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ABSTRACT

The growth of a turbulent spot in a laminar
boundary layer, as the spot evolves from a localized
disturbance in the layer, is simulated numerically
using & three-dimensional vortex filament description
of the vorticity field. The filaments are marked with
a sequence of node points which are tracked in a
Lagrangian reference frame. Velocity computation is
done by Biot-Savart integration. Although some dis-
crepancies with experiment appear to exist in the near
wall region, the gross properties of the spot, includ-
ing the velocities of the leading and trailing edges
and the velocity perturbations away from the wall, are
in good agreement with experiment.

INTRODUCTION

Studies of the turbulent spot in a laminar bound-
ary layer date back to the theoretical and experimen-
tal work of Emmons (1) and Mitchner (2), who were con-
cermed with the role of spots in the transition pro-
cess. Such spots are now recognized as interesting
flow phenomena in their own right and, in addition,
spots or spotlike objects have been suggested as the
coherent flow structure responsible for much of the
turbulent transport in a fully developed turbulent
boundary layer (3,4). Recent experiments by Wrananski,
et al. (5) and Cantwell, et al. (6) confirmed earlie:
observations of Schubauer and Klebanoff (7) and pro-
vided much new information on the structure of turbu-
lent spots. In particular, entrainment rates in the
plane of symmetry and the mean flow field within the
spot were obtained by ensemble averaging over a large
number of spots. In another recent experiment, Gaster
and Grant (8) studied the evolution of a wave packet
in a laminar boundary layer produced by a localized
perturbation at the wall boundary. The amplitude of
the perturbation was very small so that the linear
development of the resultant disturbance could be
observed for some time after its initiation. Indeed,
model calculations by Gaster (9) based on linear theory
agree well with the e.perimental measurements of Gaster
and Grant (8) during the early stages, but some quali-
tative differences were uoted in the later stages of
growth, presumably due to nonlinear mechanisms.

Despite these significant advances in our under-
standing of turbulent spots, a number of questions
remain, such as the interaction of two or more spots,

the formation of sublayer streaks, the three-dimensional

vorticity field within the spot, the nonlinear mechan-
ice of growth, and the birth of new spots.

In this paper, the growth of a turbulent spot in
a laminar boundary layer, as the spot evolves from a
localized disturbance in the layer, is simulated

numerically using a vortex fiiament description of the
vorticity field. The attempt is to provide additional
insight into the structure and growth of a turbulent
spot. In many respects, the method employed (10,11) is
an extension to three dimensions of the two-dimensional
vortex method (12,13) and is done in the spirit of the
large~eddy simulation technique (14) in which small-
scale turbulence is not simulated directly but is
modeled. In an earlier numerical study Hama (15),
motivated by his experimental observatic s of boundary-
layer transition, investigated the motion of a single
vortex loop.

Previous three-dimensional numerical simulations
of wall-bonded shear flows have included channel flow
simulations by Deardorff (16) and Schumann (17) using
an artificial law-of-tne-wall boundary condition and
the recent improved simulation by Moin et al. (18)
using the no-slip condition. In addition, transition
phenomena have been simulated numerically by Orszag
(19) and by Wray et al. (20).

NUMERICAL METHOD

For numerical purposes, a turbulent spot is viewed
as a lecalized region of boundary-layer vorticity that
has undergone three-dimensional displacements, strains,
and rotations from {ts original monodirectional laminar
state (see Fig. 1). Each tube of vorticity in the
boundary layer is decomposed into its straight, unper-
turbed contribution and into a loop representing its
contribution to the perturbed vorticity field, as shown

in Fig. 2. The velocity field is decomposed, accord-
ingly, as

u(x) = Ulyley + u'(x)
where U(y) is the laminar profile and u' 1s given by

a sum of Biot-Savart integrations over all the filament
curves, Cy, plus their images. The image contributions
ensure tangency of the flow at the wall. 1n this ini-
tial study we {gnore the generation of vorticity at the
wall boundary due to the disturbance, {.e., we use the
inviscid boundary condition at the wall. Biot-Savart
integration yields an exact representation of the bound-
ary conditions at infinity in all directions.

Each filament is represented by a space curve
x;(E,t), where £ 18 a parameter along the curve; by a
circulation TIy; and by an effective core radius o4,
which parameterizes the assumed Gaussian vorticity dis-
tribution within the f{lament. Thus the perturbed vor-
ticity field is given by

Ix
wix,t) = Z :rii exvr-lrgilz/aizll(ﬁa‘)’-ﬁ dg
i
i
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A filament or curve represents a collection of vortex
lines so that the filament velocity must be computed
as an appropriate average over the filament core. We
use the following equation of motion for the space
curves:

353
11_._Lzr§ T Lok 1o
at 4n ; 3 ¢, [:‘!*-5“2*"‘"’x?*“jr)la/?

+ ixU(y‘) + image contributions

The equation is seen to be the Biot-Savart induction
law for an infinitesimal filament but corrected in the
near field for finite core size. Using a = 0.2065
we recover the correct speed of a ring vortex in the
limit o4 << ring radius.

For numerical purposes, the filamerrs are marked
with a sequence of node points which are tracked in a
Lagranglan reference frame. The space curve gi(ﬁ.:)
is assumed plecewise linear, passing through each node
point. The spacing between node points {s 0(oj) to
minimize discretizstion error. For example, satisfy-
ing this constraiut yields a computed speed of a ring
vortex that {s essentially independent of the number
of node points.

Discretization in the directions normal to the
vorticity vector must also be treated carefully. If
the nominal spacing between vortices i{s so large that
adjacent cores do not overlap, the smooth vorticity
field that exists in the undisturbed regions near the
spot is poorly approximated. Given a number of hori-
zontal layers of vortex filaments, equally spaced in
the vertical direction, an optimum core size as well
as a set of optimum circulations for each horizontal
layer is determined that minimizes the mean square
error in the desired vorticity distribution. The
result of this procedure is displayed in Fig. 3(a) for
the case of eight layers, whereas the effect of choos-
ing a smaller value of core size is shown in Fig. 3(b).

For many incompressible flows in which the vor-
ticity is concentrated in small regions, vortex methods
have the conceptual advantage that computational points
need only appear in the vorticity-containing recions.
In this problem only the region of perturbed vortleilv
requires points. Thus, in this simulation, points are
added automatically in the streamwise and, in some
cases, the spanwise direction, as the spot grows. More
specifically, the maximum perturbation of xy in the
farthest upstreau and farthest downstream filaments in
each layer is monitored. As soon as that perturbation
reaches a critical value (usually 0.004 of the dis-
placement thickness, §%*) a new, adjacent filament is
added, This feature, which helps minimize the number
of computational points, is particularly important
because O(N?) operations per time step are required
to compute the velocity at each of N vortex node
points. For reasonable total run times (1-2 cpu hr),
the maximum number of points representing one-half the
spot 1s <2000 on the CDC 7600 and <8000 on the
I1liac IV,

The range of computed scales of motion is quite
large; e.g., in the streamwise direction the ratio of
the largest to the smallest computed scale is ~125 to
1. Nevertheless, this range 1{s not large enough to
span those scales found experimentally (see, e.g.,
aluminum particle photographs in Ref. 6). Thus, the
effect of the smaller or subgrid scales on the com-
puted scales must be modeled. The usual procedure
used in finite-difference simulations is to use a sub-
grid viscosity dependent on the local strain rate (14).

In this study we simpiy maintain a constant filament
core size, Indeed, this procedure is basically equiva-
lent to using a subgrid viscosity dependent on the
local rate of vortex stretching.

RESULTS

Figure 4 displays the computed grid of vortex
filaments as the spot develops. All the results given
in this paper were obtained on the Illiac IV, although
development of the algorithm was done on a CDC 7600.

As shown at t = 0, the initial perturbation imposed on
the boundar, layer consists of a localized deformation
of the vortex lines in the streamwise direction with a
maximum displacement equal to 0.3. The net effect of
this d:formarion is equivalent to adding a ringlike
blob o) vorticity to the laminar boundary layer,
oriented so that the blob is initially moving upward
away fron the plate. The maximum streamwise velocity
perturbation in this initial disturbance is -0.07 U,.
Velocities and lengths are normalized so that Ug = 1
and 3U/3Y|wall = 1. The unperturbed vorticity profile
is that shown in Fig. 3(a) and the corresponding &*

is 1.21. Eight levels of filaments were used in the
y-direction normal to the plate and were spacad 0.2
apart. The same spacing was used in the streamwise (x)
direction due to the isotropy of the velocity field
induced by each filament. The initial sracing of points
along each filament was 0.67. As the simuiation pro-
ceeded, however, points were automatically redistrib-
uted to provide a higher density of points in regions
of high curvature. The lifting of vortex linee is evi-
dent in the side view of Fig. 4. The stretching of
vortex lines and the development of streamwise vortic-
ity is quite evident in the plan view. In the simula-
tion shown in Fig. 4, 2184 points in 104 filaments were
used at t = 0, At the end of the run of 71 stepe

(At = 0.3, first-order Euler explicit time differenc-
ing), there were 12,222 points in 582 filaments repre-
senting the spot. The spot was assumed to be symmetric
with respect to the z = 0 plane. Therefore, the
number of computational points requiring nodal veloci-
ties was only approximately half the total number
representing the disturbance.

In Fig. 5, a time sequence of contour plots is
shown for the perturbed streamwise velocity in the
plane of symmetry, The plots are dominated by a growing
patch of streamwise velocity deficit with a peak of
-0.37 U, at the final time, t = 21, Small regilons of
positive perturbation are evident near the wall {n the
later +'.ges, Corresponding plots of vertical velocity
and perturbed spanwise vorticity are shown in Figs. 6
and 7, respectively. As shown, the vertical velocities
are predominately positive. The vorticity plot shows
an elongated region of negative vorticity riding on a
similar region of positive vorticity.

To compare with experiment, profiles of the spot
boundary were determined from plots similar to those in
Fig. 5 according to the criterion of Ref. 5: 2% devia-
tion of the streamwise velocity from its free-stream
value. Shown in Fig. 8 are trajectories of the leading
and trailing edges measured in the plane of symmetry at
y = 0.6, 0,9, and 1.2. (These y values have undis-
turbed laminar velocities of 0.55 U,, 0.75 U,, and
0.89 1, respectively.) The trajectories for y = 1,2
yield leading- and trailing-edge velocities of 0.88 U,
and 0.48 U, respectively. These values compare well
with those of Wygnanski et al. (5), who found
Upg = 0.89 U, and Upg = 0.50 U,, and with those of
Schubauer and Klebanoff (7), who reported Upp=0.88 U,
and Urg = 0.50 U,. Trailing-edge velocities, however,
show a significant variation with y. The plot also
reveals the virtual origin (x,, t,) of the spot.
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Velocity histories at fixed points are shown in
Figs. 9 ana 10. The u-velocity records sw.y from the
wall show the characteristic dip and recovery in agree-
ment with the measurements of Refs. S and 6 hased on
ensemble means over large numbers of spoti. The simu-
lated u-velocitlies in the plane of symme:ry near the
wall show no indication of the high-.peel rise which is
observed experimentally., The normal velocity record
shown in Fig. 10 has an initial dip ‘ollowed by a rise
to positive values in agreement wi.n the ensemble-
averaged results of Ref. §.

Streamwise velocity pertuipations in three hori-
zontal planes at t = 18 arz shown in Fig. 11.
Although the velocity histzries taken in the plane of
symmetry (Fig. 9) sbowed no evidence of high-speed
fluid near the wali, the contour plot for y = 0,3
shows extensive regions of positive perturbation away
from the plane of symmetry.

CONCLUSIONS

The numerical simulation of a spotlike disturbance
in a laminar boundary layer using vortex filaments has
provided insight into the development of the three-
dimensional vorticity and velocity fields within the
spot. Gross properties of the spot away from the wall,
including the velocities of the leading and trailing
edges and the velocity perturbations, are in good
agreement with experiuent.

Discrepancies with experiment appear to exist in
the near wall region, especially at the trailing edge.
This suggests that future simulations should include
the effect of vorticity production at the wall and an
improved representation of viscous dissipation,

Another source of disagreement may be the relatively
short history of the computed spot. Experimental
results (5-7) are based on spots that have traveled
several hundred &% whereas the computed spot has
traveled about 20 &%, Another possibility is that the
experimental data were obtained from enscmble averaging
over a large number of spots, a procedure that possibly
filters out important coherent motions on the scale of
several &* or more in addition to unwanted "noise."
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Figure 2.- Decomposition of vorticity field.
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Figure 6.- v' contour plot; same contour levels as figure 5; t = 21.
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