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ABSTRACT 

A program has been conducted for the investigation of the 

Initial work was concerned with attempts to define 

Four optical materials 

effects of solar radiation a s  encountered in a space environment, 
on glasses. 
the space environment. Secondly, a literature review was made on 
radiation damage mechanisms in glasses. 
were exposed to simulated solar and particulate radiation in a 

space environment. 
change in transmittance while optical crown glass and ultra l o w  
expansion glass darkened appreciably. 

Sapphire and fused silica experienced little 
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IITRI FLnal Report No. D6139 

EVALUATION OF THE EFFECTS OF SOLAR RADIATION ON GLASSES 

1.0 INTRODUCTION 

The objective of this research program was to evaluate the 
degradation of glass used on space structures due to electro- 
magnetic and particulate radiation in a space environment. 
data obtained can be used in choosing the optimum mechanically 
and optically stable glass materials f o r  various long term space 
applications. 

The 

I 

Glass components on a space structure must perform a wide 
variety of functions ranging from simple viewing ports for the 
visible region to lenses for UV and IR detection devices which 
transmit at wavelengths outside the visible region. Thus, degrada- 
tion is a function of the intended use. For example, many IR 
transmitting materials may darken in the space environment to near 
opaqueness in the visible region, but their IR transmission remains 
virtually unaffected so that the functionality is maintained. 

The space environment to be encountered by space vehicles 
is extremely complex, involving particulate as well as ultraviolet 
radiation. The penetrating radiation environment may result from 
a variety of sources of which the most important are probably 
cosmic radiation, trapped radiation, auroral radiation, and solar 
flare radiation. It is possible that such high energy protons 
and electrons will have a more significant effect on glasses 
than does ultraviolet, and that synergistic effects from the 
variety of radiations will occur. 

In the sections which follow, an analysis of the space 
environment ana its effects on optical materials is presented. 
The 
for 
are 

results of the research program to establish basic guidelines 
choosing optimum materials are discussed. Recomendntioas 
made for future work. 
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2.0 BACKGROUND 

Four areas of 
materials,  t he  space 
environnent , and the  

irqortance were addressed i n  t h i s  program: 
environment, the  response of materials t o  t h e  
se lec t ion  of s t ab le  materials.  

2 .1  O p t i c a l  Materials for Spacecrafts 

The materials used aboardspaeecraft fo r  op t i ca l  appl icat ions 
are i n  general those which transmit i n  the so l a r  spectrum, nom- 
ina l ly  from 200 nm t o  3000 nm . For the region 200-1000 nm si1ica.n 
oxide based materials,  notably fused s i l i c a ,  have found wides: 
application. The se lec t ion  of su i tab le  opt ical  mater ia ls ,  howeve;., 
involves not  only i n i t i a l  op t i ca l  propert ies ,  but o p t i c a l  s t a b i l i t y ,  
mechanical properties and performance, and a host of other  considera- 
t ions ,  including contamination, contaminabili ty,  e l e c t r i c a l  proper- 
t i e s ,  r f  transparency, and, of course, cost .  

From a materials point of view, there a re  three regions of 
op t ica l  i n t e r e s t :  W (~300 nm) v i s i b l e  (300-700 nm), and near 
I R  (>700 nm). For W appl icat ions,  s i l i c a  appears optimum, 
although some a l k a l i  hal ides  might be considered; i n  any case,  i n  
W applications,  inorganic materials a r e  almost mandatory. Visible  
region applications qui te  probably can u t i l i z e  organic-based 
transparencies,  except where UV transparency i s  a l s o  e s sen t i a l .  
I R  appl icat ions,  both t r ad i t i ona l ly  and, qu i te  l og ica l ly ,  from 
materials i n i t i a l  properties and space s t a b i l i t y  considerations,  
have required inorganic materials. Organic materials inevi tably 
exhibi t  e i t h e r  IR "fingerprint" spectra ,  poor mechanical proper t ies ,  
o r  other objectional properties.  Simply s t a t ed ,  the primary 
c r i t e r i a  for  select ion of spacecraft  op t i ca l  materials a re  i n i t i a l  
propert ies ,  environmental s t a b i l i t y  and mechanical/phgsical/ 
environmental considerations.  Only one region, t h e  v i s i b l e ,  was 
investizated on this program, and t h e  n a t e r i a l s  were a l l  inorganic 
oxides. 
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2.2 Space Environmental Stability 

Perhaps the most unpredictable factor in the use of optfcal 
materials in spacecraft applications is environmental stability. 
This, of course, is due to the tremendous variability in the 
space environment itself, and the difficulty in adequately 
simulating it. 
particle environment varies so greatly in magnitude and is so 
sporadic that it is virtually impossible to estimate the long term 
performance of optical materials. Environmental stability thus 
depends on the materials involved, the environmental parameters 
and on time of exposure. 

At synchronous and greater altitudes the charged 

2.3 Space Environment(s) 

The environment existing at synchronous altitudes (and at 
interplanetary distances from the earth) depends primarily upon 
distance from the sun and time. 
constant, and the fluxes of the particulate components of the 
solar flux vary strongly with solar activity. 
period, however, the ecvironmental parameters tend to approach an 
average value. Attempts at reproduction of the space environment 
at any synchronous or greater altitude represent merely that - 
attempts to duplicate the space environment at synchronous and 
at interplanetary distances, The primary problem is the temporal 
definition of the space environment; althcugh the electromagnetic 
flux appears to be constant, the solar particulate flux is almost 
totally unpredictable. While in general, the character of the 
particulate flux is known, the spectral distribution (e.g., peak 
energy and peak width) of solar particulates varies with the solar 
substorm environment. In a substorm environment, the charged 
particle flux and the peak energy increase , as does the energy 
flux distribution. Even though the quantitative statistics may 
increase by several orders of magnitude, the average substom 
remains unpredictable. Particle fluxes and energies with respect 
to time are highly statistical. 

The electromagnetic flux is 

Over a 5-10 year 
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2.5 Optical and Mechanical Damage i n  Glasses 

The choice of materials for  v i sua l  applications on space- 
S i l i c a t e  materials are frequently c r a f t  is v i r t u a l l y  unlimited. 

employed. The choice arises from many coneiderations,  t he  most 
important of which i s  res is tance t o  rad ia t ion  damage, and 
darkening. 

The response of most op t ica l  materials t o  ionizing rad  j . . . . -  

t ion is such tha t  great care must be exercised in  t h e i r  selec-  
t ion.  Quite obviously, t h i s  choice must be based upon a 
knowledge of t he  spec t r a l  region i n  which high transmittance is 
required vs t h e  spec t r a l  region(s) i n  which op t i ca l  damage is 
induced. Though simply s t a t ed ,  the  problem is indeed extremely 
complicated. 
of e f f ec t s  a t  c i f f e r e n t  penetration depths. 

Different types of rad ia t ion  cause d i f f e ren t  types 

The mechanisms of degradation i n  transparent op t i ca l  
materials have been investigated extensively.  
approaches tend, however, t o  be sens i t i ve  t o  both materials and 
i r r ad ia t ion  parameters and conditions,  The e f f e c t s  of high 
energy electrons can be and of ten a re  grea t ly  d i f f e ren t  from 
those of high energy protons, and the e f f e c t s  of t h e  combination 
are frequently not a simple combination of t he  two. Some radia-  
t ion e f f ec t s  a re  op t i ca l ly  and/or thermally bleachable and others  
a re  annihilated upon exposure to  oxygen. Accordingly, care 
must be taken t o  assure proper characterization of t he  materials 
and proper  simulation of the space environment. Some materials 
display r a t e  e f f e c t s ,  possibly because they are d i e l e c t r i c s  and 
quickly build up la rge  e l e c t r i c a l  po ten t ia l s  upon exposure t o  
charged p a r t i c l e  radiat ion.  The influence of t h i s  charge 
buildup is a multiple m e :  it  discriminates against  a l l  radiat ions 
of l i k e  charge and equal o r  lesser  k i n e t i c  energy; d i s t o r t s  the 
incident beam geometricall:!; and induces an e l e c t r i c a l  stress 
in  t h e  material  which may predispose it to  mechanical f a i l u r e  
or t o  the formation of defects not otherwise possible o r  l i ke ly .  
Thus, the choice of operating parameters can be a c r i t i c a l  one. 

Mechanistic 
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Measuring t h e  spectral  transmittance of a test  material  
can a l so  be a d i f f i c u l t  matter. Most measurements have been 
made i n  a simple normal-normal transmission mode: the  sample i s  
illuminated a t  normal fncidence and the undiffvsed (normal) 
transmitted r a d i a t i m  is  detected.  Normal-hemispherical measure- 
ments a re  very uncommon, yet  i n  many apnl icat ions,  it i s  the  
hemispherical (diffuse) transmittance tha t  i s  needed. 

Theory regarding the transmittance vs angle of incidence 
and polar izat ion has been w e l l  established. Unfortunately, how- 
ever,  the  e f f ec t s  of radiat ion on the b id i rec t iona l  properties of 
op t ica l  glasses have not been studied. These propert ies  car. be- 
come very important, especially i n  th in  f i lm f i l t e r s  and ?;?ti- 
re f l ec t ion  coatings. 

The overa l l  spec t ra l  region i n  which rad ia t ion  damage i s  
i n f l i c t e d  i s  r e l a t ive ly  independent of t he  type of radiation. 
This i s  generally t rue  in  terms of spec t ra l ly  integrated t rans-  
mittance values. Differences, i n  terms of spec t ra l  e f f e c t s ,  can 
be e l i c i t e d  between electrons and protons; sometimes the  differences 
a re  subt le ,  requiring high wavelength resolut ion of the spectra.  

In  general ,  charge pa r t i c l e  radiat ion e f f e c t s  a r e  extremely 
d i f f i c u l t  t o  analyze, especially i n  a multi-component i r r ad ia t ion  
environment. Nevertheless, a complete theore t lca l  background i s  
avai lable .  The c l a s s i c  work of Se i tz  (Ref.4), f o r  example, pro- 
vides an extensive and detai led summary of rad ia t ion  e f f e c t s ,  
degradation mechanisms and s c l i d  s t a t e  anslyses of the  structure.  
of color centers.  Dexter's work (Ref. 5) established the  quanti-  
t a t i v e  relat ionships  between induced defect concentrations and the 
resu l tan t  op t ica l  e f f ec t .  

From careful  analyses (Refs. 6-8, e .g . )  3f the  transmittance 
spectra of fused s i l i c a  before and a f t e r  charged p a r t i c l e  i r r ad ia -  
t ion ,  we can discern clear ly  three major defects created i n  t h i s  
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material at 3 eV, 4.1 eV and 5.6 eV (Ref. 6). Similar aiialyses 
have been made f o r  other glass systems (e.g., Refs. 9-12), Work 
on alkali halides is even more el tensive (see, e.g., references 
in Ref. 4). 
are highly relevant, although the rasultls may not be. 

Many of the techniques developed in the cited studies 

For materials whose primary function is optical transparency 
transmittance measurements are essential. Such measurements must 
be made in-situ to avoid change on exposure to earth conditions. 

Apart from the mechanisms that u,Srrate in glasses to degrade 
their transmittarce properti.es, there are additional reasons for 
determining the effects of the radiation environment in space. 
Energetic charged particles (electrans and protons, principally) 
include fields in dielectric materials such as glasses. If field 
intensities exceed the local dielectric strength, material break- 
down (additional absorption, cracking, l o s s  oE vacuum integrity, 
etc.) may result. NASA, IITRI, and Boeing have all conducted 
studies in this area. 

2.5 Summary 

The space environment is extremely complex and variable, 
and depends on the particular mission and time of the mission. 
Tbe response of glass matcials in terms of optical and mechanical 
behavior must be analyzed :iith the most accurate definition of the 
electromagg tic and particulate radiation to be encountered. 

3.0 RESULTS A!lD DISCUSS1011 

The objective of the program wasto generate data in the 
following areas: 

1. Identification and quantification of the space radiation 
environment on a space station mission. 

2. Analysis of radiation damage mechadsms in different 
glasses, and determination of merit ranking for various glass 
sys tems . 
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3. Laboratory studies involving glass systems with an 
expected range of poor to excellent resistance to radiation 
damage. 

The research program was conducted in three phases which 
are as follows: 

1. Review of open literature and discussions with cognizant 
government/industrial personnel to accomplish points 1 and 2 above. 
Recoumiendation of glass systems representing poor to excellent 
resistance to radiation, for MSFC concurrence for laboratory studies. 

2. Space simulation studies of the aforementioned glass 
systems. Evaluation and analysis of induced changes in oTtical 
and mechanical properties. 

3. Recommendations for additional study. Details of these 
studies are presented in the following sections. 

3.1 Phase One: Background Studies 

3.1.1 Identification of Space Environment 

The highly complex and dynamic nature of a space environment 
demands in situ and current data for good definition. This type 
of information is best obtained from a source such as the Goddard 
Space Flight Center which continually monitors and anlayzes such 
data. IITRI has established a dialogue with Mr. Epaminondas G. 
Stassinopoulis, Senior Acquisition Scientist, Radiation Environment. 

Mr. Stassinopoulis pointed out that the space environment 
near the earth was extremely variable,both spacially and temporally. 
Photon radiation remains relatively constant at 1 Sun but particu- 
late radiation, which is mainly protons and electrons, strongly 
depends on the orbit of the 
during the time in 0rbj.t. 

spacecraft and the solar acti\;.ty 
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The space environment i n  which the  glasses are to  be used 
was  fur ther  discussed with M r .  Ron Nichols and Mr. Jer ry  Wright, 
Astrophysics, and with M r .  Peter P r i e s t ,  Space Programs, NASA/MSFC. 

The conclusion from these discussions was t h a t  average 
conditions should be selected f o r  the i n i t i a l  simulated s o l a r  
radiat ion experiments. 
e f f e c t  of var ia t ions from average. 

Later experiments could than explore t h e  

The conditions which were selected fo r  the space 
simulation t e s t ing  car r ied  out by fk. Lawrence Fogdall, 
b e i n g  Aerospace Company, are l i s t e d  below: 

Table I 
Space Simulation Testing Conditions 

Continuum Ultraviolet  Radiation (Xenon arc): suns 

Vacuum Ultraviolet  Radiation (121.6 nm): 1 Sun 

Electrons: 1 X 90’ e/crn2 - sec f lux  a t  50 KeV 

Protons: 

Temperature: 20°C 

Vacuum: greater  than 5 x Torr 

1 X lo’ P/cm2 - sec f lux a t  30 KeV 

These conditions do not exactly simulate conditions i n  
space s ince the higher energy electrons and protons a re  absent,  
but they should show any e f f ec t s  of so l a r  radiat ion on g lass  and 
are  within the equipment capab i l i t i e s .  

3.1. 2 Li terature  Review. Radiation Damage i n  Glasses 

The review of l i t e r a t u r e  to  analyze rad ia t icn  damage 
mechanisms in  glasses w a s  i n i t i a t e d  by a computer search of t h e  
technical l i t e r a t u r e  performed i n  conjunction with t h e  I I T R I  
Computer Search Center. 
the  period from 1964 to  date since an annotated bibliography of 

The search was primarily concerned w i t h  
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the  l i t e r a t u r e  from before 1964 was available.  The search s t ra tegy  
was t o  make a broad f i r s t  search with shallow indexing to  include 
a l l  possible documents,and then t o  sharpen it as f ami l i a r i t y  with 
the  l i t e r a t u r e  was  gained. The data  bases searched are l i s t e d  in 
Table 11. The r e s u l t s  are contained in Appendix A-Selective 
Bibliographs: The Effects of Radiation in  Glass. 

The types of rad ia t ion  damage t o  g lass  systems can be 
Loss of transmission at d i f f e r e n t  op t i ca l  and/or mechanical. 

wavelengths can occur due to:color center  formation: discolorat ion 
due to  valency changes in  t h e  chemical consti tuents;  and t o  
opacif icat ion from devi t t f f ica t ion .  Mechanical damage can be i n  the  
form of b r i t t l e  failure o r  breaking, p i t t i n g  from pa r t i cu la t e  
impingement causing lo s s  of transmission or flaws which can act as 
crack i n i t i a t o r s ,  or spa l l i ng  due t o  electrical  breakdown. 

The damage depends upon the glass  composition and thermal 
h is tory ,  the types of pa r t i cu la t e  radiat ion and the  wavelengths of 
electromagnetic radiat ion,  the  duration, energy spectrum and com- 
binations of radiat ion,  and the chemical and physical environment 
of t h e  glass .  
depending primarily on the type of radiat ion.  In f a c t ,  there  are 
so many parameters t ha t  it i s  impossible t o  make va l id  generaliza- 
t ions and a p r i o r i  predictions of glass performance. 

The damage can be e i t h e r  supe r f i c i a l  o r  bulk, 

3.1.3 Establishment of Glasses fo r  Space Simulation Studies 

In order t o  e s t ab l i sh  a m e r i t  ranking of various glasses ,  
a dialogue was conducted with D r .  Alfred G. Eubank4,Senior Sc ien t i s t ,  
Ceramics Materials,  NASA Goddard Space Fl ight  Center. Dr. Eubanks 
advises on the  select ion of op t i ca l  materials f o r  space missions of 
approximately oen year duration st& a s  t h e  Nimbus spacecraft .  The 
approach taken is  to use rad ia t ion  r e s i s t a n t  mater ia ls ,  o r  t o  prevent 
degradation. 

I l l  R E S E A R C H  I N S T I T U T E  

9 



0 
0 
0 

d 
w 
U 

- 
0 
0 
0 
L 

0 
0 
0 - 

0 
0 
0 

0 
0 
0 .. 
0 
c4 
d 

0 
0 * 

0 
0 
u) 

0 
0 
a0 

n 
H 

a 
U 
a a 
I 
0 
b 
m 
r( 

al 
U 
a a 
I 
U 
r- m 
r( 

aJ 
U 
od a 
I 
4 
fi m 
rl 

VI w 

3 

i a 
C 
W 

m 
c) 
rl 
m 

c b m m  c a+ o m  c 
..4 ...I 

h e 
V w 
@I m 
5t H 
10 

X 
A i  H w 
u m 
mvl v1 

4 

3 



I 

Their standard rad ia t ion  r e s i s t a n t  op t i ca l  mater ia ls  are 

I f  
sapphire and Corning 7940 fused s i l i c a  glass.  
for the frcmtelements of op t i ca l  systems whenever possible.  
other mater ia ls  must be used, a 2-3mm thick fused s i l i c a  glass  
window is  used i n  f ront  of the op t i ca l  components. The window 
ell .ainates almost 90% of the par t icu la te  radiat ion and a l so  the  
vtxy short  wavelength u l t r av io l e t .  
t h m  the equipment i s  designed t o  compensate for  t h e  degradation. 
Fcjr example, so l a r  c e l l  cover g lass ,  Corning 0020, degrades 
approximately 5% in  one year when exposed d i r e c t l y  t o  so l a r  
radiat ion.  Hence, f o r  a one year mission, the c e l l  i s  designed 
to  have an i n i t i a l  output which is  5% greater  than required. 

These a r e  used 

If a window can not be used, 

The conclusion from t h i s  discussion was tha t  sapphire or 
fused s i l i c a  glass  were the best  mater ia ls  avai lable  fo r  re- 
s i s t i n g  degradation by so la r  radiat ion i n  space. 

A fur ther  review of the l i t e r a t u r e  supported t h i s  conclusion 
and was used’to develop the following ranking of res i s tance  t o  
radiat ion damage : 

1. Excellent - sapphire 
2. Good - fused s i l i c a  
3. PLi r  - opt ica l  g lass  
4. Poor - u l t r a  low expansion glass  

These materials were chosen for  exposure i n  a simulated space 
environment for  the following reasons: 

1. Sapphire is exceptionally s t rong and hard (9 on the  
Mohs scale)  a-d i s  by a l l  reports  the best  mater ia l  for  r e s i s t -  
ing radiat ion damage. While it i s  not a glass ,  it is avai lable  
i n  sing;,: c rys ta l  form which i s  nearly a s  transparent a s  g lass  
and -eadily avai lable  i n  s i zes  up t o  1 2  inches diameter. 
Ca bide Czochralski grown sapphire c rys t a l s  were chosen s ince 

i n  quantity ior I C  substrates .  

Union 

ney are more uniform than Verneuil grown c rys t a l s  and are produced 
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2. Fused s i l ica  i s  a c lose  second to sapphire in  s t rength 
and hardness (7 on the Mohs scale)  and i n  rad ia t ion  resis tance.  
It has been used on numerous space missions. It is avai lab le  
i n  sizes up t o  10 f e e t  i n  diameter. Corning 7940 synthe t ic  fused 
s i l ica  was  chosen because it is a w e l l  characterized, uniform 
material with very low so la r  absorptance. 

3. Optical  crown glass  is used i n  a n y  o p t i c a l  devices 
as the  f ron t  element of t he  object ive lens .  It w a s  observed to  
darken when exposed d i r e c t l y  t o  the  space environment i n  Spacelab 
experiments. Shott BK-7 was chosen s ince it is the most widely 
used glass  of t h i s  type and readi ly  ava i lab le .  

4. Ultra low expansion glass  i s  a very in te res t ingopt ica l  
material which is almost irmmrme t o  thermal shock f a i l u r e .  Window 
made of t h i s  material, e i t h e r  simple or composite, could be used 
f o r  observation during the thermal heating caused by reentry 
without f a i l y r e .  Corning 7971 w a s  chosen because it w a s  r ead i ly  
available.  

These four materials have had o r  may have wide appl icat ion 
i n  the  space program. 
atomic s t ruc tu re  w i l l  a i d  i n  analyzing rad ia t ion  damage i n  op t i ca l  
materials. 

Their differences i n  composition and 

I l l  R E S E A R C H  I N S T I T U T E  

12 



3.2 Phase -0: Space Simlstion Studies 

3.21  Simulated Space Exposure Apparatus 

The simulated space exposure for this program was 
performed in a facility at Boeing known as the CRETC (combined 
radiation effects test chamber). This facility was originally 
designed after completion of a number of years of testing 
thermal control coatings for government and corporate customers. 
It has a high quality of simulation of the space radiation 
environment as knowledge and the state-of-the-art will allow. 
Exposure capabilities include electron radiation and Lyman-a 
vacuum ultraviolet sources in addition to the usual proton 
accelerator and solar simulator. 

The space simulation capabilities of the CRETC facility 
can be summarized as follows: 

1. Continuum ultraviolet radiation (xenon arc discharge) 
at selectable intensities ranging from less than one 
solar constant to 20 solar constants (1 A.U.), 
simultaneously with : 

2. Electrons with energies between approximately 10 eV 
and 200 keV and/or protons with energies from 0.5 to 
85 KeV (kilo electron volts). Electrons of greater 
than 2, 15 KeV are foil-scattered; protons are 
magnetically analyzed. 

3. Vacuum ultraviolet radiation (VUV), primarily the Lyman-a 
wavelength of 1216 A, from a contained discharge (no 
introduction of contamination into vacuum chamber). 
Intensity selectable up to and above one W V  sun at 
1216 at 1 A . U .  

0 
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4. 

5 .  

6 .  

7. 

8. 

9 .  

Controlled temperatures f o r  test  and reference 
(standard) samples; temperatures range from -195OC - 
(-320'F) t o  +18OoC (+360"F). Temperature control  i s  
not interrupted f o r  measurements i n  the  chamber's 
integrat ing sphere. 

Vacuum pumping (both rough and f i n a l )  without resor t ing  
t o  organic and other  contaminating f lu ids .  
used is (a) dry nitrogen gas aspi ra t ion ,  (b) cryo-sorp- 
t ion ,  (c) large-surface LN2 cryogenic, and (d) ion 
pumping, t o  obtain a 5 x 10'8 t o r r  vacuum before t e s t i n g  
begins. 

The sequence 

Extensive automation, inter locks,  and sequential  shutdown 
procedures during unmanned night-time operations , t o  
allow as high a r e l i a b i l i t y  as  possible during long-term, 
continous tes t ing.  

High-precision spec t ra l  ref lectance data system with 
i n  s i t u  integrat ing sphere and double-beam spectrophoto- 
meter coupled to  a data-logging module whose output i s  
ready f o r  computer processing. 

Residual gas analysis  from 1-100 amu with scan rates 
down t o  C.l second/scan and minimum part ia l  pressure 
de t ec t ab i l i t y  of 2 ~ 1 0 ' ~ ~  t o r r .  

E lec t r ica l  discharge event counter w i t h  r e l a t i v e  magnitude 
indication. 

The CRETC u t i l i z e s  an integrat ing sphere reflectometer 
with detectors -- i n  s i t u .  
monochromator, and electronic  and l i g h t  chopping apparatus a r e  
external t o  the chamber. Sample reflectance measurements a re  made 
relative t o  the reflectance of the integrat ing sphere 's  magnesium 
oxide wall, Normalization t o  absolute ref lectance (derived from 

Only the  measurement l i g h t  sources,  
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National Bureau of Standards and other known reference measure- 
ments) is handled by computer s ince a l l  o r ig ina l  sample data is 
computer-process ed rout inely . 

The t h e m p h y s i c a l  property of chief i n t e r e s t  f o r  t h i s  
program, so l a r  absoqtance ,  i s  derived from so la r  ref lectance,  
which is defined as  

11s (A)R(X)dA 
Solar ref lectance,  Rs = 

/Is (A)dA 

where Is(X) is the so l a r  i r radiance as a function of wavelength 
A ,  and R(X) i s  sample ref lectance,  generally a function of A .  By 
measuring the  ref lectance of transmissive glasses with a s u i t a b l e  
metal backing (aluminum), double s e n s i t i v i t y  to  radiation-induced 
changes is obtained. The measurement beam passing through t h e  
integrat ing sphere makes a double-pass through the  sample, yield-  
ing a measurement proportional t o  change i n  transmission squared. 
This allowed*a more exact determination of dauage i n  the  various 
op t i ca l  qua l i ty  glasses  studied and compared during t h i s  program. 
In prac t ice ,  change i n  transmission generally w i l l  be found t o  be 
half  the measured change i n  ref lectance.  

Radiation dosimetry systems are  in tegra l  t o  the  CRETC and 
operating personnel have long-time experience i n  obtaining t h e  
pe r t inen t  i r r ad ia t ion  and exposure parameters. Faraday cups and 
tabs a re  both employed for measuring on-coming p a r t i c l e  rad ia t ion  
beams a t  the  sample plane. 

For u l t r av io l e t  rad ia t ion  parameters, sun r a t e s  are 
determined from radiometer output leve ls  taken with and without a 
UV-absorbing f i l t e r  over the radiometer detector.  Since the  W- 
absorbing f i l t e r  also excludes ten percent of the incident rad ia t ion  
a t  wavelengths longer than the u l t r a v i o l e t  ( f ive percent r e f l ec t ion  
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a t  each surface of the  f i l t e r ) ,  a correct ion i s  made f o r  
radiometer readings taken with the f i l t e r  over the  radiometer 
sensor. For a t o t a l  rad ia t ion  reading T and a W-f i l t e r ed  
reading F, 10 T - - F  

9 
Ultraviolet  S u n  rate = ( 8 . 0 )  ( o . ~ 9 1 )  = 1.37 (T - 1.11 F), 

where 8.0 is the radiometer s e n s i t i v i t y  i n  m i l l i v o l t s  per incident 
sun (=0.14 watts/cm2) and 0.91 represents t he  u l t r a v i o l e t  content 
of the sun (at a i r  mass zero).  
radiat ion in tens i ty  across the  sample a r ray  i s  determined by 
"mapping" with the  radiometer held i n  a precise  j i g .  
unifromity of u l t r a v i o l e t  rad ia t ion  can be maintained within plus 
o r  minus 10 percent across the  sample array. 
indicate  tha t  the u l t r a v i o l e t  content of t he  long-arc xenon 
sources i s  approximately io percent of t h e i r  t o t a l  input.  Charac- 
t e r i s t i c  of g l l  xenon arcs, the shape of t h i i  u l t r a v i o l e t  content 
i s  somewhat more s teep than the  sun a t  a i r  mass zero (AMO). 

The uniformity of u l t r a v i o l e t  

Spa t ia l  

The F and T values 

3.2.2 Specimen Preparation 

Specimens were not  avai lable  from a s ing le  source and i n  
most cases were obtained d i r ec t ly  from the  manufacturer. 
sapphire specimens were obtained from the  Crystal  Products Division 
of Union Carbide Corporation as standard opt ica l  windows 25 .4  mn 
diameter and 2 mm th ick ,  
standard windows, 25.4 mm diameter and 3mm thick obtained from 
Melles Griot Inc. ,  I rvine,  California.  The fused s i l i c a  and 
u l t r a  low ex: insion glasses were obtained from the  Corning Glass 
Works as rough cu t  discs .  
diameter and 3mm thick by t h e  Karl Lambrecht Corporation, Chicago, 
I l l i n o i s .  

The 

The op t i ca l  g lass  specimens were a l so  

They were ground and polished t o  2.5.4mm 

All the specimens were made of commercially produced 
materials.  
used to  produce specimens which were f l a t  within 1/4 wavelength of 

Standard indus t r i a l  p i t ch  polishing procedures were 
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l i g h t  per 25mm, p a r a l l e l  within 30 seconds of a rc ,  and surface 
qua l i ty  of 80-50 scratch and dig. 

Samples were cleaned and approximately one ha l f  of the 
surface of each sample was coated with aluminum and then with 
si l ica by vacuum evaporation. The coating provided a back 
surface mirror for  transmission opt ica l  measures by double 
ref 1 ec t ion. 

The samples of t he  selected glasses were furnished to  
Boeing Airospace Corporation. Brief descriptions of the  g lasses ,  

the  number of specimens supplied,  and the  number of each type put 
i n to  the  exposure array,  are indicated below. 

Table I11 
WINDOd MATERIALS FOX 

SPACE SIMULATION STUDIES 

GLASS TYPE NO. SUPPLIED NO. TESTED 

7971 '(low expansion glass)  
BK-7 (crown glass)  
7940 (fused s i l i c a )  
Sapphire (alpha-alumina) 

2 
2 
1 
1 

The test  array configuration was three horizontal  rows having two 
samples each. Each sample i s  apnroximately one inch i n  diameter, 
so a 2-inch by 3-inch (approximate dimensions) array was i r r ad ia t ed .  
The sample array,  a s  placed i n  t h e  Boeing CRETC I1 chamber, i s  
shown i n  Figure 1. 
c loses t  t o  the center of t h e  array.  
meter 's  measuring beam (approximately 1/4-inch square) measured 
the centers of the r e f l e c t i v e  halves during each periodic measure- 
ment cycle. 

The r e f l ec t ive  half  of  each sample was mounted 
The CRETC 11's spectrophoto- 
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The best  s i x  sam?les were selected by Roeing from t h e  t en  
supplied f o r  tes t ing .  The six ac tua l ly  i r r ad ia t ed  were specimen 
numbers 1 and 2 of type 7971; 2 and 3 of  type BK-7;  specimen 
number 1 of type 7 9 4 0 ;  and sapphire specimen number 1. These 
f u l l  designators and abbreviations used 
during ti.& program ere indicated below. 

DESIGNATION OF TESTED SAMPLES 

7971, Specimen #l 
7 9 7 1 ,  Specimen #2 
BK-7, Specimen #3 
BK-7, Specimen #2 
7940 ,  Specimen 81 
Sapphire, Specimen #l 

on data char t s  and graphs 
The t w o  BK-7 samples were 

CH4RT ABBREVIATION 

71-1 
71-2 
K-3 
K-2 
4-1 
s -1 

placed i n  the  top row of the exposure a r ray ,  t h e  two 7 9 i 1  samples 
i n  t h e  middle row, and t h e  sapphire ss ...p le and the  7940 sample i n  
the  bottom row. 

3 .2 .3  Exposure Conditions 

I r rad ia t ion  parameters were as  follows: 
1. Solar UV---one sun i n t ens i ty ,  assuming Earth o r b i t  and 

a i r  mass zero conditions;  0.2- t o  0.4-micrometer spec t r a l  content 
from xenon a rc  continuum; infrared X > 1.4 micrometer suppressed 
by water c o l m  around xenon arc; rad ia t ion  introduced in to  CRETC 
I1 chamber through fused s i l i c a  window, 

2 .  Vacuum W - o n e  sun in t ens i ty  at hydrogen Lyman-a wave- 
lenzth (1216 A ) ;  rad ia t ion  introduced i n t o  chamber through t h e  VW 
source ' s window. 

3. 
energy. 

4. 
introduced i n t o  chamber a f t e r  magnetic bending t n  separate  mass- 
me (H+)from 113 and other species.  

0 

Electrons-intensity (flux) 1 x lo9 e/cm*-sec, a t  50-KeV 

Protons-intensity 1 x l o 9  p/crn2-sec, at 30-KeV energy; 
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The protons were incident upon the  sample array a t  a ne r- 
normal angle. 
approximately, 30" from the normal. Their i n t e n s i t i e s  were 
increased by a factok equal t o  the  secant of 30°. 

The other forms of radiation were incident a t  angl t s  

Uniformity of radiat ion over the expostre array was c 10% far - 
so lar  W, + 20% f o r  vacuum W, + 15% for  protons,  and + - 5% f o r  
electrons.  
for  WV, + - 20% for  protons, and + - 20% fo r  e lectrons.  

- - 
Constancy with t i m e  was + - 10% f o r  so l a r  W, +O t o  -10% 

The r e f l ec t ive  coating of the  test samples was held a t  a 
temperature of 20°C throughout t he  test. A l l  six samples were 
mounted on a copper block through which water a t  2OoC was c i rcu la ted  
once and returned to  c i t y  drains.  

The l?ecimens were i n  a contamination-free hard vacuum through- 
out the i r r ad ia t ion  and measurement periods of the tes t .  
leve ls  were 5 x t o r r  during exposure periods and 2 x 
during spectra1,ref lectance measurement periods. Vacuiun was obtained 
with a sequence of (1) dry nitrogen p? aspi ra t ion ,  (2) cryosorption, 
(3) cryogenic surface pumping, and ( 1  ion pumping (no mercuric o r  
organic pumping f lu ids  was involved i n  aqy st,ep). 

Average 
t o r r  

The hemispherical spectral  ref lectance value of each sample was 
measured using precise  double-beam, ratio-recording equipment indicated 
in  Figure 2. Measurernentswere made befo-a exposure, a f t e r  50 hours, 
a f t e r  154 hours, a f t e r  313 hours, and f i n a l l y  a f t e r  503 hours exposurc, 
without breaking vacuuL 
electron fluence value, were reached: 

A t  these times the  follos.-ng proton and 

T9ble f'! 
IRRADIATION PARAMETERS VS EXPOSURE TIME 

EXPOSURE TIME PROTON FLUENCE ELLCTRON FLUENCE 

0 
50 

154 
313 
50 3 

0 0 
2 1.8 x 1015 p/cm2 1.8 x l O I 4  e/cm 

5.5 1014 5 . 5  1014 
1.1 1015 1.1 1015 
1.8 x 1015 1.8 1015 
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Each reflectance measurement scan resulted in an 11 x 17 
inch chart of continuous wavelength data (not point-by-point data). 
To provide very fine wavelength resolution, separate charts were 
made for three wavelength regions: 250-360 nanometers, 360-710 
nanometers, and 710-2500 nanometers. Simultaneously with each scan, 
computer cards were punched and subsequently processed to provide 
graphs of absolute reflectance data as a function of wavelength. 

3.2.4 Effect of Simulated Space Exposure 

Examination of the specimens immediately after 503 hours of 
exposure showed that the optical glass and ultra low expansion 
glass specimens were appreciably darkened. All specimens were 
intact after exposure and did not suffer any gross mechanical 
damage. Since the specimens vere in good thermal and electrical 
contact with the water cooled co?per support, heating and charge 
buildup during exposure was probably very small. 

The graphs of the absolute reflectance data for each specimen 
are shown as Figures 3 through 8. 
uppermost data curve was obtained before exposure began. 
reflectance changes were measured at each subseqi*.st measurement 
point, with the 503-hour data being representer! by the lowest curve. 

In each of these figures the 
Small 
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The computer program a l s o  calculated so la r  absorptance 
coeff ic ient  values corresponding t o  each measurement. 
are tabulated below. 

These 

Table V 

SOLAR ABSORPTANCE CHANGES IN SPACE SIXILATION STUDIFS 

Sapphire 
&om #3 
crown #2 

Iawexp.  #l 
b w q .  #2 
Fused Si l ica  

The change i n  
s pe c imen s was 
measurements. 

A p lo t  

0.115 0.118 .009 8.3% 
'\ 

0.109 0.112 0.110 
0.994 0.106 0.109 0.114 0.118 0.024 25.5% 
0.098 0.109 0.111 0.117 0.119 .021 21.4% 

0.085 0.092 0.094 0.101 0.108 -023 27.1% 
0.083 0.088 0.090 0.097 0.108 .O2O 24.1% 
0.078 0.080 0.081 0.088 0.087 ,009 11.4% 

t h e  absorptance of t he  sapphire and fused s i l i c a  
very small and close t o  the  l i m i t  of  accuracy of t h e  

of these as values against  exposure time (Figure 9) 
shows tha t  sapphire and fused s i l i c a  have no pa r t i cu la r  i n i t i a l  
increase i n  a s ,  but ra ther  have a somewhat regular as increase r a t e .  
On t he  other hand, the  crown glass samples and the  low expansion 
glass samples underwent la rger  i n i t i a l  increases i n  as t ha t  tapered 
t o  the s lower r a t e s  of increase more typical  of fused s i l i c a  and 
sapphire. (Scat ter  i n  as data values,  such as fused s i l i c a  a t  
313 hours, up t o  about 0.005 can be a t t r i bu ted  t o  the  ref lectance 
measuring apparatus).  
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3.2.5 Discussion 

Examination of the  ref lectance curves before and a f t e r  
various exposure times does not reveal the  appearance of any 
new absorption regions. Rather fo r  a l l  specimens there  i s  an 
increase i n  absorption with time, pa r t i cu la r ly  a t  t he  fundamental 
absorption edge i n  the  near W. The damage threshold,  i f  any 
mist be less than 50 hours fo r  a l l  specimens. Tke absorptions 
a t  1 . 2  and 2.2 micrometers of t he  glasses r e l a t e  t o  t h e  s i l i c a  
network and i s  most pronounced i n  fused s i l ica .  Sapphire being 
alumina does not ,  of course, show these.  It is  surpr is ing t h a t  
the  modifiers present i n  the  op t i ca l  glass  and ultra-low expan- 
sion glass  do not r e s u l t  i n  new absorptance regions a f t e r  
exposure although they do suppress the s i l i ca  regions i n  op t i ca l  
glass .  

The change i n  so la r  absorptance values with t i m e  which was 
tabulated i n  the  previous sect ion and shown i n  Figure 9 indicate  
tha t  the  a p r i o r i  ranking of t h e  op t i ca l  materials was cor rec t .  
Sapphire i s  the most s t ab le  material followzd by fused s i l i c a ,  
crown op t i ca l  g lass  and ultra-low expansion g lass .  
applications fused s i l i c a  may be preferred because of i t s  lower 

For some 

i n i t i a l  absorption s ince even a f t e r  503 hours of exposure it  was 
s t i l l  less than sapphire. The op t i ca l  g l x s  and u l t r a  low 
expansicn glass on the  other hand, while reasonably s t a b l e  f o r  
503 hours, would have l imited usefulness for  very long space 
missions. 

3.3 Phase Three: Recommendations fo r  Future Work 

The recommendations for future  work can be divided in to  
two par t s :  fur ther  analysis  of the specimens exposed i n  t h i s  
program and addi t ional  exposures i n  simulateci space environments, 

The pr incipal  method used to  characterize the specimen 

Although t h i s  i s  a t rue 
changes induced by simulated so la r  exposure was op t i ca l  t rans-  
mittance by a re f lec ted  beam technique. 
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measurement of the  change i n  transparency of the m a t e r i a l s , i t  
did not add i n  indent i f icat ion of the mechanisms causing t h e  
changes since the  change was f a i r l y  uniform. 

Thermoluminescence i s  a technique which can be used t o  
iden t i fy  changes caused by i r r ad i t i on .  In  t h i s  method, t he  
specimen i s  slowly heated and the l i g h t  given off  (luminescence) 
i s  measured. 
from t h e  brightness and ( )lor of the  l i g h t  as a function of 
temperature, 

The mechanism causing the changes may be inferred 

Windows f o r  space missions a r e  required t o  not only h3ve 
transparency but a l s o  mechanical i n t e g r i t y  a f t e r  exposure. 
There were no gross changes i n  the in t eg r i ty  of t he  specimens 
but there  may have been subt le  changes which could cause 
f a i l u r e  on ,a long mission. The e f f e c t  of exposure on the 
mechanical properties of t he  specimens can be determined by 
measuring the microhardness as a function of depth from the  
exposed surface.  

Additional exposures should be car r ied  out under conditions 
i n  which eadl parameter: l i g h t  and pa r t i cu la t e  beams; a r e  varied.  
This would allow the e f f e c t  of each parameter t o  be determined, 
and also allow the presence of syngeris t ic  in te rac t ions  t o  be 
detected. 

Longer exposures a l so  should be made s ince 503 hours i s  
only about three weeks, an ins igni f icant  p a r t  of the  t i m e  
required fo r  some long space missions which may l a s t  fo r  years.  

Par t icu lar  emphasis should be placed on studying t h e  e f f e c t s  
on op t i ca l  glass materials which a r e  su i t ab le  fo r  f ront  elements 
of op t i ca l  instruments o r  which a re  avai lable  i n  large s i zes .  
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