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ABSTRACT 

A generalized hypothesis testing approach is applied to the problem of tracking 
several objects where several different associations of data with objects are pos- 
sible. Such problems occur, for instance, when attempting to distinctly track 
several aircraft maneuvering near each other or when tracking ships at sea. Con- 
ceptually the problem is solved by first associating data with objects in a statis- 
tically reasonable fashion and then tracking with a bank of Kalman filters. 

The objects are assumed to have motion characterized by a fixed but unknown 
deterministic portion plus a random process portion modeled by a shaping filter. 
For example, the object might be assumed to have a mean straight line path about 
which it maneuvers in a random manner. Several hypothesized associations of 
data with objects are possible because of ambiguity as to which object the data 
comes from, false alarm/detection errors, and possible uncertainty in the number 
of objects being tracked. 

The statistical likelihood function is computed for each possible hypothesized 
association of data with objects. Then the generalized likelihood is computed 
by maximizing the likelihood over parameters that define the deterministic 
motion of the object. This forms the basis of the generalized hypothesis test- 
ing approach. 

The computational burden is dominated by combinatoric considerations. Proce- 
dures are addressed that relieve the computational burden. 
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1 .  Introduction 

This paper deals w i t h  the problem of tracking multiple objects 
where i t  is  unclear which measurements can be associated w i t h  which 
objects.  
maneuvering near each other or  when tracking ships a t  sea. 
blem is approached by f i r s t  performing data-to-object association i n  a 
s t a t i s t i c a l l y  reasonable fashion and then tracking w i t h  a bank of 
Kalman f i l t e r s .  

Such problems a r i se ,  f o r  instance, when tracking a i r c r a f t  
The pro- 

A recent survey paper Reference 1 describes the various Bayesian 
and 1 i kel i hood approaches tha t  have been developed t o  hand1 e mu1 t i  ple 
object tracking problems. 
development pioneered by S i t t l e r  i n  Reference 2 and carried forward by 
various researchers, notably by Morefield i n  Reference 3.  
t r i b u t i o n  of this paper i s  the use o f  a generalized likelihood approach 
to  deal w i t h  unknown system parameters. 
applicable t o  a wide variety o f  parameters including process noise 
covariances and time constants i n  shaping f i l t e r  models fo r  object 
motion. 

T h i s  paper follows the likelihood l ine  of 

The con- 

The conceptual approach is 

The specif ic  theory developed here applies t o  unknown 
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parameters t h a t  enter measurements 1 inearly. 
meters a re  position and velocity coordinates a t  track in i t i a t ion  or  
parameters describing a f ixed  b u t  unknown mean path fo r  object motion. 

Exampl es of such para- 

The next section describes the problem i n  more de ta i l  and s t a t e s  
previous resu l t s .  
results w i t h  a discussion of computational consideration and a section 
presenting an analytical  example. 

T h i s  i s  followed by a section presenting, new 

2. Previous Results 

Object motion is  usually modeled w i t h  a s t a t e  space shaping f i l t e r  
where d i f fe ren t  classes of objects having d i f fe ren t  models may be con- 
sidered. 
other. Several sensors o f  different types may be i n  use w i t h  
associated sensor e r ror  models. 
previous work have usually been assumed known. 
unknown parameters entering the measurements Zk 1 inearly through 
i n i t i a l  conditions and forcing terms according to  the following model 
for  an object i n  a given class:  

I t  is  assumed tha t  the objects move independently of  each 

The parameters of the models in 
T h i s  paper includes 

x0 = Bib1 -I- xOr 

k = 0, 1, . . . ¶  M 

b = f - Fixed b u t  unknown parameter vector 
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Wk - Zero mean, white, Gaussian process noise with covariance Qk 

vk - Zero mean, white, Gaussian measurement noise with co- 
variance Rk 

xor - Zero mean and Gaussian with covariance P 
'or 

For the remainder o f  this section bl = b2 = 0 , but bl and b2 are 
nonzero in the next section. 

The data association problem is displayed by Figure 2-1. Given 

-0- Object path with dot at measurement time ti 

x Position measurement 

--- Hypothesized data association 

Figure 2-1. Data Association Hypotheses 
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the data, there are a number o f  reasonable data associations. 
factors may have to be considered. 
sensor at different times may have a different coverage region, false 
alarm and detection errors may occur, and the number of objects may 
be initially unknown. In order to focus attention on new results, 
it is assumed in the remainder of the paper that the sensor coverage 
region includes all objects at each measurement time and that there 
are no false/alarm detection errors. Further, it is assumed that no 
a priori probabilistic information is available as to the correctness 
of a given data association. 

Many 
Different sensors or the same 

Previous results compute the statistical likelihood function with 
a bank of Kalman filters as shown in Figure (2-2) and maximize the 
likelihood over hypothesized data associations. The hypothesizer 
sel ec ts 

Kalman F i l t e r s  

Figure 2-2. Likelihood Maximization 

the data association, and then the data is whitened by a bank of Kalman 
filters using appropriate object class models. 
twice the log likelihood can be computed efficiently by the equation 

Consequently, negative 
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Zj P z j  - Residual and residual covariance for i ,k ,  , k  hypothesis H j  , object i , a t  time k 

m - Total number of scalar measurements. 

The da ta  dependent pa r t  of equation (2-2) i s  chi-square with degrees 
of freedom m (h) . Then the likelihood i s  maximized by minimizing 
equation (2-2).  In this manner a statist ically reasonable hypothesis 
i s  selected and tracking i s  performed by the bank of Kalman f i l t e rs .  

‘ 2  

3.  New Results 

The contribution of this paper i s  the inclusion o f  fixed b u t  un- 
known parameters i n  the object motion model. The generalized l ikeli-  
hood approach provides a solution by maximizing the likelihood over the 
parameters before maximizing over hypotheses. This i s  accomplished by 
replacing the Kalman f i l t e r  for object i 
shown i n  block diagram form in Figure 3-3 where the i and j sub- 
scripts are suppressed. 
equation 2-7 with b = 0 
quantities-with “fb = 0” The f i l t e r  residuals and residual 
covariance are used i n  a set  o f  auxilliary equations t o  compute a maxi- 

i n  F igure  2-2 by the equation 

The Kalman f i l t e r  i s  based on the model of 
Thisis indicated by subsripting f i l t e r  computed 

mum likelihood estimate ik with estimate error covariance P- 
bk  

These results are used i n  t u r n  t o  compute the portion of the likelihood 
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Figure 3-3. Generalized L i  kel i hood Computation 

for the object under  consideration. 
for the s ta te  and the estimate for b recovered from the f i l t e r  
residuals, the min imum variance and unbiased estimate xk o f  the s ta te  
and i t s  estimate error covariance P- are computed. 

Then using the f i l t e r  estimate 

'k 

The estimate f o r  b and the estimate uncertainty are given by 

k T T  
R 

T T -1 1-1 1 T H P z l  2 = ( I  T H P- 
k 

l a  R ZR l a  R ZR R l a  
fb=O fb=o 'k R=O 

f b=O 

fb=O 

K, - Kalman gain a t  gth time 
k 

- Number of elements '"2 

n - Number of elements i n  

i n  b, and b2 

X. 
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Note t h a t  the above equations can be implemented recursively. The 
minimized negative twice log  likelihood for the given object is 
expressed as 

(3-2) 

Now, including the i and j subscripts, the generalized negative 
twice log likelihood over a l l  objects is 

The da ta  association is accomplished by minimizing the above equation 
over H . I t  can be shown t h a t  the data dependent par t  of equation 
3-3 i s  chi-square w i t h  degrees of freedom equal the total number of 
scalar measurements minus the total number of elements i n  a11 the bl 
and b2 vectors under hypothesis H j  . 

j 

The generalized likelihood has been computed b u t  valid state 
estimates for the objects s t i l l  remain t o  be specified. 
shown that the following equations give the m i n i m u m  variance unbiased 
estimate and i t s  uncertainty for a given object, again suppressing the 

I t  can be 

i ,  j subscripts: 
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f b=O 

P- xk(+) = ' i k ( + )  i- '2k Q- bk T I  2k (3-4) 

fb=O 

It is worthwhile to compare the new results of this section with 
the previous results of Section 2 where the noninformative prior 
approach is used to deal with the parameters b . The distribution of 
the data dependent part o f  the negative twice log likelihood is chi- 
square in the total number of scalar measurements for the previous 
results but is chi-square in the number of scalar measurements minus 
the total number of elements in all the bl and b2 vectors for the 
new results. However, it can be shown that the actual numerical value 
of the data dependent parts is the same. 
son of equations (3-3) and (2-2) shows that the model dependent parts 
are different. Further, it can be shown that the state estimate 
obtained from the Kalman filter in the previous results is the same as 
that given by equation (3-4). There are clearly basic similarities 
and basic differences between the two approaches and caution must be 
exercised in selecting which approach is most appropriate. 

On the other hand, compari- 

Numerical considerations are of major importance to the application 
of the new results as they are to previous results. It is easily 
verified that even for a modest number of objects and measurement times 
that a combinatoric explosion occurs in the number of hypothesized 
data associations. 
to greatly limit the number of hypotheses. 
tion measurements require an object to exceed its maximum possible 
velocity then those measurements can not both come from the same object.. 
Also examination of filter residuals directly can be used to exclude 

Much use can be made o f  pre-processing techniques 
For example, if two posi- 
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c lear ly  unlikely data associations.  
processing does not appear t o  stop the combinatoric explosion, bu t  only 
to  slow it. 
most r e a l i s t i c  problems. 
a t  each measurement time saving only tracks from the "best" hypotheses 
up  t o  a maximum number of tracks. I t  i s  mdre e f f i c i en t  t o  save tracks 
than hypotheses since two hypotheses may have many tracks i n  common. 
Another technique i s  to  again perform data association a t  each point i n  
time b u t  consider only hypotheses tha t  can be generated by back track- 
i n g  N steps i n  time. Some mathematical programming techniques a r e  
a lso applicable such as  integer programming techniques (Reference 3 ) .  
Ultimately, the best technique is determined by the de t a i l s  o f  the 
specif ic  problem a t  hand. 
w i t h  storage requirements t h a t  do not grow i n  time and w i t h  execution 
time tha t  growsonly l inear ly  i n  time. 

In general, however; such pre- 

Thus,  suboptimal approaches appear t o  be required for 
For example, data association can be performed 

In general, what i s  desired as an algorithm 

4. Analytical Example 

A simple example is  presented to  provide some "feeling" fo r  the 
generalized likelihood approach. 
more general than the theory of the preceding section i n  that  a power 

The example is actual ly  somewhat 

spectral density parameter is  t o  be estimated from the data. 

The objects under observation move i n  a plane as  random walks 
about s t r a igh t  mean' paths w i t h  constant mean velocity where parameters 
describing the mean path a re  fixed b u t  unknown. 
density o f  the process noise will be considered known i n  one case and 
unknown i n  another. Measurements a re  taken a t  a constant interval 
At and a r e  accurate enough t o  be considered noise free. 
assumed tha t  a l l  objects a re  observed a t  each measurement time and 
tha t  no f a l s e  alarm o r  detection e r rors  occur. 

The power spectral 

I t  is 

The analysis model fo r  the i th object under the jth hypothesis 
i s  
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k = O,l,*-=,M 

J - Fixed b u t  unknown parameters l , i ,o  2, i ,o '  '+, is  "2,i r 

- zero mean, white Gaussian each having variance ' l , i , k '  '2,i,k 
Qi A t  and uncorrelated with each other 

The f i r s t  measurement estimates in i t ia l  position exactly so i t  will no 
longer be considered unknown.  Using Kalman f i l t e r  equations, the nega- 
tive twice log likelihood for  the object of equation (4-1) i s  found t o  
be 

-2 En p ( - . * z  j iSk'"'; u l , i ,  U 2, i '  Q i )  + constant 

M 

k= 1 

('1;i j ,k-'I j , i  ,k-l-ul , i  A t )  * 
Qi A t  

= 1 2 Rn Qi A t  + (4-2) 

Now minimize equation (4-2) w i t h  respect t o  u l , i  and u ~ , ~  t o  obtain 
the maximum 1 i kel i hood estimates 
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-j - 1 ‘ j  - j 
‘1,i MAt gl ‘l,i,k ‘l,i,k-1 

9 = .__ 7 M j  - j 
‘2,i MAt ‘2,i,k ‘2,i,k-l 

(4-3) 

These estimates are valid whether Qi 

Qi 

i s  known or not. Now assume 
is unknown and minimize equation (4-2) to obtain 

(4-4) 
j j -$ At)2 . (‘2,i ,k-z2,i ,k-1 2,i f 

Now consider the case where the Qi are known and form the general- 
ized negative twice log likelihood over all objects minimized over 
and uZsi 

u1 ,i 

j 1 l 2  ’1- 1 M j  j l M  j 1 (‘1 , i , k-‘1, i , k-1- - ( ‘1 , i , ~ ~ ‘ 1 ,  i , 2-1 Qi k=l At 

(4-5) 

i- (‘2,i j ,k-‘2,i j ,k-l-Ezl 1 (zj 2,i ,~-~2,i j ,E-1 1 l2 

For the case o f  Qi 
by minimizing the following expression 

unknown, the generalized likelihood i s  maximized 
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Equations (4-5) and (4-6) have a term t h a t  sums over time i n  common. 
T h i s  common term is simply a measure of the variation of posit ion 
change about mean position change for a g i v e n  object. 
qua l i ta t ive ly  attempt t o  perform data association by minimizing the 
variation i n  position change over a l l  objects.  
(4-5) where Qi 
heavily for small Qi . 
variation would be expected. Qi 
is unknown tha t  equation (4-5) should s t i l l  apply b u t  with Qi= 1 . 
However, the variation i n  position change for  objects tha t  t ru ly  have a 
small Qi would be swamped out  by tha t  for  objects w i t h  large Qi . 
The multiplication of equation (4-6) keeps this swamping e f f ec t  from 
occurring. 

Bo th  equations 

However, i n  equation 

T h i s  is  in tu i t ive ly  reasonable since a small 
I t  m i g h t  seem reasonable tha t  i f  

i s  known, the variation i n  posi t ion change is  weighted 
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