PHASE 2 OF THE ARRAY AUTOMATED ASSEMBLY TASK FOR THE LOW COST SOLAR ARRAY PROJECT
R. B. Campbell, et.al.

DRL

DOE/JPL 954873-78/01

Distribution Category UC-63

First Annual Report
October 1, 1977 - October 30, 1978

November 16, 1978

Contract No. 954873

This work was performed for the Jet Propulsion Laboratory; California Institute of Technology, under NASA Contract NAS7-100 for the U. S. Department of Energy, Division of Solar Energy.

The JPL Low Cost Solar Array Project is funded by DOE and forms part of the DOE Photovoltaic Conversion Program to initiate a major effort towards the development of low cost solar arrays.

Westinghouse R\&D Center
1310 Beulah Road
Pittsburgh, Pennsylvania 15235

PHASE 2 OF THE ARRAY AUTOMATED ASSEMBLY TASK

DRL

Distribution Category UC-63

First Annual Report
October 1, 1977 - October 30, 1978

November 16, 1978

Contract No. 954873

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, under NASA Contract NAS7-1.00 for the U. S. Department of Energy, Division of Solar. Energy.

The JPL Low Cost Solar Array Project is funded by DOE: and forms part of the DOE Photovoltaic Conversion Program to initiate a major effort towards the development of low cost solar arrays.

TECHNICAL CONTENT STATEMENT.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employes, nor any of their contractors, sub-contractors, or their employes, makes any warranties, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
Page
List of Figures iv
List of Tables vii
FOREWORD ix

1. SUMMARY 1
2. INTRODUCTION 2
3. PROCESSES SELECTED FOR DEVELOPMENT 6
3.1 Dendritic Web Silicon - Preliminary Material 6 Specifications
3.2 Junction Formation 6
3.2.1 Front Junction Preparation Using Reagent 6 Grade POCl_{3}
3.2.2 Optimum Time/Temperature Conditions for 12Front Junction Diffusion
3.2.3 Back Surface Field Development 13
3.2.3.1 Doped Oxide Study 13
3.2.3.2 Single.Crystal Wafer Cells with 14 and without BSF Regions
3.2.3.3 Web Silicon Cells with and 20 without BSF Regions
3.3 Antireflection Coatings 21
3.3.1 Introduction 21
3.3.2 AR Coatings by Dip Processing of Dendritic 23 Web Silicon
3.3.3 Heat Treatment of the Coating 27
3.3.4 Chemical Resistance of the Films 27
3.3.5 Reflectivity 30
3.4 Metallization Systems 35
3.4.1 Systems Studied 35
3.4.2 Solar Cell Fabrication and Characterization 36

TABLE OF CONTENTS (cont'd)

Page
3.4.3 Results and Discussion 40
3.4.4 Conclusions 46
3.5 Cell Separation by Laser Scribing 46
3.6 Interconnections 52
3.6.1 Interconnection Requirements 52
3.6.2 Interconnection Methods 53
3.6.2.1 Conductive Adhesive Bonding 53
3.6.2.2 Parallel Gap Welding 53
3.6.2.3 'Laser Welding 54
3.6.2.4 Thermocompression Bonding 54
3.6.2.5 Soldering 54
3.6.2.6 Solder Reflow 54
3.6.2.7 Ultrasonic Bonding 54
3.6.3 Demonstration of Ultrasonic Bonding for Cell Interconnection 56
3.6.4 Conclusions 58
3.6.5 Conceptual U1trasonic Bonded Interconnect Process (Automated System) 62
3.7 Encapsulation 62
4. PROCESS SEQUENCE FOR DENDRITIC WEB SIIICON SOLAR CELLS 67
4.1 ARRAY Process 67
4.2 Mask. Design 74
4.3 Results - Cells 76
4.4 Results - Modules 81
4.4.1 Test Modules 81
4.4.2 Demonstration Module 85
5. 'PROCESS AND SEQUENCE VERIFICATION 93
5.1 Diffusion 93

TABLE OF CONTENTS (cont'd)

Page
5.1.1 Non-BSF Cells 93
5.1.2 BSF Cells 94
5.2 AR Coating by Dip Processing 98
5.2:1' Web Width Considerations 98
5.2.2 Variation of Optimum Film Thickness 101
5.3 Laser Scribing 102
5.4 Metallization and Sintering 104
5.4.1 Sintering vs Junction Depth 104
5.4.2 Sintering of Other Metal Systems on Web 110
6. COST ANALYSIS OF PROCESS SEQUENCE 113
6.1 Continuous Processing of Dendritic Web 113
6.2 Parallel Processing of Finite Lengths of Web 114
6.3 Pilot Line 166
6.4 Conclusions 169
7. CONCLUSIȮNS 170
8. RECOMMENDATIONS 171
9. NEW TECHNOLOGY 172
10. REFERENCES 173
Page
Fig. 1 Predicted open circuit voltage enhancement in p-base silicon cells as a function of thickness normalized to minority carrier diffusion length. (After Ref. 3). 19
Fig. . 2 Coating thickness as a function of solution concentration and withdrawal rate in dipping application. 26
Fig. 3 Change in index of refraction and coating thickness during heat treatment. 28
Fig. 4 Spectral reflectivities of coatings heat treated at various temperatures. 31
Fig. 5 Minimum reflection and wavelength as a function of heat treatment of undoped titania coating. 32
Fig. 6 Spectral réflectivity of a AR coating on a web silicon solar cell (composition $88 \% \mathrm{TiO}_{2}-12 \% \mathrm{SiO}_{2}$, heat treated at $450^{\circ} \mathrm{C}$). 34
Fig. 7 Schematic diagram of the procedure for transforming the measured $I-V$ data to separate the bulk $\left(I_{B}\right)$ and junction $\left(I_{j}\right)$ components. 39
Fig. . 8 Transformed $\mathrm{I}-\mathrm{V}$ plots for $\mathrm{Ti}-\mathrm{Ag}$ and Ti-Pd-Cu. 44
Fig. 9 Scanning electron micrograph of web silicon solar cell laser scribed from the back under conditions guaranteeing no penetration of the laser to the front surface. 48
Fig. 10 Effects of controlled depth, back surface laser scribing on conversion efficiency of a group of web silicon solar cells. None were AR coated. 50
Fig. 11 Changes in web cell efficiency values due to limited penetration, back surface laser scribing. No $A R$ coating. 51
Fig. 12° Cells interconnected using ultrasonic bonding. 61
Fig. 13 Processing Log 70
Fig. 14 Twelve solar cells fabricated on strips of dendritic web silicon. Dendrites are still in place. 71°
Fig. 15 Solar cells of $1.6 \mathrm{~cm} \times 7.0 \mathrm{~cm}$ dimensions which have been laser scribed from dendritic web silicon. 72
Page
Fig. 16 Comparison of undercutting for (a) fired and (b) unfired. TiO_{2} coatings prepared from a liquid organometallic precursor. 73
Fig. 17 Contact print of the grid electrode mask for a 2.0 cm x 7.0 cm dendritic web silicon cell. 75
Fig. 18 Processing Log. 77
Fig. 19 Comparison of efficiency of $1.6 \times 7.0 \mathrm{~cm}$ cells produced by Array process with $1.0 \times 1.0 \mathrm{~cm}$ cells produced by standard process. 79
Fig. 20 Cells fabricated by Array process AR coated. 80
Fig. 21 Test Module \#1 - Cell Temperature vs. Time at AM-1. 83
Fig. 22 Test Module \#2 - Cell Temperature vs. Time at AM-1. 84
Fig. 23 ' Cell demonstration module. 90
Fig. 24 Efficiency vs. estimated junction depth diffusions at $825^{\circ} \mathrm{C} ; 850^{\circ} \mathrm{C} ; 900^{\circ} \mathrm{C}$. 96
Fig. 25 Change in $I-V$ performance of web cells with junction depth (diffusion time). 97
Fig. 26 Front junction depth vs. efficiency (WEB W-41). 100
Fig. 27 Antireflection film thickness vs. enhancement factor. 103°
Fig. 28 2009-6LS Laser scribed from back -- Note total penetration after laser scribe dwell. Length of scale bar: $100 \mu \mathrm{~m}$. 103
Fig. 29 Transformed Dark I-V curves for the sample SOLEP 133-8: - Before Sintering, After Sintering at $425^{\circ} \mathrm{C}$. 107
Fig. 30 Measured dark $I-V$ curves for the sample $70714 \mathrm{~W}-13$: - Before Sintering, After Sintering at $425^{\circ} \mathrm{C}$. 108
Fig. 31 Transformed dark I-V curves for the sample SOLEP 134-80A:

- Before, After sintering at $550^{\circ} \mathrm{C}$. 111
Fig. 32 Tranformed dark I-V curves for the sample SOLEP 134-480F:
- Before, - After sintering at $550^{\circ} \mathrm{C}$. 112
Fig. 33 Web growth furnaces. 117
Fig. 34 Junction formation processes in sequence. 118
Fig. 35 Application of the anti-reflection coating and the photoresist. 119
Page
Fig. 36 Metallization process for the web solar cell. 120
Fig. 37 Laser scribing process. 121
Fig. 38 The final processing step. 122
Fig. 39 Breakdown of array costs. 167

LİST OF TABLES

Page
Table 1 Material specificiation for dendritic web silicon. 7
Table 2 Outline of n^{+} / p cell processing steps. 8
Table 3 Cell performance comparison, electronic vs. reagent grade POCl_{3} diffúsant sources. 10
Table 4 Metallic impurity content (ppm) of J. T. Baker POCl_{3} reagent vs. electronic grade. 11
Table 5 Comparative characteristics of uncoated $n^{+} p$ cells fabricated with POCl_{3} sources of several Ti concentrations. 11
Table 6 Characteristics of $\mathrm{n}^{+} \mathrm{pp}^{+}$base-line cells fabricated with AMS-1000 reactor produced back surface field (no AR coating). 15
Table 7 Performance characteristics for ohmic back contact cells using single crystal float zone silicon. 16
Table 8 Performance characteristics for single crystal, float zone cells having back surface field regions prepared by BBr_{3} diffusion (no AR coatings). 18
Table 9 Initial results for web cells (not $A R^{\prime}$ coated) with and without BSF regions. 21
Table 10 Estimated diffusion lengths and electron lifetimes in web silicon cells with BSF regions: 21
Table 11 Effectiveness of AR coatings prepared from organometallic precursors. 24°
Table 12 The stability of air-baked $T i 0_{2}$ films in 1% concentrated solutions of various acids and ammonia. 29
Table 13 The stability of vacuum-baked TiO_{2} films in 1% solution of various acids and ammonia. 29
Table 14 Effect of metal-organic derived AR coatings on the performance of solar cells. 33
Tabie 15 (Evaporated Ti-Pd-Ag) Vs. (Evaporated Ti-Pd-Plated AG). 41
Table 16 Evaporated or Plated Cu. 41
Table 17 (Evaporated Ti-Pd-Ag) Vs. (Evaporated Pd-Plated Cu). 43
Page
Table 18 （Evaporated Ti－Pd－Ag）Vs．（Evaporated Ti－Pd－Plated Cu ） 43
Table 19 Evaporated（Ti－Pd－Ag），（Cr－Pd－Ag）and（Ta－Pd－Ag）Contact Systems． 45
Table 20 Material combinations producing good（ G ）and poor（ P ）． ultrasonic bonds under a limited number of bonding conditions． 57
Table 2145° pull strength tests of ultrasonically bonded interconnects ［strength in grams（force）］． 59
Table 22 Cell parameters before bonding and as series－connected strings cells AR coated． 60
Table 23 Representative data－ARRAY process vs．standard process． 78
Table 24 Dendritic web silicon test modules at AMl illumination． 82
Table 25 Module $⿰ ⿰ 三 丨 ⿰ 丨 三 一 1-p a r a m e t e r s$ at $27^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$ ． 85
Table 26 Cells used in demonstration panel． 86
Table 27 Diffusion－junction depth／time／temperature study ［no BSF；no AR c̣oating］． 95
Table 28 Diffusion－junction depth／time／temperature study ［cells have BSF and AR coating］． 99
Tabie 29 Withdrawal rate as a function of web width ［．2\％solution］． 101
Table 30 Results from sintering experiment（ $425^{\circ} \mathrm{C}$ in H_{2} for 15 min ）． 108
Table 31 Effect of sintering parameters on solar cell performance ［diffusion temperature $=825^{\circ} \mathrm{C}$ ］． 109
Table 32 Cost analysis for continuous processing of web． 115
Table 33 Design for a solar photovoltaic factory having an annual production capacity of 200 MW of solar arrays produced from dendritic silicon web material． 125
Table 34 SAMICS printout for 25 MW processing line． $136:$
Table 35 Total process sequence－cost factors－ $25 \mathrm{mw} / \mathrm{yr}$ ． 168
Table 36 Cost analysis of pilot line $-2 \mathrm{mw} / \mathrm{yr}$ ． 169

The work reported here was carried out in the Semiconductor Research Department under the management of Dr. D. J. Page. The Technical Director was Dr. P. Rai-Choudhury and the Principal Investigator was Dr. J. R. Szedon from October 1, 1977 to September 1, 1978. However, after September 1, 1978 Dr. R. B. Campbell was Principal Investigator.

The following people contributed to the program and the report in the following areas: R. B. Campbell (cell separation and processing sequence); D. J. Page, M. W. Cresswell, J. R. Szedon and J. R. Davis (SAMICS costing); R. N. Ghoshtagore, H. Dickey and T. Temofonte (diffusion) ; M. H. Hanes (Interconnection); T. W. O'Keeffe (spectral response); P. Rai-Choudhury (technical director); J. Ostroski (electroplating) ; A. Rohatgi (metallization); L. C. Scala (encapsulation); E. J. Seman (ARRAY process sequence and cell fabrication); and B. E. Yoldas (antireflective coatings). Silicon dendritic web used in this program was supplied by the Grystal Science and Technology Department; R. Mazelsky, Manager. This report was prepared and edited by R. B. Campbell and S. Farukhi. Typing was done by the following: M. M. Thomas, E. S. McCarty, D. J. Labor, M. C. Santoro, J. Selchan, M. B. Warren, and K. B. Haun.

1. SUMMARY

During the program a process sequence has been proposed and tested for the fabrication of dendritic web silicon into solar modules. This sequence has been analyzed as to yield and cost and these data suggest that the price goals of 1986 are attainable. A number of the processes that make up this sequence have been further developed and studied as to cost reduction. Specifically, it has been shown that a low cost POCl_{3} is a suitable replacement for the semiconductor grade, and that a suitable CVD oxide (either doped or undoped) can be deposited from a silane/air mixture using a "Silox" reactor. A dip coating method has been developed for depositing an antireflection coating from a metalorganic precursor. Application of photoresist to define contact grids has been made cost effective through use of a dip coating technique. Electroplating of both Ag and Cu has been shown feasible and cost effective for producing the conductive metal grids on the solar cells. Laser scribing has been used to separate the cells from the dendrites without degradation. Ultrasonic welding methods have been shown to be feasible for interconnecting the cells. A study of suitable low cost materials for encapsulation suggest that soda lime glass and phenolic filled board are preferred.

2. INTRODUCTION

The objective of this program is to specify a process se-quence and to develop key process steps for the low cost manufacturing of solar arrays from single crystal dendritic web silicon. Specifically, all costs, including silicon web at $\$ 0.17 /$ peak watt (1975) are to be considered with the aim of producing encapsulated modules with 10% efficiency for a selling price of $\$ 0.50 /$ peak watt in 1975 dollars.

The processes studied for development were junction formation, antireflection coating applied by a dip process, metallization systems, laser scribing for separation of the cells, cell interconnect techniques and encapsulation methods.

Early in the program, it was decided to concentrate on diffusion techniques for both front and back surface juntions. Although this decision did not prohibit investigations. of other methods, it recognized that, diffused junctions at the present state of the art were superior to other methods. Thus, the major. effort in designing a process sequence involved utilizing diffused junctions. Advances have been made in both phosphorus and.boron diffusion methods. Materials and techniques have'been developed which make the diffused junction solar cell cost' effective. This work has now progressed where other forms of junction formation should be considered. Aluminum alloyed back surface fields and ion implanted front junctions appear to be the most feasible.

In the junction formation studies it was shown that reagent grade (as opposed to semiconductor grade) POCl_{3} could be used as a diffusant source. This leads to a distinct cost advantage. The testing and utilization of equipment for rapid deposition of doped and masking oxides has been completed. Cell performance indicates that this method can be used in an automated process.

Antireflective coatings on the sun side of a solar cell can increase the photocurrent response up to 50%. These coatings (mainly $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}$ or $\mathrm{Ta}_{2} \mathrm{O}_{5}$) are normally applied by an evaporation or sputtering procedure. These processes require a large expenditure of capital funds
and are generally slow. Previous work at Westinghouse has shown that metal-organic compounds in an alcohol solvent can be applied by a dip: ping or spraying method. During this contract we have emphasized the deposition of TiO_{2} and mixed TiO_{2} and SiO_{2} oxidesusing this metalorganic and have shown the feasibility of applying the proper thickness of TiO_{2} to the web cells by dipping and withdrawing the web from the solution at a given rate. Solution viscosities, concentrations, and withdrawal rates have been optimized to provide the proper coating.

As with the junction formation processes, we chose a relativeIy conservative, proven metallization procedure as a basis for contact grid delineations. The procedure involves photoresist and evaporation techniques. These methods have been simplified and changed to meet the special demands of solar cell processing. Specifically, by using a positive photoresist, a contact metal rejection process was devised so that. a second mask' and expensive alignment techniques are not required. Also, electroplatedsilver as a conductive layer has been shown feasible, and. a less expensive. metal, $\dot{\mathrm{Cu}}$, has been tested as a substitute for Ag.

In the processing sequence, described later, the processes of junction formation; AR coating and contact grid delineation are performed with the dendrites still attached to the web. The technique selected for development for removing the dendrites and separating the cells was scribing by laser followed by a breaking out process. This technique is amenable to automation, and present. day lasers have the required high traverse speed and power. We have shown that by scribing the web from'the back, the resultant cells show no degradation.

Laser scribing completes the cell fabrication procedure. The interconnect and encapsúlation processes produce the final module.

Interconnection proces'ses generally use soldering techniques which are difficult to automate. In this program, we have shown that ultrasonic welding methods can be used for the interconnect process with minimum breakage and with high strength bonds. In addition, this method can be automated to permit rapid interconnects.

The encapsulation process imposes a great restraint on available materials.. The conflicting requirements of high strength, high transmission, and reliability versus low cost make materịal selection•a difficult problem. . We have shown that the proprietary silicone adhesives are most satisfactory for bonding the cells to the glass and the backing plate to the cells. A.phenolic filled fiber board as a substrate has been chosen as having the highest strength at the least cost. Soda-lime. glass, although not the best for transmission, was chosen mainly due to cost factors. We are presently holding preliminary discussion with glass manufacturers in an effort to obtain a more suitable glass at an acceptable price.

Progress has been made in all these processes which were. selected for development. In the Process Sequence, described next, it will be shown that these processes are compatible, that is, the individual processes can be carried out in sequence without interaction.

The establishment of a processing sequence, amenable to automated, low cost manufacturing was a further objective of the program. A process sequence must be considered to be more than the sum of a number of process steps. The sequence must consider the throughput of the given steps so that a balanced manufacturing line can be maintained. The expenditure of a large amount of capital for a given step is not justified:if that machine sits idle much of the time while the preceding operation tries to match its production. The process steps must. also be matched so that the manufacturing can proceed from one step to another without an excessive: amount of special treatment such as cleaning, mounting in special racks, ettc: Compatibility is another attribute required of a process sequence in that, a following step cannot negate the effect of a preceding step. A simple example of this is a high temperature treatment after the application of photoresist. Finally, the sequence must be cost effective so that the price goals can be met.

During thị program we have proposed a process sequence that is suitable for both long lengths of web (greater than 10 meters) and
parallel lengths of web (about 3 meters) that are processed simultaneously. This sequence incorporates several well tested techniques, such as vacuum evaporation of grid contact metals, in such a way as to make them cost effective. It also incorporates several new ideas such as dip coating of an $A R$ film and ultrasonic welding of interconnects. This sequence has not been tested in a large scale manufacturing situation, but we have processed numerous short lengths of web ($\approx 30 \mathrm{~cm}$) through the sequence with considerable success. Although further work needs to be done, the selected process steps and the entire process sequence have been verified. In most cases we have been able to assign limits to the processing variables of temperature, time, length, etc. These limits have been set at the largest amount possible so that a given process can be used in a sequence with a minimum amount of control.

The IPEG and SAMICS methodology form the basis for determining the price of the solar arrays produced by a given process sequence.

We have taken advantage of both of these methodologies to study the process sequence we have selected. From these techniques it is also possible to identify cost drivers in a given process or sequence and thus determine where the greatest amount of cost reduction effort should take place. By using these programs, we have been able to show that the process sequence we selected, using.: either the long continuous . lengths of web or the parallel processing of long lengths of web, is cost effective and should produce solar modules very near the 1986 price goals. Our model takes a conceptual factory producing 25 MW of solar modules per year per line, at a ccst of $\$ 0.56 /$ peak watt in 1975 dollars.

3. PROCESSES SELECTED FOR DEVELOPMENT

This Westinghouse program in the Low Cost Solar Array Project is concerned with the processing of single crystal dendritic web silicon into solar modules. Thus in the first part of this section we give some preliminary specifications for the websilicon that we believe are necessary to produce a high efficiency solar module.

The remaining sections discuss in some detail the various process steps on which development effort was spent.

3.1 Dendritic Web Silicon - Preliminary Material Specification

During the course of the program, 'we have developed a material specification for dendritic web silicon. This specification was derived from analyzing the data of cells prepared from various runs, and correlating this data with structural and electrical properties of the web crystal cas defined in the Westinghouse Task 2 program (Contract 954654). .

At this point, these specifications as given in Table 1 cannot be claimed to be either complete or all.encompassing. They are a compilation of experience gained during the program, and are given as guidelines for web solar cell production.

3.2 Junction Formation

The development areas studied for junction formation included: (1) use of reagent (as opposed to semiconductor) grade POCl_{3}, (2) optimum time/temperature conditions for front junction diffusion, and (3) parameters involved in deposition and annealing of boron doped oxide films for the back surface field region.
3.2.1 Front Junction Preparation Using Reagent Grade POCl_{3}

A significant contribution to the cost of materials for cell fabrication is made by the electronic grade phosphorus oxychloride used in gaseous diffusion of the front junction. The cost of POCL_{3} could be

TABLE 1

Material Specification
for
Dendritic Web Silicon

1. Single crystal - (111) orientation
2. The etch pit density, as determined after a 5 min Sirt1 etch to be equal to or less than $3 \times 10^{4} / \mathrm{cm}^{2}$. The etch pits should be of the small, shallow variety with a minimum of the large, deep pits.
3. For 'mechanical stability, the web should have a residual stress of less than 1.5×10^{8} dynes $/ \mathrm{cm}^{2}$.
4. The web should be flat with no twist or bow.
5. The surface striations across the web should be no more than $0.5 \mu \mathrm{~m}$ in height.
6. The width, excluding dendrites, should be 19 mm or greater. (For a $1.6 \times 7.0 \mathrm{~cm}$ cell.)
7. The thickness of the web at the center should be $120 \mu \mathrm{~m} \pm 20 \mu \mathrm{~m}$.
8. The web should be p-type.
9. The resistivity should be $12-18 \Omega-\mathrm{cm}$.
10. The lifetime (OCD after boron and phosphorus diffusion) should be greater than $10 \mu \mathrm{sec}$.
11. The material should be supplied as grown.
12. The minimum preferred length per crystal is eight meters. This is required so that a statistically significant number of cells can be made from one crystal.
reduced to about 0.03 that of the electronic grade if the reagent grade could be used. However, the reagent grade has 200 times the specified heavy metal content of the electronic grade which could effect cell performance. (e.g. 0.21 ppm for electronic grade versus 40 ppm for the reagent grade). Therefore, experiments were made to determine if the cell parameters are affected by the purity of the.$P O C \ell_{3}$ diffusant source.

One base line group of cells was processed using Baker electronic grade POCl_{3} for formation of the front junction. For a test group of cells, Baker Reagent grade POCl_{3} was used in a parallel furnace arrangement. Both groups were-made using 1 to $3 \Omega \mathrm{~cm} p$-type Czochralski silicon from the same wafer supply lot. Except for the POC\& ${ }_{3}$ diffusion step, the wafers were merged into a single group for the other cell processing steps. These cells were processed by a standard cell processing schedule ${ }^{(1)}$. An outline of this sequence is shown in Table 2 .

TABLE 2

Outline of $n+/ p$ Cell Processing Steps

Surface cleaning

POC\& 3 diffusion
Front and back oxide removal
Top surface metal evaporation ($1700 \AA \mathrm{Ti}, 500 \AA \mathrm{Pd}, 23 \mathrm{kA} \mathrm{Ag}$) *
Lapping to remove back $N+$ layer
Photolithographic delineation of top metal
Back metallization (as front)
Contact sinering ($550^{\circ} \mathrm{C}, \mathrm{H}_{2}, 15$ min.)
Mesa delineation using photolithography and $\mathrm{HF}: \mathrm{HNO}_{3}$, HAc'etch

The finished cells were evaluated using a quartz halide source (91.6 W/cm ${ }^{2}$). In addition to $I_{s c}$ and $V_{o c}$ data for each ce11, four sets of current-voltage values were taken for computerized curve fitting to determine values of fill factor. A summary of the results of this curve fitting and of the comparisons between the baseline
and test lots is given in Table 3. An overview of the comparisons between lots is afforded by the line marked "A" giving the test lot (i.e. reagent grade POCl_{3}) parameters as a percentage of the base line lot (i. e., electronic grade POCl_{3}) values. No significant differences exist in terms of $V_{o c}$ and $I_{s c}$. Values of fill factor and efficiency for the test lot are approximately 3% higher than in the base line case. From the point of view of the experiment, this is not a significant change indicating that there is no distinction between the two grades of POCl_{3} used as the diffusant source.

Table 4 gives the metallic element analyses, as supplied by J. T. Baker, for the particular lots of POC_{3} used in the experiment. Of particular interest are the $\mathrm{Ti}, \mathrm{Cr}, \mathrm{Mn}$ and Fe levels. Introduction of these species at levels of about 0.1 ppm in Czochralski silicon during growth result in minority carrier base lifetime reduction or recombination center density enhancement leading to severe reductions in solar cell efficiency (see Fig. 13 of Ref. 2). Of this set of elements, introduction of all but. Ti at levels below 0.005 ppm have no measurable effect. In the case of titanium, as little as n 0.001 ppm in the grown silicon crystal reduces cell efficiency by about 20% below that of an undoped control. Thus, the relatively high titanium content ($\sim 20 \mathrm{ppm}$) of the reagent grade. POCl 3_{3} does not produce any detectable efficiency reduction which occurs with as little as five parts per billion of Ti deliberately incorporated in silicon crystals during growth.

Deliberate use of much higher concentrations of metallic impurities in the POC_{3} source was next studied to determine if a threshold concentration exists.

Reagent grade POCl_{3} (20 ppma Ti concentration) was contaminated with Ti to 100 and 500 ppma levels by liquid phase dilution with $99.9999 \% \mathrm{TiCl}_{4}$. Cells' of the $\mathrm{n}+\mathrm{p}$ type were fabricated using the three POCl_{3} diffusion sources. Float-zone silicon wafers (2 to 4 ohm-cm, ptype, (111)-orientation) were used as substrates. Table 5 shows a summary comparison of these characteristics data for those cells. The 0.4\% higher efficiency for cells from the 500 ppma Ti source is not significant.

Ce11 Performance Comparison, AM1 Electronic vs. Reagent Grade POCl_{3}-Diffusant Sources

Averages 71121 Baseline
$\left.\begin{array}{rrrrr} & \cdots & 22.40 & .573 & .733\end{array}\right) 9.96$
71.121 Test of Reagent vs. elect. grade POCl3

	22.40	.573	.754	10.23
STD	.07	.003	.015	.26

Percent of Baseline

| A | 100.0 | 99.9 | 102.8 | 102.7 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| STD \% | .1 .4 | . .8 | 4.2 | 4.9 |

TABLE 4
Metallic Impurity Content. (ppm) of J. T. Baker POCl_{3},
Reagent vs. Electronic Grade

Metallic Elements		Reagent Grade
Ti	$<20 \mathrm{ppm}$	Electronic Grade
Cr	50	$<0.02 \mathrm{ppm}$
Mn	30	Not detectable
Fe	300	0.002
Mg	70	<0.02
Zn	<20	.02

TABLE 5

Comparative Characteristics of Uncoated $n+p$ Cells Fabricated with POCl_{3} Sources of Several Ti Concentrations - AMI
(No AR Coating)
Ti Concentration in

POC_{3} Source \quad| τ_{OCD} |
| :---: |
| $(\mu \mathrm{s})$ | | J_{SC} |
| :---: |
| $\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$ | | V_{OC} |
| :---: |
| (mV) | | Fill |
| :---: |
| $\sim 20 \mathrm{ppma}$ |

The lack of effect on cell performance of high concentrations of Ti in the POCl_{3} source as compared with deliberate Ti doping of the growing crystal may reflect the fact that stable oxide glasses are formed during the $n+$ diffusion, making this particular cell degrading impurity unavailable for diffusion into silicon. To verify this contention, the oxide glasses formed during these diffusions (all less than $500 \AA$ thickness were analyzed by secondary ion mass spectroscopy (SIMS). The relative ratios of the integrated intensities for the mass numbers 47 (PO) and 48 (Ti) were computed for each type of glass and were found to give relative Ti concentrations ratios of 1:156:2.65; these ratios are to be compared with the starting ratios of Ti concentrations of the glass of $1: 5: 2.5$. Taken with the results of Table 2 , this supports the idea that the increased Ti concentrations in the formed glasses are not available for performance degradation of the cells.

Most of the difference between the experimental Ti ratios of 1:1.56:2.65 and the source Ti ratios of $1: 5: 25$ can be accounted by the relative difference of vapor pressures of the two components $\left(\mathrm{P}_{\mathrm{POCl}_{3}}{ }^{@}\right.$ $20^{\circ} \mathrm{C} \simeq 35 \mathrm{~mm} \mathrm{Hg}$ and $\mathrm{P}_{\mathrm{TiC} \mathrm{\ell}_{4}}$ @ $20^{\circ} \mathrm{C} \simeq 10 \mathrm{~mm}$ of Hg). Furthermore, the mechanisms of oxidation of these two components would also make the solid glass poorer in Ti content. POCl_{3} oxidizes in the gas phase to $\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~g})$. The homogeneously produced gaseous $\mathrm{P}_{2} \mathrm{O}_{5}$ is available to react with the silicon and form the glass diffusion source. On the other hand, TiCl_{4} oxidizes to $\mathrm{TiO}_{2}(\mathrm{~s})$. The homogeneously formed solid TiO_{2} particles should be exhausted. Those produced on the silicon surface are not incorporated into the glass, and are also probably exhausted.

3.2.2 Optimum Time/Temperature Conditions for Front Junction Diffusion

Several tests were carried out in a time-temperature matrix to determine the optimum time and temperature and thus acceptable limits for front surface diffusion. These data are more applicable to the process verification portion of the program and will be reported in Section 5.1.1

3.2.3 Back Surface Field Development

3.2.3.1 Doped Oxide Study

During the program, the main effort in forming the back p+p junction was by using a boron doped oxide prepared by a chemical vapor deposition. Good control of the uniformity and reproducibility of such a diffusant source is expected. For an effective back surface field region, good control of the doping profile is important. The CVD approach is particularly attractive since low temperatures are used to prepare the doped oxide.

The deposition of both the boron doped oxide film and the undoped capping oxide was carried out in an AMS-1000 "Silox" reactor. This reactor is an efficient, low-cost vapor phase oxidation system for depositing doped and undoped SiO_{2} films at 350° to $450^{\circ} \mathrm{C}$. It has a typical hourly throughput of 120 2-inch wafers with an overall film thickness uniformity of $\pm 5 \%$. The AMS-1000 reactor system consists of a resistance heated wafer carrier and gas dispersion head about 100 mils above the carrier. Deposition is accomplished by placing wafers on the carrier mechanism which passes below the dispersion head at a pre-programmed rate of travel. The dispersion head injects an approximately laminar flow of oxygen or air, silane with or without the dopant hydride $\left(\mathrm{PH}_{3}\right.$ of $\left.\mathrm{B}_{2} \mathrm{H}_{6}\right)$ in a nitrogen carrier into the reaction zone where the reactants combine to deposit SiO_{2}. Between deposition cycles the dispersion head is automatically purged to ensure compositional purity, and it is water cooled to minimize gas phase reaction.

After initial studies were made to determine optimum operating conditions, a number of $n+p p+c e l l$ runs were made. These $n+p p+$ cells were processed by the standard boron doped oxide technique with the BSF source film being deposited under the following conditions:
(1) Nominal deposition temperature $=420^{\circ} \pm 4^{\circ} \mathrm{C}$.
(2) $15 \% \mathrm{SiH}_{4}$ flow $=160 \mathrm{cc} / \mathrm{m}, 5 \% \mathrm{~B}_{2} \mathrm{H}_{6}$ flow $=370 \mathrm{cc} / \mathrm{m}$, total N_{2} flow $=5.7 \mathrm{\ell} / \mathrm{m}$, and O_{2} flow $=250 \mathrm{cc} / \mathrm{m}$.
(3) Doped-film thickness $\simeq 4600 \AA$ (two passes), and undoped capping
film thickness $\simeq 2000 \AA$ (two passes) with the front surface masking undoped SiO_{2} thickness $\simeq 1000 \AA$. These thicknesses are in excess of what is needed and are not optimized.

The BSF film was annealed for 4 hrs . at $1000^{\circ} \mathrm{C}$ in $2.5 \mathrm{~L} / \mathrm{min}$ each of N_{2} and O_{2} with $2^{\prime \prime} / 5 \mathrm{~min}$. pull-rate to generate a boron-diffused layer with $X_{j} \simeq 1.9 \mu$ and $\dot{R}_{s}=35 \pm 0.5 \Omega$ per square. The active $n+p$ junction was formed by. POCl_{3} diffusion with a $\mathrm{R}_{\mathrm{s}}=35 \pm 0.5 \Omega$ per square. Evaporated Ti-Pd-Ag front. and $A l$ back metallizations were used with no AR coating.

Cell characteristics data is shown in Table 6. Results for an earlier run using the same process, but with a horizontal cold-wall reactor are also given. The results using the Silox ${ }^{(R)}$. reactor are slightly better, indicating that the Silox ${ }^{(R)}$ reactor approach has no performance disadvantages in this application.
3.2.3.2 Single Crystal Wafer Cells With and Without BSF
Regions
Four sets of cells were fabricated from both $2-4 \Omega-\mathrm{cm}$ float zone (FZ) and 20-30 Ω-cm Czochralski (CZ) wafers. Three of the runs were made on wafers thinned to about $100 \mu \mathrm{~m}$ by etching and then provided with back surface field (BSF) regions of several depths. The most shallow back boron concentration profile ($\sim 0.3 \mu \mathrm{~m}$) was formed with a 20 min , $960^{\circ} \mathrm{C} \mathrm{BBr}_{3}$ diffusion'. BSF regions having depths of $0.9 \mu \mathrm{~m}$ and. $2.0 \mu \mathrm{~m}$ were prepared by diffusion from doped oxides at $1000^{\circ} \mathrm{C}$ for 1 hr . . and 4 hrs. respectively. The fourth run, using 2 to $4 \Omega-\mathrm{cm} \mathrm{FZ}$ material of $\sim 230 \mu \mathrm{~m}$ thickness: was not provided with any BSF region. The front junction in all cases was formed by a POCl_{3} diffusion of 50 min . at $825^{\circ} \mathrm{C}$. The phosphorus diffusion conditions had been previously determined to produce optimum results on single crystal wafer material. A mask design was used to give twelve cells of $1 \mathrm{~cm}^{2}$ active area for each wafer. In this way the statistical variations in cell characteristics could be assessed readily.

Table 7 gives performance data. on $n+p$ cells formed in the 2 to $4 \Omega-\mathrm{cm}$ float zone material. Part (a) of the table gives results on individual cells for a single wafer having the best average efficiency

TABLE 6
CHARACTERISTICS OF n+pp+ BASE-LINE CELLS FABRICATED WITH AMS- 1000 REACTTOR PRODUCED BACK SURFACE FIELD (Simulated AMI) (NO AR COATING)

Cell-Groups	$\begin{aligned} & \tau_{\mathrm{OGD}} \\ & (\mu \mathrm{~s}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J}_{\mathrm{sc}} \\ & \left(\mathrm{ma} / \mathrm{cm}^{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OC}} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{aligned} & \text { Fill } \\ & \text { Factor } \end{aligned}$	$\begin{gathered} \text { Efficiency } \\ \% \end{gathered}$	No. of $1 \mathrm{~cm}^{2}$ cells
2-4 Ω - cm p (111) FZ Wafer (9 mils) without SiO_{2} front mask	10.45	22.46	. 569	0.772	10.43	36
$\begin{aligned} & 2-4 \Omega-\mathrm{cm} p \text { (111) FZ Wafer } \\ & (9 \mathrm{mils}) \\ & \text { with• } \mathrm{SiO}_{2} \text { front mask } \end{aligned}$	12.83	23.12	. 564	0.768	10.60	35
$2-48-\mathrm{cm} p$ (111) FZ Wafer (10 mil s) with SiO_{2} front mask (oxide layers by cold wall reactor)	--	22.2	. 548	. 72	9.3	4

TABLE 7
Performance Characteristics for Ohmic Back Contact Cells
Using Single Crystal Float Zone•Silicon*
a. Individual Cells Best Wafer

* P-type, 2 to $4 \Omega-\mathrm{cm} ; 2$ in. diameter, thickness $230 \mu \mathrm{~m}$. 'Simulated AM1 illumination, no $A R$ coating.
(not AR coated) for the group considered. Data for the other wafers are similar in distribution. Part (b) of Table 7 gives mean values of the performance parameters for four wafers as determined on 10 to 12 cells of each wafer.

Table 8 gives individual and averaged performance parameters for BSF cells ($0.3 \mu \mathrm{~m}$ diffusion from BBr_{3}). These were prepared using a float zone single crystal wafer of 2 to $4 \Omega-\mathrm{cm}$ resistivity. The wafer had been etched to a thickness of about $100 \mu \mathrm{~m}$ prior to fabrication in order to enhance the expected effect of the back surface field region. As an additional experiment 20 to 30Ω-cm wafers of Czochralski silicon of the same thickness and the same BSF conditions yielded the following mean parameter values for 9 cells: $J_{S C}, 23.3 \mathrm{ma} / \mathrm{cm}^{2} ; \mathrm{V}_{\mathrm{OC}}, 568 \mathrm{mV}$; fill factor, 0.72 ; efficiency, 10.1%. ${ }^{\text {. }}$ Thus the back surface field processing produced similar results in the two types of material

For the 2 to $4 \Omega-\mathrm{cm}$ float-zone material giving the results of Tables 7 and 8 , the difference in average value of open circuit, voltage for the $100 \mu \mathrm{~m}$ thick BSF cells and the 230 . $\mu \mathrm{m}$ ohmic contact cells is about 34 mV . This value can be examined in terms of predicted differences for such cells as influenced by minority carrier diffusion length and cell base thickness.

Hove1 ${ }^{(3)}$ calculates, using a simplified approach, the open circuit voltage as a function of thickness in p-base cells with and without BSF regions for electron diffusion length values of 52 and 232 $\mu \mathrm{m} . *$ If the difference in V_{OC} values with and without the BSF region is considered as a function of sample thickness normalized with respect to the electron diffusion length, a single curve is produced, as shown in Figure 1.

In order to use Figure 1 in evaluating the results given in Tables 7 and 8, it is first necessary to resolve the effect of the greater base region thickness.for the ohmic contact cells. If the base material were of high lifetime ($\sim 15 \mu \mathrm{sec}$) and long diffusion length (~ 232 $\mu \mathrm{m}$) then V_{OC} for a $100 \mu \mathrm{~m}$ thick cell (comparable to the BSF types of Table

[^0]TABLE 8
Performance Characteristics för Single Crystal, Float Zone Cells Having Back Surface Field Regions Prepared by BBr_{3} Diffusion (No AR Coatings) AMI

Fig. 1 Predicted open circuit voltage enhancement in p-base silicon cells as a function of thickness.normalized to minority carrier diffusion length. (After Ref. 3).
8) would be about 10 mV lower than for $230 \mu \mathrm{~m}$ thick cells. Thus, the 34 mV difference in V_{OC} for the experimental cells would correspond to a 44 mV difference if the comparison were made for $100 \mu \mathrm{~m}$ thick cells. On the other hand, if the base material were of short diffusion length ($\sim 50 \mu$ in or less), reduction of the base thickness from 230 to $100 \mu \mathrm{~m}$ would not be sufficient to cause a change in $V_{O C}$ for the ohmic contact cell. Thus, we can use Figure 1 to estimate the values of (base thickness)/(electron diffusion length) for $\Delta V_{O C}=44 \mathrm{mV}$ and for $\Delta V_{O C}=$ 34 mV . This gives values of 0.47 and 0.61 , respectively. The corresponding estimates for L_{n} are $220 \mu \mathrm{~m}$ diffusion length value corresponds to an electron lifetime of about $14 \mu \mathrm{sec}$ in the base region.

3.2.3.3 Web Silicon Cells With and Without BSF Regions

Results have been obtained on the operation of
back surface field regions in dendritic web silicon material. The samples reported on below were given the normal $\mathrm{BBr}_{3}\left(20 \mathrm{~min}\right.$ at $960^{\circ} \mathrm{C}$) and $\mathrm{POCl}_{3}\left(35 \mathrm{~min}\right.$ at $850^{\circ} \mathrm{C}$) ${ }^{*}$ diffusions. Table 9 gives the data on .. these cells.

The data given is an average of several cells within the same run. The data show strong evidence of back surface field operation with a voltage difference of 57 mV in the high resistivity web materials and a somewhat smaller difference of 40 mV for the lower resistivity case. From Figure 1, the diffusion length values are estimated to be $288 \mu \mathrm{~m}$. and $470 \mu \mathrm{~m}$ for the 4.5 and the 15Ω - cm material respectively. These values and, the corresporiding ones for electron lifetime in the base region are given in Table 10. For comparison, values of open circuit decay time constant are given in the last column of Table 10 . It is interesting that these values are in approximately the same ratio as the minority carrier lifetime values inferred from the open circuit voltage enhancement for the two samples.

[^1]Tab1e 9
Initial Results for Web Cells (Not AR Coated) . With and Without BSF Regions (AMI)

Sample	BSF	$\underline{\rho(\Omega-\mathrm{cm})}$		Thickness ($\mu \mathrm{m})$
WEB R225	No	$4-5$	$V_{\text {oc }}(\mathrm{V})$	
WEB R225	Yes	$4-5$	150	.520
WEB J21	No	15	150	.560
WEB J21	Yes	15	165	.493
			165	.550

Table 10
Estimated Diffusion Lengths and Electron Lifetimes in Web Silicon Cells with BSF Regions (AM1)

Sample	Thickness $(\mu \mathrm{m})$			
WEB R225	150	$\frac{L_{\mathrm{n}}(\mu \mathrm{sec})}{}$	$\tau_{\mathrm{n}}(\mu \mathrm{sec})$	$\tau_{\text {ocd }}(\mu \mathrm{sec})$
WEB J2I	165	288	23	6
	470	60	19	

The long diffusion lengths indicated in Table 10 are obtained from web crystals that have not received any prediffusion gettering treatments. These diffusion lengths are comparable to state-of-the-art float zone and Czochralski crystals, thus indicating the suitability of web BSF cells.

The above process was used throughout the program in the preparation of web cells up to 1.6 cmX 7.0 cm .

3.3 Antireflection Coatings (AR)

3.3.1 Introduction

The reflection losses from a surface are related to the difference
in index of refraction between the environment and the material For a high index material such as silicon, the surface reflection is about 35% of the incident. light in an air. environment. . If the silicon solar cell is to be efficient and viable, this loss must be eliminated by antireflective coatings.

Minimum reflection from the coated surface is given by Fresne1's equation:

$$
\begin{equation*}
R_{m}=\left(\frac{n_{c}{ }^{2}-n_{1} n_{2}}{n_{c}^{2}+n_{1} n_{2}}\right)^{2} \tag{I}
\end{equation*}
$$

where n_{c}, n_{1}, and n_{2} are the refractive indices of coating, medium, and substrate, respectively. In order for the reflectivity, R_{m}, to be zero in equation (1), the index of coating must satisfy the condition:

$$
\begin{equation*}
n_{c}=\sqrt{n_{1} n_{2}} . \tag{2}
\end{equation*}
$$

The thickness of the coating, then, is determined by the equation:

$$
\begin{equation*}
t_{c}=\frac{\lambda_{0}}{4 n_{c}} \tag{3}
\end{equation*}
$$

λ_{0} is the wavelength where zero reflectivity is desired.
The antireflective coating on silicon solar cells in an air environment must have an index of 2 and a thickness of about $0.07 \mu \mathrm{~m}$, as calculated from equations (2) and (3); where $n_{1}=1, n_{2}=4$, and λ_{0} is $0.06 \mu \mathrm{~m}$. Such AR coatings must also be highly transparent in the solar spectrum stable and resilient to the environment. Titanium and tantalum oxides have been found to be suitable for this purpose. Quarter wave-. length AR coatings are generally applied by vacuum deposition or vacuum sputtering. TiO_{2} oxide coatings have also been deposited by spraying of a titanium alkoxide, e.g., $\mathrm{Ti}\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{4}$, and water after they are mixed in a non-oxidizing carrier gas ${ }^{4-8}$.

In studies made before this contract effort, workers at Westinghouse have demonstrated that films prepared from liquid metalörganic precursors can be used as very effective AR coatings on solar cells
produced using Czochralski silicon wafers. The composition of the precursors can be formulated to yield simple oxides such as $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}$ or $\mathrm{Ta}_{2} \mathrm{O}_{5}$ or mixtures of oxides with tailored optical properties. In the case of TiO_{2}, clear films have been produced with index of refraction of about 2.4. The technique has been used to produce multi-layer coatings as well. For the work to date, the thickness of the films has been controlled by adjusting viscosity of the precursor and by spinning the substrates, analogous to photoresist practice in the IC industry. Processing of lengths of dendritic web silicon required development of dip or spray application methods.

In initial work on this program, cells were spin-coated using liquid metal-organic precursors of TiO_{2} and SiO_{2}. Ranges of values for coating viscosity and for spin-speed were used in these preliminary experiments. After coating, the samples were baked at $400^{\circ} \mathrm{C}$ in vacuum. The primary aim of this work was to determine the practical limits to short circuit current enhancement in state-of-the-art web silicon cells coated in this manner.

Table 11 gives values for $I_{S C}$, fill factor and efficiency of these cells before and after coating. The ratio is given to show improvement after coating. The first three cells in the table were fabricated on Czochralski crystals while the last seven were on dendritic web silicon. All but one of the samples were from the same diffusion run.

The data for sample 1 show the effect of a single layer of $\mathrm{TiO}_{2}(\mathrm{n}=2.4)$; sample 2 a double layer of $\mathrm{SiO}_{2}\left(\mathrm{n}=1.4\right.$) over TiO_{2}. The remainder of the samples were double coated (using TiO_{2} and SiO_{2}) under various experimental conditions. For the web cells a maximum improvement of 43% in efficiency was noted.

3.3.2 AR Coatings by.Dip Processing of Dendritic Web Silicon

After these initial experiments which showed that precursor solutions obtained from metal-organic compounds could be used as very effective $A R$ coatings, the emphasis was shifted to examining techniques for applying the precursor in a reproducible, cost effective manner. It was

TABLE 11.

Effectiveness of AR Coatings Prepared from Metal-Organics Precursors

	SAMPLE		$I_{S C}(\mathrm{~mA})$		F			EFFICIENCY (\%)			
		PRE	POST	$\frac{\text { POST }}{\text { PRE }}$	PRE	Posi	$\frac{\text { POST }}{\text { PRE }}$	PRE	POST	$\frac{\text { POST }}{\text { PRE }}$	SILICON TYPE
	1 (single)	$22.8{ }^{\circ}$	29.5	1.29	. 77	. 73	1.00	10.4	13.9	1.34	CZ
	2. (double)	22.0	30.5	1.39	. 73	. 77	1.05	. 9.4	14.0	1.49	"
	3 , "	20.8	28.9	1.39	. 73	. 77	1.05	8.7	12.8	1.47	"
	4 "	20.1	27.9	1.39	:74	. 76	$1.03{ }^{\circ}$	8.5	11.8	1.39	Web
N	$5 \quad 1$	19.2	24.9	1.30	. 71	. 70	. 99	7.6	9.5	1.25	"
	6 "	21.1	29.4	$1.39{ }^{\circ}$. 71	. 72	1.01	8.6	12.2	1.42	"
	7 "	21.6	31.0	1.44	. 75	. 73	. 97	9.4	13.3	1.41	"
	$8 . \quad 1$	21.4	30.5	1.43	. 74	. 74	1.00	9.0	12.9	$\therefore 1.43$	"
	9 "	21.9	29.6	1.35	. 76	. 73	. 96	9.5	12.4	1.31	"
	10 "	21.1	29.5	1.40	. 75	. 73	. 97	9.0	12.4	. 1.38	"

decided that due to cost considerations, further work would focus on single coatings. Double coatings would require vacuum baking and double. handling of the web. A single coating can be air baked. Thus, the advantage of the small increase in efficiency that could be obtained from a double coat would be lost due to the extra cost. These dipping techniques were developed for processing either finite lengths of web in parallel or processing continuous lengths of web(s). The processing variables and the cost calculated from these tests are applicable to either type of processing. Experiments were carried out using 100 cm long $X 1.3 \mathrm{~cm}$ wide stainless steel ribbons since initial studies had shown that these steel strips behaved the same as dendritic web silicon in so far as coating thickness etc. was concerned. These ribbons were immersed in AR coating solution with concentrations of $0.5,1.0,2.0$ and 3.7 weight percent equivalent oxide. The ribbons were then withdrawn from the solution at various speeds up to $10 \mathrm{M} / \mathrm{min}$. . After baking the coating at $400^{\circ} \mathrm{C}$, the thicknesses were measured and related to the rate of withdrawal.

The findings of this study showed that the thickness of coating applied to the ribbon was dependent on the nature of the solution and mechanical factors. The solution parameters are concentration of the oxides in the solvent, viscosity of the solution which is controlled by the type of solvent used and the degree of polymerization of the constituents. The mechanical factors were rate of withdrawal of the web from the solution and the width of the web.

Figure 2 shows the coating thickness on the ribbon as a function of various withdrawal rates at four solution concentrations. The solvent used was ethyl alcohol. (Ethyl alcohol was used in all tests since it can readily be obtained in pure form, which was necessary to investigate the basic parameṭers effecting the viscosity of the solution and polymerization of the constituents). The quarter wave thickness required for an effective AR coating is about $750 \AA$. Thus the horizontal line at $750 \AA$ shows the withdrawal rates required to obtain this thickness at a given solution concentration.

Fig. 2 Coating thickness as a function of solution concentration and withdrawal rate in dipping application.

Of especial interest is the behavior of the 0.5% solution, where the coating thickness becomes nearly independent of withdrawal rate. Ailthough we have not made the test, it would appear that if a 0.3 to 0.4% solution were used, the proper thickness could be obtained at high withdrawal rates and would be insensitive to the withdrawal rate.

The viscosity of the solution is dependent only on the solvent if the oxide concentration is low ($<5 \%$). It has been shown that the coating thickness-withdrawal rate curves can be moved up and down vertically by changing the solvent. This provides another control on the coating thickness.

3.3.3 Heat Treatment of the Coating

Reduction of the coating to an essentially organic-free oxide coating requires a heat treatment slightly in excess of $300^{\circ} \mathrm{C}$.

During baking, the index and thickness of the film change as organics are liberated. The index of refraction of the unheated film is around 2.4 in vacuum firing and 2.2 in air firing. The film thickness decreases to approximately 50% of the original thickness. Again, almost all the changes in thickness and index are completed by $300^{\circ} \mathrm{C}$ (see Figure 3). It is also of interest to note that the 20% weight loss occurring by the removal of hydrogen organic groups is associated with 50% densification in the film as indicated by the thickness change.

3.3.4 Chemical Resistance of the Films

To check the chemical stability of the film, 1-1/4" diameter silicon wafers were coated with quarter-wave thick TiO_{2} films. Half of the samples were fired in air and half in vacuum at $500^{\circ} \mathrm{C}$. These samples were then immersed in 1% solutions of $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}$, and $\mathrm{NH}_{4} \mathrm{OH}$ as well as water. Conditions of the coatings were observed at various intervals. Tables 12 and 13 summarize the results.

It is obvious that both high temperature air- and vacuumbaked films have excellent resistance to acids. Against ammonia and,

TABLE 12
The Stability of Air-Baked TiO_{2} Films in 1\% Concentrated Solutions of Various Acids and Ammonia

Sample	Solution*	Condition of the Film in 75° Days
1	HCl	No observable deterioration
2	HNO_{3}	No observable deterioration
4	$\mathrm{H}_{2} \mathrm{SO}_{4}$	No observable deterioration
5	$\mathrm{H}_{3} \mathrm{PO}_{4}$	No observable deterioration

TABLE 13
The Stability of Vacuum-Baked TiO_{2} Films in 1% Solution of Various Acids and Ammonia.

Sample	Solution*	Condition of the Film in 75 Days
1 A	HCl	No observable deterioration
2 A	HNO_{3}	No observable deterioration
3 A	$\mathrm{H}_{2} \mathrm{SO}_{4}$	No observable deterioration
4 A	$\mathrm{H}_{3} \mathrm{PO}_{4}$	No observable deterioration
5 A	$\mathrm{NH}_{4} \mathrm{OH}$	No observable.deterioration

* 1 weight \% in $\mathrm{H}_{2} \mathrm{O}$
presumably, other basic solutions, the air-baked film does not seem to have good resistance, but the vacuum-baked film does.

We have also studied the resistance of the films as a function of their heat treatment temperature. In general, the films showed increasing resistance with increasing heat treatment temperature up to $400^{\circ} \mathrm{C}$. An apparent anomaly was that the samples heat treated between 50 and $100^{\circ} \mathrm{C}$ showed better resistance to ammonia than the samples baked at higher temperatures. A possible explanation for this is the presence of organic groups retained at these temperatures.

It has also been noticed that once the films are coated, even without baking they are extremely difficult to remove. For example, alcohols or water, even with rubbing, were ineffective in removing the unbaked films.

3.3.5 Reflectivity

Specular reflection, as a function of wavelength, was measured for silicon wafers with quarter-wave thick coatings. Figure 4 shows the percent specular reflectivity of the TiO_{2}-coated silicon wafers baked at various temperatures. As shown, the sample baked at $80^{\circ} \mathrm{C}$ approaches ideal reflectance with less than 0.5% reflectivity at around $0.06 \mu \mathrm{~m}$ The calculations indicate that a bake temperature of around $110^{\circ} \mathrm{C}$ is required to obtain essentially zero reflectivity around this wavelength: This is consistent with the refractive index-bake temperature relation•indicated in Figure 3. The index requirements of $n=2$ for silicon can only be met at these low temperatures. Figure 5 shows which wavelength corresponds with minimum reflection and the percent reflectivity at these minimums as a function of bake temperature. Thus, although optically satisfactory quarter-wavelength AR films on silicon wafers can be obtained from titanium alkoxides without doping, this must be done at low bake temperatures, e.g., at around $100-150^{\circ} \mathrm{C}^{7-8}$.

As shown above, films prepared at bake temperatures below $400^{\circ} \mathrm{C}$ are more susceptible to attack by acids; therefore, a higher bake temperature is preferred.

Fig. $4 \begin{aligned} & \text { Spectral reflectivities of coatings heat treated at various } \\ & \text { temperatures. }\end{aligned}$

Fig. 5 Minimum reflection and wavelength as a function of heat treatment of undoped titania coating.

To accomplish both the higher bake temperature required for chemical stability and still maintain the proper film thickness, the composition of the coating was adjusted by adding SiO_{2} to the TiO_{2} to a composition of $88 \% \mathrm{TiO}_{2}$ and $12 \% \mathrm{SiO}_{2}$. The thickness and refractive index of this mixed oxide solution will vary in the same way as shown for the TiO_{2} solution in Figure 4, but the final thickness after baking at $400^{\circ} \mathrm{C}$ will be near $0.07 \mu \mathrm{~m}$.

Figure 6 shows the reflectivity of dendritic web silicon coated with this $88 \% \mathrm{TiO}_{2}-12 \% \mathrm{SiO}_{2}$ solution and fired in air at $450^{\circ} \mathrm{C}$. The curve shows a zero reflection at $6000 \AA$; the film was about $750 \AA$ thick with an index of refraction of 2.0 . This film gives nearly 48% improvement in solar cell efficiency over the uncoated state.

This oxide composition and bake temperature were used for all further antireflection coatings prepared during the program. Examples of cell performance with these coatings are given in Table 14.

TABLE 14
Effect of Metal-Organic Derived AR Coatings - on the Performance of Solar Cells

Solar Cell	I_{sc} (mA)		Efficiency (\%)*		Improvement
	Uncoated	Coated	Uncoated	Coated	
$1012 \mathrm{R}-4$	21.10	29.40	8.56	12.24	43\%
$1012 \mathrm{R}-5$	21.60	31.00	9.37	13.34	42\%
$1012 \mathrm{R}-6$	21.40	30.50	9.03	12.91	43\%
R1009 B-3**	21.20	28.60	8.95	12.70	42\%
1012. B-3	20.80	28.90	8.65	12.82	48\%
$1012 \mathrm{~B}-4 * * *$	22.00	30.50	9.43	14.04	49\%

* Calculation of efficiency takes into account changes in open circuit voltage and fill factor (as well as the short circuit current, $I_{s c}$). However, these factors are relatively insensitive to AR coatings and therefore not given here separately.
** TaO_{2} coating
*** Double coating

Fig. 6 Spectral reflectivity of a AR coating on a web silicon solar cell (composition $88 \% \mathrm{TiO}_{2}-12 \% \mathrm{SiO}_{2}$, heat treated
at $450^{\circ} \mathrm{C}$).

3.4 Metallization Systems for Solar Cells

3.4.1 Systems Studies

Cost effectiveness is a key issue in the photovoltaics.program. In meeting the objectives of this program, a well-developed, less expensive reliable contact-system became a necessity. The experiments conducted. necessitates such contact systems so that cost-effectiveness could be maintained.

Among these systems, evaporated $T i-\mathrm{Pd}-\mathrm{Ag}$ is the most widely used. It performs. well, but is not cost-effective because of the use of expensive silver, vacuum deposition technique, (3) and the waste of material during the evaporation. Also, at times a slight decrease in the cell performance resulting from high temperature sintering was observed. Detailed analyses have indicated that this loss is primarily due to the increased junction excess current which can result from the presence of defects or impurities in the depletion region of the solar cell. Some junction depth studies have indicated that deeper, junctions are less susceptible to sintering-induced degradation. This supports the conjecture that impurities or defects diffuse from the top surface to the junction region to degrade the cell performance somewhat. Since $T i$ is a possible candidate for causing the degradation we have also investigated some other elements which can replace Ti, if necessary, without any loss in cell performance. Thus, the objectives of this study were: (1) to find a less expensive process than the vacuum deposition of metals, (2) to find a replacement for expensive Ag, (3) to reduce the waste of contact metals, and (4) to look for' a good substitute for Ti.

The following contact systems have been studied:

1. .-.-.... ted Ti-Pd-Ag
2. Evaporated Ti-Pd plus Electroplated Ag
3. Evaporated Ti-Pd plus Electroplated Cu
4. Evaporated Pd plus Electroplated Cu
5. Evaporated or Plated Cu
6. Evaporated $\mathrm{Cr}-\mathrm{Pd}-\mathrm{Ag}$
7. Evaporated Ta-Pd-Ag

The conventional evaporated Ti-Pd-Ag contact was used as a base line to evaluate the other contact systems. The evaporated Ti-Pd electroplated system is much more cost effective than the first one because electroplating can be done over a well defined area which considerably reduces. the waste of evaporated Ag : The evaporated Ti-Pd-electroplated Cu system was studied to see if Ag could be replaced. Because it is highly conductive, less expensive and easy to electroplate $C u$ was selected. Another advantage of Cu is that it has a potential to simplify the interconnects since $G u$ foils can be used for bonding which results in a more reliable one metal interconnect system. On the other hand, if Ag is the top metal then Al or Cu foils will be used to
form the interconnects, which may give rise to a somewhat less reliabile multimetal system. The $\mathrm{Pd}-\mathrm{Cu}$ system was investigated to determine if Ti is necessary in'the.Ti-Pd-Cu system. The fifth system studied was the evaporated or electroplated Cu , while sixth and seventh systems that were investigated in an attempt to find a substitute for $T i$ were evaporated $\mathrm{Pd}-\mathrm{Ag}$ and Ta-Pd.

3.4.2 Solar Cell Fabrication and Characterization

In all cases $1 \mathrm{~cm} \times 1 \mathrm{~cm} \mathrm{~N}^{+} p$ solar cells were fabricated .by phosphorous diffusion at $850^{\circ} \mathrm{C}$. The diffusion time was 35 minutes which gives an estimated junction depth of approximately 0.4 to 0.5 microns. The substrate material was p-base, $10-15 \Omega-\mathrm{cm}$ boron doped either Czorhralski or dendritic web. The contact metal systems were applied in the form of a five finger grid with approximately 5.4% area coverage. Most of the devices had back surface fields but no antireflection coating.

The solar cells were characterized by determining the cell efficiency (n) open circuit voltage ($V_{o c}$), short circuit current ($I_{s c}$), fill factor ($F F$), series resistance $\left(R_{S}\right)$; shunt resistance, ($R_{S H}$), bulk (I_{B}) and the junction $\left(I_{j}\right)$ current of the solar cell. $\eta, V_{o c}, I_{s c}$ and $F F$ were determined for the AM1 condition by the computer fit of the lighted $I-V$ data to the following single exponential model.

$$
\begin{equation*}
I=I_{s c}-I_{0}\left(e^{q\left(V+I R_{s}\right) / n k T}-1\right) \tag{4}
\end{equation*}
$$

The peak power point (V_{p}, I_{p}) was then determined by solving the following equation with the help of a computer program

$$
\begin{equation*}
\frac{d P}{d I}=V+I \frac{d V}{d I}=0 \tag{5}
\end{equation*}
$$

Cell efficiency was determined by

$$
n=\frac{V_{p} \cdot I_{p}}{.91 .6} \quad \begin{align*}
& \text { (Test } \operatorname{lamp} \text { had output } \tag{6}\\
& \text { of } 91.6 \mathrm{mw} / \mathrm{cm}^{2} \text {) }
\end{align*}
$$

and fill factor was obtained from

$$
\begin{equation*}
\mathrm{FF}=\frac{\mathrm{V}_{\dot{\mathrm{P}}} \cdot I_{\mathrm{p}} \cdot}{\mathrm{~V}_{\mathrm{oc}} \cdot I_{\mathrm{sc}}} \tag{7}
\end{equation*}
$$

The series resistance, a combination of contact resistance and the resistances from the bulk and the diffused layer, was determined from a combination of dark and lighted I-V data. The I-V relationship of a solar cell in dark and under illumination aregiven by the following expressions:

$$
\begin{gathered}
\because I_{d}=I_{t 1}=I_{o}\left\{. e^{q\left(V_{e 1}-I_{d} R\right) / n k T}-1\right\} \quad \text { in dark } \\
I_{d}=I_{s c}-I_{t 2}=I_{o}\left\{e^{q\left(V_{t 2}+\left[I_{s c}-I_{d}\right] R_{s}\right) / n k T_{0}}-1\right\} \quad \begin{array}{l}
\text { under } \\
\text { illumination }
\end{array}
\end{gathered}
$$

where V_{t} and I_{t} are terminal voltage and current.
Equating these two expressions, the following expression for R_{s} is obtained:

$$
R_{s}=\frac{v_{t I}-v_{t 2}}{I_{s c}}
$$

for $I_{s c}$ flowing through the diode; $V_{t 2}=V_{o c}$ then

$$
\begin{equation*}
R_{s}=\frac{\left.V_{t I}\right) \dot{I}=I_{s c}-V_{o c}}{I_{s c}} \tag{8}
\end{equation*}
$$

Shunt resistance was determined by the reverse dark $I-V$ measurement. where.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{sh}}=\frac{\left|\Delta \mathrm{V}_{\mathrm{R}}\right|}{\Delta \mathrm{I}} \tag{9}
\end{equation*}
$$

In order to see the effect of contact system on the bulk and the junction response, themeasured dark $I-V$ data was transformed. A schematic of this transformation is shown in Fig. 7. where the curve with solid circles represents the measured I-V data. Curvatures result when the contribution of the $R_{s h}$ and the R_{s} are significant. If the effect of $R_{s h}$ and R_{s} is very small then the curvatures are not seen. The effect of R_{s} and $\mathrm{R}_{\text {sh }}$ can be removed from the dark $I-V$ data by the following transformation:

$$
\begin{align*}
& V^{I}=V-I R_{s} \\
& I^{1}=I-\frac{V-I R_{S^{\prime}}}{R_{s h}} \tag{10}
\end{align*}
$$

The transformation results in a double exponential ($I_{X 1}, I_{X 2}$) which is a combination of the bulk and the junction response. I_{B} or the bulk response is obtained by extrapolating $I_{X 1}$ and subtracting it from $I_{X 2}$.

$$
\begin{equation*}
I_{B}=I_{X 1}-I_{X 2} \tag{11}
\end{equation*}
$$

I_{B} has an n factor of unity which is the true representation of the bulk response. I_{j} or the junction response is determined by

$$
\begin{equation*}
I_{j}=I_{x 2}-I_{B} \tag{12}
\end{equation*}
$$

Fig. 7. Schematic diagram of the procedure for transforming the measured I-V data to separate the bulk (I_{B}) and junction (I_{j}) components.

If I_{B} moves up and to the left it indicates an increase in reverse saturation current or a decrease in bulk lifetime. The increase in the junction excess current (I_{j}) represents the loss of photocurrent in the junction which can also result in loss of cell performance. This is a very powerful technique which enables the detection of the response of the bulk and the junction regions separately. The transformed $I-V$ curves will be used to quantitatively describe the effects of various contact systems on the bulk and the junction regions.

3.4.3 Results and Discussion

Table 15 shows a comparison of the evaporated $\mathrm{Ti}-\mathrm{Pd}-\mathrm{Ag}$ system with the Ti-Pd electroplated Ag. First, the Ag was removed from the evaporated $\mathrm{Ti}-\mathrm{Pd}-\mathrm{Ag}$ and then the same sample was electroplated with Ag using an $A g C N$ solution of pH 13. Ag is electroplated only on the Ti-Pd grid which makes this system much more cost effective than the evaporated Ti-Pd-Ag system where most of the evaporated Ag is not utilized. The data demonstrate that plated Ag in all respects is capable of giving as good results as the evaporated Ag. Sintering characteristics of both systems were found to be very similar. The data shown on Table 16 were taken from CZ cells, although similar results were obtained on dendritic web material.

Table 16 summarizes the results of Cu contact directly applied on Si. This system gives a poor yield and the detailed analysis indicate that the degraded samples possess very low shunt resistance of the order of 10-100 Ω. This suggests diffusion of Cu into the Si . Cu is a fast diffuser and since the samples go through a $160^{\circ} \mathrm{C}$ photoresist bake, such a low yield is not very surprising.

Results of evaporated Pd -electroplated Cu are summarized in
Table 17. First Pd was evaporated and grid pattern was etched and then 4-6 microns Cu was electroplated on Pd grid using an acidic CuSO_{4} solution. Prior to the plating the samples goes through a cleaning and a striking solution. Results indicate that unsintered Pd-Cu contact system looks as good as the evaporated Ti-Pd-Ag. However like Cu, this

TABLE 15

(Evaporated Ti-Pd-Ag) Vs (Evaporated Ti-Pd-Plated Ag)

Evaporated Ag Plated Ag

$\eta(\%)$	10.19	10.11
$I_{S c}(\mathrm{~mA})$	22.5	22.8
$V_{o c}(\mathrm{~V})$.572	.
FF	.749	.578
$R_{s}(\Omega)$.5	.73
$R_{\text {sh }}(\mathrm{k} \Omega)$	300	.7
$I_{j} / .3 V(\mathrm{~mA})$.04	300
$\tau_{\text {ocd }}(\mu \mathrm{sec})$	21	.05

CZ cells with no $A R$ coating

TABLE 16

Evaporated or Plated Cu

Yield	-	$30-40 \%$
Reason	-	$R_{s h}=10-100$
Survived Samples -	$\eta-8-9 \%$	
		$\mathrm{R}_{\mathrm{s}}-.5 \Omega$
		$\mathrm{R}_{\mathrm{sh}}-2-5 \mathrm{~K}$

system cannot stand high temperature sintering. $300^{\circ} \mathrm{C}$ sintering in N_{2} for 10 min. drastically lowers the cell performance and the effect is observed on the junction excess current which increases by three orders of magnitude. Thus unsintered $P d$ does not serve as a good barrier for Cu diffusion.

Table 18 compares the performance of evaporated Ti-Pd-Ag system to the evaporated Ti-Pd electroplated Cu system. Ag was removed from the Ti-Pd-Ag contact and then the same sample was electroplated with 4-6 $\mu \mathrm{m}$ thick Cu . Unsintered Ti-Pd-Cu system looks as good as Ti-Pd-Ag system in all respects. Unlike Cu or unsintered $\mathrm{Pd}-\mathrm{Cu}$ system, $\mathrm{Ti}-\mathrm{Pd}-\mathrm{Cu}$ can stand much higher sintering temperatures. The data shows up to $300^{\circ} \mathrm{C}$ sintering in N_{2} for 15 min . no degradation is observed. At $400^{\circ} \mathrm{C}$, a slight decrease in cell performance is detected and at $500^{\circ} \mathrm{C}$ cell efficiency decreases from 10.1% to 7.5%. Thus Ti-Pd acts as a good barrier for Cu diffusion. Since Pd by itself was not very effective, it appears that titanium silicide at the Ti/Si interface could be responsible for the barrier. Figure 8 shows the transformed I-V plots for the Ti-Pd-Ag and the Ti-Pd-Cu systems. The upper segment represents the bulk response and the lower segment the junction response. It is quite clear that above $300^{\circ} \mathrm{C}$ sintering of the Ti-Pd-Cu contact, the cell performance degrades primarily due to the increased junction excess current. The junction excess current at the operating point represents the loss of the photocurrent in the space charge region. The increase in the junction excess current can result from the presence of impurities or defects, such as Cu precipitates, in the depletion region of the solar cell. Thus $\mathrm{Ti}-\mathrm{Pd}-\mathrm{Cu}$ system looks very promising from the point of view of cost effectiveness and performance. However, its long term reliability needs to be investigated.

Table 19 shows a comparison of evaporated Ti-Pd-Ag, Cr-Pd-Ag and Ta-Pd-Ag systems. Prior to sintering Cr-Pd-Ag system looks as good as $\mathrm{Ti}-\mathrm{Pd}-\mathrm{Ag}$ but $\mathrm{Ta}-\mathrm{Pd}-\mathrm{Ag}$ gives only 6.8% cell. Ta seems to form a barrier which reduces the open circuit voltage. However, sintering at $400^{\circ} \mathrm{C}$ removes that barrier and $\mathrm{Ta}-\mathrm{Pd}-\mathrm{Ag}$ gives equally good results as $\mathrm{Ti}-\mathrm{Pd}-\mathrm{Ag}$ or $\mathrm{Cr}-\mathrm{Pd}-\mathrm{Ag}$. Cr is fast diffuser in Si so $\mathrm{Cr}-\mathrm{Pd}-\mathrm{Ag}$ system is unable to

TABLE 17

(Evaporated Ti-Pd-Ag) Vs (Evaporated Pd-Plated Cu)

	Ti-Pd-Ag	$\underline{\mathrm{Ag}-\mathrm{Cu}}$	$\begin{gathered} \mathrm{Pd}-\mathrm{Cu} \\ 150^{\circ} \mathrm{C} \text { Sinter } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Pd}-\mathrm{Cu} \\ 300^{\circ} \mathrm{C} \text { Sinter } \\ \hline \end{gathered}$
n (\%)	10.19	10.3	9.91	1
$I_{s c}(\mathrm{~mA})$	22.5	22.7	22.3	. 146
V_{oc} (V)	. 572	. 574	. 568	13.1
FF	. 749	. 751	. 740	. 49
$\mathrm{R}_{\mathrm{s}}(\Omega)$. 45	. 35	. 35	. 3
R_{sh} (kS)	300	2	2	2
$\mathrm{I}_{\mathrm{j}} / .3 \mathrm{~V}$ (mA)	. 04	. 29	. 31	51.5
$\tau_{\text {ocd }}$ ($\mu \mathrm{sec}$)	21	19.5	19.5	--
	CZ cel	s with	AR coating	

TABLE 18
(Evaporated Ti-Pd-Ag) Vs (Evaporated Ti-Pd-Plated Cu)
$\mathrm{Ti}-\mathrm{Pd}-\mathrm{Cu} \quad \mathrm{Ti}-\mathrm{Pd}-\mathrm{Cu} \quad \mathrm{Ti}-\mathrm{Pd}-\mathrm{Cu}$ Ti-Pd-Ag Ti-Pd-Cu $300^{\circ} \mathrm{C}$ Sinter $\quad 400^{\circ} \mathrm{C}$ Sinter $\quad 500^{\circ} \mathrm{C}$ Sinter

$\eta(\%)$	9.92	9.98	10.1	9.36	7.5
$I_{\mathrm{SC}}(\mathrm{mA})$	21.8	21.6	21.7	21.9	19.2
$\mathrm{~V}_{\mathrm{oc}}(\mathrm{V})$.572	.580	.580	.574	.544
FF	.74	.754	.76	.731	.667
$\mathrm{R}_{\mathrm{S}}(\Omega)$.5	.6	.45	.5	.5
$\mathrm{R}_{\mathrm{sh}}(\mathrm{k} \Omega)$	2.5	2.5	2.5	2	1.1
$I_{\mathrm{j}} / .3 \mathrm{~V}(\mathrm{~mA})$.044	.044	.040	.27	1.4
$\tau_{\mathrm{ocd}}(\mu \mathrm{sec})$	11	11.5	11.5	10	6

Web cells with no AR coating

Fig. 8 Transformed I-V Plots for Ti-Ag and Ti-Pd-Cu

BEFORE SINTERING

	Ti-Pd-Ag	$\mathrm{Cr}-\mathrm{Pd}-\mathrm{Ag}$	Ta-Pd-Ag
η (\%)	9.01	8.93	6.8
$\mathrm{V}_{\mathrm{oc}}{ }^{(\mathrm{V})}$. 537	. 539	. 437
$I_{s c}(\mathrm{~mA})$	22.4	22.1	21.97
FF	. 707	. 71	. 633
$\cdots \tau_{\text {ocd }}(\mu \mathrm{sec})$	5	5	3.7

	AFTER SINTERING AT $400^{\circ} \mathrm{C}$		
	Ti-Pd-Ag	Cr-Pd-Ag	Ta-Pd-Ag
$\eta(\%)$	9.54	9.46	9.7
$\mathrm{~V}_{\mathrm{oc}}(\mathrm{V})$.55	.551	.55
$\mathrm{I}_{\mathrm{Sc}}(\mathrm{mA})$	21.9	21.37	22.5
FF.	.750	.76	.76
$\tau_{\text {ocd }}(\mu \mathrm{sec})$	4.3	4.57	4.0

CZ CELL, NO BSF, NO AR COATING
stand higher sintering temperatures than $400^{\circ} \mathrm{C}$. Ta-Pd-Ag system can stand sintering temperatures up to $550^{\circ} \mathrm{C}$. Thus Ta can be used as an effective substitute for Ti.

3.4.4 Conclusions

Electroplated Ag can be used instead of evaporated Ag to effectively reduce the waste. Ti-Pd-Cu seems to be a promising contact for solar cells from the point of view of cost-effectiveness and cell performance. However, its long'term reliability needs to be investigated. Ta can be used as an effective substitute for Ti , in the $\mathrm{Ti}-\mathrm{Pd}-\mathrm{Ag}$ system.

3.5 Ce11 Separation by Laser Scribing

The process development plan for this program defines a processing sequence for dendritic web silicon in which the material is handled in a continuous or in a large number of shorter strips. The process of cell separation must be suitable to either sequence.

In the cell separation step, the dendrites must be removed from the web strip and the strip must be scribed transversely to separate the individual cells. The process, which seems most attractive for cell separation, is laser scribing because it is rapid and does not require mechanical support of the web and should have a high yield.

Work reported in the first quarterly report on this program showed that laser scribing could be used to remove the dendrites and to make transverse cuts across the web with high accuracy. This scribing and breaking can be accomplished with minimal loss. However, in the first several experiments the cell performance parameters were degraded by the laser scribing operation. In particular, laser scribing lowered fill factor and conversion efficiency values. It was also shown that cells scribed from the back degraded less than those scribed from the front. This degradation was identified as due to increased junction leakage current on the periphery of the cell. Chemical etching or mechanical lapping of the cell edges restored the initial cell parameter values.

A number of the back scribed cells were examined optically and with scanning electron microscopy. It was noted that, although on the average the laser spikes penetrated about 40% of the thickness of the silicon, certain areas were completely penetrated. These were areas where the scribe path had been retraced or spots at which the laser had been inadvertently permitted to dwell. This penetration of the melt region would be expected to cause significant damage to the junction and thus decrease fill factor and conversion efficiency of the cell.

Further experiments were carried out with the aim of eliminating this problem. The cells were scribed at the Westinghouse Advanced Technology Laboratory in Baltimore. A KỌRAD KRT laser (Nd doped YAG - $\lambda=$ $1.06 \mu \mathrm{~m}$) with 5000 W peak power, a repetition rate of 1000 Hz and a spot of $15 \mu \mathrm{~m}$ was used. The scribing speed was about $4 \mathrm{~cm} / \mathrm{sec}$.

To assure that there would be no penetration of the melt region to the front illuminated junction, the cells were scribed to a maximum penetration of $50-75 \mu \mathrm{~m}$ which required a power setting of $3500-4000 \mathrm{Wp}$. In addition, care was taken that there was no retrace of laser dwell at any point on the scribe line. Figure 9 shows a scanning electron micrograph of a cell scribed in this way. As can be seen, the maximum penetration never exceeded 40% of the thickness of the cell.

Thirty cell structures were scribed in this test. All had been previously prepared with back and front contacts. None had an AR coating. Seven of the samples had the dendrites attached to the edge of the cell and six samples were not mesa etched. The cells with a mesa etch were scribed within the mesa. Of the 30 cells, 8 were lost during laser set-up and calibration and four were lost due to breakage, mainly because of improper handling.

All cells were measured after scribing and breaking of the web with no further cleaning or etching processes.

The measurements made after scribing could be correlated directly with those before scribing; however, in some cases minor corrections or assumptions were required. First, when the cells were scribed

Fig. 9 Scanning electron micrograph of web silicon solar cell laser scribed from the back under conditions guaranteeing no penetration of the laser to the front surface.
within the mesa, the resultant cell area was less then $1 \mathrm{~cm}^{2}$, and when the cells without mesas were scribed the cell size was often greaterthan $1 \mathrm{~cm}^{2}$. In these cases, an area correction was used. Also, on the cells scribed with no mesa, data on mesa-etched cells in the same diffusion run of the same web crystal were used as the pre-scribing reference.

Figure 10 shows the efficiency values of the cells before and after scribing. In this plot, data points to the right of the 45° line indicate cells which improved on scribing, while points to the left indicate cells which degraded on scribing. The solid dots indicate cell's scribed within an existing mesa, the open circles indicate cells with no mesa. The dotted lines on either side of the 45° line indicate changes of $\pm 5 \%$, which is about the accuracy of the area corrections and of the measurement. Changes of -15% to $+40 \%$ are also indicated on the figure. The data obviously clusters around the 45° line. Considering only those cells for which there was individual pre-scribe data, i.e. the solid dots, $: 11$ of the 15 cells fall within about $\pm 7 \%$ of the 45° line indicating no significant change in the cell parameters. The remaining four cells in this category showed improvement from $+14 \%$ to 40%. The two cells with changes of +34 and $+40 \%$ were initially very poor with low $I_{s c}, V_{o c}$ and fill factor. After scribing, all parameters improved with the largest effects being seen on the fill factor. This probably indicates the removal of a shunting resistance by scribing.

In cells with no previous etching, (circles in Figure 10) the initial efficiency values were taken from mesa etched cells in the same diffusion run. The spread of efficiency values is about the same as for the mesa samples. A decrease in efficiency by about 15% is indicated for one of these cells, but the initial reference value is based on a lot average and is not data for the cell in question.

The data of Figure 10 are shown in Figure 11 in a more graphic form.

From this data we conclude that dendritic web solar cells can be laser scribed from the back and broken out of the web substrate without

Fig. 10. Effects of controlled depth, back surface laser scribing on conversion efficiency of a group of web silicon solar cells. None were AR coated. ${ }^{-}$

Fig. 11 Changes in web cell efficiency values due to limited penetration, back surface laser scribing. No AR coating.
significant degradation of cell parameters. Care must be taken during the laser scribing process however, to assure that the molten zone produced by the laser does not penetrate to the front junction and cause damage there.

The experiments described thus far in this section were carried out in the first six months of the program. Since that time, more than 400 cells, either $1.6 \times 4.0 \mathrm{~cm}$ or $1.6 \times 7.0 \mathrm{~cm}$ were laser scribed in the manner described. Of these cells about 8 were broken during removal of the dendrites and these losses were due to strain in the initial crystal rather than problems with laser scribing.

There is no question that laser scribing is a feasible, cost effective technique for cell separation.

3.6: Interconnections

3.6.1 Interconnection Requirements

Completed solar cells were to be interconnected in series, and/or parallel arrangements within each module in order to furnish useful quantities of power.

The method of intericonnections had to be one which was compatible with preceding and subsequent steps in the fabrication process. That is, the interconnection material had to be capable of successful attachment to the solar cell metallization and the process of attachment could not degrade the cell performance in any way.

The criteria for successful attachment are low contact resistance and high inter-cell conductance. These criteria are not difficult to meet with metal systems. The criteria for the attachment process are low temperature, cleanliness, and low physical forces. These criteria are not easily met.

Interconnect reliability is of major concern. Those phenomena which could limit reliability include corrosion, formation of undesirable
intermetallic compounds, mechanical stresses due to module flexing and to thermal cycling, and metal fatigue, creep, and work hardening due to repeated or prolonged stresses. The prevention of these phenomena may be accomplished by a proper choice of metal systems, careful design of interconnect shape, and development of encapsulation, handling, and mounting techniques that minimize on the system strain solar cell modules.

In addition to meeting the technical requirements of performance and reliability, any interconnection scheme for the Automated Array Assembly Task 4 is required to meet rigid requirements of low cost and high throughput. These requirements imply the use of low cost materials in a system that is amenable to automation. In addition, reasonable capital cost, low input energy, minimum production of bymproducts and waste, and the ability to make a large number of attachments in a short period of time had to be considered. A very high yield of successful attachments is an absolute necessity in meeting the low cost criterion.

3.6.2 Interconnection Methods.

Several methods of interconnecting solar cells had been proposed or considered. The following is a brief discussion of some of these methods.
, 3.6.2.1 Conductive Adhesive Bonding
Conductive, metal-bonded adhesives are widely used in integrated circuit technology, usually as a bottom contact between a silicon chip and a metal header. In a solar cell application, it has been proposed that conductive adhesive bonds be made between the solar cell metallization and a printed metal pattern on an insulating or on an insulating polymeric film. The chief disadvantages of conductive adhesives have been in high contact resistance and in high material cost. Unless and until these problems are solved, further development toward increased, reliability is not justified.

3.6.2.2 Parallel Gap Welding

In parallel gap welding, the heat generated by the passage of çurrent between, closely spaced electrodes fuses two metal parts
together. Factors which limit its application in solar cell interconnection are poor reproducibility in bonds and the need for frequent dressing of the electrodes. Parallel gap weiding is applicable to one=at-a-time bonding; automation of a high throughput machine ciapablè of simultaneous multiple bonds will be difficult.

3.6.2.3 Laser Welding

Pulsed high energy lasers deliver sufficient energy to fuse metals. If pulse widths are kept short, the heating of an underlying solar cell would be within acceptable limits. The applicability of laser welding to solar cell interconnections has not been demonstrated as yet.

3.6.2.4: Thermocompression Bonding

In theŕmocompréssion bonding, soft metals are swaged together under the influence of slightly elevated temperature and high pressure. This process has achieved excellent reliability in integrated circuit manufacture. It is doubtful that the process can be scaled up to high throughput. Additionally, material cost is high since gold is being universally used as the bonding metal.

3.6.2.5 Soldering: .

Tin-lead solder is widely used as a bonding medium in present solar cell modules. In general, soldering must be considered a good method of making interconnects; however, problems may arise in long term reliability and the design of an automated high throughput system might prove to be difficult.

3:6.2.6 Solder Reflow

Solder reflow is the process in which previously applied solder is remelted. This process múst be seriously considered às a contender for a'final; optimum interconnecting method. Throughput raté can be very high in an automated system, although the amount of energy consumed would be considerable. Further development might be required to assure long term reliability.

3.6.2.7 Ultrasonic Bonding

-Because Westinghouse has chosen to investigate' the applica-
bility of ultrasonic bonding to solar cell interconnection, this process is discussed in some detail.

Bonding between two materials can be made to take place when. the material surfaces are scrubbed against each other at ultrasonic frequencies. The detailed method by which the bonding takes place is not known in all cases. When thermo-plastic materials are bonded, the scrubbing action appears to generate sufficient heat that local melting of the surfaces occurs. When metals are joined, it is less likely that melting occurs; instead, it is hypothesized that either (1) surface oxides and contaminants are abrasiveiy removed and atomic contact between clean metals is achieved, which in turn leads to chemical bonding or (2) the scrubbing action causes microfractures in the surfaces of the metals and these fractures interlock forming a strong metal-to-metal bond.

Whatever the exact mechanism of ultrasonic bonding between metals, the process is successful in applications ranging from joining large copper busbars onto electric motor alternators to attaching fine wires to thin films on integrated circuits.

Because the exact nature of the bonding process is not known, the achievement of acceptable ultrasonic bonds is largely an empirical process. A large number of parameters determine the quality of an ultrasonic bond. In so far as the materials are concerned, the thickness, temper, surface condition and the materials themselves are important. Among the bonding parameters are the ultrasonic frequency, the vibrational amplitude the size and shape of the tool, the tool material, the vibrational power input, the clamping force between the tool and the work piece, and the length of the time interval during which power is applied. It has also been shown that the properties of all the materials beneath the work piece have an effect. The large number of variables makes it very likely, once the materials to be joined have been chosen, that some combination of these variables will result in good ultraonic bonds.

Ultrasonic bonding machines are of two basic types. The simplest type-the spot bonder, is one in which the ultrasonically driven tool contacts the materials to be joined in a single area. After
a bond is made, the tool is lifted and repositioned in preparation for the next bond. An analysis of this operation shows that the throughput rate of bonds is limited by the time required to reposition the tool between bonding operations. In the second type of machine, commonly called a seam bonder, the ultrasonically driven tool is in the shape of a wheel which is made to roll across the workpiece, making a continuous linear bond. This type of machine is widely used to splice the ends of metal foils and plastic sheets. The advantages of applying this type of machine to solar cell interconnection are obvious if the interconnect material is in the form of a continuous tape or web to be bonded along one edge of a solar cell. Even if the interconnect is in the form of discrete tabs bonded at points one centimeter apart, the use of a seam welder type of machine will result in increased bonding speed: a spot bonder can bond and position itself for another bond at a rate of about one bond per second; a seam welder can roll along a solar cell edge (or along a long line of solar cells) at a rate of $15 \mathrm{~cm} / \mathrm{sec}$, making 15 bonds per second.

For the reasons given above, Westinghouse has proposed that for the Automated Array Assembly Task, solar cell interconnection should be accomplished with thin metal foils (e.g. aluminum or copper) ultrasonically bonded to solar cell metallization.

3.6.3 Demonstration of U1trasonic Bonding for Cell Interconnection

An experimental survey of materials and bonding parameters was undertaken. The purposes of this investigation were to (1) demonstrat the applicability of ultrasonic bonding to thin dendritic web solar cells and (2) to gain practical information on possible materials, process parameters", and bond characteristics.

The machine used in this investigation was a Sonobond (West Chester, PA) ML-6010 (W-1060D) spot bonder with a .062" diam tool having a two inch tip radius. This machine operates at a frequency of 60 kHz and has a maximum power output of 10 W .

Interconnect materials were aluminum (.002", .001", 0.0005", and . $0003^{\prime \prime}$ thickness), brass (.002" and .001" thickness), and copper
(.002" and $.0015^{\prime \prime}$ thickness). Solar cell metallizations used were $4 \mu \mathrm{~m}$ thick silver (electroplated and vacuum evaporated), $4 \mu \mathrm{~m}$ thick electroplated copper, and $0.5 \mu \mathrm{~m}$ thick vacuum evaporated aluminum.

For the purposes of this survey, the bonding parameters were (a) tool force: $30,150,500,700$, and 1100 gm ; dwell time: .028 and $.044 \mathrm{sec} ;(\mathrm{c})$ power input: $0.36,3.7$, and 10.2 W . No special cleaning or surface preparation of the bonding materials was used. Those material combinations which produced good and poor bonds under the above bonding conditions are summarized in Table 20. It must be emphasized that those combinations which made poor bonds under these conditions might be expected to produce good bonds under different conditions.

TABLE 20
Material Combinations Producing Good (G) and Poor (P) Ultrasonic Bonds under a Limited Number of Bonding Conditions

It is essential that interconnect bonds have low electrical resistance. The contact resistances of those bonds labelled as good (G) in Table 20 were measured. All of these bonds exhibited contact resistance of less than one milliohm. Since the bonded area was quite. small (about .010" diam) because of the shape of the bonding tool, this figure must be regarded as very acceptable. .

A limited number of pull.tests were performed to demonstrate the mechanical strength of ultrasonic bonds. Even for the small bonded. areas achieved in this investigation, the bond strengths were adequate for cell handling prior to encapsulation. Bond strengths are shown in Table 21 for several interconnect-metallization combinations.

Finally, solar cells fabricated on thin silicon dendritic web were connected in series as shown in Figure 12. Table 22 shows. cell parameters as measured on individual cells before interconnects were attached and as measured on the series-connected cells in the case of four connected cells and two connected cells. The data show no damage to the cells as a result of the bonding.

3.6.4 Conclusions

Wltrasonic bonding of thin foil interconnects has been shown to be a technically successful method of interconnecting solar cells. When the proper processing parameters are used, strong, low resistance bonds can be made between a variety of metal foils and solar cell metallizations. The bonding process has no adverse effect upon cell characteristics.

Ultrasonic bonding is'a clean, reliable process producing no waste products and consuming only small amounts of energy. With automation, ultrasonic bonding can be a fast process, especially if ultrasonic seam welding is used.

TABLE 21
45° Pull Strength Tests of Ultrasonically Bonded Interconnects [Strength in grams (force)]

	$\begin{gathered} 4 \mu \mathrm{~m} \\ \text { Silver } \end{gathered}$	$\begin{aligned} & 4 \mu \mathrm{~m} \\ & \text { Copper } \end{aligned}$	$0.5 \mu \mathrm{~m}$ Aluminum
.002" aluminum	72-90	-	60-100
.001" aluminum	30-70	-	-
.0005" aluminum	5-30	-	-
.0003" aluminumi	9-30	-	-
.002" brass	-	25-50	-
.001". - brass .	90-140	9-20	-
.002" copper	Weak	14-50	-
.0015" copper	54-150	60-95	32-40

Cell Parameters Before Bonding and as Series-Connectied Strings Cells AR Coated

Cell I. D. V	$V_{\text {oc }}$ (volts)	$\mathrm{J}_{\mathrm{SC}}\left(\mathrm{mA} / \mathrm{m}^{2}\right)$	FF	Efficiency (1\%)
RE 263.3	0.56	28.0	. 76	13.1
J 533.2	0.49	28.0	. 72	10.6
J. 571.3	0.56	28.6	. 75	13.1
RE 24	0.53	27.5	. 76	12.0
4 Cells in Series	2.18	27.2	. 744	12.0
$\begin{array}{ll} \\ & 55\end{array}$. 540	26.7	. 76	12.0
RE 11	. 564	27.2	. 76	12.9
2 Cells in Series	S 1.09	26.3	. 76	11.9

Fig. 12 Four solar cells interconnected using ultrasonic bonding

Additional development work is required to define reliability limits, especially as related to corrosion and cyclic mechanical stress. Ultrasonic bonding to more difficult metallization such as fired-on conductive inks or pastes and aluminum-silicon alloys is believed to be possible, but must be demonstrated. Proper tooling to permit seam welding of experimental samples must be developed. The exact material and form of the interconnects has yet to be determined; these will depend upon the results of reliability testing.

3.6.5 Conceptual Ultrasonic Bonded Interconnect Process (Automated System)

One system which utilizes ultrasonically bonded interconnects is described below.

Metallized dendritic web solar cells are placed sun side up upon a moving vacuum chuck and transferred to an ultrasonic seam welder. Interconnect material, in the form of a foil ribbon, is dispensed from a reel and aligned upon the solar cells. The interconnect foil is bonded to the cells at a linear rate of $15 \mathrm{~cm} / \mathrm{sec}$. The foil is cut, separating the cells, as they emerge from the bonder.

In the encapsulation process, the cells, with interconnect foil attached to the sun side, are adhesively bonded, sun side down, to a glass superstrate. When the adhesive has cured, the entire modular array passes beneath another seam welder which traverses the width of the module, bonding the interconnect foil to the dark sides of the cells. This completes the cell interconnection process and the encapsulation process continues from this point.

3.7 Encapsulation

Encapsulation of cell arrays between a sheet of glass and a substrate using appropriate adhesives was considered to require proof-ofoperation within the current development program. That is, an encapsulation procedure must be defined and executed to provide adequate protection to the arrays of dendritic web silicon solar cells fabricated and interconnected by the methods developed on this program.
. Proof-of-operation of the encapsulation method selection involves the choice and testing of solar cell materials from the points of view of both the projected performance of the module and the applicability of the encapsulation method to a low cost, automated solar array fabrication process. ' The encapsulation step, as envisioned at present, would involve the use of protecting organic materials which do not require the application of heat to be set up in their final, geometrically fixed form. In this manner the use of expensive ovens and of energy,.. would be avoided or minimized.

The encapsulation approach. taken involves use of RTV (room temperature vulcanizing) organic resin materials which will cure at room, .temperature within a length of time and under conditions compatible with. a chosen automated solar cell manufacturing process. Although the curing times of .most RTV resins are relatively long (0.5 to 12 hours) , final; curing. of the encapsulant does not have to take place during the actual encapsulation process. The envisioned form of the encapsulated module is a sandwich of the solar cell armay between a glass plate and a substrate. " The cells would" effectively be embedded in the encapsulating medium. • Adhesion to the glass, substrate and to the cell, retention of optical: clarity• under a variety of environmental conditions, negligible shrinkage on curing and aging, ease of application, absence of degassing, are some of the factors considered in choosing an acceptable RTV-type encapsulant.

A variety of solvent-free adhesives; obtained commercially and formulated at Westinghouse, have been screened. A type of RTV, twopart epoxy system, made by the AMICON Company, Lexington, MA, was advertised as being optically clear when set up. Catalyzed samples of AMICON KT-II (gel time 3 hrs , set-up in 24 hrs ät RT) and KT-4I (gel time $6-7$ mins, set-up in 1 hr at RT) were sandwiched between square microscopeslides and allowed to cure at RT. The adhesion to the glass was excellent, but optical clarity was poor, the interposed adhesive layers exhibited a yellow cast which became darker with time. Exposure of such material to UV in a Fadeometer hastened the yellowing process greatly: after 502 hrs these materials had yellowed unacceptably.

An epoxy formulation made at Westinghouse consisting of a clear diglycidyl ether-bisphenol A matrix cured with triethylene tetramine (TETA) gave relatively clear layers ($2-3 \mathrm{mils}$) whose optical clarity persisted after aging at $80^{\circ} \mathrm{C}$ and after exposure to UV at RT for several days. Shrinkage on curing appeared to be small for both types of epoxies as measured by the change of the position before and after cure of 5 mil thick $0.5^{\prime \prime} \times 1^{\prime \prime}$ aluminum foil tabs encapsulated in the epoxies between two microscope slides.

It is well-known that epoxies in general do not possess the kind of optical properties required for optimum solar cell performance. Because of their adhesive properties, these materials have, however, • ... been used here to obtain some experience of the conditions and parameters involving the production of encapsulated solar cell arrays as described above. For example, a problem was encountered on placing silicon chips on a 2-4 mil thick layer of catalyzed but non-cured encapsulant spreadon a piece of glass. Under some conditions the silicon would "float".: . over the surface of the liquid encapsulant before the latter sets up. This would be aggravated when the top piece of glass, with its layer:of catalyzed but non-cured encapsulant, was pressed upon the silicon pieces. When this happens, the geometry of the cell array is distorted appreciably. Thi's problem was circumvented by applying to the bottom of the chips a drop of catalyzed, fast curing epoxy. The chips were then picked up and pressed through the encapsulant layer on the lower glass cover until contact was made between the bottom part of the chip and the glass surface. Adhesion between the chips and the glass was almost immediate. When this process was used with glass substrates marked with a geometric grid of lines, no discernible displacement of the chips from their original locations on the grids was noted even after several days at $80^{\circ} \mathrm{C}$. For this plaçement function, epoxies are indicated, since the requirements are for fast curing, strong adhesive characteristics and not for optical properties.

A commercial RIV, polyurethane (Uralane X87718; from Furane Chemicals), claimed by its manufacturer to.be "solar cell", grade, tended to set up in thin layers while air bubbles were still present. throughout the film. . If this material requires a vacuum treatment step.to obtain . a bubble-free encapsulation layer, this requirement would complicate the continuous array manufacturing process beyond acceptable. limits.

Several silicones wiere obtained from GE and Dow Corning. They are all of the solventless RTV type, and the GE and Dow Corning silicone resins of similar description have very similar properties and sost. "We limited 'our work to three'types of GE RTV silicones: RTV 602 (fast cure, volatile évolution)’; RTV 615 (firm set, very viscous) and" , RTV 619 (descrïbed as a less viscous gel) ${ }^{-5}$. Both latter materials sèt completely in 24 hrs at RT, while the former silicone will set up in -$0.5-1.0 \mathrm{hr}$ at RT depenaing on concentration of catalyst.

Silicone 602 was used for the initial cementation of the silicon chips to the supporting glass substrate, and RTV 615 was used as the encapsulant. The sandwiches were made using rectangular microscope glass slides as the supporting substrate, and Sunadex glass with the textured surface placed outward, as the top layer. A small vacuum pick up device was used for this work. This design could be the forerunner of an industrial size lifting and turning module manufacturing component. It consisted of a copper plenum and rubber sheeting suction surface which had holes bored in positions corresponding to the predicted positions of actual silicon cells in arrays. Simulated cell arrays were made, each consisting of six rectangular silicon chips arranged in two parallel rows of 3 each. The chips were interconnected by means of narrow aluminum strips glued to the proper silicon chip faces. To make simulated silicon cellmodules, the vacuum pick up device was activated and placed on one of the simulated modules, which was then lifted and turned over. A drop of catalyzed RTV 602 was placed on the exposed face of each of the six chips forming the simulated modules. The modules was then turned back to its original flat position and laid with the treated chip faces in contact with the substrate glass. On release of
the vacuum, the simulated module settled on and stuck to the lower glass substrate. The Sunadex•smooth surface, already covered with 3-5 mils of catalyzed RTV615, was placed gently on top of the simulated silicon. chip array. The weight of the top glass was sufficient to spread out the encapsulant and to make it flow evenly over the chips to give a homogeneous conformai coating. A fully cured, completely transparent, bubble-free encapsulated sandwich was thus obtained. Heating of the same sandwich at $150^{\circ} \mathrm{C}$ for 24 hrs showed no change in the position of the chips on the glass and no change in the optical clarity of the silicone encapsulant. The operation, as described above, was straightforward and easy to perform. Although as described here, the p^{+}(dark side) of the cell was placed on the substrate first, the process is ameanable to the reverse situation (Section 3.6.5) where the sun side of the cell is glued down first. It appears to be amenable to continuous coating procedures. The silicones tested as encapsulants show the best compromise properties of all materials investigated thus far; their main drawbacks may be high price and prolonged time for curing.

4. PROCESS SEQUENCE FOR DENDRITIC WEB SILICON SOLAR CELLS

4.1 Process Sequence Selected (AKKay frocess)

During the :past. year, a process sequence has been developed for fabricating solar cells.from dendritic web silicon. The process as defined below is for long strips of web (up to 3 meters), but is equally adaptäble to continuous lengths of web. All of our process verification has been carried out on these lengths of webs of about 30 cm since suitable' processing equipment is not available (or designed) for the continuous processing.

- The process described assumes an input of clean dendritic web in lengths up to 30 cm . In the following steps, any processing times and temperatures given are optimum values which have been derived from our, development stuḍies, A more complete description of the process step is found in the development sections. The process is as follows:
(1) The web is placed on a heated platen ($420^{\circ} \mathrm{C} \pm 4^{\circ} \mathrm{C}$) of a AMS-1000 Silox ${ }^{(R)}$ and boron-doped oxide is deposited on the bottom surface of the web. A doped oxide of $4600 \AA^{\circ}$ thickness is deposited during this step. The gases used in this step were $160 \mathrm{cc} / \mathrm{min}$ of 15% silane, $370 \mathrm{cc} / \mathrm{min}$ of $5 \% \mathrm{~B}_{2} \mathrm{H}_{6}, 5700 \mathrm{cc} / \mathrm{min}$ of N_{2} and $250 \mathrm{cc} / \mathrm{min}$ of O_{2}. A capping oxide on back ($2000 \AA$) and front surface mask oxide of $1000 \AA$ finish this process.
(In this process, we have not optimized the oxide thickness. Since silane is a major cost driver in the overall cost of the solar module, the minimum thickness of oxide that will still protect the top surface must be determined.) The web is heated at $960^{\circ} \mathrm{C}$ for 20 min to drive in the boron, and then slowly cooled.
(2) The web with diffused back surface is next given a front surface diffusion in POCl_{3}. In another section the techniques are described and the optimum temperature/time relationship is given as $850^{\circ} \mathrm{C}$ and 35 minutes.
(3) The diffused web strip is dip coated in a liquid precursor of $\mathrm{TiO}_{2}+\mathrm{SiO}_{2}$ and then baked.
- The speed of withdrawal ($25 \mathrm{~cm} / \mathrm{min}$) and the viscosity of the solution (4 centipoise) must be controlled to give the proper final thickness of the AR coating. The coating thickness is also,a function of the width of the web being withdrawn. At present, a bake temperature of $400^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ is used.
(4) The strip is dip coated in a positive photoresist (PR) solution (AZ-1350J) and prebaked only $\left(90^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$.
- The comments regarding speed and viscosity control, made above, apply here. Withdrawal speed $=34 \mathrm{~cm} / \mathrm{min}$.
(5) The grid pattern of the cell is exposed in the photoresist coating the front surface of the web. The back of the strip should also be exposed to light at this time.
(6) The grid pattern is developed in the front photoresist layer.
- AZ developer is used. The PR layer on the back of the cell is removed at this time with the developer.
(7) The grid structure is etched through the AR coating with an $\mathrm{HCl} / \mathrm{NH}_{4} \mathrm{~F}$ etch.
- This etch will also remove the AR on the back surface of the cell.
(8) Thin layers of titanium and palladium are evaporated onto the top surface.
- For development work $1500 \AA \mathrm{Ti}$ and $500 \AA$ Pd are applied by evaporation. The thicknesses of these films have been reduced to about. $200 \AA$ each, and these thicknesses are suitable for production.
(9) The excess metal beyond the electrode grid pattern is rejected by removing the patterned PR layer.
- Acetone is used for PR removal.
(10) The grid electrode pattern is reinforced by plating $4-5 \mu \mathrm{~m}$ of Ag .
- The electroplating of Ag can be carried out without protecting either surface of the web strip. The silver will plate only on the metallized grid lines.
(11) The back surface of the strip is metallized.
- Both Ti/Pd/Ag and Al back metallization have been used. It is anticipated that Al or a less expensive substitute for Ag in the trimetal system will be used in the final process.
(12). The contacts are sintered, if this is required.
(13) The cell is delineated by laser scribing from the back and subsequent controlled fracturing.

This process is shown in Processing Log form in Figure 13. Figure 14 shows four strips prepared in the manner just described in steps 1 through 13. The individual cells are $1.6 \mathrm{~cm} \times 7.0 \mathrm{~cm}$ in size. Figure 15 shows two $1: 6 \mathrm{~cm} \times 7.0^{\circ} \mathrm{cm}$ cells laser scribed from these strips.

During the development of this process, an experiment was run using an unfired AR coating. Figure 16 shows results of using the $\mathrm{HCl} / \mathrm{NH}_{4} \mathrm{~F}$ etch on fired and unfired films of TiO_{2}. In the unfired

Ṙev. \#1-EJS

Fig. 13

Fig. 14 Twelve solar cells fabricated on strips of dendritic web silicon. Dendrites are still in place.

Fig. 15 Solar cells of $1.6 \mathrm{~cm} \times 7.0 \mathrm{~cm}$ dimensions which have been laser scribed from dendritic web silicon

Fig. 16 Comparison of undercutting for (a) fired and (b) unfired TiO_{2} coatings prepared from a liquid organometallic precursor.
condition (Figure 16b), the AR coating is etched back under the photoresist during the grid opening process, leaving bare silicon exposed under the PR coating. After metallization and rejection, there would be a small band of base silicon between the metallic contact and the AR coating. In the fired condition (Figure 16a), the coating is not significantly undercut.

The undercutting of the unfired AR coating may be acceptable for process simplification at some later date. Firing of the coating might be combined with contact sintering to reduce costs. The effectiveness of such a change would have to be considered in terms of the slight loss in cell performance due to reduced transmission into the silicon in the uncoated region. For the present, firing of the coating will be done prior to photolithography.

No specific problems have arisen during this processing sequence. Techniques have been developed for handling the long strips without breaking during the various steps.

We have prepared $1.6 \times 4.0 \mathrm{~cm}, 2.0 \times 4.0 \mathrm{~cm}$ and $1.6 \times 7.0 \mathrm{~cm}$ cells by this process, and the data on various test runs is given in the appropriate section.

In general, we have found that cells prepared by this process, with one exception, track quite well with cells prepared on the same web crystal by a more standard but less cost-effective process. The one exception is that ARRAY process cells generally have a fill factor about 5% higher than the standard processed cells, e.g., . 74 to . 78 . This gives a slightly higher efficiency. In the next section, the mask used will be discussed.

4.2 Mask Design

A mask was designed specifically for use in the processing of these web strips. Figure 17 is a contact print of the electrode mask for a $2.0 \times 7.0 \mathrm{~cm}$ cell.

The vertical bus bars, nominally 1 cm apart, are perpendicular to a series of collecting grid lines with a nominal 0.20 cm spacing. The total area covered by metal is 8% and the specific resistance of the cell is $0.4 \Omega-\mathrm{cm}^{2}$.

One feature of this mask is that the cell can be scribed halfway between any two bus bars without disturbing the basic cell design, thus cells of various areas can be obtained.

Various mask sizes from $1.6 \times 4.0 \mathrm{~cm}$ to $2.0 \times 7.0 \mathrm{~cm}$ were fabricated. These masks are of the same basic design with the bus bar dimensions varied to maintain a constant specific resistance. In addition, a long mask, $1.6 \mathrm{~cm} \times 30.0 \mathrm{~cm}$, was procured so that the entire strip could be masked in one operation. This has not been tested.

As mentioned in the last section, cells with grid patterns of this mask have showed higher fill factors. The improvement in cell parameters, specifically the efficiency, is lessened by the greater metal coverage.

Fig. 17 Contact print of the grid electrode mask for z 2.0 cm x 7.0 cm dendritic web silicon cell.

4.3 Results - Cells

A total of 30 runs grouped into 7 experiments were carried out using this process. A total of $75-1.6 \times 4.0 \mathrm{~cm}$ cells and 130 $1.6 \times 7.0 \mathrm{~cm}$ cells were fabricated and tested. Insofar as possible, small portions of the lengths of web used in these experiments had previously been run in a standard solar cell processing technique. This. standard technique is shown in Processing Log form in Figure 18. The major difference between the two sequences are: (1) more extensive cleaning procedures in the standard process, (2) no AR coating applied in the standard process, and (3) no mesa etching in the ARRAY process:

Table 23 shows representative data for the first 150 ceils fabricated by this process. Where more than one cell was fabricated from a given crystal of dendritic web, an average value of all the cells is given.' (In several cases, data is given on all cells fabricated from one crystal to indicate crystal and processing uniformity.) The data'

Comparing column 8 with column 15 (efficiency of the produced cell and the $1 \mathrm{~cm}^{2}$ cell [η for the $1 \mathrm{~cm}^{2}$ cell corrected for AR coating]) it is seen that the two processing methods track fairly well. Figure 19 shows this in graphical form. The figures scatter around the 45° line, and nearly all fall within the $\pm 10 \%$ line.

Figure 20 shows the results for all cells fabricated using this ARRAY process. (We have eliminated those with obvious faults, such as missing metallization, very high series resistance, etc. This amounts to about 10% of the total number of cells.) The data peak between $12-13 \%$ with 83% of the cells having efficiencies greater than 11.5%.

Rev. \#2 - EJS

Fig. 18

[^2]Curve $713536-A$

Fig. 19 Comparison of efficiency of $1.6 \times 7.0 \mathrm{~cm}$ cells produced by Array process with $1.0 \times 1.0 \mathrm{~cm}$ cells produced by standard process.

Fig:" 20 - Cell|s fabricated by Array process AR coated

4.4 Results - Modules

4.4.1 Test Modules

Two small test modules, each'containing 15 series connected cells, were built to test certain encapsulation techniques. The cells were a nominal $1.6 \mathrm{~cm} \times 4.0 \mathrm{~cm}$, although as mentioned earlier, the area varied from $6.2 \mathrm{~cm}^{2}$ to $7.5 \mathrm{~cm}^{2}$ due to problems in jigging the laser scribing apparatus.

The cells were interconnected with $0.002^{\prime \prime}$ copper foil strips, each about $0.100^{\prime \prime}$ wide. A 2% lead-tin solder was used. Although the ultrasonic bonding technique was shown to be feasible due to the lack of suitable production equipment on site these modules and other modules discussed in this report were interconnected using solder. Since each 4.0 cm cell has four contact points, the four Cu strips provide sufficient redundancy so that continuity is not lost if one or two become disconnected. The cells were completely interconnected and tested before mounting in the panel.

The first module was built by applying a thin layer of RTV-615*'to a Sunadex ${ }^{* *}$ glass front plate and placing the cells on the RTV-615. The silicone had been degassed before it was placed on the glass. After curing, this assembly was mounted on a one-fourth inch thick anodized Al plate using further silicone.

In an attempt to improve the heat rejection capability of the structure, in the second module, the cells were first mounted on the Al plate with a thin layer of RTV. After curing, Sunadex glass was again used as a front plate.

The measured data on these modules are given in Table 24. This panel data is quite consistent with the data of the individual cells used in the construction. The overall series resistance of the module was 6-8 ohms.

[^3]TABLE 24

Denaritic Web Silicon Test Modules AM1 IIlumination

Module \#1	$\mathrm{I}_{\text {Sc }}(\mathrm{mA})$	$\mathrm{V}_{\text {oc }}$ (V)	$I_{p}(\mathrm{~mA})$	FF	Panel Eff. (\%)
1	190.6	8.168	181.5	. 783	13
2.	212.0	8.430	199.8	. 759	14
NOTES: (1) 15 cells; series connected (2) Each cell - nominal $1.6 \mathrm{~cm} \times 4.0 \mathrm{~cm}$ - AR coated (3) Area factor used in efficiency calculation was area occupied by cells including interconnect spacing plus 0.2 cm margin on sides ($110 \mathrm{~cm}^{2}$). (4) Packing factor ≈ 0.95, (5) $I_{\hat{p}}=$ current at peak \cdot power (6) Measured at $25^{\circ} \mathrm{C}$					

The open circuit voltage of each panel was measured as a function of time under constant AM1 illumination. The decrease of $V_{o c}$ is a measure of the temperature increase in the module. Figures 21 and 22 show this data for the two modules. Both modules continue to, show a temperature increase for over one hour before they stabilize. This stagnation temperature, for both modules, was between $75^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$ as determine by the decrease in $\hat{V}_{o c}$. Thus it appears that the silicone is such a good insulator that even when the cells are mounted next to the A1 plate, the thermal impedance of the system is quite high.*

The output of module \#l was measured at the stagnation temperature. These results, compared with the $27^{\circ} \mathrm{C}$ data, are shown in Table 25. The efficiency of the panel has decreased, due to the decreased V_{oc} and fill factor.

[^4]Cell Temperature; ${ }^{\circ} \mathrm{C}$

Fig. 21 Test Module $\# 1$ - Cell Temperature vs. Time at AM-1

Fig. 22 Test Module \#2 - Cell Temperature vs. Time at AM-1

These data，although only on one module，indicates that the temperature rise problem must be carefully studied and efforts made to reduce the thermal impedance of the modules．

TABLE 25

Module $⿰ ⿰ 三 丨 ⿰ 丨 三 一 1$－Parameters at $27^{\circ} \mathrm{C}$ ，and $75^{\circ} \mathrm{C}$

Temp．	$\mathrm{I}_{\mathrm{sc}}(\mathrm{mA})$	$\mathrm{V}_{\mathrm{Oc}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{p}}(\dot{\mathrm{mA})}$	$\log _{\mathrm{o}}{ }^{*}{ }^{*}$	$\checkmark \mathrm{FF}$	Eff．（\％）
$27^{\circ} \mathrm{C}$	190.6	8.26	181.5	-12	.783	13.
$75^{\circ} \mathrm{C}$	194.8	6.72	178.2	-7	.714	10

${ }^{*}$ Log I_{o} is a measure of the excess junction current．

4．4．2 Demonstration Module

Several demonstration modules were fabricated using $1.6 \mathrm{~cm} x$ 7.0 cm cells of the type discussed．Seventy two cells were used with a total area of $806.4 \mathrm{~cm}^{2}$ ．The substrate was a $1 / 4^{\prime \prime}$ aluminum plate which had been milled out to form a recess with a 0.030 lip around the edge． The A1 plate was $28.45 \mathrm{~cm} \times 29.34 \mathrm{~cm}$ or a total area of $834.6 \mathrm{~cm}^{2}$ ．This gave a packing factor of cell area／substrate area of 97% ．

The cells were interconnected with silver－plated copper foil straps soldered to the silver－plated contacts on the front surface and the evaporated silver on the back of the cells．All 72 cells were series connected．Table 26 lists 81 cells initially chosen for fabri－ cating into the module．These cells had efficiencies from 12.0 to 14.2% and were selected from a number of different cell processing runs． During the fabrication nine cells were broken．

To fabricate the first module，four strips of interconnected cells （ 18 cells per strip）were made up．To fit into the Al plate，the spacing between the cells was held to 0.025 cm or less．A shallow layer of silicone encapsulant ${ }^{*}$ was then poured into the milled－out Al plate and ＊General Electric Company RTV－615．

TABLE 26

Cells Used in Demonstration Panel

Cell \#	$\mathrm{I}_{\text {sc }}(\mathrm{mA})$	$\mathrm{V}_{\mathrm{oc}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{p}}(\mathrm{mA})$. FF	Eff. (\%)	$\tau_{\text {ocd }}(\mu \mathrm{sec})$
1	294	. 556	275	. 765	12.2	3.9
2	301	. 543	281	. 768	12.2	5.2
3	308	. 555	287	. 764	12.7	5.2
4	312	. 580	287	. 752	13.3	16.9
5	296	. 557	277	. 759	12.2	5.2
6	301	. 565	281	. 765	12.7	10.7
7	309	. 548	288	. 768	12.7	7.8
8	305	. 563	283	. 759	12.7	3.9
9	302	. 554	282	. 764	12.5	5.9
10	304	. 550	283	. 765	12.5	8.5
11	311	. 556	286	. 740	12.5	10.8
12	311.	. 564	291	. 767	13.1	5.5
13	295	. 539	276	. 775	12.0	3.6
14	312	. 538	291	. 759	12.4	6.5
15	310	. 558	-293	. 792	13.4	5.2
16	314	. 578	292	. 763	13.5	15.6
17	320	. 560	296	. 748	13.1	10.4
18	314	. 549	290	. 757	12.7	9.1
19	315.	. 566	296	. 734	12.8	11.7
20	300	. 544	280	. 765	12.2	4.9
21	305	. 540	280	. 767	12.1	5.5
22	320	. 577	297	. 761	13.7	14.3
23	312	. 577	289	. 760	13.3	7.8
24	311	. 559	288	. 732	12.4	18.2
25	298	. 554	279	. 768	12.1	3.9
26	337	. 570	309	. 743	13.9	11.7
27	313	. 590	296	. 775	14.17	15.6
-						

CD

TABLE 26 (cont'd).

Cell \#	$\mathrm{I}_{\text {SC }}(\mathrm{mA})$	V_{oc} (V)	$\mathrm{I}_{\mathrm{p}}(\mathrm{mA})$	FF	Eff. (\%)	$\tau_{\text {ocd }}(\mu \mathrm{sec})$
55	320	. 565	294	. 763	13.4	23.4
56	317	. 537	294	. 740	12.3	6.5
57	323	. 577	300	. 759	13.8	13.0
58	317	. 583	292	. 758	13.7	19.5
59	322	. 586	299	. 770	14.2	23.0
60	309	. 572	285	. 748	12.9	11.0
61	300	. 542	279	. 758	12.0	2.0
62	313	. 532	295	. 771	12.5	4.6
63	313	. 537	293	. 758	12.4	3.9
64	313	. 537	294	. 758	12.4	3.6
65	302	. 546	278	. 749	12.0	6.5
66	315	. 550	291	. 749	12.7	7.8
67	318	. 551	292	. 737	12.6	9.8
68	313	. 534	289	. 746	12.2	7.5
69	318	. 552	294	. 737	12.6	9.1
70	315	. 550	292	. 745	12.6	9.8
71	312	. 562	291	. 754	12.9	7.8
72	309	. 551	290	. 768	12.8	7.8
73	321	. 556	300	. 759	13.2	11.1
74	322	. 550	298	. 743	12.8	12.8
75	327	. 561	299	. 733	13.1	13.1
76	318	. 538	294	. 753	12.55	6.5
77	335	. 560	305	. 731	13.4	14.3
78	330	. 552	303	. 741	13.2	10.4
79	327	. 540	303	. 746	12.3	5.2
80	316	. 531	289	: 739	12.1	2.6
81	320	. 552	299	. 762	13.1	4.6

the strips of cells placed (sun side up) into the recess. The spacing between the strips of cells was held to 0.03 cm or less. The plan was to partially cure the silicone and then reposition the cells to assure no shorting occurred and make the final interconnects between the strips of cells. To effect this partial cure, the panel was placed in a warm oven $\left(90^{\circ} \mathrm{C}\right)$ and evacuated to remove any remaining bubbles from the outgassed silicone. However, this combination of vacuum and temperature enhanced the polymerization rate and after 10 minutes the silicone was fully cured. Thus, no repositioning of the cells was possible. In this condition there were no cells shorting out; however, one or two of the cells were "shingled" so that a small portion was above the lip of the Al plate.

Since the next step was to place the glass plate* on top of the Al plate with more silicone, care was taken to use an excess amount so that the weight of the glass would not crack the cells partially above the Al plate. This was not completely successful and during the final curing stage (glass +Al) three of the cells were fractured. Since all cells were series connected, this reduced the total current from the module and therefore the module efficiency. The measured parameters (AM-1) of the module were:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{sc}}(\mathrm{~mA})-250 \\
& \mathrm{~V}_{\mathrm{oc}}(\mathrm{~V})-40.6 \\
& \mathrm{FF} \\
& \mathrm{n}(\%)-.707 \\
& \mathrm{n}) \\
& \hline
\end{aligned}
$$

The area used in the calculation was the area of the A1 plate; i.e., $834.6 \mathrm{~cm}^{2}$. The panel is shown in Figure 23.

It should be noted that the multiple interconnections scheme on our mask was of benefit on this module. One of the cells was fractured in such a way that if only a single contact was made, the cell fracture would cause an open circuit and completely disable the module. The fact that

[^5]

Fig. 23 (a) Demonstration module.

Fig. 23 (b) Photocurrent Trace of Module using Laser Scanning. Module Illuminated with Low Leval White Light. Arrow shows broken cell.
the efficiency only dropped by about 25% indicates that redundancy in the interconnections was a good design feature.

The model was examined by laser scanning. (9) Figure 23B shows a photocurrent trace of the module under laser scanning with the module illuminated with a low level white flood light. Although there were three broken cells in the module, only one shows in this figure (see arrow). This cell shows up generally brighter due to a higher current density. This indicates that this cell is probably the main current limiting factor in this panel. The other broken or cracked cells, not obvious in this photograph, do not seem to be limiting the current.

The module was also examined with a Barnes-Bofors IR camera. With a 3 watt output the broken cell was only slightly hotter $\left(0.05^{\circ} \mathrm{C}\right)$. This is near the limit of temperature resolution for this equipment, but it appears that overheating would not be a problem. (Data on the second demonstration module will be added to the final text).

5. PROCESS AND SEQUENCE VERIFICATION

5.1 Diffusion

5.1.1 Non-BSF Cells*

In general, high efficiency solar cells require shallow junctions. This is a consequence of two physical mechanisms: (1) A significant amount of incident solar energy consists of high energy photons with small absorption lengths, and are therefore absorbed near the cell surface; (2) the high dopant concentrations in the diffused region, required to obtain high voltage, results in a short carrier diffusion length. Thus as the junction depth is reduced, a greater proportion of incident photons reach the base region, where the diffusion length is long and carrier collection is efficient. Further, carriers generated in the diffused region, by the highest energy photons are more efficiently collected since the junction is closer to the point of generation.

These shallow junction requirements are most critical for an AMO spectra with its high ultraviolet content, but of lesser importance for terrestrial cells because of the reduced ultraviolet content. On the other hand, deeper junctions may have potential, advantages such as lower sheet resistance and relatively less susceptibility to the process and surface-induced junction degradation. For example, sintering of contacts sometimes degrades the performance of very shallow junction cells and shows up as an increased junction excess current.

It is necessary, then, to study various diffusion times and temperatures to determine: (1) The optimum junction depth, (2) the optimum time and temperature to obtain this junction depth, and (3) time and

* This work was carried out in conjunction with JPL Contract NAS-954654.
temperature limits that will still result in high-quality cells. Three diffusion temperatures, namely $825^{\circ} \mathrm{C}, 850^{\circ} \mathrm{C}$, and $900^{\circ} \mathrm{C}$ were investigated. Diffúsion times were estimated from diffusivity data to give similar junction depths at each temperature. The averaged results of a number of these experiments are shown in Table 27. Figure 24 illustrates the same results in graphical format. It is quite clear from the data. that somewhat deeper junctions do give higher efficiency for silicon web cells. This was true, in particular, for the webs which had somewhat lower initial lifetime ($\eta=7.8 \%$, no AR coating no BSF). The data seem to suggest that the optimum estimated junction for web is approximately $0.5 \mu \mathrm{~m}$ which can be achieved by 35 min diffusion at $850^{\circ} \mathrm{C}$. The detailed transformed I-V plots (Figure 25) indicate that increasing the phosphorus diffusion time to gét deeper junctions also results. in lower reverse saturation current and increased bulk lifetime. Thus within our experience, optimum junction depth for the web comes about from the tradeoff between the loss of carriers in the upper layer and the improvement in the bulk lifetime.

These initial experiments defined a junction depth of about $0.5 \mu \mathrm{~m}$ but also indicated that this junction depth should be obtained by diffusion at a specific temperature. The reason for the importance of the temperature is not known at this time, but it could be due to a combination of gettering effects and lifetime killing mechanisms. Át the lower "temperature $\left(825^{\circ} \mathrm{C}\right)$, gettering by the POCl_{3} would not be as effective as at $850^{\circ} \mathrm{C}$ or $900^{\circ} \mathrm{C}$, while at $900^{\circ} \mathrm{C}$ some lifetime kiling mechanism that is not operable at $850^{\circ} \mathrm{C}$ or $825^{\circ} \mathrm{C}$ may exist.

To further define diffusion parameters, the experiment was repeated at temperatures $835^{\circ} \mathrm{C}, 850^{\circ} \mathrm{C}$, and $860^{\circ} \mathrm{C}$, with the cells having a boron-diffused BSF. These results are given in the next section.

$$
5 . \dot{1} .2 \text { BSF Cells. }
$$

The experiment described in Section 5.1 .1 was repeated at $835^{\circ} \mathrm{C}, 850^{\circ} \mathrm{C}$, and $860^{\circ} \mathrm{C}$ with diffusion times calculated from diffusivity data to yield junction depths of $0.25 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}$, and $1 \mu \mathrm{~m}$. All runs

TABLE 27
Diffusion-Junction Depth/Time/Temperature Study
[No BSF; No AR Coating]

$$
\begin{array}{cc}
\text { Units }-V_{o c}-\text { volts } & \rho_{s}-\Omega / s q \\
J_{s c}-m A / m^{2} & \eta-\%
\end{array}
$$

Fig. 24 Efficiency vs. Estimated Junction Depth Diffusions at $825^{\circ} \mathrm{C}, 850^{\circ} \mathrm{C}, 900^{\circ} \mathrm{C}$.

Fig. 25 Change in I-V performance of web cells with junction depth (diffusion time).
were made on a single web crystal (W41-1). The tests were made using the ARRAY process (see Section 4), and other than the different front junction diffusions, the samples were fabricated throughout the process as a single experiment. The data presented here are for cells with AR coating and with back surface fields. The averaged results are shown in Table 28. The cell size in this case was $1 \mathrm{~cm}^{2}$.

These data again show that a diffusion temperature of $850^{\circ} \mathrm{C}$ yields optimum cells. What is surprising in the result is that those cells which diffused at $860^{\circ} \mathrm{C}$ are uniformly poorer than the lower temperature diffusions. The $0.25 \mu \mathrm{~m}$ junction depth at $835^{\circ} \mathrm{C}$ seems to show some processing connected problems due to a low V_{oc} and fill factor. These data are also shown in Figure 26.

Based on the data of 5.1.1 and 5.1.2 we define optimum diffusion times/temperatures for web solar cells as $850^{\circ} \mathrm{C}+0^{\circ} \mathrm{C}$ for 35 min ± 20 min. This gives a very wide range of operating conditions for a semiconductor device process; however, the data indicates such latitude is possible, with the resulting cells still having a very acceptable efficiency.

5.2 AR Coating by Dip Processing

The data given in Section 3.3 discusses the preparation and thickness control mechanisms of the TiO_{2} (or mixed oxides) film as a function of solution concentration, withdrawal rate and baking temperature. In this section we will discuss the effect of different web widths and show the effect on solar cell parameters due to a variation of film thickness.

5.2.1 Web Width Considerations

Previously, we have shown data based on a nominal web width of 1.25 cm ($\approx 0.5 \mathrm{in}$.). The use of wider web effects the production costs in that the wider strip removes more precursor solution per unit width.

TABLE 28
Diffusion - Junction Depth/Time/Temperature Study [Cells have BSF and AR Coating]

Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Junction Depth ($\mu \mathrm{m}$)	$\mathrm{I}_{\mathrm{sc}}(\mathrm{mA})$	$\mathrm{V}_{\text {oc }}$ (V)	FF	n (\%)	${ }^{T}$ ocd ($\mu \mathrm{sec}$)
$\begin{aligned} & 0 \\ & 0 \\ & \text { in } \\ & \infty \end{aligned}$	$\begin{gathered} 0.25 \\ (14 \mathrm{~min}) \end{gathered}$	30.2	. 517	. 53	9.0	2
	$\begin{gathered} 0.5 \\ (50 \mathrm{~min}) \end{gathered}$	31.8	. 563	. 76	14.5	--
	$\begin{gathered} 1.0 \\ (114 \mathrm{~min}) \end{gathered}$	30.9	. 566	. 76	14.1	14
$\begin{aligned} & 0 \\ & 0 \\ & \circ \\ & \circ \\ & \infty \end{aligned}$	$\begin{gathered} 0.25 \\ (10 \mathrm{~min}) \end{gathered}$	32.3	. 573	. 74	14.4	18
	$\begin{gathered} 0.5 \\ (35 \mathrm{~min}) \end{gathered}$	31.5	. 578	. 76	14.7	23
	$\stackrel{1.0}{(80 \mathrm{~min})}$. 577	. 75	14.2	24
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{gathered} 0.25 \\ (7 \mathrm{~min}) \end{gathered}$	31.1	. 525	. 72	12.4	4
	$\stackrel{0.5}{(25 \mathrm{~min})}$	30.1	. 525	. 72	11.9	4
	1.0	29.7	. 533	. 75	12.5	4

Curve 713535~A

It can be shown that if the width increases from 1.25 to 2.5 cm the withdrawal rate will increase by 26% to maintain a constant film thickness. An indirect benefit of the wider web is that edge effects due to the dendrites will be smaller in relation to the total web area.

- Table 29 below shows the withdrawal rate required from a 2% solution for three widths of web.

TABLE 29
Withdrawal Rate as a Function of Web Width
[2\% Solution]

Web Width (cm)	Withdrawal Rate (cm/min)
0.63	.
1.25	20
2.5	36

5.2.2 Variation of Optimum Film Thickness

The techniques for the control of the AR coating thickness have been discussed. It is of prime interest to determine the effect on cell parameters due to a variation of the AR coating thickness.

From Figure 3 we can obtain a measure of the change in reflectivity due to a change in baking temperature. This data can then be used in conjunction with Figure 4 to determine the thickness variation.

This data is plotted in Figure 27. This curve was derived by assuming that the optimum coating thickness gives an enhancement factor* of 1.42. Any variation from this thickness will then lead to an

[^6]increased reflectance off the surface of the cell and a decreased enhancement factor.

From the curve it is seen that a change in thickness of $\pm 50 \AA$ from the optimum will change the enhancement factor from 1.42 to 1.38, while a variation of $\pm 100 \AA$ changes it from 1.42 to 1.34 .

If a 3% variation in $J_{S C}$ due to the $A R$ coating is accepted as a production standard (i.e., a $\pm 50 \AA$ variation in film thickness), the allowable variation in the withdrawal rate can be determined. For a 3.7% solution, the withdrawal rate of $30 \mathrm{~cm} / \mathrm{min} \pm 3 \mathrm{~cm} / \mathrm{min}$ would be acceptable. Thus relatively simple and inexpensive controls could be used for this process.

5.3 Laser Scribing

In Section 3.5 of this report, work was described on the separation of cells by laser scribing. Figures 9 and 10 show that web solar cells can be separated from the web/dendrite matrix by laser scribing from the back followed by breaking.

During this initial testing it was noted that whenever there was any decrease in cell parameters, the cell showed a low shunt resistance ($<100 \Omega$) and that the edge of the cell always showed an effect such as shown in Figure 28. This figure shows a region on the edge of the cell where the molten zone has completely penetrated the cell. This penetration will short out the junction in that region and cause a low shunt resistance.

All of the larger cells ($1.6 \times 4.0 \mathrm{~cm}$ and $1.6 \times 7.0 \mathrm{~cm}$) which are discussed in this report were separated from the crystal by laser scribing. Since it was not possible to test them before scribing (no mesa etich) there is no one-to-one comparison of cell parameters before and after laser scribing. However, by measuring the shunt resistance and examining the edge of the cell we can infer whether any damage occurred.

Curve 713534-A

Fig. 27-Antireflection film thickness vs enhancement factor

Fig. 282009 - 6LS Laser Scribed from back. Note total penetration after laser scribe dwell. Length of scale bar: $100 \mu \mathrm{~m}$.

This examination was carried out on fifty cells of the larger size. The shunt resistance varied from 3,000 ohms to more than 3 K ohms. It has been shown ${ }^{(1)}$ that shunt resistances less than 300Ω are required before there is any real effect on cell parameters. Also, in none of these crystals was an effect such as shown in Figure 28 noted. In all cases the molten zone penetration was less than 50% of the total thickness of the crystal. Since we assume that the laser must penetrate to the front junction before any degradation occurs, this 50% penetration is acceptable.

To assure that the penetration would not exceed this amount, all cells were scribed with the KORAD laser operating at 70% power. With this power and a repetition rate of 1000 Hz and a spot diameter of $15 \mu \mathrm{~m}$, the laser penetrated no more than $75 \mu \mathrm{~m}$. Since nearly all of our cells are $150 \mu \mathrm{~m}$ or thicker, less than 50% penetration is assured.

5.4 Metallization and Sintering

5.4.1 Sintering vs Junction Depth*

Sintering is usually carried out to improve the contact resistance and the reliability of the metallurgical bond between the silicon and the contact. Our experience has been that sintering usually results in some loss of efficiency; therefore sintered devices were studied to determine the cause of this effect.

Completed solar cells, fabricated by a standard process (see Figure 18) were subjected to a $425^{\circ} \mathrm{C}$ sintering in H_{2} for 15 minutes. This was to determine the mechanism of cell parameter degradation that is occasionally noted with sintering. The contact system was evaporated $\mathrm{Ti} / \mathrm{Pd} / \mathrm{Ag}$ with metal thicknesses of $1500 \AA, 500 \AA$ and $20,000 \AA$, respectively.

[^7]In these studies, both the solar cell parameters as well as the detailed $I-V$ curves of the cell ${ }^{(1)}$ were studied.

Table 30 shows the performance of 10 solar cells before and after sintering at $425^{\circ} \mathrm{C}$ for 15 min in H_{2}. Figure 29. shows that. sintering primarily increases the junction excess current, hence reducing the cell efficiency. This was found true for all the samples whose performance deteriorated after sintering. Sintering did not affect R_{s}, I_{o}, or τ appreciably. The only systematic and significant variation was found in $I_{j} . R_{s h}$ decreased at times but was found to be greater than 30K in all cases after sintering. However, if the contact resistance is initially high ($R_{s}>5 \Omega$) then sintering lowered the series resistance and improved the cell efficiency (Figure 30).

With the preliminary data a number of cells were prepared with varying junction depths from $0.2 \mu \mathrm{~m}$ to $1.0 \mu \mathrm{~m}$ to examine the effect of sintering as a function of junction depth. The parameters of these cells is shown in Table 31. In the column "Sample ID" the numbers refer to the diffusion time at $825^{\circ} \mathrm{C}$ and these are proportional to the junction depth. The letters (A,D,F) are simply cell designations to delineate different cells in the same run.

Contrary to what might be expected, there was no systematic variation in the cell efficiency with the junction depth. Instead, average efficiency was about 9.9% in all the cases. This suggests that. somehow the increase in sheet resistance is balanced by the decrease in dead layer in shallow junctions and vice versa for the deeper junctions. Our light source is somewhat rich in infrared which could be partially responsible for the lack of significant performance variation. Also, the Syton polished surfaces we used may have mitigated the adverse surface effects on shallow junctions.

The samples with different junction depths were sintered first at $425^{\circ} \mathrm{C}$ and then at $550^{\circ} \mathrm{C}$. Sintering at $425^{\circ} \mathrm{C}$ slightly degraded the cell efficiency in most cases. However, $550^{\circ} \mathrm{C}$ sintering affected the shallow junctions severely, while deeper junctions were hardly affected.

Results from Sintering Experiment ($425^{\circ} \mathrm{C}$ in H_{2} for 15 min) RUN ID SOLEP 133 DIFFUSION TIME AT $825^{\circ} \mathrm{C}=50 \mathrm{MIN}\left(\mathrm{X}_{\mathrm{j}}=0.3 \mu\right)$

CZ cells; no BSF or AR coating

Fig. 29 Transformed Dark I-V curves for the sample SOLEP 133-8: - Before Sintering, After Sintering at $425^{\circ} \mathrm{C}$.

Fig. 30 Measured dark I-V curves for the sample $70714 \mathrm{~W}-13$:

- Before Sintering, After Sintering at $425^{\circ} \mathrm{C}$.

TABLE 31
Effect of Sintering Parameters on Solar Cell Performance
[Diffusion Temperature $=825^{\circ} \mathrm{C}$]

$\begin{gathered} \text { Sample } \\ \text { ID } \end{gathered}$	$\begin{gathered} x_{j} \\ (\mu \mathrm{~m}) \end{gathered}$	Sintering Condition	$\begin{gathered} \underset{\mathrm{SC}}{\left.\mathrm{I}_{\mathrm{mA}}\right)} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Oc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & { }^{\mathrm{T} \text { ocd }} \\ & (\mu \mathrm{sec}) \end{aligned}$	$\begin{gathered} \text { Efficiency } \\ \eta \end{gathered}$	$\frac{\eta \text { unsint }}{n \text { sint. }}$
20A		Unsintered	22.3	. 577	3.25	10.22	. 967
20A $\}$	0.1	$425^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{H}_{2}$	22.1	. 570	3.25	9.89)	
20A		$550^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{H}_{2}$	22.4	. 562	1.56	8.70	
40A		Unsintered	21.9	. 578	3.9	10.20	. 979
40A	0.25	$425^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{H}_{2}$	21.6	. 571	3.9	9.99	
40A		$550^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{H}_{2}$	21.4	. 551	. 26	6.67	
80A		Unsintered	22.0	. 576	3.25	$9.92\}$. 962
80A	0.35	$425^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{H}_{2}$	21.6	. 566	3.90	9.62	
80A		$550^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{H}_{2}$	21.6	. 563	1.17	7.81	
100A		Unsintered	21.5	. 575	3.9	$10.06\}$. 999
100A	0.5	$425^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{H}_{2}$	21.4	. 572	4.29	10.01	
100A		$550^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{H}_{2}$	21.2	. 562	1.04	7.60	
320D		Unsintered	21.5	. 577	3.25	$9.97\}$. 962
320D	0.7	$425^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{H}_{2}$	21.2	. 572	3.9	9.59)	
320D		$550^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{H}_{2}$	21.2	. 574	2.60	9.32	
480F		Unsintered	22.2	. 577	3.64	10.20	
480F	1.0	$425^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{H}_{2}$	21.7	. 575	4.55	10.21	
480F		$550^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{H}_{2}$	21.7	. 575	2.99	9.78	

CZ cells; no BSF or AR coating

Figures 31 and 32 show a considerable increase in the junction excess current for the shallow junction compared to the deep junction devices. Thus deeper junctions, as expected, are found to be less sensitive to the sintering-induced degradation. The reason for this degradation is quite clear. - increased I_{j}. The physical mechanism by which degradation occurs though not fully understood, probably involves titanium diffusion or migration into the junction region. This data, when taken into conjunction with the data in Section 5.1 , indicates that junction depths of $0.5 \mu \mathrm{~m}$ are preferable in web, and that these junctions can be sintered up to $425^{\circ} \mathrm{C}$ for 15 min in H_{2} without adverse effects.

The effect of sintering on the shallower junctions, for example, $0.1 \mu \mathrm{~m}$ and $0.25 \mu \mathrm{~m}$, at $425^{\circ} \mathrm{C}$ is minimal. A decrease in the efficiency of 3% is noted with a 0.1 . $\mu \mathrm{m}$ junction and $425^{\circ} \mathrm{C}$ sintering. Thus, for practical purposes, even the shallowest junction can be sintered at $425^{\circ} \mathrm{C}$ without undue effect on solar cell efficiency.

5.4.2 Sintering of Other Metal Systems on Web

During the period of this contract, several alternative contact systems were studied as replacement for the evaporated TiPdAg. Data on these systems were given in Section 3.3.

The cells discussed in that section were diffused at $850^{\circ} \mathrm{C}$ for 35 minutes (the optimum time/temperature and junction depth as determined eariier). The data given in Section 3.3 for the evaporated TiPdAg system, the evaporated TiPd plated Ag, and the evaporated TiPd plated Cu systems follow the same pattern seen in Section 5.5.1. That is, with junction depths of 0.5μ, sintering temperatures up to $400^{\circ} \mathrm{C}$ for 15 minutes in H_{2} are permissible.

Fig.. 31 .Transformed Dark I-V Curves for the Sample SOLEP 134-80A: • Before, - After Sintering at $550^{\circ} \mathrm{C}$.

Fig. 32 Transformed Dark I-V Curves for the Sample SOLEP 134-480F: Before, After Sintering at $550^{\circ} \mathrm{C}$.

6. COST ANALYSIS OF PROCESS SEQUENCE

A cost analysis of the process sequence was carried on throughout the contract. Initially, the IPEG methodology was used on the processing of continuous lengths of dendritic web. Later in the program a parallel processing of long lengths (~ 3 meters) of web was considered, using both the IPEG and SAMICS models.

The results of these studies will be discussed in the following sections.

6.1 Continuous Processing of Dendritic Web

The first process sequence studied was the continuous processing of the web through the sequence discussed in Section 4. The equipment was designed to process $200 \mathrm{MW} / \mathrm{yr}$ ($1.82 \times 10^{4} \mathrm{M}^{2}$ of web per year) and produce 11% modules.

The equipment descriptions used in the Format A 's were generally a scaled up version of conventional existing processing machines. However, in several processes such an antireflection coating and photoresist dipping and encapsulation a conceptual design was used. Input from various equipment manufacturers was obtained to supplement these descriptions as well as provide information on required floor space. The materials and supplies usage was determined by extrapolating the usage in the laboratory processes. Labor and utilities were estimated, based on semiconductor industry experience.

These various Format A inputs were transferred to the company work sheet using the cost factors and inflation rates of the SAMICS Cost Accounting catalog.

The results of this analysis are given in Table 32. Section 1 (Input) is a compilation of data from the company work sheet for a $200 \mathrm{MW} / \mathrm{yr}$ production.

The yield factor is shown in the last column and gives a total process yield of 93%.

Section 11 (Output) shows the contribution to the selling price (in 1986 \$ per watt) of the various processes and of the costs within the process. The total selling, price given ($\$ 0.66 /$ watt peak) is in:1986. dollars and does not include the cost of the silicon web. The web is targeted to be $\$ 0.17 /$ watt (1975 \$) in 1986. Thus the total cost inking (in 1975 \$) is about \$0.50/watt peak.

Several points of information can be gained from these data in that certain cost drivers can be identified. The largest single cost in the process is the materials for the junction formation step. This cost is $\approx 25 \%$ of the total cost and is due almost entirely to the cost of silane at $\$ 183.40 / 1 b$ (1975 \$). Other cost driversare materials for encapsulation (mainly glass and backing board) and equipment for the metallization process. These data indicate where effort must be put to reduce the overall cost.

At this point in the program, we decided to investigate an alternate process, where a number lengths of webs were processed in parallel. A description of this process and the cost analysis are given in the next section.

6.2 Parallel Processing of Web Lengths

In a production situation, it may be advantageous to process lengths of web. Therefore, we have designed a process sequence that has an input of 50 three meter lengths of web which are processed in parallel.

The factor using this process sequence consists of eight parallel. lines, each capable of producing 25 MW per year, with a total factory producing 200 MW per year.

SECIIONI - INPUT

$\frac{9}{16}$		 \#13...-
'			
12 B	.- Intergar.	-60000000	14.43292
\because	LASCRIB	1.00000000	501299
18	NJARCT	1.05000000	627399
	JUNCFORM.	. 1.c0000003	2577199
2%			420
22.	, TOTALS	.60000000	-...) $5,534,995^{-9}$

AL FLOOR	TOTAL OIRRECT	TOTAL BYPRODUCi EXPENSES	TOTAL DIRECT HESUPPLIES
-W13	- 21.5	…-	H17
649°	15.4243	- U	. -68480
549,	154243	0	0
.-981	15.24 .3	0	-14.3779
599	154243	0	54389
1161	--197637.	. .. 0 ...	- 329963
421	W22	W23	W24
3939	814609	0	596611

An artist's rendering of one 25 MW processing line in the 200 MW factory is shown in Figs. 33-38. Each line in the factory is considered as balanced, with a throughput of $5000 \mathrm{~cm}^{2}$ of dendritic web per minute. For simplicity in costing, a yield figure is considered in the last processing step during final testing.

Figure 33 shows a number of web growth furnaces; each producing $25 \mathrm{~cm}^{2} / \mathrm{min}$ of web. The web being 5 cm wide between dendrites. Therefore, 200 furnaces are required to provide the necessary input to the processing line. The as grown web is wound on reels. Fifty such reels are ganged on'mandrel as the web fed through a laser cutter. Pieces of web, each 3 M long are loaded into specially designed, light weight frames and held in a buffer station before moving to junction formation steps. Each frame holds $75,000 \mathrm{~cm}^{2}$ of web, and thus to meet the throughput requirement, each frame must be processed in 15 minutes.

Figure 34 shows the junction formation processes in the sequence. The web enters the process and is washed in an organic solvent and dried. It then moves to a deposition apparatus where a protective oxide is formed on the front surface of the web and a boron doped oxide on the back. In the sequential steps the boron is driven in and the material passes $\quad \because$ through a phosphorous diffusion furnace and finally into an etching bath where all the oxides are removed. It should be noted that in this process step (as in all others) it is quite feasible to remove one sub-process and insert another. For example, the boron oxide deposition and drive sub-processes may be replaced by an aluminum deposition and firing step. This makes iterations in the costing studies fairly simple.

Figure 35 shows the application of the antireflection coating and the photoresist, both by dipping. The equipment is designed to handle the 37×37 frames: In station 7 of this process, the web lengths are passed (one at a time) into an exposure system where a suitable grid pattern is put onto the photoresist layer. The final stages etch the grid pattern into the photoresist and antireflective coatings and the webs are again loaded into frames for metallization. *
This work is being carried on under Task 2 Contract 954654 and is included here only for the sake of completeness.

Fig. 33 Web growth furnaces.

Fig. 34 Junction formation processes.

Fig. 35 Application of the antireflection coating and photoresist.

Figure 36 shows the metallization process for the web solar cells. The web strips, with the grid pattern opened pass into a metallization chamber where both front and back metals are applied. Our costing studies are for an evaporated metal system but sputtering is a viable alternative. After the photoresist is rejected (rejecting the excess metal) the contacts are sintered and move to a plating station where Ag is plated to the proper thickness. Plating is used in this build-up since the only silver used is that deposited on the cells, and the step is cost effective. After a final cleaning the webs are stacked in a buffer station before moving to a scribing process.

It should be noted that if an A1 back surface field is substituted for a boron back surface field, no metallization would be required on the back of the cell, and the process would become somewhat simpler.

Figure 37 shows a laser scribing process where the dendrites are removed and the cells are cut to their final $5 \mathrm{~cm} \times 20 \mathrm{~cm}$ size. The webs are unloaded one at a time where they first pass under a longitudinal laser scribe unit where two laser heads, 5 cm apart, scribe inside the dendrites. The webs move to a transverse laser scriber where the webs are scribed at 20 cm intervals. In station 5, the webs are run over rollers where the dendrites are broken off and the cell is fractured into 20 cm lengths. The final two stations perform an electrical test on the cells and pack the cells that pass the test into cassettes. About 5000 of the cells can be packed into one $5 \mathrm{~cm} \times 20 \mathrm{~cm} \times 125 \mathrm{~cm}$ cassettes.

It should be noted that the laser scribing must be done from the back of the cell to prevent any junction damage.

Figure 38 shows the final processing step. The cells are unloaded from the cassettes and pass under an ultrasonic welder where Al foil (cut from a roll) is bonded to the front of the cells. The foil is then bent up so that interconnections can be made. A glass plate ($1 \mathrm{M} \times 3 \mathrm{M}$), previously coated with an adhesive is brought into the line and the cells are placed (face down) on the glass. The glass

Fig. 36 Metallization process for the web solar cells.

Fig. 37 Laser scribing process.

Fig. 38 The final processing step.
moves under another ultrasonic welder where the back of each cell is contacted with the Al foil. This would form a series string of cells along the length of the glass. The cells are coated with another layer of adhesive and a backing board (with appropriate external connections) is placed on the cells and removed to a curing area, and finally to a crating and shipping department.

In Table 33, we show a further outline of the sequence for this conceptual factory with the processes discussed in more detail. The sequence is divided into 44 sub-steps and for costing purposes, we do not include the dendritic web silicon growth station.

To the right of each process description is a 1 isting of the various components required by the SAMICS Format A's. These figures are for a $25 \mathrm{MW} / \mathrm{yr}$ production rate. The commodities are given in usage per minute, and any costs given in 1978 . Several features should be noted regarding the commodities. First we have assumed a cost of silicon web input at $\$ 0.17 /$ watt (1975) ; this price is one of the goals of the LSA project. Second, we have assumed a cost of $\$ 50 / 1 \mathrm{~b}$ for silane (1986 \$). We feel that this price is justifiable (compared to the SAMICS cost account catalog price of $\approx \$ 370 / 1 \mathrm{~b}$) since the manufacturers of polycrystalline silicon will be on stream in 1986 and silane should be in copious supply. Other cost inputs not in the cost account catalog are shown in our input to the program.

The data given in Table 33 wereused as input into the SAMICS program ${ }^{*}$ to determine costs and final selling price per watt. Subprocess 5.09 was inserted into the program as a no-cost yield buffer to enter a yield factor. In this case the yield was taken at 90%.

In the following pages (Table 34) we have produced pertinent parts of the SAMICS printout, as well as our input into the program.
(text continues on p . 166)

[^8]```
DESIGN FOR A SOLAR PHOTOVOLTAIC FACTORY HAVING AN ANNUAL PRODUCTION CAPACITY OF 200 MW OF SOLAR ARRAYS PRODUCED FROM DENDRITIC SILICON WEB MATERIAL
```

The factory has an input of more than $40,000 \mathrm{~cm}^{2}$ of dendritic web silicon per minute which goes through eight parallel production lines of 25 MW each. The production line will be divided into five sequential categories and each category will now be discussed in detail.

## JUNCTION FORMATION

Each of the eight identical production lines running in parallel handle 5000 $\mathrm{cm}^{2}$ of sheet silicon a minute. $\therefore$
1.01 Load Buffer

Silicon in the form of dendritic web material 5 cm wide (not including dendritic web) is cut to three meter lengths and are loaded into a frame 50 strips of web wide. This frame will then be approximately $3 \mathrm{~m} \times 3 \mathrm{~m}$. The frame is then fed to the next station. At the rate of 5000 cm a minute the speed of the frames would be one every 15 minutes through each station.
1.02 Silicon Clean

The whole frame containing the silicon is then lowered into a bath of solvent withdrawn and blown dry.
1.03 Oxide Deposition

Silane gas is blown at the junction side to form a deposited oxide.

Cost data are given for a $25 \mathrm{MW} / \mathrm{yr}$ production into 1978 dollars. Labor figure indicates number of operators in place during running time.

| Labor | 0.33 PY | Capital | $\$ 10,000$ |
| :--- | :--- | :--- | :--- |
| Floor Space | 97 sq.ft. | Utilities | .5 KW |


| Labor | 0.33 PY | Capital | $\$ 10,000$ |
| :--- | :--- | :--- | :--- |
| Floor Space | $97 \mathrm{sq} . \mathrm{ft}$. | Utilities | $\$ .5 \mathrm{KW}$ |
| Commodities: |  |  |  |
| Acetone $0.063 \mathrm{l} / \mathrm{min}$ |  |  |  |


| Labor | 0.17 PY | Capital | $\$ 300,000$ |
| :--- | :--- | :--- | :--- |
| Floor Space | $97 \mathrm{sq} . \mathrm{ft}$. | Utilities | 1 KW |
| Commodities: |  |  |  |
| Silane $0.900 \mathrm{gm} / \mathrm{min}$ |  |  |  |

1.04 Chemical Vapor Deposited Boron

Silicon is heated to $400^{\circ} \mathrm{C}$ and silane gas mixed with diborane is blown on the silicon surface to form a boron glass deposit.
1.05 Boron Drive

The rack containing the silicon is now fed through a furnace to heat the silicon to $960^{\circ} \mathrm{C}$ for twenty minutes.
1.06 Buffer

At this stage the hot silicon sheet is allowed to cool to approximately room temperature for 15 minutes.
1.07 Etch

A dip etch is used to etch off the oxide depositions from the front and back of the silicon.
1.08 Phosphorus Diffusion

The rack is fed into a furnace and heated up to $850^{\circ} \mathrm{C}$ in $\mathrm{POCl}_{3}$ ambient for 35 minutes to produce an $\mathrm{n}^{+}$layer on the front side of the silicon. (Back side also diffused but not compensäted.)
1.09 Cooling Buffer̈

The silicon is allowed to cool to approximately room temperature in 15 minutes.
1.10 Etch

The silicon is dip etched to remove the oxides.

| Labor | 0.17 PY Capital. | \$300,000 |
| :---: | :---: | :---: |
| Floor Space | 97 sq.ftt. Utilities | 1 KW |
| Commodities: |  |  |
| Nitrogen | . $105 \mathrm{l} / \mathrm{min}$ |  |
| Silane | $2.724 \mathrm{gm} / \mathrm{min}$ |  |
| 5\% Dibora | ane . $255 \mathrm{l} / \mathrm{min}$ |  |
| in $\mathrm{H}_{2}$ |  |  |


| Labor | 0.5 PY | Capital | $\$ 380,000$ |
| :--- | :--- | :--- | :--- |
| Floor Space | 97 sq.ft. | Utilities | 8 KW |

Floor Space 97 sq.ft. | Capital | $\$ 10,000$ |
| :--- | :--- |
| Utilities 1 KW |  |

| Labor | 0.5 | Capital - \$ 20,000 |
| :---: | :---: | :---: |
| Floor Space | 97 sq.ft. | Utilities - 1 KW |
| Commodities: |  |  |
| HF 5.721 | gm/min |  |
| Di $\mathrm{H}_{2} \mathrm{O} 0$. | $06 \mathrm{l} / \mathrm{min}$ |  |

Labor $\quad 1.0$ PY Capital $\$ 340,000$ Floor Space 194.sq.ft. Utilities 13 KW Commodities: $\mathrm{POCl}_{3} 1.362 \mathrm{gm} / \mathrm{min}$

Capital \$10,000
Floor Space 97 sq.ft. Utilities .5 KW

| Labor | 0.5 PY | Capital |  | 20,000 |
| :---: | :---: | :---: | :---: | :---: |
| Floor Space | 97 sq.ft. | Utilities |  | KW |
| Commodities: |  |  |  |  |
| HF $5.721 \mathrm{gm} / \mathrm{min}$ |  |  |  |  |
| Di $\mathrm{H}_{2} \mathrm{O}$ | $0.62 / \mathrm{min}$ |  |  | 3,340/ys |

### 1.11 Buffer to Process 2

The silicon material has now finished the junction formation process and moves to the second process in the production line, "anti-reflection coating, photoresist coating and patterning."

| TOTALS FOR PROCESS | Labor | 4 per shift |
| :--- | :--- | :---: |
| (Per Year in 1978\$) | Floor Space (net) | 1,160 sqft |
|  | Capital | $\$ 1,410,000$ |
|  | Utilities | 28 KW |

2. ANTIREFLECTION AND PHOTORESIST COATING AND PATTERNING

### 2.01 Buffer

### 2.02 Antireflection Dip and Drain

The cassette containing the diffused web silicon is lowered vertically into a bath of antireflection coating material having a controlled viscosity. It is then withdrawn at a constant rate and allowed to drain and dry for five minutes.

### 2.03 Bake and Cool

The silicon contained in the rack is moved to a baking oven at $400^{\circ} \mathrm{C}$ held there for five minutes and allowed to cool for a further 10 minutes.

### 2.04 Photoresist. and Drain

The rack containing the silicon is lowered into a bath of photoresist and withdrawn at a controlled rate and allowed to drain.

### 2.05 Bake

The rack of silicon passes into an oven held at $95^{\circ} \mathrm{C}$ and is baked for 15 minutes.
2.06 Unload Cassette

Each of the 50 pieces of web material is fed one at a time into the next station.
2.07 Expose Photoresist

Three meter lengths of web are fed in at the rate of one every 18 seconds and exposed with a pattern both on the front side and the back of the silicon. After exposure the strips of silicon are fed one at a time to the next station.

| Labor | 0.1 PY | Capital | $\$ 10,000$ |
| :--- | :--- | :--- | :--- |
| Floor Space 97 sq.ft. | Utilities | I. KW |  |


| Labor | 0.25 PY | Capital | \$ 60,000 |
| :---: | :---: | :---: | :---: |
| Floor,Space 17 sq..nt. Utilities . 5 KW |  |  | . 5 KW |
|  |  |  |  |
| AR Dip | $1.33 \times 10$ | -5 $\mathrm{-}$ //min |  |
| Iso. Prop. | 6.3. $\times 10$ | थ/min |  |
| Alcohol |  |  |  |


| Labor | 0.25 PY | Capital | $\$ 20,000$ |
| :--- | :---: | :--- | :---: |
| Floor Space | 48 sq.ft. | Utilities | 4.5 KW |

Labor 0.25 PY Capital \$60,000
Floor Space 175 sq.ft. Utilities .5 KW
Commodities:
Photoresist . 021 \&/min
AZ-111
$\begin{array}{llll}\text { Labor } & 0.25 \text { PY } & \text { Capital } & \$ 20,000 \\ \text { Floor Space } & 48 \text { sq.ft. } & \text { Utilities il } \mathrm{KW}\end{array}$

| Labor | .25 PY | Capital |
| :--- | :--- | :--- |
| Floor Space | 48 sq.ft. | Utilities |
|  | 50,000 |  |
| $5 W$ |  |  |

Floor Space 48 sq.ft. Utilities .5 KW

| Labor | .25 PY | Capital | $\$ 50,000$ |
| :--- | :--- | :--- | :---: |
| Floor Space | 65 sq.ft. | Utilities | 2 KW |

### 2.08 Load Cassette

As each piece of silicon is fed from the photoresist station it is taken and loaded flat into a cassette.
2.09 Dip Develop

The cassette containing 50 pieces of silicon is dipped into a bath of developer and withdrawn.

### 2.10 Photoresist Clean Up

The cassette of silicon is now lowered into a bath of butyl acetate and withdrawn.

### 2.11 Antireflection Coating Etch

The cassette containing the silicon is lowered into a bath containing an etch to selectively remove the antireflection coating.
2.12 Wash and Dry

The cassette is lowered into a bath of deionized water "withdrawn and blown dry.

TOTAL FOR PROCESS (Per Year 1978 Dollars)

| Labor | 0.5 PY. |
| :--- | :--- |
| Floor Space 48 sq.ft. | Utilities |

Labor $\quad 0.2$ PY Capital $\$ 20,000$
Floor Space 15 sq.ft. Utilities . 5 KW
Commodities: PR Developer $9 \times 10^{-4} \mathrm{gal} / \mathrm{min}$
Labor 0.2 PY Capital \$20,000

Floor Space 15 sq.ft. Utilities .5 KW Commodities: Butyl Acetate $6.3 \times 10^{-4} \mathrm{\ell} / \mathrm{min}$

Labor 0.2 PY Capital \$ 20,000
Floor Space 17 sq.f.t. Utilities \$ 328
Commodities:
$\begin{array}{lll}\mathrm{HC1} & 2 \times 10^{-7} \ell \ell / \mathrm{min} \\ -\mathrm{NH}_{4} \mathrm{~F} & 1.3 \times 10^{-7} \mathrm{l} / \mathrm{min}\end{array}$

| Labor | 0.2 PY | Capital. | $\$ 20,000$ |
| :--- | :--- | :--- | :--- |
| Floor Space | $17 \mathrm{sq} . \mathrm{ft}$. | Utilities | .5 KW |
| Commodities: |  |  |  |

Labor
Floor Space (net)
3 per shift
Capital
Utilities
\$390,000
Commodities
7 KW
\$195,982

### 3.01 Metal Deposition

The cassette containing the silicon is loaded into a vacuum system and pumped down in 15 minutes. A gate opens and the rack is then fed to a holding station for a further 15 minutes and then continuously fed through a deposition station where metal is deposited on both sides' of the silicon. It is then fed through a second holding station where the whole rack is brought up to atmospheric pressure.
3.02. Buffer

### 3.03 Strip Photoresist

The rack containing the silicon strips is lowered into, a bath of acetone and raised and blow dry. This rejects excess metal on silicon strip, leaving metal only in the grid area.

### 3.04 Sinter

The rack is placed in a belt furnace having a nitrogen gas curtain and sintered for five. minutes at $400^{\circ} \mathrm{C}$ and allowed to cool down to room temperature.
3.05 Plating

The metal pattern on the silicon . is thickened (on the front and back. sides of the wafer) by electroplating.

Labor 1.0 PY Capital \$500,000
Floor Space $300 \mathrm{sq} . f \mathrm{ft}$. Utilitiés 6 KW Commodities:

Ti $0.045 \mathrm{gm} / \mathrm{min}$ $\mathrm{Pd} 0.121 \mathrm{gm} / \mathrm{min}$
A1 $\quad 4 \mathrm{gm} / \mathrm{min}$
$\mathrm{Ni} 0.027 \mathrm{gm} / \mathrm{min}$

Capital $\because \$ 10,000$
Floor Space 97 sq.ft.

Labor . 5 PY . Capital . \$ 20,000
Floor Space 129 sq.ft. Utilities. 2 KW
Commodities:
Ácetone $2 \mathrm{cc} / \mathrm{min}$
Labor . . 5 PY Capital \$100,000

Floor Space 226 sq.ft. Utilities 5 KW
Commodities:
$\mathrm{N}_{2} 132 \ell / \mathrm{min}$ (gas)
(Purchased as liquid)

| Labor | $.8 . \mathrm{PY}$ | Capital | $\$ 30,000$ |
| :--- | :--- | :--- | :---: |
| Floor Space | $97 \mathrm{sq} . f t$. | Utilities | 24 KW |
| Commodities: |  |  |  |
| $\quad \mathrm{Ag}$ Bath $3.57 \mathrm{gm} / \mathrm{min}$ |  |  |  |

### 3.06 Wash and Dry.

The rack containing the silicon is lowered into a bath of water withdrawn and blown dry.

This ends the metallization step and the rack of silicon is now fed to the laser scribe operation.

TOTALS FOR PROCESS
(Per year in 1978\$)

| Labor | . 2 PY | Capital | \$ | 20,000 |
| :---: | :---: | :---: | :---: | :---: |
| Floor Space | 97 sq.ft. | Utilities | \$ | 2,624 |
| Commodities: |  |  |  |  |
| DI $\mathrm{H}_{2} \mathrm{O} 0$ | $\ell / \mathrm{min}$ |  | \$ | 3,340 |


| Labor | 3 per shift |
| :--- | :---: |
| Floor space (net) | 946 sqf |
| Capital | $\$ 680,000$ |
| Utilities | 33 KW |
| Commodities | $\$ 167,506$ |

## 4:01 Un1oad

Each of the pieces of silicon is unloaded one at a time and fed to the next station.

### 4.02 Longitudinal Laser Scribe

The single silicon strip is fed at 16 cm per second past the laser scribing head having two beams separated by 5 cm , thereby cutting off the dendrites. The silicon is then fed one piece at a time into the next station buffer.
4.03 Buffer
4.04 Transverse Laser Scribe

The silicon at this stage is face up in a rack and a laser moves across the direction of flow of the material and cuts the 3 meter pieces of silicon into 20 cm lengths.
4.05 Break

Here the silicon material is bent so as to fracture it at those points where it is already being cut by the laser. The silicon in each rack now results in 750 solar cells. These are fed to the next station.
4.06 Cassette Load, Test, Sort and Store

Here the 750 solar cells are loaded into cassettes after being tested and sorted.

This then ends the laser scribe operation and the cassettes are then fed to the next operation, interconnections and encapsulation.

Labor . . 6 PY • Capital $\$ 100,000$

Floor Space 97 sq.ft. Utilities 2 KW

Capital \$ 20,000
Floor Space 97 sq.ft.
Labor . 5 PY Capital \$85,000

Floor Space 97 sq.ft. Utilities . 5 KW

| Labor | .5 PY | Capital | $\$ 30,000$ |
| :--- | :--- | :--- | :--- |
| Floor Space | 97 | sq.ft. | Utilities |


| Labor | 1 | 1 PY | Capital |
| :--- | :---: | :--- | :--- |
| Floor | $\$ 30,000$ |  |  |
| Space | 65 sq.ft. | Utilities | 1 KW |

TOTALS FOR PROCESS
(PER YEAR in 1978\$)

3 per shift 550 sq.ft. \$285,000
4.5 KW

## 5. INTERCONNECTIONS AND ENCAPSULATION

5.01 Buffer
5.02 Interconnect Bonding

Aluminum foil cut from a roll in form of a comb is ultrasonically bonded to the sun side of a cell. The cells, complete with aluminum contacts are now loaded into a cassette.
5.03 Cell Placement

A glass superstrate covered with RTV silicone adhesive is brought to this station and the cells are individually placed on the soft RTV with the sun side down towards the superstrate.
5.04 Buffer and Cure

Here the RTV is allowed to cure.
5.05 Interconnect Second Bonding and Test

At this station the other end of the aluminum foil is ultrasonically bonded to the adjacent solar cell.
5.06 Cell Coating

A layer of RTV is coated over the back side of the solar cells.
5.07 Back Attachment

A fiberboard is fed in at this stage and pressed onto the RTV coated in the previous operation.

Capital \$ 10,000
Floor Space 12 sq.ft.

| Labor | 1.0 PY | Capital | $\$ 100,00 \mathrm{C}$ |
| :--- | ---: | :--- | :--- |
| Floor Space | $43 \mathrm{sq} . f \mathrm{ft}$. | Utilities | 1 KW |
| Commodities: |  |  |  |


| Labor | . 5 PY. | Capital | \$ 50,000 |
| :---: | :---: | :---: | :---: |
| Floor Space | $65 \mathrm{sq.ft}$ | Utilites | 1 KW |
| Commodities: $\quad \$ 65,720$ |  |  |  |
| RTV 615 | ilicone | $\mathrm{gm} / \mathrm{min}$ |  |
| G1ass |  | $\mathrm{ft}^{2} / \mathrm{min}$ |  |

Capital $\$ 20,000$ Floor Space 65 sq.ft.
Labor . . 5 PY Capital $\$ 70,000$ Floor Space 86 sq.ft.

| Labor | . 25 PY | Capital | \$ 30,000 |
| :---: | :---: | :---: | :---: |
| Floor Space | 86 sq.ft | Utilities | . 5 KW |
| Commodities: |  |  |  |
| RTV 108 | ilicone 6 | $\mathrm{gm} / \mathrm{min}$ |  |

Labor . 5 PY. Capita1 \$ 20,000 Floor Space 86 sq.ft. Utilities .5 KW
Commodities
Phenolic board $5.3 \mathrm{ft}^{2} / \mathrm{min}$

### 5.08 Buffer Cure and Final Test

The RTV is allowed to cure at this stage and the panel is now tested.
5.09 Yield Buffer
5.10 Crating and Shipping

The panel is now crated and moved to the Shipping Department.

| Labor | .25 PY | Capital | $\$ 30,000$ |
| :--- | :--- | :--- | :--- |
| , Floor Space | $86 \mathrm{sq} . f t .$. | Utilities | 1 KW |

No Costs

| Labor | 1.0 | PY |
| :--- | :--- | :--- |
| Floor | Space |  |
| 110 | sq.ft. |  |

TOTALS FOR PROCESS
Labor
4 R.er Shift
640 sqft
$\$ 340,000$
$\$ 13,120$
$\$ 1,247,740$

TOTALS FOR PROCESS SEQUENCE
( 25 MW )
1978 Do11ars

```
Labor (18 per shift)
Capital
Utilities
Commodities
Floor Space (net) }3651\mathrm{ sq.ft.
```

\$ 983,600
$\$ 3,105,000$
\$ 216,480
\$3,044,332

## AVAILABLE COMPANIES (IN CDRE)

CG:APANY: wESTCO, PHOTOVOLTAIC PANEL MANUFACTURFR
L: SCFIPTIVE. NAME IS
": hotcVoltaic panel manufactlrer"
TI: FDLLUWINC PRGDUCTS ARE MANUFACTURED RY THIS CONPANY:
GRATEAUU
FFRCENT.OF.CAFACITY =
LEVEKAGE = 1.2DOO
FEUT
GIMERTEKESTORATE = g.2510
HHEF.TAX.RATT =
SURA,VCE.RATE =
-CILITY.LIFE = 40.0000
RGTF.'OFOKETURN.ON.EQUITY = 20.0000
$\therefore$ ISC.EXPENSE.PERCENTAGF.OF.REVENUE = 3.0000
VISC.EXPENSF. PERCFNTAGE.CF.OPERATING.EXPERSE =
NISC.EXPENSF.PERCENTAGE.UF.BOCK.VALUE =
FACILITIES.TAX.DEFRECIATIOR.METHOD = VOB
FGCILITIES.FOOK.DEPRECIATION.METHOD = SL
FSCILITIFS.INFLATION.PATE.TAELE =
1975.0000
7.00 O

RSW. $\because$ ATERIALS.INVFNTORY.TIME $=\quad .11400$
FIOCESSING.TIHE.NULTIPLIER = 1.0600
FINISHED.GOODS.INVENTURY.TIMF = $\quad .0401$
ACCOUNTS.RECF.IVAPLE.TUKNOVER.TIME $=\quad .0100$
4.0000

RUN-TIME GPTIONS WERE CONTROLLED BY THE IN-CORE RUN.CONTROL: JRE2, RUN CONTRCL FGR ARRAY

CESCRIPTIVE.NAME IS
"FUV COMTROL FOR ARFAY"
I: DUSTRY.SIZE.RAR.GE:
25「00000.00*
QUANTITY.RECALCULATION.FLAG IS
I TEEGRAL.MACHINES.FLAG IS ON
STEADY. STATE.FLAG IS UFF
INE.LENGTH $=132$
PPOMPT.LEVEL.CODE = 1
MAX.NUMBER.CF.SCALE.ITERATIONS = 200
$M A X . N U M B E K . O F . P R I C E . I T E R A T I O N S=20$
EFSILON = .00100000
REPORT.CHOICES:

| 1 | 1 | 1 |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 1 | 1 | 2 |
| 1 | 1 | 1 |
| 1 | 1 | $1 *$ |

REPORT.OUTPUT.FILE $=12$ (FILE)

Samis ili - release $i$ industry configuration
I. IOUSTRY: WESTCORP, SILICON SOLAR FHOTOVOLTAIC POWER SYSTEMS

Q: NUFACTURE OF SOLAF ELECTRIC POLER SYSTEMS. EXPRESSED IN WAYTS/YEAR
IS PROVIDED BY
CHATEMOD, CKATED PANELS $10 / C R A T E$, FXPKESSED IN CRATES CONTAINING 10 EACH $24 O$ WATT PANELS/YEAR OF \&HICH
1し0.00\% IS MADE EY WESTCO. PHOTOVOLTAIC PANEL MANLFACTURER

COMPAAY: WESTCO
KFGIJIRED PRUDUCT: (NCNE)
PRODUCTS: CRATEMOD


अOUSTRY OBJECTIVE: MANUFACTURE CF SGLAR ELECTRIC PUKLLR SYSTEMS
FINAL PRODUCT: CKATE:OD, CKATED PANELS, IO/CRATE
HCOUCING $24 U G$.OC WATTS PER CRATES COH.TAINING, IO EACH $24 i$ WATT PANELS
GUAMTITY: $25000000=2.5 E+07$ WATTE/YEAR $\Rightarrow 1.042 F+04$ CRATES CONTAINING 10 EACH 240 WATT PANELS/YEAR

FPICE: ・もち98 $(1975) /$ WATTS $\Rightarrow 1343.408 \$(197 c) / C R A T E S$ CONTAINING 10 EACH 240 WATT PANELS

FIIVANCIAL PARAIETER
COST UF PATE GF RETURA.
CAPITAL ON TGUIT
CALCULATED- -INPUT-
17.44:

- INPUT-
$20.00 \%$
DERT
INTLREST RATE
INPUT-
9.25\%
- LEverage
(TOTAL/EGUITY)
1.200

INCOME TAX

## RATE

-CALCULATED-
$49.14 \%$
TIME FAFAMETEF:
CONSTKUCTICN LEAD TIMF $=2.00$ YEARS, STARTUF PERIOD $=1.00$ YEARS
RAW MATFRIAL IT.VENTOKY TIMT (INFUT) $=.040$ YEARS ( 14.6 DAYS)
PROCFSEING TINF (CALCULATEN) $\quad=.001$ YEARS ( GF3.5 MINUTES)
MULTIPLIED Y MLCATEM
FINISHE GOODS INVENTORY TIMF (INPUT)
ALCULATION)
ACCOUNTS RECEIVAEIE TURNOVEF TIME (INPUT) $=.040$ YEARS ( 14.6 DAYS)

```
ALL COMPANY EXPENSES ARF IN (% 1956)
CORPANY DIRECT EXPENSES 15333225.
COMPAAY JIRECT LABGR EXPEINSES 1666417.
COMPANY DIRECT MATERIALS AND SUPPLIES 13389881.
COMPANY PYPRODUCT EXPENSFS
356.
CCMPANY OIRECT UTILITIES EXPE,ISES 277275.
```

COMPANY INDIRECT EXPENSFS
1143433.

```
 ROCESS: I.#1 LOAD BUFFER, LUAD STARTING SILICON wEB INTO 3M X 3M FRAME
 PRODUCT: RAWWF: . UNCLFANED STARTING WER
 PRODISESS ETOO.U000 CM2/MINUTE. TAKING 15.000 MINUTES/C,YCLE
 OPERATES 1.00 G'F THE TIME THE FLCTORY IS OPERATING
 COMPONENT: &UFI.O1, LOAD EUFFER
 COST:' 10000% &(197E) INSTALLATION: 1000. $(1976)
 SALVAGE VALUE: 0. $(1976), AFTEK 7.0 YEARS
 QUANTITY'2.315E+G9 CM2/YEAR AT . 0031 $(1975)/CM2
 NUMBER OF 1.01 MACHINES = . 1.000. OF WHICH .068 ARE IDLE
 ALL EXPENSES ARE IN $(19{E
 IRECT EXPENSES
```



```
 INDIRECTEXFENSES EXPENSES* * 22182. . . . *
 INDIKECT LARUF*EXPENSES 19194
 INCIKECT MATEFIALS ANO SUPPLIES 2633.
 INCIKECT UTILITIFS EXFENSFS 355.
 SYPRODUCT INCOMF (1 0.)
```



```
 WGIF!EMT KEFLACENENT
 FACILITIES. REPLACEMENT
 AMORTIZEN ONE-TIME COSTS
 600.
 1563692.
 INTEREST ON DEPT
 RFTURS G:. EQUITY
 NON-INCOME TAXES
 O
 INSUKANCE PREN.IUNS . 33045.
INCOME TAXES 1905383.
MISCELLANEOUS 754n59.
EXTERNAL PROOUCT COST
0.
INTERNAL (IMPLICIT) PRODUCT COST
0.
VALUF ADDED: .006 F(19&6)/CN2 = . 550$(198G)/WATTS
PROFIT = 1.6% OF PRICE
MAFKUP = 1.475 TIMFS (DIKECT EXPFNSES PLUS INTERNAL AND EXTERNAL PRODLCT COSTS)
THE ENERGY PAYBACK TIME FOR THIS PROCESS IS .OOO YFAFS
TO PRODUCE 2.315E+09 CM2/YEAR, THE 1.01
PROCESS REQUIRES:
ALL COLLARS ARE IN $(1986)
```



```
CUMPANY I:NDIRECT LABCR EXPENSES SUFPLIES 9%G95G.
COMFANY INGIFICT MATFHIALSS ANDSUSPLIFS 1361:40
GOMFARY IMOIKICT UTILITIIS FXPENSES ?O297.
r,Ofpany typfoiluct InCCME (0.)
COMPANY CAPITAL EXXPENSES 4502129.
 COMPA\Y EaUIPMENT REPLACEMENT
 COMPANY FACILITIES REPLACEMENT
 COMPANY AMORTIZED ONE-TINE COSTS
 COMPANY INTEFEST ON DEET
 COMPANY KETURN ON EQUITY
 COMPANY MON-INCOME TAXES
 COMPANY INSURANCE PREMIUGS
 791072.
 36299.
 3017051.
 3017051.
 58267.
 629912.
 23454.
 346076.
company income taxes
COMPANY NISCElLAINEOLS
1454911.
COMPANY EXTERNAL PRODUCT COST
0.
```




$1.445 E+00$
17487.27


| GUANTITY | PRICE， | $\cos T$ | REFERENT |
| :---: | :---: | :---: | :---: |
| 3． $062 \mathrm{~F}+01$ | 129.32 | 3960. | A 2256 I |
| $3.137 \mathrm{E}+01$ | 47.98 | 1505. | A20401 |
| 1．041E＋03 | ． 73 | 789. | A1080t |
| 3．084「．+02 | 1.68 | 517. | A1096I |
| $1.370 \mathrm{E}+01$ | 36.75 | 503. | A2160I |
| 1． $787 E+02$ | 2.00 | 397. | A1368I |
| 2．192E＋02 | 1.27 | 278. | A1256I |
| $8.273 E+01$ | 2.00 | 165. | A1352I |
| $1.142 \mathrm{E}+01$ | 9.00 | 103. | A10161 |
| 1．081E＋03 | ． 07 | 77. | A10481 |
| 1．9\＆fE +00 | 37.15 | 70. | A 20321 |
| 1．322E＋00 | 40.18 | 53. | A2240I |
| $7.336 \mathrm{E}+00$ | 7.00 | 51. | A1192I |
| 5．515ti＋00 | 7.00 | 39. | A1209I |
| 6．241F－01 | 23.99 | 15. | A13201 |
| 1．110f－11 | 12.99 | 1. | A124t．1 |
| 1．4．4 it－66 | 1］ 4 |  |  |
| 1．6．18， 1103 | $4 \cdot 010$ |  | Airif．1 |
| ？： 7 7t＋172 | 0. |  | A35481 |
| 9．700r＊01 | 0. | 0. | A303：1 |
| 1．445F－02 | 43955.66 | 635。 | ए144 Hl |
| 1．445E－02 | 43178.45 | 624. | B220rI |
| 2．351E－C2 | 17932．70 | 515. | B13521 |
| 2．239E－02 | 21049.49 | 471 | B1432I |
| 7．227E．03 | 50734.68 | 367 | 8324\％ |
| 7．227F－1）3 | 50734.68 | 367 | R1416I |
| 7．327E－03 | 49655．21 | 359 | B3256E |
| 1．671E－03 | 150632．75 | 319 | 81384I |
| 1．445E－02 | 21585．22 | 312 | B2032I |
| 1．445E－02 | 21157.43 | 306 | B2160I |
| 2． $5.01 \mathrm{~F}-03$ | 112263．94 | 281 | ค227： 1 |
| $3.413 E-03$ | $7 \epsilon 209.94$ | $2 \in 0$ | B204\％1 |
| $1.445 \mathrm{E}-02$ | 17832.70 | 258 | B124 11 |
| 2．237E－03 | 113343.44 | 254 | B33041 |
| 4．418E－03 | E1814．14 | 250 | B312\％${ }^{\text {c }}$ |
| 4．589E－03 | 50734．68 | 233 | B3496I |
| 4．H18E－03 | 43178.45 | 208 | B33521 |
| 4．513E－03 | 42036．96 | 203 | E209tI |
| 2．409E－03 | E1175．44 | 196 | B1016I |
| 4．418E－03 | 38212.90 | 144 | E2176I |
| 2．409E゙03 | 71158.06 | 171 | B2256I |
| 2．409E－03 | 71156.06 | 171 | B10641 |
| 2．509［－03 | 64767．68 | 163 | B2192I |
| 8．269E－03 | 18998.51 | 157 | B1144I |
| 2．007E－03 | 57211.45 | 115 | B1288I |

DESCRIPTIVE NAME
TOILET AND LOCKER ROOM TOILET AND LOCK EXTERICR WALLS
LAND
LANDSCAPING AND IRRIGA PASSAGES AND CORRIDORS WALKS，CURRS AND GUTTE PAVING（HEAVY DUYY）FO SITE LIGHTING
FENCING
GRACING
ELECTRICAL EGUIPMENT R TELEPHONE EGLIPNENT RO SANITARY SEGERS STOKN DRAINS
STORAGE AREA WALLS
WATHF SFRVICF FACILITI H\＆al｜NI．FAS \｜ll｜lts

IUTAL ELPPOKT FLOOR SP．
tUTAL MANUFACTURING FLj
SUPIKVIGOR TRAINING．THE PURCHASING AGENT
PERSONNEL CLERK
SECRETAKY I RLOWER MÁN， MECHANICAL ENGINEER
SAFETY FNGINEEh
PRUDUCTION PLANNER PRFSIDFNT
POOKKEEPER
PROCUREMENT CLERK
VIrf PRFSIDENT，FINANC CONTHOLLER AND CHIFF A NAIL CLERK
VILE PRESIDENT，MANUFA CHEMICAL ENGINEER
PROFLCTION SLPERINTFND ASEISTANT PRODUCTION S FIfANCIAL ANALYST
ADMIMISTRATIVE ASSISTA PROGRAMNER GUSINESS
TREASUKER
OIRECTOR INDUSTRIAL RE
PURCHASING ADMINISTRAT
GROUNDSKEEPER
MANAGER，COMPENSATION＊


| AUCITOR，INTERNAL | 4．318E－03 | 22884.57 | 110．B2080I |
| :---: | :---: | :---: | :---: |
| ACCOLNTING SLPERVISOR | 3．171E－03 | 33679.19 | 107．B1256I |
| H．ANAGER，DATA PRCCESSI | $4.818 \mathrm{E}-03$ | 18998.51 | 92．B2112I |
| TIRECTOF，QUALITY CONT | 1．204E－i3 | 60449.84 | 73．B3176I |
| FERSONNEL CLFRK，SUPER | 2．469E－03 | 22884.57 | 55．B1400I |
| ：AANAGER，SECURITY AND | 1．204E－03． | 37781.14 | 46．B2224I |
| GUARO CHIEF | 1．379E－03 | 29145.45 | 40． 8344 AI |
| DATA PRUCESSING SUPERV | 1．204E－03 | 22884．57， | 28．B1224I |
| DIRECTOR．PLAAT MAINTEN | ．2．020E＋00 | 0. | 0．B5032I |
| TOTAL，STAFF PERSUNNEL | $1.445 \mathrm{E}+00$ | 0. | 0．B5016I． |
| ELFCTRICITY | 5．515E＋03 | ． 01 | 71．C10168 |
| TELEFHOAE．SERVICE | 4．477E＋02 | .14 | 61．C2144E |
| SEWAGE ANO PROCESS WAS | 1．239E－05 | .03 | －C1064E |
| FUEL OIL | 3．993E＋04 | 0 \％ | －0．C21601 |
| VENTILATION | 1． $278 \mathrm{E}-02$ | 0 － | 0．C2112E |
| AIR CONDITIONING | $5.513 \mathrm{~F}+03$ | 0. | 0．C2080E |
| CAFETERIA SERVICE． | 7．740E－02 | ． 0. | 0．C2048： |
| － |  |  |  |
| SOLIN WASTE | $5.513 \mathrm{E}+03$ | .00 | 4．D104日R |
| SEWAGE WASTF． |  |  |  |
| OFEICE SUPPLIES | 2．020E＋02 | 2.17 ． | 435．E12566 |
| NATH\＆AL GAS |  | 0 |  |
| NATIASAL GAS． WATIF． |  | 0. | 10．F1016 |

 AI．N（IL．AKS ARI IN T（Iよか）



| GUANTITY | PRICE | $\cos$ T | REFERENT |
| :---: | :---: | :---: | :---: |
| $1.584 t+03$ | 129.32 | 204845. | A 2256 I |
| 4－222F＋03 | 28.14 | 118795. | A2224 I |
| － 4 －785E＋02 | 163.29 | 78133. | A1115I |
| 6． $3 \in 7 \mathrm{~F}+04$ | ． 73 | 46454． | A1080I |
| 7．674E＋02 | 34.47 | 2644 C | A2112I |
| $1.570 \mathrm{E}+04$ | 1.42 | 22343 ． | A1064 |
| $5.760 \mathrm{E}+02$ | 36.75 | 21168 。 | A2160I |
| 2． $758 \mathrm{C}+02$ | 37.15 | 10395. | A2032I |
| $4.875 \mathrm{E}+03$ | 12．00 | 9745. | A1352I |
| 6．729E＋02 | 9.00 | 6053. | A1016I |
| $2.000 \mathrm{E}+03$ | 2.00 | 3998. | A13041 |
| $9.180 E+01$ | 38.98 | 3578 。 | A227？I |
| $6.865 E+111$ | 40.18 | 2758． | A2240I |
| 2．481E＋03 | 1.04 | 2586． | A1160I |
| 4．343F＋01 | 4\％．98 | 2127. | A2192I |
| 3．701E＋01 | 23.99 | 888. | A1320I |
| 6．769E＋10 | 12.99 | 91. | A1240I |
| －0ヶ2E－05 | ． 14 |  | A 205 I |
| 9．376E－U8 | 4.00 |  | A2263I |
| $0.700 F+C 0$. | 0 ． |  | A $128 \% \mathrm{~F}$ |
| 1． $\mathrm{r}_{1} 11 \mathrm{~F}+04$ | 0. |  | A3n4ッ1 |
| i．f．t21＋ 113 | 11. | 11. | A ！ 11 |
| 1． $114 \mathrm{E}+00$ | 25145．46 | 38246． | 633841 |
| 7．44EE－01 | ＇43955．66 | 3272\％． | B112：1 |
| 1． $146 \mathrm{~F}+00$ | 24503．77 | 25053． | E14441 |
| 1．155F＋00 | ¢1044．49 | 24312. | ［1433．1 |
| 7．444．1－11 | 20．24．91 | 2250！ | $1: 200 \mathrm{P} 1$ |
| 9．1．31－111 | 541：4．63 | 1 f | H32umit： |
| 9．7らワE－n1 | 1 『リリカ．51 | 1ヶ52こ。 | ¢12751 |
| 3．7235－01 | 49655．21 | 1も4\％6． | ［32568 |
| 8．616t－02 | 190632．75 | $1642 \%$ ． | E1384I |
| 7．446L－01 | 21589.22 | 16075. | E2U32I |
| 4．218E－01 | 36701.67 | 15475. | 633361 |
| 7－H00E－01 | 16998.50 | 14815. | B1192I |
| 4．764F－01 | 27850.09 | $1382{ }^{\text {c }}$ 。 | F133 1 |
| 7．446［－01 | 17832.70 | 1327も． | E2144I |
| 7． $446 \mathrm{E}-11$ | 17832.70 | 13278． | B104FI |
| 2． 4 E2E－01 | 51814.14 | 12860 ． | E312．35 |
| 2．367E－01 | 50734.68 | 12007 ． | B3496I |
| 2．482E－01 | 43178.45 | 10717. | E3352I |
| 2．462E－01 | 42098．96 | 10449. | B2240I |
| 3．723E－01 | 27418.31 | 1020 \％ | E3192I |
| 1．448E－01 | 69085.50 | 10002. | P31441 |
| 2．4と2E－01 | 38212.90 | 9484. | E2176I |
| 3．723E－01 | 23748.14 | 8841. | B32161 |
| 1．241E－01 | 71158.06 | 8836. | 81112 I |
| 2．361E－ 11 | 35622.22 | 8411. | B3464I |
| 1．448E－01 | 57211.45 | 8283. | P1304I |
| 1．241E－01 | 50734.68 | 6296. | 612081 |

OESCRIPTIVE NAME
TOILET AND．LOCKER ROOM SOLVENT AND CHEMICAL S ELECTRICAL SERVICE FAC LAND
NECTANICAL EGUIPMENT R INOUSTIRIAL WASTE CLARI PASSAGES ANO CORRIDORS ELECTRICAL EQUIPMENT K SITE＇LIGHTING
FENCING
SIGNS AND FLAGPOLE
WAREHOUSE SPACE
TELEPHONE EQUIPNENT RO LIWLID AITROGEN SERVIC QUALITY CONTROL LAEGRA STOKAGE AREA WALLS
WATYR SERVICE FACILITI HEATING FACILITIES VENTILATION FACILITIES SEC．URITY CONTROL FACIL TOTA SUPPORT 「LOOR GP lolal MAMHFA！fHIJ！tr．FI

ELLCTRGNICS MAINTEINANC EMPLOYMFNT INTERVIEWER SECRETARY III（UPPER M SE（RETAKY I ILOWER MAN ACCOLNTANT
I LI．GTRONICE FNGINEER malittelvance man（PLaNt． PROGUCTION PLANNER PRFSIDENT
GOUKKEEPER
ASSEFBLY OFERATIONS SU JANITCR
NUKSE，FROFESSIONAL（G
PAYROLL CLERK
CLERK GENERAL OFFICE＊ CHEMICAL ENGINEER PROUUCTION SUPERINTEND ASSISTANT PRODUCTION S SYSTEMS ANALYST DR＇AFTSMAN，MECHANICAL DIRECTOR，MANUFACTURIN PROGRAMMER，BUSINESS ENGINEERING AIDE DIRECTOR PUBLIC RELATI PROCESS MAINTENANCE SU MANAGER，PERSONNEL LAWYER，CORPORATE．，（BUS

| 1．3695－01 | 33675.19 | f293．R1：561 | maintanance foreman（f | $1.034 \mathrm{E}-01$ | 57211.45 | 5916．B128RI | MANAGEK，COMPENSATIGN． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2．4a＇2E－01 | 22884.57. | 5680．B21PCI | nigital computar opfra | 1．241E－01 | 45769.16 | 5680．E1032I | AUDITOR，INTERNAL |
| 1．241E－01 | 44473.80 | ¢519．P20161 | ACCOLNTING SLFERVISOR． | 8．618E－02 | 57211.45 | 4930．8212sI | manager，data processi |
| 2．4F2E－01 | 18598．54 | 4715．［21121 | KEY PUNCHi OFERATCR | $6.205 \mathrm{E}-\mathrm{L2}$ ． | 69085．50 | 4287．E31601 | DIAECTOR，CLALITY CONT |
| 6．2＾5E－02 | 6744 T ¢．84 | 3751．P3176T | rIkertop，resfarch and | 1．241E－01 | 269136.53 | 3345．E136\％I | PERSONNEL CLERK，SUPER |
| 1．241E－01 | 22884.57 | 2840． 11400 I | RECEPTIONIST | $4.920 \mathrm{E}-62$ | E7211．45 | 2815．B13201 | MAE＇AGEK，SECURITY ADO |
| 1．0．3E－01 | 2374\％．14 | 2573． 811761 | guard chief | $6.205 \mathrm{E}-02$ | 37781.14 | 2344．B2224I | PURCHASING SLPERVISOR |
| 4．137E－U2 | 38212．93 | 1581．B2064i | TATA PROCESSING SUPERV | 4．055E－02 | 35622.2 ？ | 1445．E3544I | WAREHOUSE AND MATERIAL |
| E．2AEE－02 | 22884.57 | 1420．B1224I | Legil secretafy | $1.640 \mathrm{~F}-02$ | 71158．06 | 1167．B1096I | DIfECTOR PLANT MAINTEN |
| $1.045 t+02$ | 0. | 0. B5C321 | total personyel | $3.005 \mathrm{E}+01$ | 0 ． | $0 . \mathrm{B5} 048 \mathrm{I}$ | TOTAL STAFF PERSONNEL |
| 2．805F． 01 | 0 ． | 0 －B5664I | total maintenance pers | 7．446E＋01 | 0 － | $0 \cdot \mathrm{~B} 5016 \mathrm{I}$ | TOTAL DIRECT PERSONNEL |
| $1.619 \mathrm{E}+15^{5}$ | ． 05 | 8738．C1032t | ELECTPICITY | 3．463E＋05 | ． 01 | 4447．C1016E | DOMESTIC WATER |
| 1．745E＋01 | 204.96 | 3575．＊C11121． | telephonf service | 2．351E＋04 | .14 | 3139．C2144E | SOLID ：ASTE MATERIAL |
| 万． $2545 \mathrm{~F}+04$ | ． 01 | 394．C2064\％ | SEwage and phocess kas | 7．302E－04 | ． 03 | －C1064F | natueal gas |
| 「．43EE－06 | ． 88 | －C1n4\％\％ | FUEL OIL | 2．？245＋06 | 0 。 | 0 －C21641 | したいった」にご |
| 4．906E－02 | 0. | 0．C2128： | VENTILATION | 7．5arE－01 | 0 。 | 0 －C21120 | HE：Tino |
| $\therefore 2 \div 4 \mathrm{E}-01$ | 0 ． | O．C2096\％ | AIR CONDITIONING | $3.402 \mathrm{E}+05$ | 0. | 0．C2080t： | WATER SUPPLY |
| S．27UE＋01 | 0 ． | 0 －C2016I | cafeteria service | $1.156 E+01$ | 0 ． | 0．C20488 | POWER SUPPLY |
| $2.321 \mathrm{E}+0 \mathrm{E}$ ． | ． 00 | 69E．D1u56i | SOLID WAStE | $3.462 E+05$ | ． 00 | 268．D104RE | POLluted hater |
| 1． $3^{2} 3 E+05$ | .00 | 137．D1P801 | sewage waste |  |  |  |  |
| $5.225 \mathrm{E}+04$ | 2.17 | 113484．E1432I | OFFICE SUPPLIES | 1．045E +04 | 2.17 | 22697．F．12568 | EXPENDAPLE TOOLS |
|  | 11. | 11．Filtar | natuhal tias： | 7．26．75－177 | $0 \cdot$ | 0．P103？ | futh 01L |
| ＇．14\％1＋11， | 0. | 0．F 11.100 | WATF＂ | \％．570E＋05 | 0 。 | 0 ．F1010 | PNFRGY |
| THIS（ONPANY，WESTCO，EUYS THE FOLLOWING PRODUCTS FRCM Othek Cunpanies（NONE） |  |  |  |  |  |  |  |
| the compainy balance sheet is not yet inplemented |  |  |  |  |  |  |  |
| the company income statement is not yet implementes |  |  |  |  |  |  |  |

```
PROCESS: 1.0i / LOAD EUFFER, LOAD STARTING SILICON WEB INTO 3M X 3M FRANE
PRODUCT: RAWWER - UNCLEANEO STAFTIIIG WEB
PRODUCES: 5000.0000 CM2/MINUTE, TAKING 15.000 MINUTFS/CYCLF
JPERATES 1.00 OF THE.TIME THE FACTORY IS UPERATING
 COMPONENT: SIJFI.01, LOAC RUFFFP
 CIST: 10000. $(197E) INSTALLATION: 1000. $(1976)
 SALVAGE VALUE: 0. &(197G) AFTER 7.0 YEARS
 QUANTITY 2.315E +CG CM2/YEAH AT .0031 $(1975)/CN3
 QUANTITY 2.315E+CG CM2/YEAH AT
 FACILITIES ANS PFRSONNEL
 9.700E+01 S%,FT. OF A2O6,4D, \becauseANUFACTURING SPACE (TYPE A)
 IS REGUIIRET' ©Y EACH CCPY UF PROCESS 1.01
 3.300E-01 FFSN.*YFS CF P3064F., GENERAL ASSEMPLER (FLFCTRORICS)
 IS REGUIREO EY ENCH CGPY UF PROCESS 1.01
 UTILITIES ANO COMMOLITJES
```



```
 IS RFWUIKED EVERY OPEKATING MINUTE GY FACH COPY OF PROCESS 1.OI
 5.OU\E+03 CI:2 OF E-WEECU1. SILICCN NEB
 IS REGUIFFD EVERY OPERATING MINUTE EY FACH COPY OF PROCFSS 1.01
```

PROCESS: 1.02 - CLEAN WEB, WEE IS FRANE IS WASHED IN ACETONE AND DRIED
PRODUCT: CLEANLEF, CLIAN WEB IA FRAME

OPERLTES 1.00 OF THF TIME THE FACTORY IS OPERATING
CONPONENT: CLEANFR1, WASFER FGR WEB IN FRAMES
EUST: 1HU00. \$(1976) INSTALLATIUA: I00U. t(1976)

CUAATITY 2.315F + 0' CM2/YEAF AT - DO32 I (1975)/CM2
NUMEFR 'JF 1.02 HACHINES=1.0CO, OF WHICH .OGH ARF IDLE
FACILITIES ANG PERSONNELL
צ. $700 \mathrm{E}+01 \mathrm{~S} . \mathrm{FT}$. OF A2GG40, MANLFACTLRING SFACE (TYPE A)
IS REGUIRED EY EACH COPY OF PROCESS 1.02
3.300E-f1 PASN*YKS OF P3064i, GENERAL ASSEMBLFR (ELECTRONICS)
IS REQUIREO BY EACH CPIPY OF PROCESS 1.02
UTILITIES ADD COAMELITIES
1.00nE-02 Kw wR. OF C1032B, ELECTRICITY
IS RELLIHES EVFFY OPEKATIAC MINUTE EY FACH COPY OF PROCESS 1.02
1.25'SE-U1 L\&S. OF E10320, ACETONE
IS REGUIRFF EVERY OFERATING NINUTE BY EACH COPY OF PROCESS 1.02
INTRA-INOUSTRY PRODUCTS
EACH ONE CM? OF RAWWEB, UNCLEANED STARTING WEB,
PROEUCES 1.0COD CM2 OF CLEANAEB, CLEAN WEB IN FRAME
PROCESS: 1.03
- OXIDE CEPCSITION
PRCJUCT: 3OXVED - OXIDE COATED WER

み二゙,

$\because$ UFGAEAT: EOXMAC, OXIDIZING FURNACE
C'ST: 200000. $\ddagger(1576)$ INSTALLATION: i000. $\$(1976)$
SALVAGE VALUE: $0.8(197 f)$ AFTER 7.0 YEARS
UANTITY 2.315E+09 CM2/YEAR AT .0032 $\ddagger(1975) / C N 2$
NUMEER OF 1.03 MACHINFS $=1.000$. OF WHICH . DG8 ARE IDLE

```
 FACILITIES AND PFRSONNEL*
 4.8GOE+01 SQ. FT. OF A20G4D. NANUFACTURING SPACE (TYPE A)
 IS RFGUIRED BY EACH COPY OF PROCESS 1.03
 1.7ODR-01 PRSNAYRS OF B36720, CHEMICAL OPERATOR II
 IS REGUIRED BY EACH CCPY GF PROCESS 1.03
 UTILITIES AND COMMODITIES
 7.005E-34 CU. FT. OF CIOHUD, NITROGEN (LIQUID)
 IS RFGUIREC EVFRY OPERATING MINUTE BY EACH COPY OF PROCESS 1.03
 2.000F-02 LBS. UF E1584D. SILANF:100%
 IS REQLIRED EVERY OPERATING MINUTE BY EACH COPY OF PROCESS 1.03
 IS REQUIRED EVERY OPERATING MINUTE BY
 IS REGUIREU EVFRY OPERATINC MINUTE BY EACH COPY OF PROCESS 1.03
 INTRA-INDUSTRY PRODUCTS
 EACH ONE CM, OF CLEANWFR, CLEAN WER' IN FRAMF
 PROLUCES 1.0GOO CM2 OF FCXWEE, OXIDE COATED WER
PROCESS: 1.04 - CVD BCRON
PRODUCT: OXWER
 PRODUCES: 50:0.000G. CM2/MINLTE, TAKING 15.000 MINUTES/CYCLE
 OPERATES 1.00 OF THE TINE THE FACTORY IS OPERATING
 COMPGNENT: G.XNAC. CVD BGRON CGATING APPARATUS
```



```
 S:LVAGE VALUT: 0. &(197F) AFTFK% 7.G YTARS
 UUANTITY 2.315E+US (M2/YEAF AT - IONZ $(1975)/C`.?
 NUM:-ER OF 1.04 NACHINFS = 1.00D, OF WHICH .OG& ARE IDLE
 FACILITIES NND PERSGNNEL
 4.%0!F+01 S., FT. UF AZOG4O, VAGUFACTURING SPACE (TYPE A)
 IS REGUIF!-I FY EACH COFY GF PEOCESS 1.0.4
 1.70GL-1% FRSA* YんS GF B3,6720, CHEMICAL GFERATCF II
 IS RFGUIKFR FY FACH CGPY OF PROCFSS 1.014
 UTILITIES A'YD COMROLITIES
 Q.50)E-|\hat{c}}\textrm{KW}\mathrm{ HR. OF C1032夕, ELECTRICITY
 IS REGLIRID. EVERY OPERATING NINUTE BY EACH COPY OF PPOCESS 1.04
 2.000E-03 LOS.OF E1S84G, SILANE 100%
 IS RECUIREU EVFRY UPERATIAG MINUTE GY EACh COPY OF PROCESS 1.04
 &50UE-{3 CU. FT. OF EI2OGD, DIBORANF 5% IN HYDFOGEN
 IS REGUIRET EVFRY OPERFTINS MI VUTE EY EACH COPY OF PROCFSS 1.04
 2.200E-01 CU. FT. OF C11280, nATrR. - COOLING
 IS REGUIREU EVERY CPERATIIG MINUTE HY EACH COFY OF PFOCESS 1.04
 INTRA-IIIDUSTRY PKONUCTS
 EACH ONE CM? GF FOXINEB, OXILE COATED WES.
 PROLUCES 1.VOOO GMZ OF GXWEB, BORGN LEPOSITION
FROCESS: 1.05 , EORON DRIVE
PKODUCT: PUIFFWEB, EOFON DIFFUSED WER
PKODLCFS: 5000.0000 CHZ/MINUTE, TAKING 15.000 MINUTES/CYCLE
OPERATES 1.00 OF THE TINE THE FACTORY IS OFERATING
 COMPONENT: EDMAC, DIFF FUR&ACE
 COST: 34.0000. $(1976) INSTALLATIUN: 1000e q.(1976)
 SALVAGE VALUE: 0. $(1976) AFTEG 7.O YEARS
 QUANTITY 2.315E+09 CM2/YEAR AT 0.0.34 $(1975)/CM2
 NUMPER OF 1.05 MACHINFS= 1.0nO, OF WHICH OOG ARF INLE
FACILITIES AND PERSONNEL
 5.00DE-01 PRSN*YRS OF B36720, CHEMICAL OPERATCR II
 IS REGUIREG RY EACH COPY OF PROCESS 1.05
```

1.360F-01 K HR. OF CIO32E, ELECTRICITY

IS RELLIRED EVFRY OPERATIFG MINUTE BY EACH COPY OF FROCESS 1.05
$1.200 \mathrm{E}-01 \mathrm{CU}$. FT. OF C112RD, WATER - COOLING
IS RFGUIKED EVFRY OPERATING. MINUTE BY EACH COPY OF PROCESS 1.05
INTRA-INDUSTRY PRODUCTS
LACH ONE CMF OF OXUEZ, BOROR UEPOSITION.
PRONLCES 1.0000 CM2. OF FDIFFNEB. BORON DIFFUSED WEB
PROCESS: 1.06 , COOLIAG BUFFER
PKODUCT: PCOOLथEH: COOL PORON CIFFUSEED WES
PROCUCES: 5OOU.OLOO CM2/MINUTE, TAKINE 15.000 MINUTES/CYCLE.
OPERATES 1.00 OF THE TIME THE FACTORY IS LPERATING
CGMFONEAT: COLBUF1. COOLING STATION
CiST: 10300. $\$(1576)$ INSTALLATION: 1000. $\$(1976)$
SALVAGE VALUE: 0. (197E) AFTEF 7.0 YEARS
QUA:ITITY $2.315 E+09$ GM2/YEAR AT 00034 \$(1975)/CM2
NUMUER OF I.OE HACHINES $=1.0 C O$, OF WHICH .OGQ ARE.IDLE
NUMVER OF I.OE UACHINES =
FACILITIES AND PERSONNEL.
S.70JE+G1 SG. FT. OF A2LG4D, MANUFACTURING SPACE (TYFE A) IS REGUIRED GY EACH COYY OF PROCESS 1. 1.6

1. 000 UE-01 PFSA $A$ YRS OF B 36720 , CHEMICAL IJPERATOR II IS REGUIRED BY EACH COPY OF PROCESS 1.06
UTILITIFS A:C COMMOIITIFS



EACH D: E CPí UF PUIFFLEL, OCRCN 「IFFUSEL 'WEB, FRONLCES 1.0NOC CM2 OF FCOOL\&EB, COOL BORON DIFFUSED NEE

- PKGCESS: 1.07 , ETCH CYIDF
$\infty$ PRODUCES: EDOO.OOMO CN2/MINUTE, TAKING 15.0NO MINUTES/CYCLE DPERATES 1.00 OF ThL TIME THE FACTORY IS UPFRATING

COMPONENT: ? UXETCHER, ETCHING UNIT
C:ST: 20000. (1976) INSTALLATION: 1000.. 5 (1976)
SLLVAGE VALUE: 2U(10. 1(197E) AFTFA 7.IS YEARS
コUANTITY 2.315E+ OE CN2/YEAF AT -0034 \$(1975)/CM2
NUMPER OF $1.07 \mathrm{BACHINES}=1.000$, OF WHICH . 06 H ARF IDLE
FACILITIES ANC PERSUIVNEL
9. $700 \mathrm{~F}+01 \mathrm{~S}$ S. FT. GF A20640, NANUFACTURING SPACE (TYPE A)

IS KFGLIRED PY EACH COFY OF PKOCESS 1.07
4.0OCE-01 PRSA*YRS CF E36720, CHEMICAL CPERATOR II

IS REGLIFFD DY EACH COFY OF FROCESS 1.07
UTILITIFS ANE CONMOEITIES
1.269E-01 LPS. OF EI32RE, HYCROFLORIC ACID.

IS REQUIRED EVERY OPEHATING MINUTE BY EACH COPY OF PROCESS 1.07
2. 000 OE-02 CU. FT. OF C11440, WATER - DEIONIZEC

IS REGUIREO EVERY OPERATINC MINUTE BY FACH COPY OF PROCESS 1.07.
-1.670E-02 KW HR. OF C1032R, FLECTRICITY
IS REGUIRED EVERY OPERATING MINUTE BY EACH COPY OF PROCESS 1.07
1.600E-02 GALLONS OF DIO32D, POISONOUS ACID

IS REQUIRED EVERY OPERATING MINUTE BY EACH COPY OF PROCESS 1.07

INTRA-INDUSTRY PRCDUCTS
EACH GIVE CMa CF PCOCLWEE, CLUL BORON DIFFUSED WEB. PRODLCES, 1.OOOD CM2 OF ROXETCH, *

PRCCESS: 1.08

- POCL3 DIFF

PRODUCT: NDIFFNEE, JUNCTION FORMATION
PRUDUCES: .5COO.COOG, CMZ/MINUTE, T\&KING 30.000 MINUTES/CYCLE.
IPERATES 1.00 UF THE TIME THE FACTGRY IS OPERATING
COMPONENT: NFURNACE, *
CGST: 340000. \$(197f) INSTALLATION: , 1000. $\$$ (1976)
SALVAGE VALUE: : 10000 (1.976) AFTE: 7.U YEARS
GLANTITY2.315E+69 CM2/YEAR AT .0036 $\$$ (1975)/CM2
NUMBER OF 1.OH WACHINES = f.OUO. OF, WHICH .OG8 ARE IDLE
FACILITIES ANO FERSONNEL

IS KLGUIRE.1) PY EACHICOPY OF PROCESS 1-1, 5
G.OOOTOUI HKSN:YKS OF RZFTOT, CHFMICAL DHERATOR II

IS RFGUIRED FY EACH CQPY UF PROCESS 1.0A
UTILITIES AND COMM(OITIFS
3.0001.03 LRS. OF E1504D. PLC

IS REGLIRF: FVERY CFFRATIAO MI: UTE RY EACH COPY OF PROCESS 1.08
2.210E-01 KN HR. GF CIU32E, ELECTRICITY.

IS REGUIRED EVFRY OPEKATINC MINUTE OY EACH COHY OF PROCESS 1.08
2.100E-01 CU. FT. OF C11¿AD, WATER - COOLING

IS RFGUIRE E. EVERY OPERATIMG MINUTE BY EACH CGPY OF PRUCESS 1.08
IATKA-IVÓUSTRY OGOTVCTS
EACH OME CNF OF LEXETCH *

PROCESS: $1.0 G$ - CODLING RUFFER ?
PRODUCT: VCOOLWEB : CGOL AFTER FOCLS DIFF
PRODUCES: $5000.000 \mathrm{C}^{\circ} \mathrm{CM}$. /MINLTE, TAKING 30.900 MINUTFS/CYCLE OPERATES 1.00 OF THF. TIME THE FLCTOKY IS OPFRATING

COMPONENT: RUFI: 「Y, COOLIAG UUFFTR
 SALVAGE, VALULE: 0. \&(197E) AFTEF 7.0 YEARS'
(iLAINTITY 2.3155+09 CM2/YEAF AT .0036 (1975)/CA2
NUMEEF OF 1.09 FAGHINES $=1.0$ OH, OF WHICH .0G\% ARE IDLE
FACILITIES AND FF.KSONNEL
9.700E+ II SG. FT. OF A2OE4D: MANUFACTURING SPNCF (TYFE A)

IS REQUIREO BY EACH CCPY UF PRCCESS 1.07
1.00 OE-01 PRSN*YFS OF-B3G720. CHEMICAL OFERATOK II

IS FEGUIRED FY EACH COFY OF PFOCESS 1.na

## UTILITIES AAD COMMCRITIES

9. OO, DE-03 Kh HR. OF C1032R, ELECTRICITY

IS REQUIREE EVERY OPERATIA's MINUTE BY EACH COPY OF PROCESS 1.09 INTRA-INOUSTRY PRODUCTS

EACH ONE CM? OF NDIFFWEB, JUNCTION FORMATION,
PRODUCES 1.000 CH2 OF NCOOLh'EB. COOL AFTER PCCL 3 DIFF

```
PROCESS: 1.10 , ETCH PHOS GLASS
PRUDUCT: POTCH
PRUDUCT: PETCH *
PRODUCES: 5000.00OO CM2/MINUTE TAKING
OPERATES 5000.000N 15.000 MINUTES/CYCLE
OPERATES 1.00 OF THE TIME THE FACTOKY IS OPERATING
 COMPONENT: PETCHER, HF/DI ETCHER
```


## COST：20000．$\$(1976)$ INSTALLATION：1000．\＄（1976）

SALVAGE VALUE： 2000 －$\$(1976)$ AFTER 7．0 YEARS
QUANTITY 2．3I5E＋09 CMZ／YEAR AT ．OO36 \＄（1975）／CM2
NUMBEF $\operatorname{FF} 1.10$ YACHINEG＝ 1.000 ，OF WHICH ．OGA ARE IDLE FACILITIES AND PERSONNEL

9．7， 1 OE＋ 01 S ．．FY．OF，A2חG4D，MANUFACTURII：G SPACE ITYPE
IS REGUIREV HY EACH COPY．CF PRGCESS 1.10
5．0．0 OE－01 PRSN＊YRS CF 33672C，CHEMICAL OPERATCR＇II．．
IS REGUIRED BY EACH COPY OF，PROCESS 1.10
UTILITIES AND COMHONITIES
1．260E－01 LES．OF E1329「，HYOROFLORIC ACID
IS REQUIRES．EVERY OPERATIAC MINUTE BY EACH COPY OF PRROCESS＇1． 10
2．000E－02 CU．FT．OF C1144D．WATER－DEIUNIZED
IS KEGLIREO FVERY OPFRATINC．MINUTE EY FACH COPY OF PRUCESS 1.10
3．2005－02 KW HR．OF CIOZ2E．ELECTKICITY
IS REQUIRFD FVERY OPERATINE NI UUTE EY EACH COPY OF PROCESS I． 10
1． 60 NE－02 GALLONS OF DIG320，POISONOLS ACID
IS REQUIREE EVERY CPERATING MINUTE GY EACH COPY OF PROCESS 1.10 INTRA－IACUSTRY PRODUCTS

EACH ÓNE CM2 OF NCOCLLEF，COOL AT．TER．FOCL 3 DIFF，
FRODLCES 1.0000 CN2 OF PETCH＊
PROCESS： 1.11 －PROCESS 1 OUTFUT PUFFEF
PRODUCT：BPETC！＊＊
PRODUCES： 5000.0001 CMR／MINUTE，TAKING 15. ORO MINUTE＇S／CYCLE
IPERATES 1.00 OF THY TIME THE FACTOMY Í OFER：IING



QUANTITY2．31EL＋09 CN2／YEAR AT ．OO3／\＆（1975）／CRZ2
NUMBEF OF 1.11 KACHINES $=1$ BOOC OF WHICH OG\＆ARE ICLE FACILITIES AND PERSONAFL
$9.7005+01$ SL．FT．OF A2C̃G4D，NAANLFACTLRING SPACE（TYPE＇A）
IS RFQUIRE PY EACH COPY OF PROCESS 1．11

I＇．K！GlIFE：＂YYFACH COFY OF＇FRJCESS 1.11
LIJLII！：＂い L！NRIITIF「


INTRA－I ©DUSTRY PROTUCTS
EACH ONE CMZ OF PETCH：＊＊
FROQLCES 1.0 ODO CM2 OF FPETCH．＊
PKCCESS：2：01－ITPUT EUFFFR TG PROCESS 2
PRODUCT：PRPETCH ，HOLOING BUFFEFi
PRODUCFS：5000．00GN CMZ／MIMLTE，TAKING 15．nOD MINUTFS／CYCLE



QUANTITY 2．315F＋07 CM2／YEAF AT－DO37 \＄（1975）／EM2
NUMSER CF 2．01 MACHINES $=1.000$ ．OF WHICH OG！ARE IDLE FACILITIES AND PERSONNEL

9．700E +01 SG．FT．OF A2064D．NANUFACTURING SPACE（TYPE A）
IS RgGUIRFD BY EACH COPY OF PRUCESS $2.0 ̂ 1$
1.000E-01 PRSN:YKS OF B36720, CHEMICAL OFERATOR II IS REQUIREE ZY EACH COPY OF PPOCESS 2.01
UTILITIFS $\operatorname{SND}$ CONMOTITIES
8.000E-03 KG HR. OF C 10323 . FLFCTRICITY

IS REGUIREL EVEFY OPFKATING MINUTE BY EACH COFY OF PROCESS 2.01
INThA-I VOUSTRY PROCUCTS
EACH ONE CMン GF HPETCH, **
PROEUCES 1.OUOO CHİ CF BBPETCH, HOLUING ®UFFER

```
PROCESS: 2.02, , ANTI REFLECTION COATING DIP AND DRAIN
PRODUCT: ARDIF
PRODUCES: 5C00.00t0 CM2/MINLTE. TAKING 15.000 MINUTES/CYCLE.
OFERATES 1.00 OF THE TIME THE FACTGRY IS OFERATING
 CONPONENT: ARTANK, AR CCATING TANY
 COST: 6r(1OO. $(1976) INSTALLATION: 1000. $(1976)
 SALVAGE VNLUF: 2000. $(1976) AFTER 7.0 YEARS
 GUANITY 2.z1EF+{5 CN2/YEAR AT .0037 &(1575)/CM2
 NUMESF OF 2.02 'MACHINES = 1.OOO, OF WHICH .OGK ARF IDLE
 FACILITIES ARL FRRSONNEL
 1.700E+01 SNOFT. OF A20640, FANUFACTURING SPACE (TYPE A)
 - IS KFGLIRF:' YY EACH COPY OF PHOCFSS 2.0?
 2.5G:OE-41 PNSN*YKS UF U3E72L, CHFMICAL OHERATCR II
 IS RFGUIKE: :Y EACH COFY OF H.KOCESS 2.0.2
 UTILITIES \VO COMNGFITIES
 .660F-\3 GALLGNS OF E13520. ISOPROPYL ALCOH'JL
 IS RFGLIREO EVERY OPFRLYING MINUTE EY FACH COPY OF PROCESS 2.02
 S.0ULEFC.3 K. WR. CF CIO32H. ELECTRICITY
 IS REGUIRED EVERY GPERATING MIGUTE BY FACH COPY OF PROCESS 2.02
 1.3ITF-OE LITERS OF E-ARSOL.'ANTI REFLECTION COATING SOLUTION
 IS REGUIREU EVERY UPEKATING MIHUTE BY LACH COPY OF PROCESS 2.02
INTEA-INDUSTRY FIGOUICTS
 EACH ONF CM' OF FPPETCH, HOLDING PUFFER,
 PQODUCES 1.0NOO CNZ OF AHDIP, *
PRECESS:2.03 , CURE AR CCATING
MKODUCT: AREAKE * *
HFODUCES: SOOC.OOJF CF2/MINLTF. TAKING 15.0NO MINUTES/CYCLE
HERATES 1.00 OF THF TIME THE FACTCRY IS OPERATING
 CONPONENT: &KFCE, BAKE OVEN
 CUST: 2FWOUQ &(197E). INSTALLATICN: 1000. &(1976)
 SALVAGE VLLUF: 20DU. \(197E) AFTEH. 7.O YEARS
 OUANTITY 2.315E+DG CM2/YEAK AT OOO37 $(1975)/CML
 NUNEEF IF 2.03 YACHINES = 1.000, CF WHICH .DEH ARE IDLE
 FACILITIES GNO PERSONNE.L
 4.KU0E+G1 SG. FT. OF A2{G4D, MANUFACTURING SPACF (TYPE A)
 IS REQUIREU BY EACH CCPY QF PRCCESS 2.03
 1.5ORE-01 PMSN*YRS OF B3G72E. CHEMICAL OPERATOK II
 IS REGUIREO RY EACH COPY OF PROCESS 2.03
 UTILIYIES AFD COMMOCITIES
 7.500E-02 K# HR.OF C1032E. ELECTRICITY
 IS REQUIRED EVERY OPERATING NINUTE BY EACH COPY OF PROCESS 2.03
 6.000E-02 CU. FT. OF C1128D, WATER = COCLING
 IS REGUIRES EVERY OPERATING MINUTE BY EACH COPY OF PROCESS 2.03
INTRA-INDUSTRY PRODUCTS
 EACH ONE CM: OF ARDIP, *.
```

PRODUCES I．UOOD CM2 OF ARGAKE，＊
PRÓĆESS： 2.04 －PHOTORESIST DIP AND DRAIN
PRODUCES： $5000.0 O^{\prime} ⿴ 囗$ CMZ̈／MINITE，TAKING 1E•UJO MINUTES／CYCLE
OPERATES 1.00 OF THE TIMF THE－FACTORY IS OPERATING
CONPONENT：PRTANK，＊
CUST：60000．$\$(1976)$ INSTALLATION：＇1000．$\$(1976)$
SALVAGE VALUE： $30000^{-} \$(1976)$ AFTER 7．0 YÉARS
GLANTIY 2． $315 \mathrm{E}+0 \mathrm{G}$ CN2／YEAK AT 003 \＆$\$ 1975$ ）／CM2
NUMBER OF 2.04 MACHINES＝ 1.0 OUO OF WHICHs ．OGH ARE IDLE FACILITIES AND PERSONNEL

2．5ONF－01 PRSN＊YRS OF B3672D，CHE゙MICAL OFERATOR II
IS REQUIREO EY EACH CCPY OF PROCESS． 2.04
1•ROOE＋OL S．．．T．OF A20640，MANLFACTURING SFACE（TYPE A） IS RFGUIRED EY EACH COPY OF，PKOCESS 2.04
UTILITIES AMD COMMODITIES
Q．OOOE－03 KW HR．OF CIO32B，ELECTRICITY
IS REQUIRED EVERY OPERATIGG FINUTE BY EACH COPY OF PROCESS 2.04
3．700F－G3 GAL OF E－AZ111，POSITIVE PHOTO RESIST
IS REQLIRED EVERY CPERFTING MIMUTE BY EACH COPY OF PROCESSS 2.04
－INTRA．－INDUSTRY PKCULCTS
EACH ONE CMZ OF ARBAKE，＊，
PRUNUCES 1．JODO CM2 OF PFDIPの＊＊
PROCESS：2．05 ，CURE PHOTORESIST
PRODUCT：PRBAK ，

7．SCO MINUTIS／CYCLF
OFEKATHS 1.00 OF，THE TIME THE FACTOKY IS OPERATANG
COMPGNENT：PRFCE，BAKE CVEN

QUANTITY 2．315t +0 CM2／YEAK AT ．003？$\$(1975) / C M 2$ ．
AUMSER OF 2.05 MACHINES $=1.000$ ，UF WHICH．OG\＆ARE IDLE
FACILITIFS AND PFRSONNEL
$4.800 F+01$ SO．FT．OF A20640，NAAUFACTUKING SPACE（TYPE A）． IS RFRUIIREC BY EACH CUPY UF PRSCESS $2.6 E$
2． $500 \mathrm{EE}-01$ PRSN＊YRS OF P 3672 C ，CHEMICAL OPERATOK I I
IS REGUIRED．YY EACH COPY OF PKOCESS 2.05
UTILITIES AND COMMCDITIES
． 70 חE－92 KW HR．OF C1032P．FLECTRICITY
IS REGUIRED EVERY OPEKATING MINUTE EY EACH COPY OF PROCFSS 2.05
INTRA－IADUSTRY PRORUCTS
EACH ONE CN：OF PROIF，＊，
PHODLCES 1．U日CO CN2 OF FIRAKE．＊
PRCCESS：2．06 ．UNLOAC CASSETTE FOF PR EXPOSURF
PRODUCT：UILLCAS ，＊
PRODUCES：5000．0000 CM2／MINUTE，TAKING 7.500 MINUTES／CYCLE
OPRRATES 1.00 OF THE TIME THE FACTORY IS OPERATING
COMPONENT：UNLOADER1，＊．
COST： 30000 ．$\$(1976)$ INSTALLATION：1000．$\$(1976)$ SALVAGE VALUF： 2000 ． $9(1976)$ AFTEK 7．0 YEARS．
QUANTITY 2．315E＋09 CN2／YEAR AT $\quad 0039$（1975）／CM2
NUMBER OF 2.06 MACHINES $=1.006$ OF WHICH OGH AKE IDLE

FACILITIES AND PEGSONNEL
4．FGUE＋O1 S＇r．「T．OF A2（IG4D，NANUFACTURING SPACE GYPE
IG RFOUIRLD DY EACH CYPY．LH PPOCESS 2.0 OG

IS RLGUIRE P PY EACH COPY OF PROCFSS 2.06
UTILITIES AHD CUNMC：IITIFS
\＆．OCOE－03 Kd FR．OF C1O32F，ELECTHICITY
IS KFGUIRED EVIRY OPEKATING MINUTE RY EACH COPY OF PROCESS 2.06
INTRA－INDUSTRY PRG！UCTS
EACH ONE CM2 UF PRBAKE，＊
PROOLCES 1.0000 CM2 OF IJNLCAS，＊．
PROCESS：2．017 ，FXPOSE．PHOTORESIST ON SINGLE WFB LENGTHS
PRODUCT：EXPPR
PRODUCES： $5000.00 C$＇CMZ／MINLTE，TAKING 10.000 MINUTFSS／CYCLE
OPERATES 1.00 OF THE TIME．THE FACTORY IS GPERLTING
COMPONFNT：EXPCGFR．＊
CEST：50000．\＄（1976）．INSTALLATION：1000．\＆（1976）
SALVAGE VALUE：3JUL．£（197E．）AFTEF 7．1）YEARS
ZUANTITY 2．315E +09 CM2／YEAK AT ．003き $\$(1975) / C M 2$
NUMPER GF 2.07 ＇AACHINES $=1.000$ ，OC WHICH $0.06{ }^{\circ}$ ARE IDLE
FACILITIES AND PERSUNNEL
$6.500 E+01$ Si．FT．OF A2．OE4D，MANUFACTURING SPACE（TYPE
IS K［GLIREO EY EACH COPY GF PROCESE 2.07
2．5ULE－O1 HFSN：YKS CF B3E72D，CHEMICAL OPERATOR II
IS RFWUIKEF FY EACH COPY OF PROCESS 2.07
UTILITIFS A：SD COMMOCITIF．S
3．400E～C？KJ HR．OF C10328，tLECTRICITY
IS RFGUIFEF FVERY OPEFATING．MINUTF．BY EACH COPY OF PROCFSS 2.07
INTRA－INDUSTRY PKOLUCTE
EACH ONF CN：OF UNLCAS，＊
PROIUCES 1．0000 RM2 OF EXPPR，＊
PRJCESS：2．0B $\therefore$ ，RELOAC CASSETTE
PMUELCT：LÓCAS ，＊
 OPERATES I．GO OF THI TIME THE FACTGKY IS CPERATING

CONPI，NET．T：L ADDRR2，＊
C ST：3H000．\＄（1976）I：STALLATIUN：1000．2（1：76）
SHLVACE VALUF：2000． $\mathcal{E}(1976)$ AFTEK 7．II YEARS
GUANTITY 2． $315!+04$ CH2／YEAK AT 0037 \＆（197ら）／CM2
AUMSER OF ：OOS ：ACHINES $=1 . U G O$ OF WHICH OGOARE IULE
FACILITIES ANO PFKSONNFL
4． 40 OE＋ 01 SB．FT．OF A2064L，＇NANUFACTURING SFACE（TYFE
IS REQUIREL EY EACH CUPY LF PRUCESS 2．UB
5．OONEWU1 FFSN＊YRS OF R367？0．CHEMICAL OPERATOR II
IS REGUIREC PY．EACH COPY OC＇PROCESS 2.08
UTILITIES AND COMMODITIES
8．OODF－03 Kw HR，OF C1032R，［LFCTRICITY
IS RFQUIRF．EVFRY OPERLTING MINUTE BY E．ACH COPY OF PROCESS 2.08 INTRA－INDUSTRY PRCDUCTS

EACH ONE CHZ OF EXPFR．＊，
PRODLCES 1.0000 CN 2 OF LDCAS＊
PROCESS：2．09 ，DIP DEVELCF EXPOSEC WEB
OPERATES 1.00 OF THE TIME THE FACTORY IS OPERATING
COMPONENT: EIPTANK,
CCST: IUNOU. \& (1S76) INSTALLATION: 1000. $\$(1976)$
SALVAGE VALUE: $2000.3(197 \mathrm{~K})$ AFTEK 7.0 YEARS
QUA:ITITY 2.315F. +09 CM2/YEAR AT UD040" $\ddagger(1975) /$ CM2
NUMOER JF 2.09 MACHINES $=1.000$, OF WHICH .O6B ARE IDLE
FACILITIES AND FERSONNEL.
1.500E + O1 SO. FT. OF A 2.0640. MANUFACTURING SPACE (TYPE
IS REGUIREJ RY EACH CUPY CF PROCESS 2.09
2. $000 \mathrm{OE}-01$ PKSA*YKS OF.B3E72D, CHEMICAL OPERATOR II
IS REOUIRED BY EACH COPY OF PROCESS 2:09
UTILITIES $\angle N O$ COMMOUITIFS
4. ODOE-G3 GAL CFE-ZOZA, AZ111 DEVELOPEK
IS REGUIREU EVFRY OPEFATING MINUTE BY EACH COPY OF PROCESS 2.09
1.700F-0'2 K $x^{2}$ HR. OF C1032A. ELECTRICITY
IS REQUIREC EVFRY OPERATIN M NIVUTE EY [ACH COPY OF PROCESS 2.09
INTRA-I: DUSTRY PRUTUCTS
EACH: OMF CM, OF LDCAS, *,
PKCCLCES. 1. 0.000 CN 2 OF DIPDF. *
PROCESS: 2.10 . PHOTORESIST CLEANUP
PRODUCT: PHCUP * *
PRODUCES: EROO.000i CN2/MINUTE, TAKING , $15.0 \| O$ MINUTFS/CYCLE
OFERATES 1.00 OF THE TIME THE FACTOKY IS OFERATING
CONFOLENT: DIPTAAK, ACETONF. TANK
COST: 20000. $4(1976)$ INSTALLATICR: 1000. \$(1976)

QUAVTITY $2.315 E+09$ CH2/YEAK AT 000413 (1975)/CM2
NUMPER OF 2.10 NACHINES = 1.000 , OF WHICH .OGH ARE IDLE
FACILITIES AND PERSONNFL
$1.500 E+01$ SU. FT. OF A2UE4D, NANUFACTURING SPACT (TYPE A)
IS RFQUIRED PY EACH COPY OF PROCESS 2.10
2.0U0 $\dot{E}-01$ PRSA*YRS OF R3672L, CHEMICAL OPERATOR II
IS REGUUIRED GY EAC:H CGPY CF PRDCESS 2.10
UTILITIES ANO COMMOSITIFS
- 2.000E-G3 Kl HR. OF C10x2E. ELECTRICITY
IS REGUIRET EVERY GPERATING MINUTE GY NEACH COPY OF PROCESS 2.10
3.930F-D2 Lris. OF E1032D. ACFTONE
IS RFQUIREC EVERY OPERATING NI.NUTE RY EACH COPY OF .PROCESS 2.10
INTRA-INDUSTKY PRODUCTS
EACH OME CM" OF NIPDF, **
FRODUCES 1.0 isio CN2 OF FhCUP, *
PROCESS: 2.11 - E.TCH AR COATING FOK CONTACTS
PRODUCT: ARETCH * *

IFERATES 1.00 OF THE TIME THE FACTORY IS OPERATING
COMPONENT: LRETK, ETCH TANK
COST: 20000. \& (1976) INSTALLATIOK: 1000. \$(1976)
SALVAGE VALUE: $\quad$ O. $9 .(1976)$ AFTER 7.0 YEARS
QUAATITY $2.315 \mathrm{~L}+09$ CM2/YEAR. AT 004 O \$(1975)/CA.2
NUMEER OF $2.11^{\circ}$ MACHINFS $=1.00 \mathrm{C}$, OF. WHICH -OGR ARE IDLE
NUMEER OF 2.11 NACHINFS $=$
FACILITIES AND FERSONNEL.

1．700E＋01 SQ．FT．OOF A2064D，NANUFACTURING SPACE（TYPE A）
IS KEGUIKED BY EACH COFY OF PKOCESS 2.11
2．000E－G1 PRSN＊YRS CF B3E720，CHEMICAL OPERATOR II
IS REGUIRED EY EACH CCPY GF PROCESS 2.11
UTILITIES AND COMMCTITIES
2．00NF－OJ KNHR．OF CIO32甘，ELECTRICITY
IS REGUIRED FVERY OPERATING MINUTE BY EACH COPY OF PROCESS 2.11
4．210E－07 LPS．UF E13200，HYDROCHLORIC ACID
IS REQUIREE EVERY OPERATING，MINUTE BY EACH COPY OF PROCESS 2.12
$2.000 \varepsilon+02$ CU．FT．OF CIO16B；FUMFS
IS REGUIRED EVFRY OFE，KATIFGMINUTF BY EACH COPY OF PROCESS 2.11
IGTRA－INOUSTRY PRODUCTS
EACH ONE CME OF FHCUP，＊， PRODUCES 1.0000 CM $2^{\circ}$ OF AFET．CH，＊

PROCESS： 2.12
PKODUC－WASH ANO DFY
PRODUCFS：5JOU．6OUG CMA／MINLTE，FTAKING 2．000 NINUTES／CYCLE
OF＇ERATES． 1.00 OF THE TIME THE FACTGKY IS OPFRATING
COMPONFAT：WASHTANK，RUNNING UI H2O
C（IST：20000．$\ddagger(1970)$ INSTALLATIUl：1000．q（1976）
SALVAGE VALUE：O．ذ（1＇97E）AFTEK 7．I YEARS
QUANTITY $2.315 E+0 \circ$ CM2／YEAF AT 0040 \＄（1975）／CM2
－NUMFEK GF 2.12 NACHINES シ 1.000 ，OF WHICH ．OG\＆ARE IULE
FACILITIES AND TFKSONNEL



IS RECUIREU BY EACH．COPY UF PROCESS 2.12
UTILITIFS ANO COMNONITIES
2．00CE－03 KW HR．OF C1032E，ELECTHICITY
IS RFQUIREU．EVERY OPERATIAG MINUTE EY－EACH COPY OT PROCESSS 2：í2
2．00NE－C2，CU．FT．OF C1144D，UATFR－OEIONIZED
IS REGUIRED EVFRY OPFKATII，MIAUTE BY EACH COPY＇OF PROCESS 2.12
INTRA－INDUSTRY PRODUCTS．
EACH ONE CM：OF AKETCH，＊
．PRODUCES 1.0000 CM2 OF IADRY＇CLEANUF IN OI H2O
PROCESS： 2.13 ，GUTPUT BUFFER FOR PROCESS 2
PRODUCT：BiADRY．＊HOLOING BUFFEF
PRODUCES： $5000.00 C \mathrm{O}$ CH2／MINLTE，TAKING＂ 2.000 MINUTFS／CYCLE
OPERATES 1.00 OF THE．TIME THE FACTURY，IS OPERATING
COMP ONENT：CUF2．13，HOLCIING STATION
COST：LOOU．\＆（197E）INSTALLATICN：1000．\＄（1976）
GALVAGE VALUF： 3000 ． 4 （1976）AFTER 7．0 YEARS
QUANTITY 2．3155．+09 CY2／YEAN AT ．0040 \＄（1975）／CME
NUMSER OF 2.13 FACHINES $=1.000$ ，OF WHICH ．OGS ARF IOLF
FACILITIES AND PERSCANEL
1．700F＋01 SG．FT．OF A2064D，MANUFACTURING SPACE（TYPE A）
IS RFQUIRED EY EACH COPY OF PROCESS 2．13
2．00OE－01 PKSN＊YFS CF E3G72亡，CHEMICAL OPERATOH＇II
IS REGLIRED BY EACH COPY OF FROCESS 2.13
UTILITIES AND COMMODITIES
2．000E－03 KV MR．OF C1032B，tLECTRICITY
IS REQUIRED EVERY OPERATING MINUTE EY EACH COPY OF PROCESS 2.13

INTRA－INOUSTKY PRODUCTS
EACH ONE CM2 OF WADRY，CLEANUP IA DI H2O．
PRODUCES I．OODO CM2 OF EWAORY，HOLDING BUFFER
PROCESS： 3.01 ，METAL DEPOSITION，BOTH SIDES
PKODUCT：METWER ．＊
PKOOUCFS：SUUU．000U CM2／MINLTE．TAKING 45.000 MINUTES／CYCLF
OFFRATES 1．OD UF THF TIME THE FACTORY IS OPERATING
COMPONFNT：VACDEF，VACUUA DFFOSITTON
CUST：WODOOU：S（1．976）INSTALLATION： 2000 © $\$(1976)$
SALVAGE VALUF：SOON（1． 11976 AFTER 7．6 YEARS
QUANTITY•2．3151＋O＇，「M2／YEAK AT ．004？8（1975）／CM2
NHMDFK F 3.01 MACHINFS $=1.0100$ OF WHICH－OG：ARF IDLE
FACILITII；$. \operatorname{NNO}, H \mathrm{KEONNF}$
3．ODUF＋G：Siv．FT．UF A2Ut，4，MANUFACTURI＇．G ©PACE．（TYPE．A）
IS R GUIHEO RY FACH COFY If PROCESS 3.01
G．DOOES－OL PKSN＊YES OF R3704i，FLTCTRONICS TECHNICIAN，AUTOMATEO PROCESSES IS RECQLIRED GY EACH CCFY OF PRUCESS 3．11
UTILITIES AA．O COMMODITIES
1．000F－04 LES．OF E1704D，TITANIU：A
IS REGUIRED EVERY GPERATING MINUTE BY EACH COPY OF PROCESS 3.01
S． $2005-03$ LRS．OF E $1056^{\circ}$ C．ALUNINL．M
IS REGUIFED EVFRY OPEKATING MIFUTE EY EACH COPY OF PROCESS 3.01
1．02DE－01 KW HR．OF CIOSTE，ELECTRICITY
IS RFGUIRER EVERY OPERATING MINUTF BY FACH COPY OF PROCFSS 3.01
7．0日Of－n：CU．ST．OF CII：rn，WATFR－COOLING

$4.30 E E-0 S$ TKUY．OZ OF E－FALLAL，PALLADIUN METAL
IS REWUIKEC FVERY OPEKATING NINUTE GY FACH COPY OF PROCFSS 3.01
5．SOOE－05 LES OF E－NICKEL．AICKEL METAL FOR PLATING STRIKE．
IS REGUIRED EVERY OPERATING MINUTE BY EACH COPY OF PROCESS 3.01
INTRA－I I．DUSTRY PROLUCTS
EACH ONE CM：̈ OF EWACRY，HCLTING CUFFFR， PRODUCES 1.0000 CM2 OF METWE』，＊

```
FFOCESS: 3.02 , HOLTING BUTFEK FOR PROCESS 3.Oz
PRODUCT: ERETWFE: HOLDIAG RUFFFK REFGRF FH'STKIP
P&OLUCES: 5'RO0.E00 CN.2/MINLTE, TLKING 15.LU0 MINUTES/CYCLE
GPERATES 1.00 OF THE TIME THE FACTORY IS OHERITING
 CUNPCNENY: SUF3.02, HOLOING TAELL
 CIST: 1rCOU. &(1976) INSTALLATION:
 INSTALLATIUN: 1000.&(177G)
 SLLVAGE VALUE: O. T(197F) AFTEK 7." YEARS
 QUANTITY 2.315F+C9 CN2/YEAK AT .J042 $(1975)/CM2
 NUMFER OF 3.02 MACHINES = 1.00N, OF WHICH .0G% ARE IDLE
 F&CILITIES AND PÉRSONNEL
 9.7UUE+G1 SG. FT. OF A20G4U. MANUFACTURING SPACT (TYPE A),
 IS RFOLIREU EY EACH CGFY UF FROCESS 3.72
 1.0OOE-01 PFSN*YKS CF B3704L, ELECTRONICS TECHNICIAN, AUTOMATED FROCESSES
 IS KEGUIRED BY EACH CCPY CF PRCCESS 3.0,2
 UTILITIFS AND COMMONITIES
 1.70NF-02 KW HR. OF C1032B, ELECTKICIYY
 IS REQUIREO EVERY CPERATIAG MINUTE BY EACH COPY OF PRCCESS 3.02
 INTRA-INDUSTRY PROOUCTS
 EACH ONE CM: OF METMEB***
 - PRODUCES 1.0000 CM2 OF EMETWEB; HOLIING RUFFER BEFORE PR STRIP
```

PROCESS: 3.03 , ACETONE REJECTION TU DEFISE CONTACTT GRID
PROCUCT: GRIQhEE GFJECTICN FASK REMOVAL

UFERATES 1.00 OF THE TILEE TFE FACTORY IS OPERATING
CONPCAEAT: STRTAN, ULTRASONIC STRIPPING

SALVAGE VALUE: 100 औ. $9(1976)$ AFTE'K T.a YEARS

NUMEFR OF 3.03 VACHINES = 1.000 , OF WHICH OGR ARE IDLE
FACILITIES ANC PERSONNEL
 IS RFGLIRLU EY EACH COPY OF PROCESS 3 •OZ.
S.U0NE-01 HFSNAYKS GF S3G72R, CHENICAL CPERATOR II ISREGUIREO GY EACH CCPY OF PRÜCESS 3.03
UTILITIFS AND COMMORITIES

IS REGUIRED EVERY OPERATIFG NINUTE GY EACH COPY OF PROCESS 3.03
2.0UJE +02 CU. FT. OF O103GB. FUMFS

IS REGUIRED EVERY OPEFATIAG MI NUTE RY EACH COPY OF PROCESS 3.003
4.40リF-03 LZS. OF E 10320 , ACFTONE

IS REQUIRFO EVERY GPERATING MINUTE EY FACH, COPY OF. PROCESS 3.03
INTRA-I'DUSTRY. PROCUCTS : $\qquad$
ACH ONE CM: OF PMETWEE, HOLOING PUFFER EEFORE PR STRIP, FKOLLCES 1.OCDO CME CF GRIOWEE, REJECTION MASK KEMOVAL

PROCESS: $3.04^{\circ}$. CONTACT SIMTFFING
PRODUCT: SIATWEB , *

CS 1.00 GF THE TIME. THE FACTORY IS OPERATING
COMPCNEAT: SINTFCE, SINTERING FLRIVACE
CTST: 100000. $9(1976)$ INSTALLATIOI: $1000: 9(1576)$ SALVAGE VALUE: 5000. $9(197 f)$ AFTER 7.0 YEARS
QUANTITY 2.315E + C9. CM2/YEAK AT .0044 \$(1975)/CN2
NUMEE GF 3.04 MACHINES. $=1.000$, OF WHICH .OGS ARE IDLE
FACILITIES ANE PERSONNEL
5.0UNF-0.1 FKSN* YFS CF B'36720. CHEMICAL OPERATOR II

IS RFQUIREO BY EACH, COPY CF PROCESS 3.04
$2.260 \bar{L}+02$ S ? FT. GF A2OE40. MAIUFACTURIVG SPACE (TYFE A) IS FEGUIFEU EY EACH COPY OF PROCESS $3 . .14$
UTILITIES ANO ,CCMMORITIES
4.GO!.E-03 CU. FT. OF C1OFCD, NITROGEN (LIGUIT.)

IS KEGUIREO EVEKY OPERATING NINUTE RY EACH COPY OF PROCESS 3.04
3.300 F 02 K K HR. OF C10322. ELECTRICITY

IS AEGUIRED EVERY OPERATING MINUTE EY EACH CCPY OF PROCESS 3.04
3.000E-02 CU. FT. OF C112 KD, WATFR - COOLING

INTRA-II:DUSTRY PRODUCTS
EACH ONE CMZ CF GRIOWEB, REJECTIUN MASK. REMOVAL; FRODLCES 1.0000 CM2 OF SINTWER,:*

PRQCESS: 3.05 , SILVEH PLATING OPF.CONTACTS
PRODUCT: FLAThEB , PLATEC COATACTS
PRODUCES: 5000.0000 CM2/MINLTF, TAKING 5.000 MINUTFS/CYCLF
OPERATES 1.00 OF THE TIME THE FACTCRY IS OPERATING

COPPONEAI: FLATAN, PLATING TANK
COST: 300U0. \$(1576) INSTALLATION: 1000. \$(1976)
SALVASE VALUE: $3000.9(1976)$ AFTEF 7. 0 YEARS
QUANTIYY 2.315E+0'S CM2/YEAR AT .004G $\$(1975) / C N 2$
NUMUER OF 3.05 MACHIB:ES $=1.0010$, OF WHICH -OEA ARE. IDLE
FACILITIES AND PERSONNEL
Q. NOCF-01 Pr.Siv*YKS CF R3G72I: CHEMICAL OPERATOK. II

IS REGUIRED BY [ACH COFY CF FROCESS 3. RE
9.70 $\mathrm{CF}+01 \mathrm{Si}$. FT. ${ }^{\circ} \mathrm{OF}$. A2C64D, MANUFACTURING SPACE (TYFE A)

IS REGUIFFD FY EACH COPY OF .PROCESS 3.05
UTILITIES ANO COMMGOITIES
4.040E-01 K'HRe OF C1032E, ELECTRICITY

IS RFQUIRED EVFRY OPEFATING MINUTE EY EACH COPY OF PROCESS 3.05
7. 00 OVE-02 CU. FT. GF C2OG4R, GF.WAGE AND FROCFSS WASTE DISPOSAL

IS RF́QUIRFD EVIRY OPERATINCMINUTE BY EACH COPY OF PROCFSS 3.05
2.00UE 022 CU. FT. OF 0101 GB , FUNES

IS REGUIREO EVERY OFEFATING MINUTE BY EACH COPY. OF PROCESS 3.05
3.576F+0.J GFANS OF E15920. SILVER

IS RHGUIFED EVEPY OPERATING NINUTE BY.FACH COPY OF PROCESS 3.05 IMTRA-I ADUSTRY PROUUCTS

EACH ONF CME OF SINTLEE, *,
FROELCES 1.0000 CN2 OF FLATNEB, PLATFC CONTACTS
PFOCFSS: $3: 06$, WASH AND CRY FLATF[, WEE
PROOUCT: NADWEO **
PRUDUCES: 5JOO.OHOO CME/MINUTF TAKING 150000 MINUT/S/CYCLF



SALVAGE VALUE: 2000 . : (197G) AFTEF 7.0 YEAFS

NUMEER JF $3 . D E$ VACHIUES $=1.0 U \mathrm{H}, \mathrm{OF}$ WHICH .06 B ARE IULE
FACILITIES ANE PERSONNEL
2. COCF-UI FKSN*YFS CF B3F72C. CHFMICAL OFERATOK II

IS KFGUIRLD RY EACII COPY OF PROCESS 3. I'G

IS REQUIRED UY EACH CUPY OF PROCESS $3.0 G$
UTILITIFS AND COMMONITIES
1.700C. 02 KH HR. OF C10321:. ELECTRICITY

IS REGUIREG EVERY GPERATING MIJUTE EY EACh COPY OF PKOCESS $3.0 G$
2.00NE-03 CU. FT. OF C1144D. 』ATFR - DEIONIZFD

IS RFQUIRLD EVERY OPERATIMR NINUTF BY EACH COFY OF FROCESS 3.06
INTRA-IADUSTRY PRCLUCTS
EACH ONE CMA OF PLATWER, PLATED CONTACTS,
FRODUCES 1.GGOO CM2 OF $\angle A D W E R$.
PROCESS: 4.01 - UNLOAD FRAMFS FOR LASFR SCRIEING
PRODUCT: WFRUA
PROLACS: $5000.0000 \mathrm{CM} / \mathrm{MINUTE}$. TAKING 15.000 MINUTES/CYCLE
OPERATES 1.00 OF THE TIME THE FACTORY IS OPERATING
COMPGNENT: UNLMAC, GASSETTE UNLOADER
COST: " $2(1000$. $\$(1976)$, INSTALLATIDN: 1000. $\$(1976)$
SALVAGE VALUE: 2000. $9(1776)$ AFTER 7.0 YEARS
QUANTITY 2.315E + 09 CM2/YEAP AT .0047 £(1975)/CN2
NUMPER OF 4.01 MACHINES = 1.000 , ÖF WHICH $06 \%$ ARE IDLE

```
 ACILITIES AND FERSONNEL
 .700E+01 ST..FT. OF A20640. VANUFACTURING SPACE (TYPE A)
 IS REGUIREU SY EACH COPY OF PROCESS 4.01
 4.000E-01 PR'SN*YRS CF B3G720, CHEMICAL UPERATOR I
 IS REGUIRED EY EACH COPY OF PROCESS 4.01
 UTILITIES AND COMMONITIES
 .000E-03 KW HR. OF CIO32E, ELECTRICITY
 IS REGLIRED EVERY OPERATING MJNUTE BY EACH COPY OF PROCESS 4.01
 INTRA-INDUSTRY PRODUCTS
 ACH ONE CMZ OF ,ADLEB, *
 PRODUCES . 1.ONOO CMS OF WEHUN, *
 PROCESS: 4.02 LONGITUDINAL LASER SCRIEF
 FRODUCT: LONLAS, SCRIBE FOR DEMDRITF REMOVAL
 PROOUCES: 5000.0006. CM2/MINUTF: TAKING 15.000 MINUTES/CYCLE
 OPERATES 1.00 OF THE TIME THE FACTORY IS OPERATING
 COMPONENT: LASCRI, FIRST LASEK SCRIPE
 CNST: 100000. $(197F) INSTALLATION: 1000.*(19`76)
 SALVAGE VALUE: 500U. 4(1976) AFTEK 7.6 YEARS
 QUAVTITY 2.315F+09 CM2/YEAF AT .0047 &(1975)/CM2.
 NUMPER GF 4.02 MACHINFS = 1.000, OF WHICH .0GR ARF IDLE
 FACILITIES ANO PERSGNNEL
 5.00NF-01 PKSN*YRS OF BZ704U, FLECTRONICS TECHNICIAN, AUTOMATED PRCCESSES
 IS RFQUIREO FY'EACH COPY UF PROCESS 4.'2
 .70CE+01 SN. FT. OF A2OE4D, MANUFACTURING SPACE (TYPE A)
 IS RFQUIREO BY EACH COFY UF PRCCESS 4.介%
 UTILITIFS ANO (OMMOU IIITS
```



```
 IS RFOLIRED EVERY OPERATING'NINUTE BY [ACH COFY OF FROCFSS 4.02
 1.700F-02 CU. FT. OF'C112%O, WATFR - COOLING
 IS KFGUIREU EVERY OPERATING MINUTF GY EACH COPY OF PROCESS 4.02
INTRA-INDUSTRY PROTUCTS
 EACH ONE CNO OF KEBLN, *,
 PKOOUCES 1.OGOO CM2 OF LONLAS, SCRIBE FOR DENDRITE RFMOVAL
FROCESS: 4.03 , TUFFER FOK TRANSVEZSSF SCRIRE
PRODUCT: BLONLAS * HOLOING STATICN
```



```
ROCUCES: 5000.00חS C.W2/MINUTE, TAKING
OPERATES 1.00 OF THE TIME THE FACTOKY IS OPERATING
 CCKPONENT: BUF4.03. HCLLING TABLE
 COST: 20000.$(1576) INSTALLATIOS: 1000. $(1976)
 SALVAGE VALUE: 0. &(1976) AFTER 7.0 YEARS
 GUANTITY 2.315E+05 CM2/YEAP AT -0047 $(1975)/CM2
 NUMHER OF 4.03 MACHINES = 1.0ON. OF WHICH .06% ARE INLE
 FACILITIES NND PERSONNFL
 9.700E+01 SQ. FT. OF A20G4D, MANUFACTURING SFACE (TYPE A)
 IS RFQUIFEU BY EACH COPY OF PROCESS 4.03
 1.000E-01 PRSN*YRS OF S3704r. ELECTRONITS TECHNICIAN, AUTOMATEO PROCESSES
 IS REGUIRED BY EACH COPY UF PRUCESS 4.03
UTILITIES AND COMMODITIES
 1.700E-02 KW HR. OF C1032B, ELECTKICITY
 IS REGUIKED EVERY OPERATING MINUTE BY FACH CCPY OF PROCESS 4.03
INTRA-INDUSTRY PRODUCTS
 ACH ONE CME OF LONLAS, SCRIEE FOR DENDRITE REMOVAL,
 PRODLCES 1.0000 CN2 OF FLONLAS, HOLOING STATION
```

```
PROCESS: 4.04
. TRANSVERSE LASER SCRIBE OF cELLS
PROLUCT: TRALAS , WEH CELLS ARE SCRIRLE[INTO CELL LENGTHS
PRODUCES: 5000.000S CME/NINUTE, TAKING 15.000 MINUTES/CYCLE
OPERATES 1.00 OF THE TIME THE FACTOFY IS OPERATING
COMPONENT: LASCRII,.TABLF ANO LASER
COST: - &5000. q(197G) INSTALLATION:. 1000. $(1976)
SCLVAGE VALUE: 2000. i(1076) AFTEK 7.C. YEARS
 QUANIITY 2%315F'09 CM2/YEAR AT -004% &(197b)/CN2
 NUMEFR OF 4.04 IAACHINEE = 1.000% OF WHICH .OG&'ARF IDLE
 FACILITIES`ANG PERSCNNEL
 G.7日OE+(11 S',FFT. OF AOOOE4D, MANUFACTURING SPACE (TYPE A)
 IS REQUIREU BY EAGH COPY OF PRICESS 4.04
 5.00OT-01 PRSA\YKS UF B3704E. ELLCTRGNICS TECHNICIAN. AUTOMATED PROCESSES
 IS REWLIRED PY EACH COFY OF PROCFSS 4.O4
 UTILITIES AND COMMOLITIES
 3.200F-02 K* HR. OF C1032R, ELECTRICITY
 IS REGUIREO EVERY GPERATING MINUTE BY [ACH COPY OF PROCESS 4.04
 2.000E-02 CU. FT. CF C1128D, NATER - COOLING
 IS REGUIRLIN EVERY OPERATING MINUTE'EY FACH COPY OF PROCESS 4.04
 INTRA-INDUSTRY PRODUCTS
 EACH ONE CMZ OF ELOALAS, HOLOING STATION,
 PRONUCES 1.0000 CM2 OF TKALAS, WEE: CELLIS ARE SCRIBLED INTO CELLL LENGTHS:
 PROCESS: 4.05 - ERFAK OFF DENDKITES AND SEPARATE CELLS
 PRODUCT: nEECELL , CELLS
 FRODUCES: 5%OG.OOGO CN2/NINLTE, TAKING 15.CgO MINUTES/CYCLF
 OPFRATFS 1.00 CF :THE TIME THE FACTGRY:IS OPERATING
 COMPONEAT: EREAKMAC,*
 CCST: . x0000. ? (197E)
 SALVAGE VALUE: 3UO'(Q. &(İG7G) AFTEK 7.0 YEAKS
 QUANTITY 2.315E+09 CH2/YEAF AT .004% $(1975)/CNE
 NUMEER OF 4.05 VACHINES = 1.000, OT WHICH .0G% ARE IDLE
 FACILITIES ANC PERSCNNEL
 9.700E+01 S': FT. OF A2064D, \ANUFACTURING SPACEE (TYPE A)
 IS RFGUIFED EY EACH CCFY OR PROCESS 4.05
 5.00FF=01 PRSIN*YRS CF E3704L. ELECTRONICS TECHRIICIAN* AUTOMATED PROCESSES
 IS REGUIRED EY EACH COPY CF PROCESS 4.05
 UTILITIES ANO CUHMOLITIES
 O.OOOE-03 Kn HR. OF C1032Q. ELECTRTCITY
 IS KFGUIRET EVEKY DFERATIAG MINUTE EY EACH COPY OF PROCESS 4.05
 1I.TRA-INOUSTRY FRODUCTS
 EACH ONE CMZ OF TRALAS, WER CELLS ARE SRRIFLED INTO CELL LENGTHS,
 PRODUCES 1.000n CM2 OF WEECFLL, CELLS
PRUCESS: 4.0S , CELLS LOADED IA CASSETTES, TESTED AND STORED
PROCUCT:'TESCEL , TEST AND SORT
PRCDUCES: 500U.00OU CM2/MINUTE, TAKING 12.FOG.MINUTFS/CYCLF
OFFRATES 1.0D GF THE TIME THE FACTORY IS OPERATING
 COMPONEAT: TESTAP
 COST: 30000. {(1976) INSTALLATIUN: 1000. 5(1976)
 SALVAGE VALUE: 3000. © (1976) AFTEK 7.0 YEARS
 QUANTITY 2.315E+09 CM2/YEAR AT . O049 $(1975)/CN2
 NUMQEP OF 4.06 MACHINES = 1.000. OF WHICH :0G! ARE IDLE
 FACILITIES AND PERSONNEL
```

```
 6.500E+01 SG. FT. OF A2064D. MANLFACTURING SPACE (TYPE A)
 IS KEGUIREO PY EACH CCJY OF PROCESS 4.0G
 1.00OE+0! PFSN*Y&S CF B37U4O. ELECTRONICS TECHNICIAN, AUTOMATED PROCESSES
 IS fEGUIRED DY FACH COFY OF PROCESS 4.06
 UTILITIES AND COMMODITICS
 1.70DEEG2 Kn' HR OF C1032E; ELECTRICITY*
 1. IS REGUIREO EVERYY OPERATING MINUTE BY EACH COPY OF PROCESS 4.06
 INTRA-IN:DUSTRY PRODUCTS
 EACH ONE CME OF VEBCELL, CELLS,
 FKODLCES 1.0000 CM2 OF TESCEL. TEST AND TORT
 PROCESS: S.01. , INPUT BUFFER PROCESS 5
 PRODUCT: BTESCEL * HOLDIAG STATICN
 PFODUCFS: 5000.0000 CMN/MINLTE, TAKING 2.OOO MINUTFS/CYCLE
 OPERATES 1.00 CF THE TIMF THE FACTORY IS OPERATING
 COMPONFNT: GUF5.01, TABLF FOK HOLDING' CASSFTTFS
 GGST: 1000%. $(1976) INSTALLATIGA: 1000.1(1976)
 . SALVAGE VALUE: %(1976) (0. (197f) AFTEG 7.l YEARS
```



```
 NUMPFR OF 5.01 MACHINES = 1.000. OF WHICH .0GQ ARE IDLE
 FACILITIES AND PERS!ONNEL
 1.200E+01 SG. FT. OF A20640. MANUFACTURING SPACE (TYPE A)
 IS REGUIRE'S PY EACH CGPY OF PROCESS 5.01
 1.0OUE-U1 PRSN*YKS GF B3736i.g MAINTENANCE MFCHANIC II
 IS REGUIRED QY [ACH CCPY UF PROCESS 5..ll
 UIILITIES AND COMMONITIES
 1.70DF-i2 KW HR. OF C1032E, ELECTHICITY
 IS REGUIRED EVLRY OPERATING MINUTE BY EACH COPY OF PROCESS 5.0I
 INTRA-I NOUSTRY PKOOUCTS
 EACH ONE CMS OF TESCFL, TEST AND SORT,
 PROCUCES 1.OnOO CN2 <F BTESCEL, HCLOING STATION
PRCCESS: 5.02 & AL FOIL INTFRCONNECT ATTACHED:TO CELL TOPS
PFODUCT: TOPBON : TUP GCNDEU CELIS
FROZUCES: 5\OmegaOT.000N CMF/NINLTE. TAKING 10.DOD MINUTES/CYCLE
FEERATES I.OO CF THE TIME THE FACTORY IS OFERATING
 CONPONENT: IVTMAC1, ULTRASOIIIC SONDER
 CSST: 110000. $(197E) INSTALLATICN: 1000. $(1976)
 SLLVAGE JALUE: SOOOQ &(1976) AFTER 7.R YEARS
 QUA\TITY 2:215E+09 CM2/YEAK AT .0050.$(1975)/CH2
 NUNEER UF 5.02 FACFI'NES = 1.0UU, OF WHICH .08g ARE IOLE
 FACILITIES AND PERSGVNEL
 4.30DE+ग1 S.&FT. OF A2064D, MANUFACTURING SFACE (TYPE A)
 I3 RERUIFEJ EY EACh CCPY OF PROCESS 5.02
 9.0OOF-D1 FFSIN*YFS CF E3736L., MAINTENANCF MECHANIC I
 IS REGUIRED EY EACH COPY OF PROCESS 5.02
 UTILITIFS AND COMMODITIES
 I.700E-02 K'N HR. OF C1032B, ELECTRICITY
 IS REQUIREC EVERY OPERATING MINUTE BY EACH COPY OF PROCESS 5.02
 1.180F-D3 DOLLARS OF E1104D,' ALLMINUH: RIEBON
 IS REQUIREE EVERY OFERATING MINUTE BY EACH COPY OF PROCESS'5.02
 INTKA-INDUSTRY PRODUCTS
 EACH ONE CM2 OF ETESCEL, HOLOING STATION,
 PROOUCES 1.0000 GM2 OF TOPBON, TOP EONDED CELLLS
```

```
HROCESS: E.03
 - CELLS PLACED ON GLASS SUPE&STRATE AND COATED WITH R
PRODUCT: GLUTCP -•
PRODUCFS: 5000.000U CM2/MINUTF, TAKING 10.000 MINUTES/CYCLE
OPERATES 1.00 OF THE TIME THE FACTORY IS OPERATING
 COMPONFNT: CELFMA, KOTARY CFLL PISSITICNER
 COST: S0000.$$(1976) INSTALLATION: 1000. $(1976)
 SALVAGE VALUE:" :' 2000. *(1976) 'AFTER 7.0 YEA'RS
 QUANTITY 2.315E+09 CM2/YEAN AT ?.0054 $(1975)/CM2
 NUMLER OF 5.03 YACHINES = 1.000, OF WHICH .OGR ARE IDLE
 FACILITIES ANL PERSONNFL
 G.50DL+01' SG. FT. OF A2OGI4D, MANLFACTURING SPACI TTYPE
 IS RtGUIREU BY EACH COPY OF FROCFSS 5.0n3
 5.000F-01 PRSIN*YKS OF B3736[: MAINTENANCE* MECHANIC II
 IS RFQUIRED EY EACH 'COFY OF PROCESS 5.03
 UTILITIES AND COMMUSITIES
 1.700F-02 K& HR. OF C1032R. FLECTRICITY
 IS RFGLIRED EVERY OPEFATING MINUTE RY FACH COFY OF PROCESS 5.03
 1.500E-32 L'ES. CF E1SE2C%'RTV 10%%
 'IS KEGUIRFO EVFRY OPERATING NINUTE BY EACH COPY OF PROCESS 5.03
 5.600E+OD FT2 OF E-TGLAS, TCP GLASS OF NODULE
 IS REGUIRED EVFRY OPERATIGG NIIVUTE EY EACH COPY OF PROCESS 5.03
 INTRA-IGOUSTRY PROTUCTS
 EACH ONE CM, OF TOPEON, TGP EONDED CELLS,
 FRODUCES 1.0000 CM2 OF CLUTOF.*
PROCESS: 5.04 - CELL/SUPERSTRATE AUHESIVE CURE
PRODUCT: CURTCP - PAPTIAL PANEL
PFODUCFS: 5000.0000 CMN/MINUTE, TAKING 10.OCO MINUTES/CYCLE
OPERATES 1.00 OF THE TIME THE FACTCRY IS OPERATING
 COMPONENT: GUF5.04, CLRIIIG FUFFER AREA
 COST: 2000U. $(1976) INSTALLATION: 1000. S(1976)
 SALVAGE VALUE: 1000. $(1974) AFTER 7.U YEARS
 GUANTITY?.315F+!99 CM2/YEAF AT .0054 $(1975)/CM?
 NUMEER OF S.O4 IAACHINES = 1.OCG, OF WHICH OQS: ARE IDLE
 FACILITIES AND HERSONNEL
 6.50NF+01 S:-FT. OF A?nG40, MA:NUFACTURING SFACE (TYPE
 IS REGUIREU BY EACH CCPY LF PROCESS 5.1/4
 1.000E-01 PRSN*YRS OF BZ736[% MAINTENANCF. MECHANIC II
 IS REGUIRED EY EACH CCFY GF PROCESS 5.C4
 UTILITIES AND CONMODITIES
 1.700E-02 Kr: HR. OF C1032S* ELECTRICITY
 IS REQUIREO EVERY OPERATINF, NIINUTE EY FACH COPY OF PRUCFSS 5.04
 INTRA-INCUSTRY PRODUCTS
 EACH ONE CM2 OF GLUTOP, ***
 PRODUCES 1.GOOO CNS, OF CURTOP, PARTIFL 'FANE'L
PGOCESS:5.05 , INTERCONNECT, SECOND BONDING AND TEST
PPGDUCT: BACBON , INTER BONDED CLLL MODULE
PRODUCFS: 5000.0000 CMट゙/MSNUTE, TAKING 12.000 MINUTES/CYCLE
OFERATES 1.00 OF THE TIME THE FACTORY IIS OFERATING
 COMPONENT: INTMAC2, PROGRAMMED STEPPING ULTRASONIC BONDE
 COST: 70000. $(1976) INSTALLATION: 10DO. $(1976)
 SALVAGE VALUE: 2000. $(1976) AFTEF 7. Y YEARS
GUANTITY 2:315E+09 CM2/YEAR AT -0054 $(1975)/CM2
NUMEER OF 5.05 NACHINES = 1.000, OF'WHICH .06% ARF IDLE
```

8.600E +01 S\% F FT. OF A2064D, NANUFACTURING SPACE (TYPE A)

IS REGUIRED BY EACH COPY CF PROCESS S. 55
4.000E-01 PPSN*YRS OF BZ736L, MAINTENANCF MECHANIC II

IS REQUIRED BY EACH CCPY CF PROCESS 5.G5
UTILITIES AND COMMODITIES
1.700E-02 KW HR. OF C1032B, ELECTRICITY

IS REQUIRED EVEFY DPERATING MINUTE BY EACH COPY OF PROCESS 5.05
INTRA-I NDUSTRY PRODUCTS
EACH ONE CMA DF CURTOF, PAKTIAL PANEL.
PRGDUCES 1.UJUC CNZ OF GACBON, INTER EONDED CELL MODULE

```
PROCESS: 5.06 . APHLY RTV TO CELL BACKS
PRODUCT: GLUBAC , PARTIAL MCUULE
PRODUCES: 5CO0.0000 C"2/MINUTE, TAKING 12.IO0 MINUTES/CYCLE
OPERATES 1.00 DF THE TIMF THE FACTOKY IS OPERATING
CONPONENT: COATER1, RTV.CCATEK
C厅ST: - 30000 . \(\$(1976)\) INSTALLATION: 1000. \(\subseteq(1976)\)
SALVAGE VALUE: 2000. © (1976) AFTEF 7.0 YEARS
QUANTITY \(2.315 E+09\) CM2/YEAF AT .0055 \(\$(1975) / C N 2\)
NUMBER OF 5.06 MACHINFS \(=1.000\), OF WHICH -DGR ARF ICLE
FACILITIES AND PERSONNEL
```







```
\&, ac.ar-az K. HK. OF Clo3nB. FLECTRICITY
IS REGLIEEN FVERY OPERATIAG MINUTE PY FACI COPY OF PROCESS 5.06
1.5UJE-02 \(\mathrm{L}=\mathrm{S}\) - OF E 1560 D , RTV 615 (SILICONE)
IS REGLIRE: EVFRY GPFRATING MINUTE EY EACH COPY OF PROCESS 5.06
EACH ONE CM: OF BACBON, INTEK EONDED CELL MOCULE,
FKODUCES 1.0r.00 CM2 OF GLURAC, PARTIAL MOHULE
PRUCESS: 5.07 - ATTACF FIGERH(JARO FACK TO CELL MCVUEE
FRRUOUCT: UACON - PIIFNOLIC HACK, CUMFLETE MIDULE
PRODUCES: \(5000.000 \cup\) CM2/NINUTK, TFKING 12.000 NINUTFS/CYCLF
OPERATES 1.00 CF THE TIME THE FACTGEY IS OFERATING
CONPONENT: RACTAC. BACK POSITIONER
```



```
SiLVAGE VALUE: - 1000. 1 (197F) AFTEF 7.0 YEARS
```



```
'LUEER OF 5.07 NACHJNFS = 1.000 , OF WHICH OK: ARE IDLE
F:CILITIES AND PEKSCNAEL
E.EOQE + O1 SQ: FT. OF A20640, NANUFACTURING SPACE (TYPF A)
I: HECLIFLD BY EACH COPY UF PHOCESS 5.C. 7
\(\because \therefore \because: \therefore-\cap 1\) FISSN*YRS GF B3672U, CHENICAL OFERATOR II
I: : : SUIFÉU BY EACH COPY GF PRDCESS 5.017
UTILITIES* 2 MD COMMODITIES
2.400E-02 Kk HR - OF C1032.E. ELECTEICITY
IS REQUIFED EVERY CPERATING MINUTE BY EACH COPY OF PROCESS 5.07
5.600E +00 FT2 OF E-PHENEO, PHFNOLIC ROARO FOR RACK CF MODULE
IS REQUIRED EVERY CPERATINE MINUTE BY EACH COPY OF PROCESS 5.D7
INIRA-I NDUSTRY PRODUCTS
```

EACF CNE CM2 OF GLUBAC，PARTIAL FODULE，
PRODUCES 1.0 ©OO CN2 OF PACON，PHFNOLIC EACK，COMPLETE MOUULE
PROCESS：5．CH，CURE AND TEST BUFFER
PRODUCT：FANTES FINAL TEST CF MODULE AND SCALE FROM CM2 TO PANELS
PRODUCES： 2510 PAIELS／MINUTE，TAKING 3.000 MINUTES／CYCLE
OPERATES 1.00 OF THE TIME THE FACTORY IS GPERATING
COMPONENT：TESTORF．TESTING ANO CURING APPARATUS
CJST： $30600 . \$(1.976)$ INSTALLATIOM： $1000 . \$(1976)$
SALVAGE VALUL：10U0．$(197(\mathrm{~B})$ AFTER 7． 1 YEARS
ZUANTITY゙，1．157E＋05 PANFLS／YEAR AT 11．8．1202 \＄（．1975）／PANELS．
NUMBFR OF E．08 $A A C H I N E S=1.060$ OF WHICH ．OGK ARE IDLE
FACILITIES AND PERSONNEL
B． $6 U 1 J E+01$ SO．FT．OF A20G40．NANUFACTURII．G SPACF（TYPE A）
IS KEGUIRED PY EACH CORY OF PROCESS 5．e日

I．KiguIkLD GY EACH Ci．PY OF PROCESS 5．08
UTILITI＇

．IS REQUIREE EVFRY．GPERATIGG MINUTE EY EACH COPY OF FROCESS 5．0e
INTRA－I VOUSTKY PKORI，CTS
EACH UVE CME UF EACOY，PHENI：LIC BACK，CCAPLETF MODULE， PROPUCES－OODO PANELS UF PANTFS FINAL TEST OF MODULE AND SCALE FROM CM2 TO PANELS

HFOCESS：5．03＊YItLD JUMAY
PRODUCT：GOODPAN G GOOD PANELS

OPERATES 1．00 GF THE TIME THE FACTORY IS UPERATING
CONPONENT：YIFLDER，ARTIFICE FOR SETTIN＇YIELD
COST：
SALVAGE VALUE：$\quad$（．$\ddagger(197 t$ ）AFTER 10.1 YEARS
QUANTITY 1．042F＋05 PANELS／YEAR AT $131.2446 \$(1975) / P A N E L S$
NLMBER CF 5.09 MACHJVES $=1.000$ ．UF WHICH $\because O G R$ ARE IOLE
INTKA－IMDUSTRY FKOCUCTS
EACH GNE PGILELS OF FANTES，FINAL TTST OF NOULLF AND SCALF FRGM CM2 TO PANELS， PRODLCES ．OOOD PANELS ：$F$ GUODPAN GUOD FANELS

PPOCFSS：5． 10 ，CRATINS AND．SHIPPING
PHJ円UCT：CPATEMOR，CRATED PANELS 1 O／CRATE

OPERATES 1.00 GF THE TIME THE FACTORY IS OPERITINC
CONPONEMT：PACKIH，CFATIMG AND SHIPFING APPAFATUS
CUST：20000．$\ddagger(197 \in)$ INSTALLATIO1：： 1000 ．$\$(1976)$
SALVAGE VALUE： $0.2(1976)$ AFTEH 7．V YEARS
QUANTITY 1． $042 \mathrm{E}+\mathrm{C} 4$ CRATES／YEAR AT 1343.4087 §（1575）／CRATES

FACILITIES ATD PERSONNEL
1． $1005+0 \hat{2}$ SE．FT．OF A206AD，MANUFACTURI？G SFACE（TYPE A）
IS REGUIRED EY EACH．COPY OF PROCESS 5.10
1．00CE＋ 00 PRSNAYRS CF B36560，PACKAGER MACHINE
IS REGUIRED PY EACH COPY OF PROCESS 5.10
UTILITIES AND COMMODITIES
3．000E +00 CU．FT．OF EIIROD．CRATES WOCLEN
IS REGUIRIU EVFRY OPERATING MIFUTE BY FACH COPY OF PROCFSS 5.10
3．400E－On KW HE．OF CIO32H．FLECTKICITY

IS RFGUIRFD EVERY operating minute ay each cupy of process 5.10 INTRA-INDUSTRY PRODUCTS

EACH. ONE PANLLS OF GOODPAN. GOOD PANELS.
PRODLCES' . 1000 CRATFE OF CRATEMOD. CRATED PANELE. $10 / C R A T E$

The analysis shows that using this process and the conceptual factory a 1986 selling price (in 1975 ) of $\$ 0.56$ is obtained. This includes the cost of the silicon web at $\$ 0.17 /$ watt ( $1975 \$$ ).

The pages headed by "Current Technology" are a print. out of the various sub-processes showing the commodities and other direct costs by that process. The total direct requirements are shown in order of descending costs. This again gives an idea of the cost drivers in the system.

Figure 39 shows a bar chart of the costs involved in the process. The processes and materials which have a significant effect on the cost are the web itself and the encapsulating materials. Replacement of Ag with Cu would save almost $\$ 0.01 /$ watt. This chart also shows that the design and building of the capital equipment used in processing must be carefully considered. This is shown in Tabular form in Table 35. This data shows the equipment cost for a 25 MW processing line would be about $5.6 \times 10^{6}$ (1975\$) occupying over $8800 \mathrm{ft}^{2}$ of space. Thirty production people would be required. The most expensive commodity is the incoming silicon web which is about $70 \%$ of the total, while the glass and backing board are $16 \%$ of the total. These three commodities then account for $86 \%$ of the total materials cost.

### 6.3 Pilot Line

The input data used in 6.2 were revised and recalculated to determine the cost of the solar arrays produced in a conceptual pilot line. The following assumptions were made:

- $2 \mathrm{MW} / \mathrm{yr}$ productions $-2 \times 10^{4} \mathrm{M}^{2} / \mathrm{yr}$ for $10 \%$ module
- Capital costs = capital costs of a 25 MW module $+20 \%$
- Labor $=\frac{1}{2}$ of a 25 MW module


Fig. 39 Breakdown of Array Costs (total 1986\$ for 25 MW and 1975\$/watt)

## TOTAL PROCESS SEQUENCE - COST FACTORS - 25 MW/YR



- Materials and utilities $=\frac{2}{25}$ of a 25 MW module
- Operation in 1983
- Floor space $=$ same as that of a 25 MW module.

The IPEG results for this is shown in Table 36 . The selling price would be about $\$ 1.40 /$ peak watt plus the cost of silicon.

### 6.4 Conclusions

The cost analyses shown in the first three sections indicate that dendritic web silicon, processed according to the manufacturing sequence described earlier can meet the 1986 JPL goals.

The estimates used for the Format A's are generally conservative but it is possible that many mistakes still exist; however as seen in Figure 35 gross errors in estimating many of the material and labor . costs would not appreciably change the overall cost. The main area that must be carefully reexamined is the cost of the capital equipment. Any on-going program should study the design of such equipment so that the cost estimates given in this section can be verified.


## 7. CONCLUSIONS

- 

Based on the work thus far on this contract we conclude:
(1) Reagent grade ${ }^{\circ} \mathrm{POCl}_{3}{ }^{`}$ may 'be used as a substitute for semiconductor grade $\mathrm{POCl}_{3}$.
(2) A CVD oxide, boron doped or undoped, is a suitable. diffusion source for boron or a diffusion mask.
(3) An operational BSF field can be obtained using a boron back-diffused material.
(4) A precursor sodution containing $\mathrm{TiO}_{2}$ and $\mathrm{SiU}_{2}$ in alconod can be used as an effective $A R$ coating.
(5). These precursor solutions can be applied to the dendritic web by dip coating and heat treating.
(6) Electroplated. Ag is a cost-effective substitute for evaporated Ag as the conductive metal in a solar cell contact.
$\because \quad(7)$ Electroplated Cu can ${ }^{\text {b }}$ be used to replace $\mathrm{Ag} ;$ although. long-term stability should be inviestigated.
(8) Laser scribing from the back is a feasible, costeffective technique for cell separation.
(9) "Ultrasonic welding techniques are feasible for intexconnecting cells.
(10) The process sequence we selected (ARRAY process) is suitable for fabricating dendritic web.silicon into solar cells.
(11) Front junction depths of $0.4 \mu \mathrm{~m}$ or deeper are not affected by sintering in $\mathrm{H}_{2}$ at $425^{\circ} \mathrm{C}$ for 15 min , regardless of the type of silicon base material.
(12) Dendritic web silicon, having the proper material icharäcteristics, can be processed into solar cells equal to cells produced on Czochralski material.
(13) Dendritic web silicon can be processed to-nearly meet the 1986 JPL goals of $\$ 0.50 /$ watt peak ( 1975 \$).

## 8. RECOMMENDATIONS

## We recommend that:

- An optimum process sequence be selected that is specific to the requirements of web.
- A more complete process sequence verification study be carried out.
- A continuing economic analysis be carried out to assure that the 1986 price goals are met.
- Ion implantation be investigated as a frontjunction and/or a back junction formation technique. This technique should be tested in conjunction with $\mathrm{POCl}_{3}$ front junction diffusion and AI BSF back junction.
- Al BSF back junction be studied.
- The long-term reliability of a total Cu (conțact plus interconnect) system be determined.
- Proper encapsulation materials be further studied to reduce the module cost.
d Thermal analysis be performed and module designs obtained that have lower thermal impedances (junction to ambient)


## 9. NEW TECHNOLOGY

The following new technology was developed during this period:
(1) Use of eleçtroplated copper as a contact material.
(2) Separation of solar cells from matrix using laser scribing.
(3) Ultrasonic welded connections between Al and Cu foils tọ elecțroplated Ag or electroplated Cu layers.
(4). Definition of ar suitable-process sequence (ARRAY process).
10. REFERENCES

1. R. H. Hopkins et al, Eighth Quarterly Report on Zontract JPL 954331, October 1977.
2. R. H. Hopkins et al, Phase II Summary Report on Contract JPL 954331, July 1978.
3. H. J. Hove1, Solar Cells; Semiconductors and Semimetals, VoI. 11, Edited by R. K. Willardson and A. C. Beer, Academic Press, New York, 1975.
4. E. T. Fitzgibbons, K. J. Sladek, and W. H. Hartwig, J. Electrochem. soc., 119, 735 (1972).
5. K. L. Hardee and A. J. Bard, ibid., 122, 739 (1975).
6. M. Yokozawa, H. Iwasa, and I Teramoto, Jpn, J. App1. Phys. I, 96 (1968).
7. H. J. Hovel, J. Electrochem. Soc., 125, 983 (1978).
8. T. N. Krylova and G. O. Bagdyk'yants, Opt. Spectry (USSR) (Eng. Trans1.) 9, 339 (1960).

## 

Distribution List F5月 $^{4}$ ？－Automated Array Assembly Task

Acolph Meller Co．
Attin：R．R．Monchamp
P．O．Box 6001
Providence，RI 02940
Aerospace Corporation
Attn：H．J．Killan
P．O．Box 92957
Los Angeles，CA 90009 ．
Aerospace Corporation
Attn：Dr．Stanley L．Leonard P．O．Box 92957
Los Angeles，CA 90009
Aerospace Corporation
Attn：Mr．Howard Weiner
Building A2 M／S 2037
P．O．Box 92957
Los Angeles，CA 90009
Alcoa
Attn：Mr．Gregory Barthold 1200 Ring Building Washington，DC 20036 ：

Amp Incorporated
Attn：Edward J．Whiteman Mail Stop 39－11
P．O．Box 3608 ，
Harrisburg，PA 17105
Arco Solar，Inc．
Attn：J．W．Yerkes 20554 Plummer Street ＇Chatsworth，CA 91311

Arizzona State University College｀of Engineering Science Attn：Dr．Charles E．Backus Tempe，AZ 85281

Arthur D．Little，Inc．
Attn：Dr．David Almgren
Room 20－539
Acorn Park
Cambridge，MA 02140

| No．of | No．of |
| :--- | :--- |
| copies | copies |

Eattelle Memorial Insitute
Columbus Laboratory

Attn：Dr．Donald C．Carmichael

505 King Ave．

Columbus，OH 43201

Bernd Ross Associates
Attn：Bernd Ross
2154 Blackmore Court
San Diego，CA 92109
The BDM Corporation
Attn：Mr．J．Scott Hauger
7915 Jones Branch Drive
McLean，VA 22101
Bechtel National，Inc：
Attn：Walter Stolte
P．O．Box 3965
San Francisco，CA 94119
The Boeing Company
Attn：Elizabeth Zimmerman Mail Stop 88－05
P．O．Box 3999
Seattle，WA 98124
The Boeing Company
Attn：Donald K．Zimmerman Mail Stop 8K66
p．O．Box 3707
Seattle，WA 98124
Burt Hill Kosar Rittelmann Assoc． 1
Attn：Richard Rittelmann
400 Morgan Center
Butler，PA 16001
Carnegie－Mellon University
Dept．of Electrical Engineering
Attn：Dr．Art Milnes
Schenley Park
Pittsburgh，PA 15213
Celestial Synergetics 1
Attn：Dr．Bryan J．Zwan Suite 814
2 Houston Center
Houston，TX 77002


Ceneral Electric Company
＇alley Forge Space Center
titn：Neal F．Shepard Room 7524，CCF \＃7
－O．Box 86 б́
hiladelphia，PA 19101
rumman Energy Systems，Inc． dvanced Concepts
ttn：Mr．Edward Diamond
175 Veterans Memorial Highway
ponkonkoma，NY 11779
bneywell，Inc．
prporate Technology Center
ttn：J．D．Heaps
0701 Lyndale Avenue South iloomington，NM 55420

EM Corporation
．ttn：Dr．G．H．Schwuttke last Fishkill，Rt． 52
opewell Junction，NY 12533
BM Federal Systems Division
．tn：Donald F．Erat
8100 Frederick Pike
aithersburg，MD 20760
CT，Inc
ttn：L．P．Kelley
330 Industrial Drive helby，MI 49455
nstitute of Energy Conversion niversity of Delaware
ttn：A．Barnett
ne Pike Creek Center
ilmington，DE 19808
nternational Rectifier
emiconductor Division
＇ttn：M．F．Gift
33 Kansas Street
1 Segundo，CA 90245
et Propulsion Laboratory
ttn：（Contract Negotiator）
M／S 506－401
300 Oak Grove Drive
usadera，CA 91103

```
iv. of
 \a. 0:
copies copies
```

1 Jet Propulsion Laboratory 50
LSA Project Data Center
Attn：Mrs．Loretta Steward M／S 506－451
4800 Oak Grove Drive
Pasadena，CA． 91103
Jet Propulsion Laboratory 4
Technical Information Division＋Repro
Attn：G．A．Mitchell，111－141
4800 Oak Grove Drive
Pasadena，CA 91103
Jet Propulsion Laboratory 1
Technology Utilization
Attn：L．P Speck
M／S 180－302
4800 Oak Grove Drive
Pasadena，CA 91103
Kayex Corporation 1
Hamco Division
Attn：R．L．Lane
1000 Millstead Way
Rochester，NY 14624
Kinetic Coatings，Inc．
Attn：Dr．William Ji King
P．O．Box 416
South Bedford Street
Burlington，MA 01803
Lockheed Missiles \＆Space Co
Attn：Paul Dillard Dept．62－25，Bldg． 151
P．O．Box 504
Sunnyvale，CA 94088
Lockheed Missiles \＆Space co
Attn：Dan R．Lott Dept．62－25，Bldg． 151
P．O．Box 504
Sunnyvale，CA 94088
Lockheed Missiles \＆Space Co．
Attn：L．G．Chidister Dept．62－25，Bldg． $151^{\circ}$
P．O．Box 504
Sunnyvale，CA ． 94088


|  | RO．O： copies |  | $\begin{aligned} & \text { Yo. } \\ & \text { copi } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Los Alamos Scientific Laboratory | 1 | MB Associates |  |
| Attr：S．W．Moore |  | Attn：Mr．Robert Mainhardt |  |
| Group Q－11，Mail Stop 571 |  | Sollinger Canyon Road |  |
| Los Alamos，NM 87545 |  | San Ramon，CA 94583 |  |
| Massachusetts Institute of Tech． | 1 | McDonnell Douglas |  |
| Attn：Dr．Richard Tabors |  | Astronautics Co－East |  |
| Building E－38，Room 400 |  | Materials \＆Processes |  |
| Cambridge，MA 02139 |  | Attn：Mr．L．G．Harmon |  |
|  |  | B1dg．106／4／E7 |  |
| Massachusetts Institute of Tech． | 1 | St．Louis，MO ． 63.166 |  |
| Lincoln Laboratory |  |  |  |
| Attn：S．Forman |  | McGraw－Edison Company |  |
| M／S I－300 |  | Edison Battery Division |  |
| P．O．Box 73 |  | Attn：D．P．Spittlehouse |  |
| Lexington，MA 02173 |  | 210 Redstone Hill Road |  |
|  |  | Bristol，CT 06010．． |  |
| Massachusetts Institute of Tech． | － 1 |  |  |
| Lincoln Laboratory |  | Mobil Tyco Solar Energy Corp． |  |
| Attn：Mr．Ron Matlin |  | Attn：A．I．Mlavsky |  |
| Room I－210 |  | 16 Hickory Drive |  |
| P．O．Box 73 |  | Waltham，MA 02154 |  |
| Lexington，MA 02173 |  |  |  |
|  |  | Mobil Tyco Solar Energy Corp． |  |
| Massachusetts Institute of Tech． | 1. | Attn：K．V．Ravi． |  |
| Lincoln Laboratory |  | 16 Hickory Drive |  |
| Attn：Edward B．Murphy |  | Waltham，MA 02154 |  |
| －Group 71，Bldz．D－237． |  |  |  |
| Lexington，MA 02173 |  | Motorola，Inc． |  |
|  |  | Semiconductor Group |  |
| Massachusetts Institute of Tech． | 1. | Attn：William Ingle，B136 |  |
| Lincoln Laboratory |  | 5005 East McDowell Road |  |
| Attn：Mr．Marvin Pope． Room I－210 |  | Phoenix，Az 85008 |  |
| P．O．Box 73 |  | Motorola，Inc．$\quad$ ： | 1 |
| Lexington，MA 02173 |  | Semiconductor Group |  |
|  |  | Attn：I．Arnold Lesk |  |
| Dr．H．F．Matare | 1 | 5005 East McDowell Road |  |
| P．O．Box 49177 |  | Phoenix，AZ 85008 |  |
| Los Angeles，CA 90049 |  |  |  |
| － |  | Motorola，Inc． | 1 |
| Materials Research，Inc． | 1 | Semiconductor Group |  |
| Attn：Dr．Ram Natesh |  | Attn：R．McGinnis |  |
| 700 South 790 East |  | 5005 East McDowell Road |  |
| Centerville，UT 840．14． |  | Phoenix，AZ 85008 |  |
| MB Associates | 1 | Motorola Inc． | 1 |
| Attn：Mr．Len Foote |  | Semiconductor Group |  |
| Bollinger Canyon Road |  | Attn：D．Rosler |  |
| San Ramon，CA 94583 |  | 5005，East McDowell Road |  |
|  |  | Phoenix，AZ 85008 |  |

Mount Edison USA，Inc．
At二n：Marrith Kasters
1114 Avenue 0 ：the Americes
New York City，NY 10036

NASA Headquarters
Attn：J．P．Mullin Code RP－6 M／S B636
Washington，DC 20546
NASA Headquarters
Office of Energy Programs
Attn：John Loria Eode RG－14
Washington，DC 20546
NASA Lewis Research Center
Attn：Dr．H．W：Brandhorst；Jr． M／S 302－1
21000 Brookpark Road
Cleveland，OH 44135

NASA Lewis Research Center
Protovoltaic Project Office
Attn：Roger S．Palmer
M／S 49－5
21000 Brookpark Road
Cleveland， OH .44135
National Science Foundation
Division of Applied Research
Attn：Dr．Tapan Mukherjee
1800 G．Street NW
Washington，DC 20550
Naval Underwater Systems Center
Attn：Dr．R．Santopiertro －Code 313
B1dg． 28
New Londion，CT 06320

Nav－Tec Industries
Attn：Mr．Norman Sandys
87 Bethpage Road
Hicksville，NY 11802

Northeas Solar Energy Center
Attn：Dr．Solomon Zwerdling
70 Memorial Drive．
Cambridge，MA 02142
Northeastern University
Mechanical Eng．Branch／C̦ampus
Attn：W．B．Nowak
360 Huntington Avenue
Boston，MA 02115.
Optical Coating Laboratory，Inc．
Attn：D．Sharman
15251 East Don Julian Road
City of Industry，CA 91746
Opto Technology，Inc．
Attn：W．E．Hegberg
1674 South Wolf Road
Wheeling，IL 60090
Owens Illinois，Inc．
Attn：G．L．Glen
P．O．Box 1035
Toledo，OH 43666
Photon Power
Attn；C．Lampkin
10767 Gateway West
E1 Paso，TX 79935
PRC Energy Analysis Company
Attn：Dr．C．Edwin Witt 7600 01d Springhouse Road McLean，VA 22101

RCA Laboratories
David Sarnoff Research Center
Attn：Dr．David Richman
Princeton，NJ 08540
RCA Laboratories
David Sarnoff Research Center
Attn：Dr．Arthur Sherman
P．O．Box 432
Princeton，NJ 08540


```
アニミニ こ ミ.:
```

| no．of | ：o． $2=$ |
| :--- | :--- |
| copies | oopies |

RCA Laboratories
David Sarnoff Research Center
Atin：B．F．Williams
Princeton，NJ 08540
Rockivell International
Electronics Research Center
Attn：Dr．R．P．Ruth D／540，HA32
3370 Miraloma Avenue
Anaheim，CA 92803
C．T．Sah Associates
Attn：Dr．C．T．Sah
403 Pond Ridge Lane
Urbana，IL． 61801

Sandia Laboratories
Division 4719
Attn：Dr．Donald G．Schueler
Albuquerque，NM 87185
Semiconductor Processing Co．
Attn：Mr．Mayburg
10 Industrial Park Road
Hingham，MA 02043
－Sensor Technology，Inc．
Attn：I．Rubin
21012 Lassen Street
Chatsworth，CA．91311
Shell Development．Company
Attn：Karl T．Geoca
P．O．Box 2463
Houston，TX 77001

Siltec Corporation
Attn：－Technical Library，$R \& D$
3717 Haven Avenue
Menlo Park，CA 94025

Solamat，Inc．
Attn：Dr．Barton Roessler
4 Indigo Road
3arrington，RI 02806

Jolar Energy Research Institute
1
Solar Enersy Research Institute ..... $\cdot 1$
Attn：Wendy Jackson1536 Cole Blvd．Golden，CO 80401
Solar Eneray Research Institute ..... 1Attn：Dr．Paul Rappaport1536 Cole Blvd．．Golden，CO． 80401
Solar Energy Research Institute ..... 1
Attn：Dr．Matthew Sandor1536 Cole BIvd．Golden，CO 80401Solar Power Corporation1
Attn：P．Caruso
5 Executive Park Drive
North Billerica，MA 08162
Solarex Corporation ..... 1
Attn：John V．Goldsmith
1335 Piccard Drive
Rockville，MD． 20850
Solarex Corporation1
Attn：Dr．Joseph Lindmayer1335 Piccard Drive
Rockville，MD 20850
Solec International，Inc． ..... 1
Attn：Ishaq ShahryarSuite 484
Two Century Plaza
2049 Century Park East
Los Angeles，CA 90067
Southern Methodist University ..... 1
Institute of TechnologyAtect．Tcal Engi
Dallas，TX 75275
Spectrolab，Inc．1
Attn：E．L．Ralph12500 Gladstone AvenueSylmar，CA 91342


iio．of
No．こご
copies

College of Engineering
Du Pont Hall
Attn：Professor Karl W．Boer Newark，DE 19711

University of Missouri－Rolla Ceramic Engineering Department Attn：Dr．P．Darrell Ownby Rolla，MO 65401

University of New Mexico
Bureau of Engineering Research
Faris Eng．Center
Attn：W．W．Grannemann
Room 124
Albuquerque，NM $87131^{\circ}$

University of Pennsylvania
Attn：Professor Martin Wolf
308 Moore D2
Philadelphia，PA 19174

University of South Carolina
College of Engineering
Attn：R．B．Hilborn；Jr．
Columbia，SC 29208

U．S．Coast Guard
$R$ \＆D Center
Attn：Dr．F．Giovane
Avery Point
Groton，CT 06340.
U．S：Department of Energy
Division of Solar Technology
Attn：Dr．Harold L．Macomber
600 E Street，NW
Washington，DC 20545

U．S．Department of Energis
2.

Division of Solar Technology
Attn：Dr．Leonard M．Magid
600 E Street，NW
Washington，DC 20545

> U. S. Department of Energy Division of Solar Technology Attn: Mr. P. D. Maycock 600 E Street, NW Washington, DC 20545

U．S．Department of Energy
1
Division of Solar Technology
Attn：Dr．Morton Prince
600 E Street，NW
Washington，DC 20545

U．S．Department of Energy 2
Technical Information Center + Repro
Attn：T．B．Abernathy
P．O．Box 62
Oak Ridge，TN 37830

Westech Systems，Inc．
Attn：G．L．Gill，Jr．
4225 South 37 th Street
Phoenix，AZ 85040

Western Electric
Seminconductor Materials Engineering
Attn：R．E．Reusser－ 3510
555 Union Boulevard
Allentown，PA 18103

Westinghouse Electric Corporation 1
Power Circuit Breaker Division
ARC Heater Project
Attn：Dr．M．Fey
Trafford，PA 15085

Westinghouse Electric Corporation 1 Research Laboratories
Attn：J．R．Davis
M／S 501／2D28
1310 Beulah Road
Pittsburgin，PA 15235


```
1:--
```

No. of
copies
Nesioinghouse Electric Corporation Pesearch Laboratories Attn: R. H. Hopkins 1310 Seulah Road Pittsburgh, PA ..... 15235
Westinghouse Electric Corporation ..... 1
Research Laboratories
Attn: Dr. P. F. Pittman
1310 Beulah Road
Pittsburgh, PA ..... 15235
Westinghouse Electric Corporation ..... 1
Research Laboratories
Attn: Dr. P. Rai-Choudhury
1310 Beulah Road
Pittsburgh, PA ..... 15235
Westinghouse Electric
Research Laboratories
Attn: R. K. Riel 1310 Beulah Road Pittsburgh, PA ..... 15235
Westinghouse Electric Corporation ..... 1 ..... 1
Attn: Mr. William E. Mortensen 300 North Halstead Street Pasadena, CA 91170
Xerox Electro Optical Systems ..... 1
Attn: Mr. Keith Winsor
300 North HalsteadPasadena, CA 91107


[^0]:    *Ref. 3 Figures 55 and 57.
    HNo AR Coating

[^1]:    *This diffusion condition was determined to be optimum for dendritic web silicon - see Section 5.

[^2]:    * The cells marked were nominal $1.6 \times 4.0 \mathrm{~cm}$ cells. The cells were laser scribed and in most cases the cell area was not $6.4 \mathrm{~cm}^{2}$. After initial measurements, using a nominal cell area of $6.8 \mathrm{~cm}^{2}$ (deritved from measuring $5-6$. cells) the cells were used in building several small panels. Only, the three cells marked (*) were not used and after measured. The areas noted were determined. All other cells were cut;more exactly ( $A_{0}=11.2 \mathrm{~cm}^{2} \pm 0.05 \mathrm{~cm}^{2}$ ) due' to improved jigging on the laser scribe apparatus.

[^3]:    * RTV-615 is a proprietary silicone manufactured by General Electric Co; ** "Sunadex" is the registered tradename of a textured glass manufactured by ASG Industries.

[^4]:    The work on the $1 . \dot{6} \times 4.0 \mathrm{~cm}$ cells and the small module studies was funded mainly by an internal Westinghouse development program.

[^5]:    * ASG Industries - "Sunadex" type.

[^6]:    * The enhancement factor is' the increase in short circuit current due to an antireflection coating on the cell.

[^7]:    * The work reported in this section was carried out in an internally funded Westinghouse program in 1977 (SOLEP). The data were obtained on Czochralski crystals with a resistivity of $4-8 \Omega-\mathrm{cm}$. The results, however, are immediately applicable to web and thus are reported here.

[^8]:    *We wish to acknowledge the assistance of R. Chamberlain, P. Firnett and R. Aster of JPL for their assistance in getting this program running at our facility.

