbit using a lunar gravity assist (Reference 5 and 6).

However, a three-impulse strategy was developed which can correct a wide

variety of contigency situations without the need for a lunar swingby. The

spacecraft is allowed to complete one orbit. The first maneuver is performed

at the first perigee to raise apogee to libration-point distances (about

1.5 x 106 km). Shadow constraints and penalty factors due to burn duration

must be computed for the perigee maneuver. The second maneuver is per-

formed several days later to define a transfer trajectory to the halo orbit, into

which the spacecraft is inserted with the third maneuver. Details of the pro-

cedure, including problems which sometimes arise due to lunar perturbations,

are given in Section 2. The results of a study of large overburns at transfer

trajectory insertion are described in Section 3. The overall strategy is sum-

! 	 marized in Section 4.
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SECTION 2 - STRATEGY TO CORRECT LARGE UNDERBURNS

A three-impulse strategy which can be used to correct most possible large

underburns at transfer trajectory insertion (TTI) has been outlined in the

introduction. The one-sigma (a) standard deviation for the velocity impulse im-

parted by the Delta rocket at the ISEE-3 TTI has been calculated to be

5.6 meters/second, the value used for this investigation. A contingency sit-

uation was provisionally defined to exist when the velocity at TTI was -3Q

or less than the nominal planned TTI velocity (V). An underburn significantly

decreases the energy of the transfer trajectory, causing the spacecraft to go

into a highly elliptical orbit about the Earth without reaching the vicinity of the

Li libration point. Since the expected pointing errors (p ) are small, they have

been virtually ignored In this study. They contribute to the error of the energy

of the transfer trajectory only to the second order, being equivalent to a velocity

error of V (1 - cos p). Our studies have shown that reasonably large

pointing errors can be corrected during a midcourse correction (MCC) ma-

neuver about a day after TTI.

A comparison of the three-impulse strategy with direct transfers is described

in Section 2.1. Maneuvers which may be required during the first orbit are

discussed in Section 2.2. Details about the crucial burn at first perigee are

given in Section 2.3. The new transfer trajectory to the halo orbit, including

the necessary midcourse correction ("second" impulse), is discussed in

Section 2.4. Results of the GMAS contingency studies for ISEE-3 for three

launch dates are tabulated in Section 2.4. Postponed transfers are described

in Section 2.5.

2.1 COMPARISON OF THE THREE-IMPULSE STRATEGY WITH DIRECT
TRANSFERS

An optimized three-impulse trajectory for a -3p velocity error is plotted in

Figure 2-1, using the Rotating Libration Point (RLP) coordinate system, which

2-1
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Is centered at L1 and rotates at the solar angular rate. The X-Y plane is the

ecliptic plane. The Earth-Moon barycenter is on the positive X-axis, but the

distance varies slightly during the year due to the eccentricity of the orbit of 	
E ^^

the Earth-Moon barycenter. The first orbit has a period of 30.1 days and is

twisted into a figure-8 shape by the rotation of the coordinate system. If no

maneuvers were performed, the spacecraft would describe further figure-8

orbits, the axis of each rotated about 30 degrees from the axis of the previous

one due to the rotation of the coordinate system. (This effect is presented in
	 ;,

Figure 2-2.) However, the maneuver at first perigee (P1 ) boosts the apogee to

a distance comparable to L 1 and another maneuver a day later defines a new

trajectory to the halo orbit, which has a Z-amplitude of 110, 000 km and is

shown by the stippled curve in Figure 2-1. For comparison, the planned nomi-

nal transfer trajectory, with no error at TTI, is shown as a dashed line. Due

to the rotation during the 30.1 days in the Earth orbit, ime new transfer trajec-

tory goes much further above the X-axis than the nominal transfer trajectory

and enters the halo orbit at a steeper angle, raising the cost of the halo orbit

insertion (HOI) maneuver. The total AV cost for the three maneuvers is

216 meters/second, which is a large portion of the ISEE-3 fuel budget, but not

as high as expected.

Paradoxically, the situation improves with larger errors. The trajectory for

the optimized V - 6o case is plotted in Figure 2-3. The first orbit now cusps

at apogee rather than describing a figure-8, and its period is 18.3 days. A

slightly 14Lrger maneuver is needed at P 1 , but this is more than compensated

for by the reduction in costs for the other two maneuvers caused by the smaller

rotation during the first orbit. The total AV cost is only 141 meters/second.

Except for some cases strongly perturbed by the Moon, as discussed in Sec-

tion 2 . 4.3, the total impulsive AV costs remain below 180 meters /second from

V - 60 to V - 20Q . For velocity errors algebraically less than about -20a ,

the first perigee maneuver costs become prohibitive. For such cases, the

( }	 apogee is under 250, 000 km, far short of the Moon 's orbit.

2-3
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The costs for correcting velocity errors for direct transfers to the halo orbit

are listed in Table 2-1. A large midcourse correction is applied 18 h after

TTI. The halo orbit insertion costs decrease slightly with greater errors.

Ecliptic plane (AV XY ) and ecliptic normal (Z) components of the impulsive AVs

are given in the table, where AV2XY is the in-plane component of the mid-

course correction, and Z is the out-of-plane component. The total AV for

the MCC is given by OV 2 , where

OV2 = ^ oV2 + 22

Also, AV IX, is the in-plane component of the HOI AV, ZIN is the out-of-

plane component, and the total HOI AV is E V IN , where

EVIN = AVM + I iINI
)

and the total AV costs, TEV, which were minimized is given by

TEV = AV2 + EV
IN ' For the MCC, it was assumed that the spacecraft would

be tilted to allow the full AV be applied with the radial jets, so the vector sum

was used. For the HOI, the spacecraft axis is kept near the ecliptic normal,

so that AVIXY is applied by the radial jets, and 2IN is applied by the axial

jets. The configuration of the radial and axial hydrazine jets of ISEE-3 is

described in Reference 9.

As expected, the total costs for correcting TTI errors for the direct trans-

fers increase in proportion to the size of the error. It is well known that an

increase in the semimajor axis (Da) of an elliptical orbit is proportional to the

2-6
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Table 2-1. Direct Transfer Costs for V-nQ for
August 12, 1978 Launch

n MCC AT

MCC HOI

TS V 
(m/sec)

AV2XY Z2
OV2 avIXY ZIN —VIN

;m/sect (m/sec) (m/sect (m/sec) (m/sec) (m /sec)

3 18h 92.4 11.0 93.1 32.4 2.8 35.2 128.3

4 18h 123.8 14.8 124.7 30.5 —3.8 34.3 159.0

5 18h 155.5 18.7 156.6 28.6 —4.8 33.4 190.0

6 18h 187.4 22.7 188.8 26.8 —5.9 32.7 221.5
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Increase in velocity (AV) and the velocity (V) at the point where the AV is ap-

plied, according to the formula (Reference 7)

µ
2V AV = 2 Aa
	 (2-1)

a

where p is the product of the gravitational constant and the mass of the Earth.

In or ier to make up a deficiency in the semimajor axis, or total energy, of the

orbit, it is most efficient to apply AV at perigee. Since TTI is at perigee, the

AV needed to correct a -3Q error would nearly equal 3a or 17 meters/second,

if it were applied at perigee. We must wait one orbit to do this, because the

error is not known until the actual trajectory has been determined several hours

after TTI. This is why the three-impulse strategy works. [ The alternative

would be to make a direct transfer by applying a midcourse correction as soon

as possible after TTI. ] Because the orbit must be determined, a new opti-

mized transfer trajectory computed, and details of the midcourse maneuver

calculated, the earliest that the maneuver can begin is about 18 h after TTI.

By then, the spacecraft velocity is over five times smaller than at TTI, thus

over five times the underburn error must be applied. The detailed calcula-

tions show that 93 meters/second are needed for the midcourse AV.

With a V - 3C error, the direct transfer AV costs are 128 meters/second,

considerably lower than the 216 meters/second needed for the three-impulse

strategy. But as the underburns at TTI increase, the direct transfer costs in-

creases, while the three-impulse costs decrease. By V - 6Q , the direct

costs are becoming prohibitive, being 222 meters/second, while the three-

impulse costs are a more attractive 141 meters/second. For greater errors,

the three-impulse strategy appears to be the most viable strategy.

1

y
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+3 	 Table 2-1 gives the direct transfer costs for an August 12, 1978, launch.

Table 2-2 gives similar data for a July 23, 1978, launch, for which the costs

are slightly greater, due to different lunar perturbations.

2.2 FIRST ORBIT MANEUVERS

When using the three-impulse contingency strattgy, two additional maneuvers

may be needed during the first orbit, to prevent Earth impact and/or ensure

adequate ground tracking station coverage during the first perigee passage.

2.2.1 Period Change for Groundstation Coverage

Ground tracking stations for low-altitude parking orbits have been established

near a great circle with inclination about 28 degrees and ascending node near

the International Date Line, in order to optimize coverage for launches from

Cape Canaveral. This network provides the data needed for relatively fast

orbit determination and ensures a virtually continuous radio link with the

Cspacecraft for the crucial transfer trajectory insertion maneuver. Because

tracking station coverage is much poorer for other great circles, it is de-

sirable to closely duplicate the parking orbit groundtrack during the low first

orbit perigee passage, when the new TTI maneuver must be made. This will

happen if the spacecraft orbital period is an integer number of sidereal days.

Consequently, it will usually be necessary to change the period of the orbit

by as much as 12 hours.

A change in period is equivalent to a change in semimajor axis according to

Kepler's third law. The change can be made by changing the spacecraft velocity,

where Equation (2-1), and the arguments for the direct transfer midcourse

correction discussed in Section 2. 1, apply. Using Kepler's third law, Equa-

tion (2-1) can be expressed in terms of the spacecraft orbital period, T:

OTAV 3-^ VT
(2-2)

2-9
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Table 2-2. Direct Transfer Costs for V-nv
for July 23, 1978 Launch

n	 I MC AT

MCC HOI

T^V
(m/sec)OV2XY Z2 AV2 ^VIXY ZIN "VIN

( m /sec) (m/sec) (m/sec) (m/sec) (m/sec) (m/sec)

3 18h 96.8 10.0 97.3 40.9 -2.8 43.7 141.0

4 18h 129.6 13.5 130.3 39.0 -3.8 42.8 173.1

5 18h 162.8 17.2 163.7 35.4 -5.5 40.9 204.6

6 18h 196.1 20.8 197.2 35.5 -6.0 41.4 238.6

3 24h 108.7 11.2 109.3 39.7 -3.2 42.8 152.1

4 24h 145.8 15.2 146.6 37.3 -4.3 41.7 188.2

2-10



in the period, AT . If this AV is applied, it will also change the semimajor

axis by an amount Da given by Equation (2-1) and the eccentricity by an amount
Ae given by (Reference 8, p. 245):

De = 2 (cos f + e) V	 (2-3)

where f is the true anomaly at the point where the AV is applied.

A change in the radius of perigee, Or p , is given by:

Larp = (1 - e) Aa - aAe	 2-4

Equations (2-1), (2-3), and (2-4) can be combined to yield Or as a function

of AV:
p

Or = a 2 (1 - e) a V - 2 (cos f + e)
I AV	 (2-5)p	 I.	 µ	 V 

The AV costs computed with Equation (2-2) for period changes of +1 h and

+12h , and the associated changes in a, e, and r  , are listed in Table 2-3 for

a maneuver performed 24h after the attempted TTI, for five contigency cases.

For errors algebraically less than -12Q , the costs for a 12h period change

become too large. Because the maneuver would probably be performed 18h

rather than 24h after the attempted TTI, the velocity would ge greater, and

thus the AV costs would be about 15-20 percent lower than given in the table.

For the large errors (n greater than 12 for the v - W cases), it becomes a

matter of chance. If the orbit period is nearly an integer number of days, the

maneuver can still be performed. Otherwise, it might be desirable to allow the

spacecraft to complete two orbits before attempting the perigee maneuver. If one
w

2-11
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period was nearly an integer number of days plus 12h  two periods would

be nearly an odd integer number of days, and thus only a very small period

change maneuver would be needed. In any case, the period change maneuver

could be done near the first perigee, where it would be much more efficient, 	 J

considerably reducing AV costs from those 24h after perigee. For large n ,

the orbital period is small, because the line of apsides would not rotate too

far in the RLP system during two orbits.

In order to test the validity of the two-body formulas, Equations (2-1) to (2-5),

the AVs listed in Table 2-3 were applied 24h after the launch and the space-

craft state propagated to first perigee using GMAS. The results are presented

in Table 2-4. The actual change in the time of perigee ("actual AT" column)

was 5 to 15 percent larger than expected. Since AV is proportional to AT, the

actual AV costs to achieve period changes of 1 h and 12h would run about 10 per-

cent less than those given in Table 2-3, for the August 12, 1978 launch. Due to

the nearly linear relation (as just noted, within 15 percent) between AV and

AT, the actual AV needed to achieve a given AT can be found by rapidly con-

vergent successive approximations. The small changes in the radius of perigee

are within 100 km of the values computed with Equation (2-5), except for the

V - 5a case with AT = 12h. Third-body perturbations are large enough to 	
s

explain the differences. Values for the V - 120 and V - 20a cases are not

listed in Table 2-3 since a 10 meter/second burn was needed at apogee in order 	 i
4

to prevent atmospheric reentry at perigee, as described in Section 2.2. 2. The

apogee burn raises perigee by a greater amount than the period change manue- 	 ^.

ver 24h after lanch.

A maneuver performed within one day of the attempted TTI (launch) will be

designated AV1 in the rest of this report. Certain cases require a AV 1 large

enough to change the period by more than one day to avoid large lunar perturba-

tions described in Section 2.4.2.

2-12
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Table 2-3. AV Required at 24 h to Achieve Specified Change in
Period, AT, and Associated Change in Orbital El-
ements, for Contingency Cases for August 12,
1978 Launch

N
1
r
W

a
(kml a

G.1,
(hrs)

.1.
(days)

V24h
(m/sec)

AV
(m/sec)

Aa
(km) Ae

Arp
(km)

5 318948 0.9775951 1 20.7501 1570.326 0.53 427.0 +0.0000154 +4.7

12 6.39 5124.0 +0.0001856 +55.6

6 290165 0.9732738 1 18.0038 1542.856 0.69 447.7 40.0000186 +6.6

12 8.24 5370.7 +0.0002220 +79.1

9 228514 0.9709776 1 12.5824 1459.083 1.32 504.5 +0.0000122 +11.9

12 15.84 6053.8 +0.0001462 +142.3

12 189549 0.9637666 1 9.5056 1373.226 2.24 553.9 --0.0000116 +22.3

12 26.85 6646.9 0.0001393 +267.2

20 130826 0.9486644 1 5.4505 1134.174 6.85 666.7 -0.0003667 +82.2

12 82.14 8000.8 -0.0043972 +986.0
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Table 2-4. GMAS Comparison With 2-Body Calculations

ATTEMPTED

I AT

PERIGEE GMAS

TIME RADIUS ACTUAL Arp
(km) AT (km)

5 0 SEP	 02 19h 46m 7145.9

1 02 20. 53 7114.5 1h 07m -31.4

12 03	 9 29 6662.1 13	 43 -483.0

6 0 AUG 30 22 45 7754.9

1 30 23 52 7763.4 1h 07m +8.5

12 31	 12 20 7839.9 13	 35 +85.0

9 0 AUG 25	 9 14 6031.6

1 25	 10 18 6650.3 1h 04m +18.7

12 25 22 37 6863.0 13	 23 +231.4

i

1

i
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2.2.2 Apogee Maneuver to Raise Perigee

The transfer trajectory insertion (TTI) was planned to be executed at a height of

184 km or a geocentric distance of 6560 km. The history of successive perigees

of uncorrected orbits varies considerably with the size of the underburn at

TTI, due to third-body perturbations. As an example, the perigee history for

the V - 6Q case for a July 23, 1978, launch is shown in Table 2-6. Fortu-

nately, for most of the underburn cases, the third-body effects initially raise

perigee. However, for some cases the perigee height decreases, leading to

Earth impact at first perigee. For these cases, impact can be prevented by

a small maneuver to increase the velocity at apogee, which raises perigee.

Besides avoiding impact, it might also be useful to raise perigee to increase

groundstation coverage during the perigee maneuver.

The change of perigee radius, Ar p , is proportional to an impulse at apogee,

AVap , according to the two body formula

arp = C AVap	(2-6)

where

3	 r

C= 4 µ +e n r D
(2-7)

ap

with n being the spacecraft orbital mean motion, and r  and r ap being the

radius at perigee and apogee, respectively, according to Reference S. Values

for a, e, and C for five contingency cases are given in Table 24. For the

August 12, 1978, launch, values of C determined from GMAS calculations were

139.5 and 48.5 km/m/sec for the V - 5p and V - 20t cases, respectively. This
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Table 2-5. Perigee History for V-6a

PERIGEE HISTORY FOR V — 6a

TIME
PERIGEE RADIUS (km)

DAY HOUR,GMT

78 AUG. 10 12 9,350

AUG. 30 13 14,078

SEP. 19 11 19.161

OCT.	 7 3 24,082

OCT.26 4 29,491

NOV. 13 21 25,883

NOV. 30 19 21,810

78 DEC. 19 6 17,326

79 JAN.	 6 10 13,118

JAN 23 2 14,701

FEB.	 10 9 17,418

FEB. 28 12 19,943

MAR.16 23 28,514

APR.	 4 13 36,184

APR. 23 0 36,158

79 MAY 10 2 42,196
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Table 2-6. Change of Perigee Radius With Apogee Impulse AV p
a

1978 AUG. 12 LAUNCH FOR V—no CONTINGENCY CASES

n
a

(km) e t

5 318,948 0.97759510 121.48

6 290,165 0.97327383 115.25

9 228,514 0.97097765 83.98

12 189,549 0.96376663 71.02

20 130,826 0.94866444 48.66
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agrees to within 15 percent of the values in the table, 121.48 and 48.66 for

these cases. Apogee impulses needed to avoid impact for the decreasing

perigee cases were about 15 meter/second; specific values are given in Sec-

tion 2.4.1.

2.3 PERIGEE MANEUVER

After completing one orbit, a maneuver must be performed near perigee to

boost the spacecraft orbit's apogee to halo orbit distances. In this sense, it

represents a new "launch" opportunity. Due to the large spacecraft velocity and

the sensitivity of the transfer trajectory to errors, the maneuver must be

carefully executed. The fact that perigee occurs in the Earth's shadow creates

operational problems, and penalty factors caused by rapid spacecraft motion

and finite burn duration must be computed.

2.3.1 Shadow Constraint

The spacecraft orbit lies close to the ecliptic and the spin axis is maintained

perpendicular to the ecliptic plane. Consequently, changes in the spacecraft

velocity are normally performed by using the radial jets in a pulsed mode. The

jets are fired using signals generated by Sun sensors. While in the Earth's

shadow, the pulses can be triggered instead with the help of the onboard clock.

A more serious problem is loss of power from the spacecraft's solar cells.

Reliance on batteries for electric power while performing a maneuver would

be risky. Consequently, it was decided to start the maneuver at exit from

the Earth's penumbra rather than center the maneuver at perigee.

2.3.2 Penalty Factors for Finite Burns

The efficiency of a burn for increasing the energy of the orbit is proportional

to the spacecraft velocity, according to Equation (2-1). The velocity is largest

at perigee. As one moves away from perigee, the velocity decreases and the

burn's efficiency decreases. For an impulsive AV, we can use two-body
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formulas to compute the efficiency, Eff i ,which is the ratio of the instantaneous

velocity to the velocity at perigee:

	

Eff 	 - e) (1 + e cos E)	 (2-8)	i 	 (1 + e) (1 - e cos E)

where E is the eccentric anomaly. Eff I = 1.0 for E - 0 (perigee). Equa-

tion (2-8) must be integrated over the duration of the burn, and multiplied by

the spacecraft acceleration imparted by the thrusters, to obtain the effective

AV for boosting the energy of the spacecraft orbit. A 4-pound thruster Imparts

an acceleration of 0.03769 meter/second2 and uses 0.008439 kg of hydrazine

per second for a 471.74 kg spacecraft fully loaded with fuel (ISEE-3 1s planned

mass). As fuel is used, the spacecraft weight decreases and the acceleration

increases, according to the rocket equation. For the AVs in question, because

a relatively small amount of fuel is used, the rocket equation was not required

and the spacecraft mass was assumed constant. Thus, a 100 meters/second

burn could actually be accomplished with a burn about 5 percent less, or with

an efficiency 5 percent greater. Most contingency perigee burns are less than

100 meters/second and would have a proportionally smaller error due to neglect

of the rocket equation. Fuel would also be used for earlier first-orbit maneu-

vers, as described in Section 2.2, decreasing the spacecraft weight and In-

creasing the efficiency. For this reason, the efficiency varies with each

case. In order to make a study of efficiencies which would be generally ap-

plicable, the rocket equation was not applied, so that the results are a few

percent more pessimistic than most actual cases. The rocket equation is

needed for accurate calculations for specific cases and is included in the angine

model software used to compute details of ISEE-3 maneuvers.

Some operational advantage would be gained by using the radial jets. Since the

spacecraft spin axis is maintained nearly perpendicular to the orbit plane,

little or no reorientation would be needed for the maneuver. The jets would be
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fired in a pulse mode which could be timed to keep the vectored impulses in

line with the velocity vector. In order to maintain the spacecraft attitude, the

lower radial jets must thrust twice as often as the upper radials. Consequently,

during two rotations of ISEE-3, the lower jet is fired twice while the upper jet

Is fired once during the maneuver. The jets are fired over an arc of 45 de-

grees, or one eighth of a rotation. Altogether, a radial jet is being fired 3/16th

of the time. Since the jet fires over an are of 45 degrees, there is an additional

penalty factor since only the component parallel to the velocity vector contrib-

utes to the effective AV. The angle 9, measured from the jet to the velocity

vector, ranges from -v/8 to +v/8 (11 22.5 degrees) while the jet is fired. The

efficiency factor, Effe , due to the size of the firing are is given by the formula

0
sin  (Ir/81Effe =fircos a dA = 	 = 0.9745	 (2-9)

8

The acceleration imparted by the radial jets, ar , is

a
r 16 Effe (0.03769 meters/second` j = 0.006887 meters/second 2 (2-10)

The effective AV using the radials, AV r , as a function of time from perigee,

t , can be calculated from Equations (2-8) and (2-10):

t9

AVr (t - t) = arft Effi (t) dt	 (2-11)
2	 1	 l

Because Effi is defined in terms of E , the mean anomaly is computed from the

	

	 4
i

orbital mean motion and the time from perigee, and E then computed by solving



FE = F /AVr	 r	 p (2-13)

Ls^► 	Kepler 's equation. Let AV  be the impulsive AV which must be added to

the spacecraft velocity at perigee. As long as AV  is very small compared

with the velocity at perigee, the burn can be considered to be symmetric about

perigee. A 15-second step size was used in the summation to accomplish the

integration. If the burn starts at penumbral exit, t1 is set equal to the time

of that event after perigee passage, and the summation is done until the entire

AVp is attained. The total amount of fuel for the radial maneuver, F r , is

then calculated:

Fr =i6 (0.008439 kg/sec) (t2 - t1 )	 (2-12)

The fuel efficiency, FE , is formed by dividing this by the desired AV  for

the effective perigee impulse:

The fuel efficiency for a perfectly efficient burn would be:

thruster fuel rate 	 0.008439 kg/secFE = -	 =	 2 = 0.2239 kglm/sec (2-14)
thruster acceleration 0.03769 m/sec

The penalty factor for the radial burn is:

PFr - FEr /FE 0	 (2-15)

and the AV penalty is

Pr = PFr 4V 	 (2-16)
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Ertel efficiencies and penalty factors were also computed for use of the axial

jets. If the modals are used for the perigee maneuver, the spacecraft must be

tilted about 90 degrees, so that the spacecraft axis is nearly aligned with the

velocity vector. The burns are shorter than when using the radials since two

axial thrusters can be fired continuously. The acceleration, as , is simply

ra
as = 2 (0.03769 m/sec2) = 0. 0753 8 m/sec2	(2-17)

The lower axials would most likely be used. If for some reason it was neces-

sary to use the upper axials, it would be necessary to multiply a s by 0.6691,

which is the cosine of 48 degrees, the angle by which the upper axials are

canted to prevent plume impingement. Since the axials fire in a fixed direction,

they can not follow the velocity vector like radials. If the spacecraft axis is

aligned perpendicular to the orbital major axis, which would be optimum for	 f
f	 a burn centered at perigee, the efficiency is degraded by the cosine of the in-

stantaneous velocity vector to the spacecraft axis. This factor, E v (t) , can be

calculated from two body formulas:

o
Ev (t) 1 e cos E	

(2-18)

r

If the burn is started at penumbral exit, the axis can be aligned with the velocity

vector at that point; then, Ev starts at 1.0 and slowly decreases as the direc-

tion of velocity changes. This is what has been done in the calculation of fuel

efficiencies for the axials for burns started at penumbral exit. The burns are

short enough that it would save very little to use an i^;arative optimization

scheme to align the spacecraft axis with the mean direction of the velocity

vector during the burn. An additional constraint ins imposed by the heating char-

acteristics of ISEE-3 which require the axis to be within 15 degrees of a plane

perpendicular to the direction of the Sun. This constraint had little effect on

the calculations.
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The effective AV using axials, AV  , is similar to Equation (2-11), but modified

by the E  factor:

t2

	AV  (t	 t) asfE v (t) Effi (t) dt	 (2-19)

	

2	 1	
t
1

AV  is attained in the same way that it was for the radials described above.

The total amount of fuel for the axial maneuver, Fa , is:

Fa = 2 (0.008439 kg/sec) (t2 - t1 )	 (2-20)

The fuel efficiency, penalty factor, and AV penalties are computed using

Equations (2-13), (2-15), and (2-16), where the subscript "r's" need to be

	

.^	 changed to "a's. "

Fuel efficiencies and penalties for three contingency cases (July 23, 1978,

launch), illustrating values for different perigee radii are given in Table 2-7,

with other pertinent quantities. The ratio of the penalty factors for penumbral

exit versus perigee burn3 is given in the last column. It was decided that the

axials would be used, since the long burn durations for the radials result in

large penalty factors.

Penalties for the V - 9V case are listed in Table 2-8 for different tilts of the

spacecraft axis from the perigee velocity vector direction and different burn

start times. A 10 -degree tM was used to stay within the 15 degree limit imposed

by the spacecraft heating constraint. A calculation was also done to see the

effect of raising perigee by 6000 km for the V - 9a case. This resulted in a

decreased perigee velocity, giving a penalty factor of 1.262 and a penalty of

15.4 meters/second over the 700 0, km perigee radius case when the finite burns

	

(^ 1	 centered at perigee were computed.
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Table 2-7. Fuel Rates for Finite Burns Near Perigee for V-na Contingency Cases

k^

IQ
IN

4—

-- -	 - -- ---- — - ---- ----- -
BURN CENTEHEO BURN STARTED AT PENUMBRA

AT PERIGEE PENUMBRAL EXIT PENUMBRAL EXIT PEflIGEE
PERIGEE IMPUL

--n JET: RADIUS SIVE

Ikml
.]VP FUEL PENALTY DURATION, TIME FROM TRUE FUEL PENALTY DURATION, PENALTYImisecl EFFICIENCY FACTOR I— PERIGEE, ANOMALY EFFICIENCY FACTOR I..." FACTOR(kglmisecI (n 1 Ikglm7uc)

3 AXIALS	 NOT 6519 20 0225 1005 4.5 13.9 63.5° 0.274 1.226 5.2 1.220
CANTED

3 AXIALS CANTED 65/9 20 0.338 1510 6.5 13.9 63.5° 0.421 1.880 8.2 1,246
48"

3 HAUTALS 6579 20 0 211 1 210 510 13.9 63.5n 0 405 1,809 85.0 1.494

6 AXIALS	 NOT 9345 3568 0.225 1005 8.0 152 45.9° 0.254 1.134 8J 1.129
CANTEO

6 AXIALS CANTED 9345 3568 0338 1511 12U 152 45.9n 0.390 1.744 115 1.154
48"

6 RADIALS 9345 35.68 0.214 1224 1030 15.2 459' 0.390 1.140 146.0 1.422

9 AXIALS	 NOT 7186 534 0229 1024 12.0 11.2 49.3n 0.277 1.237 14.0 1.208
CANTED

9 AXIALS CANTED 1185 534 0.352 1.5)3 IB.O 11.2 49.3" 0.442 1.974 23.0 1.265
48"

9 HADIALS 1186 53.4 0.360 1.609 2030 11.2 49. 3" 0.61 2-72 260.0 1.69
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Table 2-8. Finite Burn Pei..-, If.y Factors for V-9Q Contingency
Case

FINITE BURN* BURN DURATION,
(minutes)

PENALTY
FACTOR

I	 PENALTY
(m/sec)

1. CENTERED AT PERIGEE t 12.2 1.026 1.4

2. START AT PERIGEE, IN LINE WITH PERIGEE 13.0 1.096 5.2
VELOCITY

3. START AT END OF BURN #1, 6ml FROM 15.7 1.322 17.3
PERIGEE, IN LINE WITH PERIGEE VELOCITY

4. START AT PERIGEE, TILT 10° MORE 12.5 1.058 3.1
FAVORABLE

5. START 6m l FROM PERIGEE (=3), BUT TILT 14.2 1.203 10.9
100 MORE FAVORABLE

^aV PERIGEE - 53.7 m/sec (IMPULSIVE) USING AXIAL JETS, NOT CANTED; NOMINAL PERIGEE RADIUS - 7000 KM
t AT END, S/C VELOCITY IS 160 FROM PERIGEE VEL.
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2.4 TRANSFER TRAJECTORY MIDCOURSE CORRECTIONS

The results of many calculations for different possible launch dates for the

ISEE-3 spacecraft are presented in this subsection.

For most of the contingency case transfer trajectories, the total AV costs are

only weakly dependent on the time of the second maneuver, which is performed

after perigee. There is some advantage in doing the second maneuver early

since the total AV costs are then less sensitive to the perigee maneuver ex-

ecution errors. The Moon strongly perturbs some of the contingency transfer

trajectories, either adding to (beneficial) or subtracting from (adverse) the

energy of the spacecraft orbit.

2.4.1 Tables of Optimized Transfer Trajectories

The launch date for ISEE-3 was originally set at July 23, 1978. The date was

selected so that the Moon, the Sun, and the Earth would be well-separated as

seen from the spacecraft during the early part of the transfer flight. Conse-

quently, geometry would be favorable for attitude determination. The Sun-

Earth-Moon angle was 137 degrees and decreasing (Moon waning). Our

contingency study effort concentrated on the July 23rd date until the launch was

postponed.

The results for July 23rd are given in Table 2-9. Some of the Jul y 23rd cases

were the most thoroughly examined and optimized; they provided the experience

needed to more quickly optimize the cases for other launch dates.

On the newly-scheduled August 12, 1978, launch date, the Sun-Earth-Moon angle

was 108 degrees and increasing. With the Moon waxing at launch rather than

waning, the lunar perturbations of the various contingency case trajectories

would be very different for the two launch dates, and thus a new study was begun

for the August 12th launch. Because this was the prime launch date, more con-

tingency cases were studied for it than for any other date. The results are pre-

sented in Table 2-10. A study was also performed for an August 13th launch,
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Table 2-9. Fuel-Optimum Contingency Strategies for V -W July 23, 1978 Launch

i

MIDCOURSE

TOTAL TOTAL 1978
n .1.V2()h lVap PERIOD APOGEE PERIGEE AVP TIME Z =VMC 'IN LVli01 LV TIME PERIGEE Re

(m/sad (m/sec) (days) (km) Ikm) (nn/sec) (days) (m/sad (m/sac( (m/sed Im/sed (m/sad (days) DATE,TIME Ikml

indh
3 0 0 29.6 791,612 6,579 20.0 10 -14.9 120.0 0.2 72.8 212.8 117.8 822 6 361,180
4 0 8 24.3 701,663 7,332 21.0 5 12.2 74.3 20.4 92.8 196.1 117.6 8 17	 1 306,057
5 0 0 20.6 630,953 7,514 27.5 44.1 • - 2.5 21.3 13.3 108.9 157.8 114.6 813	 7 356,933
6 0 0 17.8 573,138 9,345 35.68 85 9.6 13.3 1.1 92.7 141.8 112.7 8 10 12 361,198
7 35 0 17.7 570,463 9,805 36.6 46.2 • 5.1 6.5 11.4 101.5 179.6 112.6 810 9 361,204
8 0 30 14.1 484,088 6,504 47.8 48.3• 20.2 28.7 5.1 77.6 184.1 113.6 8 619 86,920
9 0 24 12.6 449,144 7,186 53.4 5 --4.2 4.8 3.6 71.1 153.3 111.5 8 5 7 163,185

10 0 15 11.3 418,887 7,290 58.4 49.6' -2.6 4.3 6.8 70.1 147.8 110.4 8 4	 1 225,226
11 0 0 10.3 392,434 6,509 60.0 5 14.6 19.3 15.5 72.4 151.7 110.5 8 3 0 179,894
12 0 0 9.4 369,107 6,701 65.1 5 26.4 31.8 17.5 63.6 160.3 110.1 8 2 3 133,441

'MIDCOURSE PERFORMED AT APOGEE.

}
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Table 2-10. Fuel-Optimum Contingency Strategies for V -W August 12, 1978 Launch

[v
00

MIDCOURSE

n AVph AVp PERIOD APOGEE PERIGEE AVp TIME 2 L VMC !IN LVHO4
TOTAL

LV
TOTAL
TIME

1978
PERIGEE Re

kn/sec! (m/90c) (days) (km) (km) kn/sac) (days) (m/sac) (m/sac) (m/90e1 (m/sac! (m/sec) 4days) DATEJIME (km)

mdh
3 0 0 30.1 797,109 11,800 21.1 41.8' - 3.6 21.4 16.7 173.6 216.1 121.0 9 11 19 351,420
4 0 0 24.9 703,440 17,725 24.0 42.9' 23.9 25.3 35.4 205.9 255.2 116.2 9 612 77,358
5 0 0 21.1 630,749 7,146 30.6 45.8' - 1.0 1.3 11.4 131.4 163.3 115.8 9 220 172,213
6 0 0 18.3 572,575 7,755 34.6 43 - 8.9 13.8 0.0 92.8 141.2 112.5 8 30 23 137,953
7 30 0 17.9 564,753 7,890 35.0 45.2' --11.4 17.5 -6.0 88.1 170.7 112.1 8 30 14 116,667
8 - 15 6 12.9 454,680 7,140 55.2 43.9' - 14.6 20.1 - 3.5 112.9 209.2 109.1 8 25 14 253,458
9 0 0 12.7 450,395 6,632 533 44.6' - 4.2 7.2 6.0 110.1 171.0 110.0 825 9 276,846

10 0 5 11.5 42D,840 6,799 59.3 44.6' - 2.4 7.4 8.7 99.8 171.5 109.0 824 4 367,190
12 10 10 9.6 372,230 6,868 66.3 1 3.7 36.9 8.1 72.1 185.3 109.0 822 6 367,325
20 0 10 5.5 254,935 6,716 109.7 7 - 0.4 1.2 6.0 57.4 178.3 106.9 818 3 353,204

"MIDCOURSE PERFORMED AT APOGEE.
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In case of a 1-day postponement; the results are given in Table 2-11. No study

was performed for the alternate August 21st launch date, since the Sun-Earth-

Moon angle was then 142 degrees with the Moon waning. The geometry and lunar

perturbations would be similar to those for the July 23rd launch.

The total AV budget of the IEEE-3 spacecraft was about 450 meters/second.

because at least 100 meters/second was planned for halo orbit stationkeeping

and attitude maneuvers, it was hoped that transfer trajectory and halo orbit

Insertion costs could be held under 300 meters/second (and prefereably much

less, to conserve fuel for a possible extended mission). The results tabulated

in this section do not include penalty factors due to finite burns and performance

of the TTI at penumbral exit, rather than at perigee (see Section 2.3). Correc-

tion of execution errors, especially for the perigee maneuver, could be signifi-

cant and are not estimated in the table. Consequently, 200 meters/second was

selected as an upper limit for an acceptable contingency case budget (TEV in

the tables).

The expected mean error, o , of the velocity, V , at transfer trajectory inser-

tion was 5.6 meters/second. The velocity, v , at TTI for a given contingency

case was defined by the equation

v=V - nQ	 (2-21)

where n is a number greater than 3 for a contingency situation. The different

contingency cases can conveniently be specified by the value for n , given in

the first column of the table. All velocities are given in meters per second in

the tables. All distances are in kilometers, and times are in mean solar days.

For some cases, the period of the spacecraft orbit needs to be changed by an

Impulse in the direction of the velocity vector 20 hours after launch, as de-

scribed in Section 2.2.1 and 2.4.3. The impulse is given under the AV20h

column. In order to facilitate the study, phasing maneuvers to obtain optimum
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Table 2-11. Fuel-Optimum Contingency Strategies for V -W August 13, 1978 Launch

to
i
to
0

MIDCOURSE

TOTAL TOTAL 1978
n JV20h JVap PERIOD APOGEE PERIGEE JVI, TIME Z LVMC ZIN "VHOI LV TIME PERIGEE Re

Wsec) Wsoc) (days) (km) (km) (m/980 (days) Im/sec) 4n/580 WSW) im/sec! Im/sec ► Idays) DATE,TIME (km)

mdh
5 0 5 21.2 632,052 6,668 30.9 46.V 4.6 5.9 10.0 125.8 16T6 116.3 9 321 315,967
6 0 0 18.3 573,713 7,814 35.7 45.5' - 6.2 10.4 7.0 106.3 152.4 112.9 831 24 188,942
7 15 0 17.0 544,920 7,871 37.2 45.7' - 12.5 17.5 - 7.1 85.4 156.1 111.5 8 30 15 114,480
8 0 0 14.2 485,418 7,288 51.6 45.0' - 17.3 18.1 - 21.3 145.6 235.3 110.7 8 27 22 116,618
9 15 0 12.2 438,559 6,756 56.4 44.7' - 6.1 9.2 3.5 106.4 189.1 109.5 8 25 21 246,9123

10 0 0 11.5 421,389 6,723 59.1 44.4' - 4.7 12.8 5.6 99.8 171.7 108.9 825 4 294,254
12 0 10 9.6 372,592 7,129 71.2 45.1' - 2.4 7.4 7.8 85.7 174.4 107.9 823 6 369,278
20 0 10 5.4 255,005 6,776 110.6 7.0 2.4 5.3 8.0 59.8 185.7 106.7 819 3 356,540

'MIDCOURSE PERFORMED AT APOGEE.



station coverage at perigee have not been calculated. Qdy period changes

needed to avoid unfavorable lunar perturbations discussed in Section 2.4.3 have

been investigated. The velocity at apogee occasionally needs to be increased by

an amount AVap given in the third column. The purpose is to avoid Earth im-

pact (or atmospheric reentry) as discussed in Section 2.2.2. The period, the

apogee distance, and the perigee distance of the first orbit are specified in the

next three columns. AV  is the impulse applied at perigee to increase the

energy of the spacecraft orbit to reach L i distances, as discussed in Sec-

tion 2.3. The second maneuver (midcourse correction) is specified in the next

three columns. The first of these is the time from perigee; selection of this

time is discussed in the next section. The spacecraft is maintained with its

axis perpendicular to the ecliptic plane, with the midcourse correction (MCC)

resolved into in-plane (AV XY ) and out-of-plane (Z) components to be executed

by the radial and axial jets, respectively. The sum of AVXY and 2 is

EVMCC' 
The quantity AV KY is not tabulated, but can be calculated from

EVMCC 
and Z . The halo orbit insertion maneuver, performed when the space-

craft crosses the Y = 0 plane in the R LP reference frame, is specified in the

next two columns. The out-of-plane (ZIN ) component and sum (ZVHOI) are

given, similar to the midcourse correction.

The total AV used for the contingency case is given under the total E. V

column. It is the variable which is optimized (minimized) and is the sum of

AV20h , AVap , AV  , EVMCC ' and EV1iO1 . The total flight time required,

from launch to halo orbit insertion, is given in the next column. The

1978 month, day and hour (Greenwich Mean Time) of perigee are listed next.

The distance of closest approach to the Moon is given in the last column.

2.4.2 Optimization Strateta►

Software was designed for use with the GMAS to perform the calculations needed

to construct Tables 2-9, 2-10, and 2-11. A subroutine was written to apply an

(	 impulsive AV in the direction of the velocity vector for modeling AV20h
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AV 
RP

, and AVp . TRCOWL, the time-regularized Cowel integration sub-

routine, was modified to define a stopping condition when the spacecraft crossed

the Y = 0 plane in R LP coordinates. Subroutines were written to define three

independent variables to be the components of an impulsive AV vector (the mid-

course correction) and to define two dependent variables and one optimization

variable. The two dependent variables were the values of X and Z (RLP

coordinates), which must be 239267.95 km and -100326. 75 km, respectively,

for the desired halo orbit (these are the R LP coordinates of the HOI point for

'lRLP = 0). The optimization variable was defined to be the sum of the absolute

values of the in-plane (ecliptic) and out-of-plane components of the impulsive AV

for the midcourse correction and for the halo orbit insertion. A further opti-

mization of the total AV was accomplished by manually varying AV p and

the time of the midcourse correction. Automation of this last step was unde-

sirable due to the excessive computer time that would be needed and consequent

slow turnaround. In some cases, multiple solutions existed, so that unfavorable

cases might be selected by an automatic procedure. Care was taken to avoid

hyperbolic orbits which did not pass close to the halo orbit.

The most important aspect of optimization is selection of AV p . With the

proper AVp , the spacecraft trajectory will reach the HOT point in the X-Y

plane, as shown by the solid curve in Figure 2-4 (R LP coordinates are used).

Such a trajectory requires no ecliptic-plane midcourse correction, but an out-

of-plane maneuver is needed to achieve Z = 100326.75 km at HOI. If AV p

Is too small, the transfer orbit will not have enough energy and will intersect

the Y = 0 plane short of HOT, at point A in Figure 2-4. With AV p too large,

the trajectory reaches the Y = 0 p.a a at some point B beyond the HOI point,

and the spacecraft will escape into a heliocentric orbit.

The optimization of AVp is illustrated In Table 2-12, where the midcourse

correction is performed at a fixed time, 5 days after perigee. The MCC data

are given in columns 2-4 (OVA = ecliptic plane component of the AV , 1 2 is

the ecliptic normal component, and EV2 = OVA + Z2), similar data are given ,.
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Table 2-12. Optimization of V-9Q Case for July 23, 1978, Launch

AVp

(m/sec)
AV2xy
(m/sac)

Z2

(m/sec)
EV2

(mhac)
AVIXY
(m/sec)

ZIN
(m/sac)

EVIN
(m/uc)

TEV
(m/sae)

53.2 2.9 -3.7 6.6 66.7 3.8 72.5 156.3

53.3 1.1 -a 9 5.1 67.9 3.7 71.6 154.0

53.4 0.6 -4.2 4.8 67.5 3.6 71.1 153.3-

53.5 2.3 -4.4 6.7 66.8 3.5 70.3 154.5

53.6 4.0 -4.7 8.7 66.1 3.5 69.6 156.9

58.63• 1.3 -3.0 4.3 66.4 3.6 70.0 156.9

*PERIGEE BURN AT PENUMBRAL EXIT, NOT PERIGEE
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for HOI in the next three columns (AVM , ZI , EVIN), and the total AV re-

quired is given under TEV = AV  +EV2 +EVI . As expected from the above

discussion, the minimum TEV , marked by an arrow, occurs when 
AV2XY 

is

near zero. Since ±2 changes slowly with AV  , EV2 is also optimized.

The HOI costs continue to decrease as AV increases.
p

Table 2-13 shows the minimum TEV found when the MCC was performed at

several different times from perigee, for the V - 6Q case with a July 23, 1978

launch. The time from perigee is given in the first column. As noted above,

the quality of the optimization of V.'V can be approximately gaged by the

smallness of AV2XY . It is clear from the table that the value of the minimized

TEV varies little with time of MCC from perigee. The values vary by only a

few percent, except near 20 days, when about 20 meters/second additional
f

AV is required. The reason is that an approximately 20 meters/second out-

of-plane AV is needed at HOI for these cases, while usually this Z	 is
IN

only a few meters/second. The MCC Z is also somewhat larger. At 20 days,

the spacecraft reaches its maximum height above the ecliptic plane, while near

HOI, it is far below the plane, near its minimum value. The small plane change
t

needed to reach the HOI point is more economically accomplished while the

spacecraft is relatively close to the ecliptic.

The last two columns of Tables 2-3 give values for AV2XY and the difference

in TA"W4 V from the minimum value give in the 4th column, when AV  is

0.01 meter/second larger or smaller than the AV pervalue for the minimum

TdV . There is virtually no differences when MCC is performed soon after

perigee, but the values increase considerably as the time of MCC increase.

This stronger dependence on AV  makes optimization of the cases at later

times from perigee easier than the early cases. Therefore, it was desirable

to do the MCC at apogee, which occurred at 46.0 days for the V - 6Q case.

For many of the cases listed in Tables 2-9, 2-10, and 2-11, the MCC was per-

formed at apogee only, to facilitate the study. In practice, it would be best
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Table 2-13. Minimum at Given Times, Varying AV
P

TIME
(DAY)

_IVp
Im/sec)

MINIMUM
Im/sec)

VALUES FOR -IV p±.01
Imisec)

-1V2XY T!:V -IV2-XY T=V-MIN

35.68 1.8 150.5

2 35.76 1.0 147.0 1.0 0.0

3 35.74 1.0 145.7 1.1 0.0

4 35.68 1.5 146.2

5 35.68 1.3 151.3

20 35.63 1.6 164.6 1.1 0.1

45 35.68 0.1 147.0

46 35.68 0.2 146.8 0.7 0.3

47 35.68 0.2 146.6

48 35.68 0.2 146.3

50 35.68 0.2 146.0 0.9 0.5

55 35.68 0.2 145.2

60 35.68 0.3 144.3

70 35.68 0.8 143.3 7.1 2.2

80 35.68 2.2 142.2 10.2 0.7

85 35.68 3.i 141.8 16.2 0.6

90 35.6785 1.8 141.7 1.6 24.2
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to perform the MCC soon after perigee, since TEV is then less sensitive to

errors in 
AV  . 

Energy considerations (Equation 2-1) and Figure 2-4 show

that it is desirable to correct execution errors in AV  as soon as possible.

The dependence of TEV on AV  is shown in more detail for four MCC times

In Table 2-14. If the MCC is performed during the early or late stages of the

transfer trajectory, optimization does not occur exactly when 
46V2XY vanishes

due to rapidly-changing ecliptic plane AV costs at HOI. The HOI AV costs

can be significantly decreased by increasing the MCC, while TEV changes

little. At 90 days from perigee (only 5 days before HOI), there are multiple

solutions, as listed in Table 2-15.

2.4.3 Lunar Perturbations

The major effect of the Moon is a change in the energy of the spacecraft orbit,

described in Section 2.4.3.1. Large OVs normal to the ecliptic, needed to'.

correct a change in- the inclination of the transfer trajectory plane caused by

relatively close approaches to the Moon, are discussed in Section 2.4.3.2.

2.4.3.1 Change in Spacecraft Orbital Energy

If the spacecraft-Earth-Moon angle is less than 60 degrees when the spacecraft

crosses the Moon's orbit on its transfer trajectory to the halo orbit, the space-

craft orbital energy will be substantially modified by lunar gravity. If the

spacecraft passes in front of the Moon (i.e., it arrives at the crossing point

before the Moon), its orbital energy will be increased, and thus a smaller

AV  , and smaller TEV , is needed to reach the halo orbit. But if the space-

craft arrives later, passing behind the Moon, the orbital energy is decreased,

and a much larger AV is needed at perigee to compensate for the loss.

The Moon crossed a halo-orbit-bound contingency transfer trajectory on

August 2 and September 1, 1978. These were 9-1/2 and 28-1/2 days after the

July 23rd launch, respectively. Since it takes 2-1/2 days for the spacecraft to

(	 reach the lunar orbit from perigee, the critical contingency orbit periods were
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Table 2-14. Some Details of Optimization of the V -6C Case

AV p
AT 2d
(m/sec)

AT 20d
(m/sec)

APOGEE (46.d 0)
(m/sec)

AT 70d
(m/sec)

(m/sec) IV 2XY T=V ,IV 2XY TZV AV 2XY T= V AV 2XY TSV

35.63 1.6 164.6 -

35.64 1.1 164.7

35.65 0.6 164.7

35.66 1.7 148.0 0.1 164.9 1.3 147.4 5.8 146.8

35.67 0.4 165.1

35.68 1.0 165.4 0.2 146.8- 0.8 143.34--

35.70 1.2 147.2 1.6 148.8 7.1 145.5

35.72 3.1 150.7

35.74 1.1 147.0 4.6 152.8 19.1 150.0

35.76 1.0 147.0.-

35.78 0.9 147.0
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Table 2-15. Optimization for MCC 90d After Perigee, V -69 Case

EQUATORIAL COMPONENT
STAFITING VALUES

r
AV 

2X

(m/sec)

AV 2Y

(m/sec)

AV 
2Z

(m/sec)

AV 

(rn/sec)

AV2XY

( m/sec)

Z2

(m/sec)

LV2

fm/sec)

AVIXY

(m/sec)

ZIN

(m/sec)

LVIN

(m/sec)

T2,'V

(m/sec)

5.0 Or 5.0 5.0 35.677 0.6 19.1 19.7 94.8 -8.6 103.4 158.8
0.042 -1.131 20.236 35.6785 3.4 19.1 22.5 91.8 --8.6 100.4 158.6-
5.0 5.0 5.0 35.68 7.0 19.0 26.0 88.4 --8.6 97.0 158.8

- 0.042 --1.131 20.236 35.68 7.2 19.0 26.2 88.2 -8.6 96.9 158.8

1.552 9.464 -21.358 35.677 0.4 9.6 9.9 94.8 1.4 92.6 141.8
-1.552 9.464 -21.358 35.6785 1.8 9.6 11.4 93.4 1.3 94.7 141.7--
--1.552 9.464 -21.358 35.68 3.8 9.6 13.4 91.5 1.1 96.2 141.8

4



7 days and 36 days. None of the orbits listed in Table 2-9 have periods very

close to these values, although the V - 120 case, with a 9.4 day period, is

affected. The increasing Z (out-of-plane) costs, discussed in the next sub-

section, provide a clue to the strength of the lunar perturbations. The critical

contingency orbit must be near V - 150r. Between V - 11Q and V - 1k ,

the Moon is adding energy to the orbit. Contingency cases worse than V - 15(y

would have been exacerbated by unfavorable lunar perturbations and would have

been very difficult to salvage. A close approach to the Moon would have occur-

red on the inward bound leg of the first orbit for the V - 7a and V - 8Q cases.

For the V - 80 case, a large apogee burn was needed to prevent Earth impact,

since the lunar perturbations decreased the perigee distance (smaller apogee

burns would have been needed for the V - 90 and V - lOQ cases, for the same

reason). For the V - 70 case, a large burn 20 hours after launch would have

been needed to avoid severe lunar perturbations. The AV at 20 h effectively

changed the case to a V - 6Q case. This strategy was examined in more de-

tail for the August 12th launch cases.

For the August 12th waxing-Moon launch, a close approach to the Moon occurred

on the inbound leg of the first orbit for the V - 4Q case. From Table 2-10,

we see that the Moon would have nearly tripled the perigee height, and neces-

sitated large out-of-plane maneuvers. Comparison with Table 2-1 shows that

direct transfers are more economical in this case, and are preferred. At

V - 50 , the lunar perturbations are much smaller and the contingency strategy

becomes more efficient than a direct transfer.

A calculation like the one described above for the July 23rd launch shows that,

for the August 12th launch, the critical orbital period is about 16 days for lunar

perturbations of the transfer trajectory. This is the period of the first orbit

for the V - 7a case. The V - 6a case, where the spacecraft would have passed

in front of the Moon, was greatly aided by the lunar attraction, and thus the

total maneuver OV costs are lower than for any of the other contingency cases.

j
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0
The rapid increase in AV costs are shown in Table 2-16, where contingency

cases at 1/40 -intervals are tabulated from V - 6Q to V - 7-3/40 , with no

first-orbit maneuvers. Closest approach to the Moon occurred for V - 6-3/4Q

(70,200 km distant). Most of the increased AV costs for the surrounding

cases are out-of-plane corrections, but the largest total EV , an unacceptable

254.6 meters/second, occurred for the V - 7 Q case, with the spacecraft pas-

sing close to the Moon, and behind it.

The problems illustrated in Table 2-16 can be ameliorated by changing the period

of the first orbit with a maneuver performed 20 h after launch, similar to the

maneuver described in Section 2.2.1, but larger. For most of the cases listed

in Table 2-16, it was found that increasing the first-orbit period to the value

for the V - 60 case gave optimum results. These as shown in Table 2-17.

For larger n , AV20h had to be increased to achieve the V - 6Q orbit. The

total rV costs, which include AV20h , were reduced even for the V -7-3/40

case, one full a beyond the uncorrected closest lunar approach case, where

55 meters/second were used to reach the V - 60 orbit. Only for the V - 80

case was it more economical to decrease the spacecraft orbit period, so that

it become similar to the V - 90 case. The costs to correct the V - 80 orbit

are still unacceptably high. A delayed transfer, described in Section 2.5,

might be preferred for such a case. The actual AV applied at 20h would usually

have to be changed slightly from the value given in Table 2-17 to achieve good

station coverage at perigee, which must occur at about the same time of day as

launch, as described in Section 2.2.1. Fortunately, the total cost is not

greatly affected by this. For example, several AV20h values were used for

the V - 70 case, producing perigee times at different hours of August 30, 1978.

For a perigee time range of 15 hours centered on the time producing the minimum

TISV , the T."o4V was less than 2 meters/second more than the minimum. For a

range of 28 hours, the T: V difference was under 8 meters/second.
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Table 2-16. Fuel-Optimum Contingency Strategies for V-Gcr to V-8v, August 12, 1978 Launch.
No First-Orbit Maneuvers

LJ

tv

n AV20h

(^n 20

AVap
(m/sec)

PERIOD
(days)

AVp
(m/sec!

Zmc
(m/sec)

2:Vmc
(m/sec)

Zin
Im/sec)

lVin
(m/sec)

TOTALD ATE,

(m/sec)

PERIGEE
TIME

Rm
(km)m	 d	 h

d
6 0 0 18.3 34.6 - 8.9 13.8 0.0 92.8 141.2 8	 30	 23 137,953

6% 0 0 18.0 34.9 -13.6 IT9 -11.0 94.7 147.5 8	 30	 16 105,900

655 0 0 17.1 35.8 -23.6 27.8 -34.6 114.4 178.0 8	 29	 18 87,000

6'. 0 0 16.5 39.4 --33.3 34.4 --58.6 152.3 226.1 8	 29	 5 70,200

7 0 0 16.0 44.5 -29.9 35.4 -53.1 174.6 254.6 8	 28	 17 82,850

7'1. 0 0 15.5 47.0 -21.1 36.4 -31.5 153.4 236.7 8	 28	 5 95,500

7'h 0 0 15.1 48.4 --15.0 20.9 -17.0 142.6 211.9 8	 27	 18 123,500

7Z 0 0 14.7 49.3 -11.1 16.0 - 7.8 129.9 195.2 8	 27	 7 149,400

'y	^ _ #	 Ste. _	 Z	 .. ^.f



Table 2-17. Fuel-Optimum Contingency Strategies for V-61? to V-8v', August 12, 1978 Launch

N
I
it
Cl)

MIDCOURSE

TOTAL TOTAL 1978
n AV20h avail PERIOD APOGEE PERIGEE JVp TIME 2 i'VMC ZIN LVHOI EV TIME PERIGEE Re

(m/sec) Wsac) (days) Wm) Win) (m/sBd (days) (m/sec) (m/sec) (m/sed (m/sed 6n/sed (days) DATE,TIME (km)

m d h

6 0 0 18.3 572,575 7,756 34-6 43 -8.9 13.8 0.0 92.8 141.2 112.5 83023 137,953

6'% 5 0 18.0 566,966 7,7556 34.8 45-4' -10.4 13.2 -3.5 92.6 145.6 112.4 83011 123,297

6% 10 0 17.7 561,439 7,750 35.0 46.0' --12.8 13.9 --9.5 96.3 154.2 112.4 83010 108,444

6% 20 0 17.8 563,103 7,820 35.0 45.6' --12.1 14.6 -7.8 91.8 161.4 112.3 83012 113,040

7 20 0 17.9 564,753 7,890 35.0 45.2' -11.4 17.5 -6.0 8B.1 170.7 112.1 83014 116,667

7% 40 0 18.0 566,389 7,959 35.0 44.8' -10.9 20.4 -4.4 84.6 180.0 111.9 83016 120,317

7'/] 45 0 17.7 560,717 7,955 35.3 46.4' -13.6 15.2 -11.6 91.8 187.2 112.7 8 30 10 106,235

7'/. 55 0 17.8 562,271 8,027 35.3 46.0• 12.8 14.9 -10.0 88.1 193.4 112.5 8 3D 12 109,507

8 15 6 12.9 454,680 7,140 56.2 43.9• --14.6 20.1 -3.5 112.9 209.2 109.1 82514 253,458

'MIDCOURSE PERFORMED AT APOGEE.



2.4.3.2 Inclination Changes

Part of the Moon's orbit, and the first orbit for the V - 6v contingency case.

(August 12, 1978 launch), are shown in Figure 2-5. Both orbits are inclined

about 6 degrees to the ecliptic, but the ascending nodes are separated by about

172 degrees. As a result, the mutual inclination of the planes exceeds 10 de-

grees. Since the spacecraft orbit is highly elliptical, the points where the

spacecraft and lunar distances are equal are located near apogee in the geo-

centric view of Figure 2-5. Because this is about 40 degrees from the common

node, the minimum separation can be no less than about 50, 000 km. A AV of

about 100 meters/second normal to the ecliptic is needed to change the space-

craft plane enough to encounter the Moon, or to make a significant lunar swingby

maneuver. Such a AV would have been too large; avoidance of the Moon, as

described in the previous subsection, was found to be the best contingency

strategy. Segments of the transfer trajectories for the V - 6Q and V - 6. 75q

(with no AV20h) cases are shown in Figure 2-4. The difference between the

two segments illustrates the strong perturbation for the V - 6.75a case, where

the spacecraft passes about 70, 000 km above the Moon. This difference must

be corrected by large out-of-plane AVs which make the total costs too large.

For other launch dates, the first spacecraft orbit maintains about the same

orientation with respect to the Sun, so that the inclination to the ecliptic remains

about 6 degrees, and the longitude of the ascending node is about 120 degrees

less than that of the Sun at launch. Since the motion of the node of the lunar

orbit is much slower than the motion of the Sun, different geometries occur

for launches at different times of the year. The July 23rd launch geometry

was similar to that for the August 12th launch; the closest possible approaches

to the Moon were slightly greater for the July launch than for an August launch.
i

Therefore, the remarks in the previous paragraph are applicable to the

July 23rd contingency cases. For launch dates a few months earlier or later

than those considered here, the lunar perturbations would be very different, and
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thus the results, especially the out-of-plane costs, could differ considerably

from those presented in the last several tables. A launch date could be selected

where the spacecraft first orbit (or the plane of the originally-planned transfer

trajectory) would be nearly coincident with the lunar orbital plane. The lunar

out-of-ploze perturbations would be insignificant for such a case, and relatively

close lunar swingbys might be used to considerable advantage for optimization

of the transfer trajectory AV costs.

2.6 DELAYED TRANSFERS

The results of Section 2.4 show that there are few contingency cases where the

lunar perturbations are so unfavorable that no combination of first orbit and

transfer trajectory maneuvers can result in halo orbit insertion for less than the

desired 200 meters/second contingency budget. If one is unlucky enough to be

In one of these contingency situations where the three-impulse strategy die-

cussed above fails, it might be possible to salvage the mission by letting the

spacecraft complete more than one Earth orbit before executing a perigee

maneuver for the TTI. The first thought would be to attempt TTI after com-

pleting two Earth orbits. There would be considerable motion of the Earth-Sun

line away from the spacecraft orbit's line of apsides, as indicated in Figure 2-2.
r

Consequently, the in-plane component of a midcourse correction to achieve a

suitable transfer trajectory to the halo orbit would probably be prohibitively
r

large. Two-orbit attempts for the V - 9p case for the August 12 launch re-

sulted in unacceptable AV costs of several hundred meters/second.

A delay of about 1 year should be more successful. By then, the apogee of

the spacecraft's orbit would again be in the solar direction, and a good transfer

trajectory should be achievable with a perigee maneuver. A small maneuver

near the first orbit perigee could be executed to change the period of the space-

craft orbit, so that after a year, it would be possible to encounter the Moon for

a swingby maneuver to decrease transfer trajectory costa. A two-body model

was used to compute approximate costs for these phasing maneuvers listed in
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Table 2-18 for the V - 90 case, July 23rd launch. The number of months and

revolutions of the spacecraft (NREV) are given, along with the Julian dates

when the Moon and the spacecraft are at the mutual orbital crossing points, with

the spacecraft outbound. The difference of these times in days is given under

DIFF. Values, in meters/seconds, for AVs needed to change the spacecraft

period enough to make DIFF vanish are given. The AV is assumed to be per-

formed at the apogee or perigee of the first orbit. No value is given in the

apogee column if the maneuver lowers perigee, which might result in Earth

impact. According to Equation 2-1, the perigee burns are much more efficient.

The costs decrease as the number of revolutions increase, allowing the time

difference to be divided over a larger number of orbits. The costs become very

small after a year. Actual costs for the phasing maneuver were found to differ

considerably from values listed in the table since relatively close approaches

to the Moon before the desired encounter considerably perturbed the spacecraft

t	
orbit, including its period. Figure 2-5 and the discussion of Section 2.4.3.2

show that a lunar encounter would not be very useful for the July and August 1978

launches. A year after launch, the spacecraft orbit would have to have ap-

proximately the same orientation as shown in Figure 2-5 in order to keep out-

of-plane transfer trajectory maneuver costs within reasonable bounds. A

phasing maneuver for a delayed (one year late) transfer could be used to estab-

lish perigee at a time of month similar to the favorable August 12 launch

V - 6o transfer, rather than a close encounter with the Moon. A major problem

with delayed transfers is a large plane change which the spacecraft orbit usually

suffers as a result of lunisolar perturbations during a year. Maintaining the

original spacecraft orbit orientation and setting up a good time of month for a

low-cost transfer to the halo orbit a year after launch make the calculation of

delayed transfers a very difficult problem.
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Table 2-18. Delta V Costs for Period Changes for
Lumar Encounters for V-9 Sigma,
Spacecraft Outbound

i

MONTH JD MOON NREV JD S/C DIFF.
(days)

APOGEE .IV
(m/sec)

PERIGEE AV
(m/sec)

1 2443751.28 3 2443754.77 3.488 - 7.11
2 2443778.60 5 2443780.28 1.678 - 1.67

3 2443805.92 7 2443805.79 - 0.132 5.47 0.08

4 2443833.24 9 2443831.30 - 1.942 53.46 0.95

5 244386G.57 11 2443856.81 - 3.752 78.18 1.47
6 2443887.39 13 2443882.33 - 5.562 93.54 1.81

7 2443916.21 16 2443920.59 5.384 - 1.50

8 2443942.53 18 2443946.11 3.574 - 0.87
9 2443969.85 20 2443971.62 1.764 - 0.38
10 2443997.17 22 2443997.13 - 0,946 0.60 0.00

11 2444024.50 24 2444022.64 -1.856 20.85 0.32
12 2444051.82 26 2444048.15 - 3.666 36.19 0.59

13 2444079.14 28 2444073.66 - 5.476 48.32 0.81

14 2444106.46 31 24"111.93 5.470 - 0.76
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SECTION 3 - LARGE OVERBURNS
t

There is no strategy for correcting overburn contingency cases equivalent to

the three-impulse strategy for underburns described in Section 2. Even a

V + is trajectory passes directly through the halo orbit region with the space-

craft soon escaping the Earth and going into a heliocentric orbit. ISEE-3 does

not ho ve the AV capability for making useful heliocentric orbital changes.

ThF -)nly real hope for overburns is to perform a retro maneuver as soon as the 	 i
k	

orbs; has been determined, perhaps 18 h after launch, to try to directly estab-.	 I
lish a transfer trajectory to the halo orbit. The AV costs for such a maneuver 	 3

arm similar to those for correcting underburns for direct transfers, like those s
:fisted in Table 2-1. Hence, a V + 5a error could be corrected by a retro ma- 	 }

neuver for a total AV cost less than the 200 meters/second desired for contin-

gency cases. Somewhat larger overburns could be corrected with higher AV

costs within the total spacecraft fuel budget, but little fuel would remain for

stationkeeping and attitude maneuvers while in the halo orbit, decreasing the

spacecraft's useful lifetime.

Heliocentric trajectories were propagated for 1000 days for the V + 3Q, V + ft,

V + 12a, and V + 18Q cases to see if there might have been any chance for re-

turning the spacecraft to within a nseful communication range of the Earth.

For the first three cases, the geocentric distance increased monotonically to

to over 107 km. The V + 18v trajectory returned to the Earth-Moon system

after 352 days, the hyperbolic perigee distance being 243, 000 k as. For this

case, a maneuver could be performed to cause a lunar swingby and recapture

by the Earth. However, an overburn as large as 18a at launch was virtually

impossible considering the capabilities of the Delta rocket second and third

stages used for the transfer trajectory insertion, and thus details of a lunar

capture for this case were not investigated.
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SECTION 4 - SUMMARY

Details of a contingency strategy developed for the ISEE-3 mission are given

in Sections 2 and 3. The purpose of this section is to summarize the results

by outlining the procedures which might be followed for large underburn con-

tingency planning for a future libration-point mission.

Before the launch, when a launch date has been selected, direct-transfer costs

should be computed for a few contingency cases to allow a table similar to

Table 2-1 to be prepared. The results should be similar to those of

Tables 2-1 and 2-2. If 1Q is defined to be something other than 5.6 meters/

second, the results would be scaled according to the ratio of 1Q to 5.6 meters/

second.

The Moons phase at the selected launch date should be checked. If the Moon

is near first quarter (waxing), the contingency costs should be similar to those

given in Table 2-10. If the launch is near last quarter (Moon waning), the

contingency costs should be similar to those given in Table 2-9.

For constructing a table similar to Table 2-10, a range of contingency cases

should be selected. A suggested range of velocity errors would be from 3a

to 10a , with two or three cases with even larger errors. A suitable interval

would be about 5 meters/second (1q, or 5.6 meter/second, in the case of

ISEE-3) in order to obtain enough detail to determine where lunar perturbations

may be severe. Tables similar to Table 2-10 should also be prepared for one

or two alternate launch dates, especially if the lunar phase is different from

the phase at the primary launch date. Contingency cases strongly affected

by the Moon should be computed in more detail to determine what first-orbit

maneuver might be needed, as discussed in Section 2.4.3 (see Tables 2-16

and 2-17). Any case with real problems which might require a delayed trans-

fer, such as V-80 for the August 12, 1978, launch, should be determined.
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For each of the contingency cases, the orbit should be propagated for one

revolution to perigee in order to see if any first-orbit maneuvers are needed,

as discussed in Section 2.2. If Earth impact occurs or if perigee is too low,

an apogee maneuver is required, as discussed in Section 2.2.2. A small

maneuver will probably be needed about 18 hours after launch in order to change

the spacecraft's orbital period for adequate tracking station coverage near

perigee (see Section 2.2.1). Tabulations similar to those in Tables 2-3 and 2-4

could be useful for estimating an initial AV for the detailed calculations which

would need to be performed quickly in a real contingency situation. In addition,

as soon as the attempted transfer trajectory insertion error is established, the

table described above (prepared like Table 2-10) should be consulted to see if

a larger maneuver at 18 hours after launch would be needed to avoid large

lunar perturbations, as discussed in Section 2.4.3. A transfer trajectory study

should quickly be performed for the actual contingency situation to verify the

r prelaunch results, which should provide a good guide, but will not be highly

accurate due to pointing errors. After the first-orbit maneuvers are deter-

mined, a study of the new transfer trajectory should be made by varying the

perigee AV and optimizing the total fuel costs for a midcourse correction

performed at apogee. When an optimum perigee AV is found in this way,

earlier midcourse correction times can be studied. This detailed analysis

could be done one or two days after launch rather than before 18 hours after

mca, since it is not critical (see Section 2.4.2).

the actual contingency case poses relatively severe problems with lunar per-

7bations, such as the V-8a case for the 1978 August 12 launch, some delayed

msfers might be computed, as described in Section 2 . 5. But since such a 	 {

idy would probably not yield a useful result within a day after launch, the

timum single-orbit case would probably have to be selected. A detailed
t

layed transfer study could be made during the next several days to determine i
there might be a delayed transfer which would have lower fuel costs than the

lected single-orbit case.
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Details of the perigee maneuver can be computed during the first orbit. Sec-

tion 2.3 gives an approximate guide for this calculation. While performing

the contingency transfer trajectory calculations using an impulsive AV at

perigee, the analyst should keep in mind that the actual AV required in terms

of fuel costs will likely be 20 percent or more greater than the perigee impulse.

This can be inferred from Table 2-7, assuming that axial jets are used with the

burn started at penumbral exit.

}
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