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FOREWORD

This Interim Topical Report on "Computer-Aided Analysis and Design y

of the Shape-Rolling Process for Producing Turbine Engine Airfoils" is

prepared for NASA Lewis Research Center and covers the work performed under

Contract No. NAS3-20380, with Battelle's Columbus Laboratories, from October

1, 1976, to December 31, 1977. The Technical Monitor for this program is

Dr. J. Uhittenberger, Materials Application Branch, NASA Lewis Research

Center, Cleveland, Ohio 44135.

This program is being conducted at Battelle in the Metalworking

Section, with Mr. T. G. Byrer as Section Manager. Drs. G. D. Lahoti and

N. Akgerman are the principal investigators of the program and, at Battelle,

the work is being technically directed by Dr. T. Altan, Research. Leader.
r

Other members of Battelle staff are being consulted, as necessary. The

'

	

	 experimental work under this program is being recorded in Battelle's Laboratory

Record Book No. 33670.
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SUMMARY

A computer-aided design (CAD) system has been developed. This system

consists of (a) a mathematical model for predicting metal flow (elongation and

spread) in shape rolling, and (b) a model for estimating stresses in rolling and

for simulating the rolling process. These models utilize the upper-bound method

and the slab method of analysis, respectively. This CAD system requires informa-

tion on material flow stress and workability and information on interface friction

as inputs. The predictions from the CAD system are being verified with respect to

cold and hot .-isothermal rolling of an airfoil shape.

This progress report covers (a) the determination of the flow stress,

friction and workability data, (b) the development of the CAD system for rolling

of airfoil shapes, (c) the evaluation of the CAD system using plate rolling

experiments, and (d) an outline of the shape-rolling experiments to be conducted.
a

A Final Report will be issued upon completion of this program.

i<"
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INTRODUCTION

Rolling of shapes is one of the least understood metal-deformation

processes. A round or round-cornered rectangular bar is rolled in several

passes into a nonsymmetric shape, such as L, U, T, I, H, or an airfoil.

During each pass, the bar elongates as well as spreads. Thus, a very complex

three-dimensional metal flow takes place. The spread is usually only a small

fraction of the elongation. However, the ratio between spread and elongation

varies at each pass with reduction, roll-shape configuration, bar material

and temperature, friction between the rolls and the bar, roll speed, roll

diameter, and roll surface finish. The factors influencing the process of

rolling a shape are so intermixed and complex that roll and roll-pass design

have been, •until now, a purely empirical, intuitive, and experience-based art.

Through decades of experience, roll-pass designs have been developed for most

commonly used shapes from conventional materials. However, when novel

processes, such as the high-temperature rolling process, and relatively new

materials, such as titanium and nickel alloys, are used, the empirical rules

do not directly apply. Process development through experimentation becomes

very time consuming and expensive. Consequently, it is necessary to develop

objective and quantitative engineering methods for roll-pass design. Since,

in shape rolling, there are large numbers of process variables involved, and

since the complex metal flow is difficult to analyze, the use of computer

techniques as an engineering tool becomes extremely attractive and practical.

OUTLINE OF PROGRAM

The purpose of the present program is to develop and verify a method

for computer-aided analysis of the shape-rolling process with emphasis on

turbine-engine airfoil geometries. Computerized models are to be developed to
it

analyze the mechanics of metal deformation. during rolling of complex geometries,	 A

such as airfoils, and to predict the roll-pass design requirements. Evaluation 	 r

of the models will be accomplished by conducting laboratory rolling experiments

of an airfoil shape using the predictions of the computer models. In addition,

the computerized models will be applied to at least one commercial airfoil or

similar shape-rolling process that is currently in production. A comparison of
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experimental results with predicted values will, be made along with corrections
Y

to the models aB required to improve predictibility. Finally, the cost benefits

of applying computer-aided analyses to shape rolling and to at least two other

metal-forming processes are to be determined.

Computer models of materials deformation mechanics in shape rolling

were developed using the upper-bound method and the slab method. Computer model

for roll-pass design for rolling airfoil shapes was developed based on mechanics

models. For experimental evaluation of these models, laboratory rolling experi-

ments will be conducted using AISI 1018 steel as model cold-rolling material and

Ti-6Al-4V alloy as atypical hot-rolling material. INCONEL 718 (INCO 718) was

selected as a material currently being used in cold rolling of airfoil shapes.

This is an Interim Report and work accomplished to date includes the

following:

(a) Determination of flow stress, friction and workability data

(b) Development of a CAD system for deformation mechanics of

shape rolling and for roll-pass design in rolling of airfoil

shapes

(c) Evaluation of the CAD system using plate-rolling experiments

The future work will consist of conducting cold and hot-isothermal rolling

trials, evaluating the CAD system, and developing a cost-benefit analysis of using

CAD in metal-forming process design.

BACKGROU'tD ON SHAPE ROLLING

Shape rolling is a relatively old and well-known process and the

expenditures involved in establishing a shape-rolling installation are in

the order of several million dollars. The costs of designing and manufac-

turing of rolls for a given shape are very high. Despite these factors,

l	 however, there are very little useful, quantitative engineering data on

E

	

	 shape rolling available in the published literature (1-3) . A relatively

recent book, published in East Germany, summarizes the advances made in

roll-pass design in the Eas.ern and Western rolling industry and research 	 a

laboratories
(4)

Although several empirical engineering methods are

I



available for estimating the roll-separating force and the roll torque in

shape rolling, it appears that, until today, no quantitative engineering

method of analyzing the complex three-dimensional deformation and of

roll-pass design exists.

Metal Flow in Shape Rolling. In terms of complexity of metal flow,

the shape-rolling process can be classified in the following three categories:

(a) Uniform Reduction of Cross Section: This type of

deformation occurs in rolling of thick plates.

The material elongates in the longitudinal direc-

tion and spreads in the transverse direction while

it is compressed uniformly in.the thickness direc-

tion. This is illustrated schematically in Figure la.

p-	 (b) Moderately Nonuniform Reduction of Cross Section:

Rolling of an oval shape or an airfoil section from

a rectangular cross section„ as shown in Figure lb,

can be considered,	 tin this category. Here, the

reduction in the thickness direction is nonuniform. 3

However, the metal elongates and spreads laterally
i

outwards in a manner similar to that in rolling of

f,	 plates.

(c) Highly Nonuniform Reduction of Cross Section: In

this type of deformation, the reduction is highly

nonuniform in thickness direction, and part of the

cross section is reduced in height while other parts

may be extruded, as shown in Figure lc. This results

in both inward and outward flow of metal in the

lateral direction and a flow perpendicular to the

plane of rolling. In addition, the metal flows in

the longitudinal direction.

p

	

	 The lateral metal flow, briefly discussed above, must be quantitatively

evaluated for each pass within the deformation zone between the rolls. The

'	 deformation zone is limited with the entrance, where an already prerolled shape

enters the rolls, and the exit, where the rolled shape leaves the rolls. A

method for investigating the metal flow in shape rolling is illustrated in

(5)Figure 2. The deformation zone is cross sectioned with several planes, 1
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(a)

I ^_ I	
AP-

(b)

Neutral planes

(c)

FIGliRE 1. THREE TYPES OF METAL FLO14 IN ROLLING OF SHAPES
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FIGURE ?.. ANALYSIS OF A ROLL PASS USED IN ROLLING RAILS (5)
(Sketches 1 through 5 illustrate the stock,
broken lines and the roll, full lines at
various positions of the deformation zone)

^
y	 v

r
Q;'	 v

1 r s	 !

FIGURE 3. SCHEMATIC OF FIVE DIFFERENT ROLL-PASS(6)
DESIGNS FOR AN ANGLE SHAPE FROM STEEL

QQ/C^ti
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through 5, (1 is at entrance, 5 is at exit). The roll. position and the defor-

mation of the incoming billet are investigated at each of these planes.. Thus,

a more deta',led analysis of metal flow and an improved method for designing

the configuration of the rolls is possible. It is evident that 'this technique

can be drastically improved and made extremely efficient by using a'computer.

The computer, then, would allow to take a very large number of cross-sectional

planes and would automatically draft the configurations of the rolls and of the

billet at each cross section.

Roll-Pass Design. For a given material and final cross-sectional

shape, there is no unique, method of roll-pass design. For example, Figure 3

illustrates schematically five different methods of pass design for a steel

angle with equal leas
(6)

Similar illustrations are given in Figure 4 for a

steel angle with unequal legs.

In roll-pass design for shapes, the most difficult problem is due to

the fact that the €'!toss section of a shape is not deformed uniformly. This is

illustrated in Figure 5 for a relatively simple shape. The reductions in height

are not equal for the Zones A and B of the shape, seen in Figure 5a. Consequent-

ly, if these two Zones, A and B, were completely independent from each other,

Figure 5b, the Zone B would elongate much longer than the Zone A. However, both

zones are connected and as part of rolled shape, they must have equal elongation

at the exit from the rolls. Therefore, during rolling, metal must flow from

Zone B into Zone A so that a uniform elongation of the overall cross section is

obtained (-9) . This lateral flow is also influenced by the temperature

differences which exist in the cross section because of varying material thickness

and heat flow.

In establishing the number of passes and the shape of the rolls for

each pass, the following factors must be considered:

(1) The Characteristics of the Available Installation: These

include: (a) diameters and lengths of the rolls, (b) bar

dimensions, (c) distance between roll stands, (d) distance

from last stand to the shear, and (e) tolerances which are

required and which can be maintained.

(2) Reduction per Pass: The reduction per pass must be so

large that (a) the installation is utilized at a maximum

i	 (b th	 11 t	 t bd	 1 : eA	 d

!r

t

capacty, ) e ro s an s must no a over oac	 , an
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FIGURE 4. SCHEMATIC OF TWO DIFFERENT ROLL-PASS DESIGNS
FOR A STEEL ANGLE WITH UNEQUAL LEGS(7)
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(c) the wear of the rolls must be minimized. The

maximum value of the reduction per pass is limited

by (a) the excessive, lateral metal flow which

results in edge cracking, (b) the power and load

capacity of the roll stand, (c) the requirement for

the rolls to bite in the incoming bar, (d) roll wear,

and (e) tolerance requirements.

DETERMINATION OF FLOW STRESS, W0RKABILITY AND FRICTION FACTOR

The two basic material characteristics that greatly influence the

rolling process are the flow stress and the workability of the material being

rolled. The flow stress represents the resistanceof a material to plastic_

deformation, and the workability represents its ability to deform without

failure, regardless of the magnitude of the local stress and strain rate

required for deformation. In rolling of airfoil shapes, relatively moderate

strains and strain rates are encountered in the deforming material. Consequent-

ly, the response of the alloys of interest must be determined in the practical

range of temperatures, strains, and strain rates. Another important variable

to be characterized is the friction factor (ratio of frictional shear stress to

shear flow stress) at the-tool-material interface.

Flow Stress and Its Determination. For a given metal, the flow stress

is most commonly obtained by conducting the uniform compression tests without

barreling (10) . In this test, a well-lubricated, short cylindrical specimen,

machined from the material under study, is compressed between a pair of hardened flat

parallel platens. At hot-working temperatures, the test is conducted in a fixture,

as- shown'in Figure 6. The flow stress of a'material is influenced by the

conditions of the deformation process, mainly the temperature ofdeformation (2),

the degree of deformation or the strain (e) and the rate of deformation or the

strain rate (e)	 Therefore, the uniform compression tests must be conducted at

the temperature and the strain-rate conditions that exist in the practical

deformation process, under consideration. The degree of deformation, or the strain,

is generally defined in terms of logarithmic (true) strain e. In uniform upset

test, the strain e is given as below:
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e = ln 	
h]
	 ^1)

where	 ho = initial sample height

h = instantaneous sample height

The strain rate a is the derivation of strain a with respect to

time or:

de dh	V
E -
	

_	 _

 dt	 hdt	 h 	

^2)

where	 V = instantaneous compression speed

In all metalworking operations, except in uniform compression, a and
t

e values vary within the deforming material. 	 Consequently, in using strains and

'	 strain rates in practical rolling operations, average values must be employed.-
;1
s

Workability and Its Determination. 	 Workability of a metal represents

its ability to deform without failure, regardless of the magnitude of the local

stress and strain rate required for deformation.	 The nonuniform compression test

and the torsion test are two of the most commonly used methods for evaluating

workability of metals and alloys
(
11)Although there is no general agreement

as to which test gives the best result, it was decided to measure workability

using the nonuniform compression test,, since the stresses in compression of H

cylinders and rolling of shapes are primarily compressive in nature.	 In these
i

testsi, a cylindrical specimen is compressed under two flat platens without any

lubrication.	 The workability of the material is measured in terms of percent

reduction in height to ,-visible fracture on the specimen surface.

1
Direction of	 Neutral surface
metal flow

Ring specimen
Upper die

T

Lower die	 1

FIGURE 6.	 METAL FLOW IN RING COMPRESSION TEST

I
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Friction Factor and Its Determination with the Ring Test. Friction at

the tool-workpiece interface is another important process variable which needs

characterization in order to be used in making predictions from analytical models.

For this purpose, the friction factor associated with the actual rolling conditions

is determined by using the well-established Ring Test (12) . The ring test consists

of compressing a flat ring-shaped specimen to a known reduction, Figure 6. The

change in internal and external diameters of the forged ring is very much dependent

upon the friction at the tool-specimen interface. The internal diameter of the

ring is reduced if the interface friction is large; increased if friction is low.

Thus, the change in the internal diameter represents a simple method for evaluating

interface friction.

In hot forming, as die temperatures usually are lower than billet

temperatures, die chilling results. This effect influences the frictional

conditions, and it is included in the measurement of the friction factor by

using the ring test at hot-forging temperatures. Die chilling, however, also

influences the temperature of the deforming billet and, consequently, its

flow stress. It is, therefore, difficult to estimate the actual flow stress,

a, and the friction factor, f, (or the shear factor, m) under practical rolling

conditions. If these two values are known, shear stress, T, is given by:

T = Q 
m
	 6 f	 (3)

To obtain the magnitude of the friction, the internal diameter of the

compressed ring must be compared with the values predicted by using various

friction factors, f, or shear factors, m. For this purpose, the upper-bound

analysis and the associated computer program were developed earlierat Battelle

are available for use (1 2)The computer program mathematically simulates the

ring-compression process for given shear factors, m, by including the bulging

of the free surfaces. Thus, ring dimensions for various reductions in height

Y

	

	 and shear factors (m) can be determined. This is the conventional way of

representing theoretical calibration curves used in evaluating friction with
the ring test.



12

In determining the value of the shear factor (m) for a given

experimental condition, the measured dimensions (reduction in height and

variation in internal diameter) are placed on the appropriate calibration

figure. From the position of that point with respect to theoretical curves

given for various m's, the value of the shear factor (m), which existed in the

experiment, is obtained.

MATERIAL DEFORMATION STUDIES

Materials

As mentioned earlier, mild steel (AISI 1018) as model cold rolling material

and Ti-6A1-4V alloy as typical hot-working material were selected. INCONEL 718

(INCO 718) was selected as a material currently being used in cold rolling of

airfoil sections. The nominal composition of these materials is given in Table I.

All the materials were ordered in round bar stock. The mild steel bars

were cold drawn, the Ti-6A1-4V and INCO 718 bars were hot finished, rough ground

and solution treated. The specimens for uniform compression tests were machined

from 12.7 mm diameter bar stock, whereas the ring specimens were machined from

19.05 mm diameter bar stock. All the specimens were cut in the longitudinal

direction, annealed at appropriate temperatures and shot blasted prior to testing

(except Ti-6Al-4V).

Flow Stress

In the present work, specimens were machined to a nominal diameter of

12.7 mm (0.500 inch), a nominal height of 19.1 mm (0.750 inch), and sharp corners

were broken. Mild steel and INCO 718 specimens were cleaned with acetone and

placed on teflon sheets in between hardened steel platens (65 Rockwell C). The

test conditions are summarized in Table II.
s

The AIS'I 1015 tests were conducted in a Baldwin universal testing'

machine of 267 kN (60,000 lb) capacity. More load was required for INCO 718;

hence, a 445 kN (100,000 lb) capacity machine was used. The teflon sheets were

replaced at every 10% reduction in order to ensure adequate lubrication and 	 n'

prevent_ bulging. Tbree specimens of each material were tested and the load- 	 #j

displacement curve was recorded.

La-
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TABLE I. NOMINAL COMPOSITION OF THE ALLOYS USED IN THE PRESENT PROGKAII

AISI 1018 Steel

C 0.15 - 0.20 Mn 0.60 - 0.90

P,max 0.040 S,max 0.050

Fe Balance

Ti-6Al-4V Alloy

Al 5.5 - 6.75 V 3.5	 - 4.5

Fe 0.30 0 0.20

C 0.10 N 0.05

H 0.0125 Ti Balance

INCONEL 718 Alloy*

Cr 18.28 Fe 17.70

Al 0.65 Ti 1.03

Mo 3.07 Cu 0.17

Cb + Ta 5.15 C 0.04

Mn 0.15 Si 0.17

Cu 0.04 S 0.003

P 0.013 B 0.002

b Ni -Balance (53.43)

* As supplied by the vendor.
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TABLE II. UNIFORM COMPRESSION TEST CONDITIONS	 {

MATERIAL	 CONDITION	 TEST TEMP.	 TEST MACHINE	 CROSSHEAD SP. LUBRICANT

AISI 1015 Annealed at 	 Room	 Baldwin	 0.02 inch/min Teflon Sheet
1600 F for 1 hr Temperature Capacity 60.000 	 0.010 inch	 j
Furnace Cooled	 (lb)

INCO 718	 Annealed at	 Room	 Baldwin	 0.02 inch/min Teflon Sheet
1800 F for 1 hr Temperature Capacity 100.000 	 0.010 inch
Air Cooled	 (lb)

i
TI-6Ak-4V As Received	 1700 F	 Baldwin	 1 inch/min	 Window Glass

Capacity 60.000
(lb)

NOTES: l) Nominal dimensions of all samples were 0.500-inch diameter x 0.750-inch high.

2) During the tests that were conducted at room temperature, the lubricant
(teflon sheet) was renewed at every 10 percent reduction.
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The Ti-6A1-4V tests were conducted under isothermal conditions at

927 C (1700 F) using powdered window glass as lubricant. Ti-6A1-4V was tested

at 927 C as it is a typical hot-working temperature for this alloy. The

experimental fixturing is il-lustrated in Figure 7. A spiral groove was machined

at the ends of each specimen to enhance lubricant retainment and ensure uniform

upset conditions. Three specimens were tested and the load-displacement curve

was recorded. From the load-displacement curves, the necessary calculations to

obtain the flow stress versus strain curves, given in Figures 8 through 10 were

made using a simple computer program.

The microstructure of Ti-6A1-4V compression test specimens was examined

at the NASA-Lewis Research Center. Sections perpendicular to the applied stress

(cross section) and parallel to the appliedstress (longitudinal section) were

mounted, polished, and etched (2 parts HC1, 1 part HF) for the as-received

material and the six isothermally compressed specimens. In addition, a piece of

as-received alloy, which was subjected to a heat treatment (placed in furnace at

approximately 677 C (1250 F); slowly heated to 927 C (1700 F) over 2 hr; held

for a few minutes at 927 C (1700 F); air cooled) designed to simulate the thermal

portion of the compression test cycle was also examined.

The microstructure of as-received alloy is shownin Figure 11. The

structure consists of large alpha grains surrounded by small beta and alpha grains.

This microstructure is similar in appearance to that shown in Figure 2724 of the

Metals Handbook, -Vol. _7 (Reference 14) and is the result of a fabrication schedule

involving work above the beta transus temperature followed by significant amounts

of work in the two phase (alpha plus beta) temperature range. The microstructure

of the heat-treated material is shown in Figure 12. It consists of primary alpha

(large alpha grains present before heat treatment, see the longitudinal section

of Figure 11), acicular alpha, and intergranular beta. This microstructure is

similar to that shown in Figures 2713 and 2714 of the Metals Handbook, Vol.7

(Reference 14). Comparison of Figures 11 and 12 indicates that heat treatment is

tending to form on equiaxed microstructure about lOpm in diameter; however,

definite signs (primary alpha) of the as-received microstructure remain.

In general, the microstructures of the tested samples`(6 samples with

true strain ranging from -0.37 to -0.71) are identical and consist of equiaxed

alpha grains about 4um in diameter and intergranular beta (very small distinct

particles), as shown in Figure 13. The microstructure is somewhat similar to
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FIGURE 7.	 EXPERIMENTAL SET UP ON A UNIVERSAL TESTING
MACHINE FOR HOT UPSET TESTS
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those in Figures 2712 and 2719 of tho Metals Handbook, Vol. 7 (Reference 14).

Comparison of the microstructures of the tested specimens to the heat-treated

specimen (Figure 12) indicates that working has fully developed a small equiaxed

grain structure which is apparently not significantly affected by the work levels

investigated in this study (true strains ranging from -0.37 to -0.71). attempting

to correlate the observed microstructure with mechanical behavior, it appears that

some critical amount of work (approximately 10%, see Figure 9) must be introduced

in order to start recrystallization. Once started, recrystallization is a dynamic

process with the observed grain size remaining essentially constant over strain

range investigated. This observation agrees with Luton and Sellars 
(15) 

who

indicated that the dynamic recrystallized grain size is function of the flow stress.

Workability

Workability tests wera conducted for AISI 1015 and INC0 718 at room

temperature. 12.7 mm (0.5-inch) diameter, 19.1 mm (0.750-inch) long nonlubricated

cylindrical specimens were compressed in a universal testing machine until cracks

appeared. AISI 1015 specimens were compressed 70 percent without any cracks, at

which point the test was stopped. INCO 718 specimens showed classical 45 degree

cracks at approximately 56 percent + 2 percent reduction consistently. Figure 14

shows an INCO 718 specimen which cracked at 56 percent reduction in height and an

uncracked AISI 1015 steel s pecimen which was compressed to 70 percent reduction in

height. Workability tests of Ti-6A1-4V have not been conducted as vet.

(a)	 (bi

FIGURE 14. DEFORMED SAMPLES FROM NONUMIFORM COMPRESSION TESTS FOR
DETERMINING WORKABILITY: (a) INCO 718 Specimen after 56
Percent Reduction, (b) AISI 1015 Steel Specimen after 70
Percent Reduction

It
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Friction Factor

In the present work, ring tests with AISI 1015 and INCO 718 were

conducted at room temperature using essentially the same experimental set up

as that used for uniform compression and workability tests. Ring specimens

were machined to have 19.1 mm (0.750-inch) OD x 9.52 mm (0.375-inch) ID x 6.35

mm (0.250-inch) height. Rings were upset between flat hardened platens to

approximately 15, 30 and 40 percent reduction in height. In order to approximate

the friction conditions, which are present during cold shape rolling in practice,

the rings were dipped into a drawing lubricant (Turco Draw 300) prior to upsetting.

After the tests, the dimensions of the rings were measured. The friction shear

factor m was determined from the variation of the internal ring diameter by using

the theoretical calibration curves given in Figure 15. The results show that the

friction factor m is approximately 0.3 for INCO 718 and 0.25 for AISI 1015

Figure 16 shows AISI 1015 steel rings before deformation and after 20, 30 and 40

percent reduction in height.

The ring tests for Ti-6A1-4V, which must simulate the actual conditions

of isothermal rolling, were postponed. These will be conducted at a later date

after the conditions of the isothermal rolling tests are established.

ANALYSTS AND PREDICTION OF METAL FLOW

In rolling of shapes, the material elongates in the rolling direction

as well as it spreads in the transverse direction. Thus, an analysis of defor-

mation in rolling of airfoil shapes includes not only the determination of roll

torque and the location of the neutral plane, but also the determination of

spread in the transverse direction. The purpose of the present analysis is to

determine the distribution of metal flow during rolling of a bar with an initial

arbitrary section through a pair of rolls with airfoil-like contours. Based on

this analysis, a computer program named SHPROL was coded to simulate the metal

flow in rolling of airfoil shaneG.



a^
UL

a
40

0+c
cr-

0 30

n^

w
E
0

° 20y

U)c
c
m 10
0
a^

a^
°

0

5

-in

-20

INCO	 718
1.0

0.2

0. 15

C
0.05

r	 70
S

R

5
3	 '

60

50

0	 10	 20	 30	 40	 50	 60	 70

Reduction in Height, percent

FIGURE 15.

	

	 THEORETICAL CALIBRATION CURVES AND E.YPERDIENTAL POINTS FOR
DFTERMINING FRICTION FROM UPSETTING 6:3:2 RINGS



MINN

FIGURE 16. NISI 1015 RINGS BEFORE AND AFTER DEFOP-MATION

(Left to Right: Reduction in Height 0, 20,
30 and 40 Perce::t, Respecti-.,ely)



f

I

27
i

The present analysis employs the upper-bound type theory to predict

the distribution of metal within the deformation zone between the rolls. One -

essential feature of applying the upper-bound technique to the present

uncontained steady-state metal flow problem is to find a kinematically admissible

velocity field which does not change the volume shape, and satisfies the volume

constancy and the velocity boundary conditions. It is usually very difficult to

find an admissible velocity field for problems involving general configurations

even under nonsteady-state conditions. The condition of steady-state makes the

problem of determining an admissible velocity field even more difficult.

Therefore, a modular approach, somewhat similar to the finite-element method, is

developed here and the following simplifying assumptions are made in performing

the present analysis:

(1) An airfoil shape can be considered as an aggregate

of slabs, as shown in Figure 17.

(2) Plane sections perpendicular to the rolling direction

remain plane during rolling. Thus, the axial velocity

(i.e., velocity in rolling x-direction) at any section

perpendicular to the rolling direction is uniform over

the cross section.

(3) The velocity components in the transverse y, and the

thickness z directions are functions of x and linear

in y and z coordinates, respectively (see Figure 17).

The above assumptions correspond approximately to actual metal flaw

conditions and have been shown to yield good predictions of metal flow in

rolling of plates.

Approach. The method used in solving the present problem is somewhat

similar to the finite-element method in the sense that the deformation zone is

divided into quadrilateral elements on the x-y plane, as shown in Figure 17. The

divisions in the transverse (y-) direction are made such that the velocities

normal to the dividing lines are zero. Thus, these lines represent streamlines

of metal flow. However, a finite number of velocity discontinuities occur

across the planes perpendicular to x-y plane and passing through these stream-

lines. The divisions along the longitudinal (x) direction, lines T i-Ti , are

t
	

made arbitrarily. Similarly, a finite number of velocity discontinuities occur

L"
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across the y-z planes passing through these transverse lines, T l-Ti , dividing

the deformation zone.

•

	

	 It is assumed that the top and bottom surfaces of eachelement can be

approximated by tapered planes, and the cross section of each element by a

rectangle, as shown in Figure 18, where the area under a rectangle with broken
i

lines is equal to the area of the original element. With this assumption, it is

possible to treat each element as a plate for which it is possible to derive a

kinematically admissible velocity field.

Velocity Field. The kinematically admissible velocity in the deformation

zone for an element i is then given by:

{

Ai(xo)___

V =
4x U vx U A

i 
(x)

Vy Uvy U 
f1 (y Y)

=	 =x f
l - Y 	 (4)

h'
1
 (z - 2)

VZ =UvZ =Uvx 
hl-Z

where V. , Vy , VZ are the velocity components in the x, y, z directions, respectively.

U is the velocity of incoming strip and Ai (x) is the area of cross section of the

element at x. f, h, y and z are given in Figure 19 and the prime denotes a deriva-

tive with respect to x. In Figure 19	 is the local coordinate system of an

element.

i

I_
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The components of the strain-rate field can be derived from

Equations (4). If e x , Ey , and 6 z represent the normal strain-rate components

and Yxy and Yxz are the shear strain rates, then

av	 av	 av
eyU ax , E y =u — y , Ez=u aZ'

(5)

avX 	av	 , air	 av

	

_ ( 	 X	 Z
Yxy U
	

ay + ax	
and 

Yxz U ` 2z + Dx

Total Energy Rate. The total energy rate of the process consists of the

energy rate of plastic deformation, energy rate associated with velocity discon-

tinuities and the energy rate to overcome the frictional restraint.

The energy rate of plastic deformation, E p , for an element is given

as follows:

Ep

	

	 f a E dV	 ,	 (6)

V

where a is the flow stress of the deforming material, V is the volume of the

element, and a is the effective strain rate given by:

E_ ? (e 
2 +E 2 +E 2 + 1,^ 2 + 1 Y 2)

3	 x	 y.
	 z	 2 xy	 2 xz

The energy rates associated with velocity discontinuities are due to

shearing along the planes of velocity jumps. Across the transverse sections,

velocity discontinuities can occur along the y- and the z- directions. Velocity

discontinuities across the longitudinal sections can occur along the longitudinal

1
direction and the z-direction. The energy rate due to velocity discontinuity
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where AV is the velocity jump across the area A.

Energy is dissipated in overcoming the friction at the roll-workpiece

interface. If AU is the velocity differential at the roll-workpiece interface

with surface area S, the energy dissipation due to friction, Eft is given as

below.

if = m ° t AU _I dS
Y S

where m (0 < m < 1) is the friction shear factor at the interface.

The total energy dissipation rate, E', is the sum of the deformation,

energy rate, the energy rates due to velocity discontinuities and the friction

energy rate. The detailed derivations of each term will be included in the

final report. E is a function of unknown spread profiles w l and w2 (see Figure

17) and the location of the neutral plane x n . The unknown coefficients of wl

and w2 and xn are determined by minimizing the total energy rate. The minimiza-
o

tion of E with respect to unknown parameters.is done by numerical techniques.

In order to keep the number of unknown variables to a minimum, the curves y =

w1 (x) and y = w2 (x) are considered as a third order polynomials, each with two 	 3

unknowns. The location of the neutral 'plane, x = x , is an additional unknown. 	 1
n

Thus, a total of five independent variables, which are determined by minimization

of the total energy rate, are sufficient for the formulation of the problem.

Computer Program. Based on the above modular upper-bound analysis, a

system of computer programs, named SHPROL, was developed to predict metal flow in

rolling of airfoil shapes. SHPROL is coded in FORTRAN IV and requires approximately

60,000 octal words of memory space in a CDC Cyber 70 computer. The properties of

the material being deformed are provided through a subroutine named MATE.RL.

All the input data to the computer programs SHPROL are transferred

through READ statements. This includes variables defining the number of elements

in the deformation zone, shape and location of the preform section, shape and

location of the upper and lower roll profiles, angular velocities of rolls,

friction factor at the roll-workpiece interface, temperature of workpiece, and

(8)
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some controlling variables for selecting proper options. A detailed description

of these variables will be given in the input preparation. The flow stress of

the deforming material, as a function of strain, strain rate and temperature, is 	
w

furnished through a subroutine named MATERL, and it needs to be inserted in the

program deck for the material under consideration.

The output from the program prints coordinates of the grid points,

spread profiles as functions of axial distance (in rolling direction) from roll

entry, the total energy dissipation rate and its various components, the location

of the neutral plane, the extension rate as a function of axial distance, and the

strain, strain rate and flow stress distribution in the deforming material. The

output corresponds to a minimum total energy rate, which is minimized by a simplex

method with respect to various unknown parameters. At the end of the execution,

the output from the minimization routine is written on TAPE7. If further calcula-

tions are required, for example, to reduce the error of minimization, the contents

of TAPE7 are read into TAPES and calculations are restarted from the point where

they were left rather than from the beginning.

The computer program SHPROL was used to study the metal flow in

finish rolling of GE's H-369 airfoil shape, which is used for stationary vanes

in Stage 4 of the F-101 engine. The inlet strip shape was taken as the actual

vane shape, except that its thickness was approximately 15 percent larger than

the desired vane thickness. The rolling simulation was carried out using flow

properties of mild steel, which was selected as a model materialin the present

investigation. Figure 20 schematically shows the results predicted by SHPROL.'

These values agree closely with the experimental observations in rolling of the

same shape from INCO 718 at General Electric Company(16)

The details of the computer program SHPROL will be included in the

Final Report, together with instructions for preparing input to the program and

a list of the important variable names used in the program SHPROL.

IL
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MODELING FOR LOAD AND STRESS ANALYSIS

The objective of this effort is to derive a model for calculating the

stress distribution on the rolls, the roll-separating forces and roll torque.

The "Slab Method" was used in deriving the technique for load and stress

analysis. The stress analysis, together with appropriate logic_ for handling

geometry variation, was programmed for general use. The resulting computer

program, ROLPAS, is capable of calculating the roll-separating forces, stress

distribution and roll torque for most a;.rfoil-like shapes. It can process

rounds, slabs, diamonds, airfoils, but not T, H, U or other such shapes with

a protrusion.

Description of Slab Method. The slab method, sometimes called

"elementary theory" in European literature is an approximate method for

analyzing plastic deformation problems and was originally applied by Siebel
to various forming processes.

When applying the slab method, the following are usually assumed:

(a) The material is isotropic and incompressible.

(b) Elastic deflections are negligible.

(c) Inertial forces are negligible.

(d) Plane surfaces in the material remain plane.

(e) Flow stress, a, is constant in the deformation

zone studied.

(f) The shear stress due to friction is expressed as

T = fa, where f = friction factor.

(g) Material flows according to von Mises' flow rule,

i.e., for plane-strain: deformation: o 
z 

axx _ - 2 Q

for axisymmetric deformation: 
oz - or	

a

In light of the above assumptions, the equations for plane strain

upsetting under inclined platens are derived for a deformation element using
elementary stress analysis techniques.

IL,
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The stress distribution is given by:

KI	 he

oz = K1 1n (hb + K1Y) + Qze

where	 K,	 tan a + tan

K') = `K1a + fJ (2 + tan 2
a+ 

tan `s)
V3

The notation is described in Figure 21.

Description of the Computer Pro'gram ROLPAS. The ROLPAS system was

developed on a PDP-11/40 minicomputer using RT-11 operating system. In order

to run ROLPAS with no (or minor) modifications, the following hardware and

software components are required:

(1) A PDP-11 series computer (except LSI-11) with a

minimum of 28K words of memory operating under
d

RT-11.

(2) A random access external storage device such as

a disk cartridge drive or a dual floppy disk drive.

(3) A computer terminal (keyboard/printer) such as a

teletype or DEC writer.

(4) VT-11 display processor with -a graphics CRT and

Tight pen.

(5) An x-y plotter interfaced to the PDP-11. Needed

only if hard copies of the CRT graphics is desired.

ROLPAS was coded as an highly interactive program. Most man-machine

interaction is achieved by use of the light pen and the extensive interactive
capabilities of tine display processor. When running ROLPAS, a menu of

"operations" are displayed on the left side of the screen. Since ROLPAS is

coded as a series of mathematical operations on the data base, this mode of
interaction is a na-tural. At present, the following operations are defined:
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• Data input: Read part geometry from data file.

•	 Check input: Displa y the input geometry for visual checkout.

•	 Add Flash: Add flash to one or both sides of the input shape.

•	 Position Preform: Change the position of the preform with

respect to the rolls. The user is allowed to move the

preform anywhere on the screen with the light pen with

respect to the rolls.

Check Roll-Bite: Checks for roll-bite condition.

•	 Move the Rolls: Move the rolls up or down, thus opening

or closing the exit cross section. Used for simulating

different passes with the same rolls.

•	 Change Parameters: Can be called any time to change

system parameters.

* Simulate Rolling: Simulates the rolling process, displaying

each step as it steps from input to exit. The first step

of the simulat i on of roll i ng an arbitrary preform through

airfoil rolls is shown in Figure 22. 'Note that the input

shape is preserved where it is not deforming. Figure 23

shows the last step of the simulation as the product exits

from the rolls.

•	 Display Stress: Displays the stress distribution calculated

during simulation. The display Is a three-dimensional

representation. Figure 24 shows the stress distribution

obtained while roll i ng the preform of Figure 22. The shape

of the contact zone and the spread pattern can also be

ascertained from this display.

0 Display Percent Elongation: Displays the distribution of
elongation from entrance to exit along the exit cross

section.

•	 Summarize Results: Provide an up-to-date summar y of the
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At all times, only those operations that are logically allowable are

displayed on the menu. This prevents execution of illogical sequences of

operations by the user.

During simulation of rolling a shape, ROLPAS determines the geometry

of the actual contact zone, a plan view of which is shown in Figure 25.

Simulation starts at the entrance to the rolls and proceeds to the exit. At

each step, one cross section parallel to the zx plane is processed. The geometry

of the material at j-1'st section is input to the j'th roll section. Stress

distribution is calculated and the material is deformed according to the stresses

and the elongation criteria. At the completion of simulation from entrance to

exit, a stress analysis is performed along the streamlines of Figure 21. At

each mode of the mesh, the lower of the two a  values is accepted as the actual

stress. The stress surface is integrated to obtain the roll-separating force

and the roll torque.

ROLPAS is intended to be a tool for use in the design of roll passes.

To this end, the user, at his option, can simulate various designs and observe

the shape produced. He can try different roll separations for the same preform.

Using the percent elongation and percent reduction displays, he can sake design

decisions on how to modify his preform.

As discussed in the following sect gins, the results from ROLPAS have

compared favorably with experimental observations on rolling of slabs.

EXPERIMENTAL EVALUATION OF COMPUTER MODELS

Experimental evaluation of the model for metal flow analysis and the

model for load and stress analysis is being carried out in two phases. Under

the first phase, it was planned to evaluate these models by using the existing

experimental data on rolling of plates. However, the available_ experimental

data on plate rolling are not described adequately in the literature, and were

found insufficient for a complete evaluation of the models developed under this

project. Therefore, a set of plate-rolling trials, both cold and hot, under

controlled conditions, were undertaken. Under the second phase, it was planned

to experimentally evaluate the validity of the computerized models of shape
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rolling and roll-pass design by conductin g laboratory experiments to roll an

airfoil shape at room temperature from mild steel and under hot- isothermal

conditions from Ti-6Al-4V alloy. In addition, it was planned to evaluate the

computerized models with at least one commercial airfoil (or a similar shape)

rolling process that is currently in production.

Plate-Rolling Experiments

One-inch thick mild steel (AISI 1018) steel plates were selected in

widths of 1, 2, 3 and 4 inches, in order to have width-to-thickness ratios of

1, 2, 3 and 4, respectively. Nine-inch long rolling specimens were cut

from each size, and were annealed, shot blasted and cleaned. Half of each

size of specimens were cold rolled and the other half were hot rolled at 1000 C

on an instrumented two-high rolling mill with 16-inch diameter x 24-inch long

rolls. Specimens for hot rolling were heated in an electric furnace. No

lubricant was used under both cold and hot-rolling conditions. The cold

specc=ens were rolled up to a maximum of 25 percent reduction in height, in a

single pass, in steps of 5 percent reduction in height. The hot specimens

were rolled to a maximum of 50 percent reduction in height in a single pass,

in steps of 10 percent reduction in height. During each rolling trial, the

roll-separating force and the roll rpm were recorded on a brush recorder. The

current (in ampere) and the voltage (in volt) across the mill motor were also

recorded under idle and load conditions on a separate brush recorder. This

information, together with roll rpm, was needed to approximately estimate the

roll torque. The average height and width of each specimen before and after

roiling were recorded.	 -

Predictions of the roll-separating force and roll torque for cold

y	 rolling of plates were made by using the computer program ROLPAS. The friction

and flow stress data for mild steel were taken from Task I results of this

program. Theoretically predicted values of roll-separating force and roll

torque, together with the experimental results, are shown in Figures 21 6 and 27.

The agreement between theory and experiment appears to be very good.
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Predictions of the lateral spread and roll torque for cold rolling of

plates were made by using the computer program SHPROL. Again, the flow stress

and the friction data were taken from Task I results. As seen in Figure 28,

which shows lateral spread in plate rolling against reduction in height for

various width/height ratios of the plates, the agreement between theory and

experiment is good at small reductions in height. At large reductions in

height, the experimentally measured values of lateral spread are always higher

than the theoretically predicted values. This is mainly due to the fact that,

at large reductions, the rolls did not bite freely into the plates and a

certain amount of axial push was required to accomplish the rolling. Figure

29 shows total roll torque against reduction in height for various widths/height

ratios of the plate. The agreement between the predictions and the measurements

is reasonably good, except at large reductions for reasons described above.

Similar evaluations of the computer programs ROLPAS and SHPROL under

hot-rolling conditions are being conducted currently.

Shape-Rolling Experiments

In order to evaluate the computerized models of shape rolling and

roll-pass design,_ laboratory rolling experiments of an airfoil shape are being

planned. For this purpose, a General Electric turbine engine vane (GE, Evendale,
Vane for Stator, State 4, Drawing No. 9064184), as shown in Figure 30, will be

cold rolled from mild steel and hot.-isothermally rolled from Ti-6A1-4V alloy.

The roll shape and pass schedule is being designed by using the computer

programs ROLPAS and SHPROL.
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The laboratory experiments will be conducted on Battelle's two-high

rolling mill with 0.203 m (8-inch) diameter x 0.306 m (12-inch) wide

rolls (Figure 31). The mill drive is through a 50 hp, 230 V, do variable

speed motor, and the roll surface speed can be varied from 0.33 to 1.02 m/sec

(65 to 200 fpm). The rolls consist of tool steel (H13) arbors; the airfoil shape

is ground on a pair of sleeves keyed to these arbors, as shown in Figure 32.

The sleeves with the airfoil shapes are being made from hardened (R c 38 to 62)

tool steel for cold rolling of mild steel shapes and from IN 100 for hoc-isother-

mal rolling of Ti-6AI-4V shapes. The spacers are being machined and ground

from Waspaloy. Thus, the sleeves with airfoil shape will be changed for

various shapes and for cold and hot rolling of shapes. In hot-isothermal

rolling, the sleeves with airfoil shape will be heated with induction coils

wrapped around them, except nearthe entrance and exit from the rolls.

The rolls are being manufactured currently.
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SUMMARY OF RESULTS AND FUTURE WORK

Rolling of shapes is one of the least understood metal-deformation

processes. The factors influencing the shape-rolling process are intermixed

and complex so that roll and roll-pass design have been traditionally a purely

empirical, intuitive, and experienced-based art. The purpose of this program

is to develop and verify a computer-aided method for roll-pass design in

rolling airfoil shapes used in engine manufacturing.

A computer-aided design (CAD) system has been developed. This system

consists of (a) a mathematical model for predicting metal flow (elongation and

spread) in shape rolling, and (b) a model for estimating stresses in rolling

and for simulating the rolling process. These models utilize the upper-bound

method and the slab method of analysis, respectively. This CAD system requires

M	 information on material flow stress and workability and information on interface

friction as inputs. The predictions from the CAD system are being verified with

~	 respect to cold and hot-isothermal rolling of an airfoil shape. Finally, the

cost-benefits of using CAD in general and as applied to rolling of airfoil shapes

are being investigated.

This progress report covers (a) the determination of the flow stress,

friction and workability data, (b) the development of the CAD system for rolling

of airfoil shapes, (c) the evaluation of the CAD system using plate-rolling

experiments,and (d)- an outline of the shape-rolling experiments to be conducted.

The future work will consist of completing the cold and hot-isothermal rolling

trials, evaluating the CAD system, and developing a cost-benefit :analysis of
1

using CAD in metal-forming process design. A Final Report will be issued upon

completion of this program.
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