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ABSTRACT

A program has been conducted for the investigation of the
effects of solar radiation as encountered in a space environment,
on glasses. Initial work was concerned with attempts to define
the space environment. Secondly, a literature review was made on
radiation damage mechanisms in glasses. Four optical materials
were exposed to simulated solar and particulate radiation in a
space environment. Sapphire and fused silica experienced little
change in transmittance while optical crown glass and ultra low
expansion glass darkened appreciably.
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IITRI Final Report No. D6139
EVALUATION OF THE EFFECTS OF SOLAR RADIATION ON GLASSES

1.0 INTRODUCTION

The objective of this research program was to evaluate the
degradation of glass used on space structures due to electro-
magnetic and particulate radiation in a space environment. The
data obtained can be used in choosing the optimum mechanically
and optically stable glass materials for various long term space
applications.

!

Glass components on a space structure must perform a wide
variety of functions ranging from simple viewing ports for the
visible region tc lenses for UV and IR detection devices which
transmit at wavelengths outside the visible region. Thus, degrada-
tion is a function of the intended use. For example, many IR
transmitting materials may darken in the space environment to near
opaqueness in the visible region, but their IR transmission remains
virtually unaffected so that the functionality is maintained.

The space environment to be encountered by space vehicles
is extremely complex, involving particulate as well as ultraviolet
radiation. The penetrating radiation environment may result from
a variety of sources of which the most important are probably
cosmic radiation, trapped radiation, auroral radiation, and solar
flare radiation. It is possible that such high energy protons
and electrons will have a more significant effect on glasses
than does ultraviolet, and that synergistic effects from the
variety of radiations will occur.

In the sections which follow, an analysis of the space
environment and its effects on optical materials is presented.
The results of the research program to establish basic guidelines
for choosing optimum materials are discussed. Recommendations
are made for future work.
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2.0 BACKGROUND

Four areas of importance were addressed in this program:
materials, the space environment, the response of materials to the
environnent, and tue selection of stable materials.

2.1 Optical Materials for Spacecrafts

The materials used aboardspacecraft for optical applications
are in general those which transmit in the solar spectrum, nom-
inally from 200 nm to 3000 nm . For the region 200~1000 nm silicon
oxide based materials, notably fused silica, have found wides<t
application. The selection of suitable optical materials, howevey,
involves not only initial optical properties, but optical stability,
mechanical properties and performance, and a host of other considera-
tions, including contamination, contaminability, electrical proper-
ties, rf transparency, and, of course, cost.

From a materials point of view, there are three regions of
optical interest: UV (<300 nm) visible (300-700 nm), and near
IR (>700 nm). For UV applications, silica appears optimum,
although some alkali halides might be considered; in any case, in
UV applications, inorganic materials are almost mandatory. Visible
regicn applications quite probably can utilize organic-based
transparencies, except where UV transparency is also essential.
IR applications, both traditionally and, quite logically, from
materials initial properties and space stability considerations,
have required inorganic materials. Organic materials inevitably
exhibit either IR "fingerprint'" spectra, poor mechanical properties,
or other objectional properties. Simply stated, the primary
criteria for selection of spacecraft optical materials are initial
properties, environmental stability and mechanical/physical/
environmental considerations. Only one region, the visible, was
investigated on this program, and the materials were all inorganic
oxides,
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2.2 Space Environmental Stability

Perhaps the most unpredictable factor in the use of optical
materials in spacecraft applications is environmental stability.
This, of course, is due to the tremendous variability in the
space environment itself, and the difficulty in adequately
simulating it. At synchronous and greater altitudes the charged
particle environment varies so greatly in magnitude and is so
sporadic that it is virtually impossible to estimate the long term
performance of optical materials. Environmental stability thus
depends on the materials involved, the environmental parameters
and on time of exposure.

2.3 Space Environment(s)

The environment existing at synchronous altitudes (and at
interplanetary distances from the earth) depends primarily upon
distance from the sun and time. The electromagnetic flux is
constant, and the fluxes of the particulate components of the
solar flux vary strongly with solar activity. Over a 5-10 year
period, however, the ervironmental parameters tend to approach an
average value. Attempts at reproduction of the space environment
at any synchronous or greater altitude represent merely that -
attempts to duplicate the space environment at synchronous and
at interplanetary distances. The primary problem is the temporal
definition of the space environment; althcugh the electromagnetic
flux appears to be constant, the solar particulate flux is almost
totally unpredictable. While in general, the character of the
particulate flux is known, the spectral distribution (e.g., peak
energy and peak width) of solar particulates varies with the solar
substorm environment. In a substorm environment, the charged
particle flux and the peak energy increase , as does the energy
flux distribution. Even though the quantitative statistics may
increase by several orders of magnitude, the average substorm
remains unpredictable. Particle fluxes and energies with respect
to time are highly statistical.
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2.4 Optical and Mechanical Damage in Glasses

The choice of materials for visual applications on space-
craft is virtually unlimited. Silicate materials are frequently
employed. The choice arises from many considerations, the most
important of which is resistance to radiation damage, and
darkening.

The response of most optical materials to ionizing radi..-
tion is such that great care must be exercised in their selec-
tion. Quite obviously, this choice must be based upon a
knowledge of the spectral region in which high transmittance is
required vs the spectral region(s) in which optical damage is
induced. Though simply stated, the problem is indeed extremely
complicated. Different types of radiation cause different types
of effects at c¢ifferent penetration depths.

The mechanisms of degradation in transparent optical
materials have been investigated extensively. Mechanistic
approaches tend, however, to be sensitive to both materials and
irradiation parameters and conditions, The effects of high
energy electrons can be and often are greatly different from
those of high energy protons, and the effects of the combination
are frequently not a simple combination of the two. Some radia-
tion effects are optically and/or thermally bleachable and others
are annihilated upon exposure to oxygen. Accordingly, care
must be taken to assure proper characterization of the materials
and proper simulation of the space environment. Some materials
display rate effects, possibly because they are dielectrics and
quickly build up large electrical potentials upon exposure to
charged particle radiation. The influence of this charge
buildup is a multiple cne: it discriminates against all radiations
of like charge and equal or lesser kinetic energy; distorts the
incident beam geometrically; and induces an electrical stress
in the material which may predispose it to mechanical failure
or to the formation of defects not otherwise possible or likely.

Thus, the choice of operating parameters can be a critical one.
IIT RESEARCH INSTITUTE
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Measuring the spectral transmittance of a test material
can also be a difficult matter. Mcst measurements have been
made in a simple normal-normal transmission mode: the sample is
illuminated at normal incidence and the undiffivsed (normal)
transmitted radiation is detected. Normal-hemispherical measure-
ments are very uncommon, yet in many apnlications, it is the
hemispherical (diffuse) transmittance that is needed.

Theory regarding the transmittance vs angle of incidence
and polarization has been well established. Unfortunately, how-
ever, the effects of radiation on the bidirectional properties of
optical glasses have not been studied. These properties car be-
come very important, especially in thin film filters and ~nti-
reflection coatings.

The overall spectral region in which radiation damage is
inflicted is relatively independent of the type of radiation.
This is generally true in terms of spectrally integrated trans-
mittance values. Differences, in terms of spectral effects, can
be elicited between electrons and protons; sometimes the differences
are subtle, requiring high wavelength resolution of the spectra.

In general, charge particle radiation effects are extremely
difficult to analyze, especially in a multi-component irradiation
environment. Nevertheless, a complete theoretical background is
available. The classic work of Seitz (Ref.4), for example, pro-
vides an extensive and detailed summary of radiation effects,
degradation mechanisms and sclid state anslyses of the structure
of color centers. Dexter's work (Ref. 5) established the quanti-
tative relationships between induced defect concentrations and the
resultant optical effect.

From careful analyses (Refs. 6-8, e.g.) Jf the transmittance
spectra of fused silica before and after charged particle irradia-
tion, we can discern clearly three major defects created in this
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material at 3 eV, 4.1 eV and 5.6 eV (Ref. 6). Similar aualyses
have been made for other glass systems (e.g., Refs. 9-12)., Work
on alkali halides 1is even more e: tensive (see, e.g., references
in Ref. 4). Many of the techniques developed in the cited studies
are highly relevant, although the results may not be.

For materials whose primary function is optical transparency
transmittance measurements are essential. Such measurements must
be made in-situ to avoid change on exposure to earth conditions.

Apart from the mechanisms that u;2arate in glasses to degrade
their transmittarce properties, there are additional reasons for
determining the effects of the radiation environment in space.
Energetic charged particles (electrons and protons, principally)
include fields in dielectric materials such as glasses. If field
intensities exceed the local dielectric strength, material break-
down (additional absorption, cracking, loss of vacuum integrity,
etc.) may result. NASA, IITRI, and Boeing have all conducted
studies in this area.

2.5 Summary

The space environment is extremely complex and variable,
and depends on the par+icular mission and time of the mission.
The response of glass matevials in terms of optical anc mechanical
behavior must be analyzed ..ith the most accurate definition of the
electromagrn +ic and particulate radiation to be encountered.

3.0 RESULTS A'ID DISCUSSIOHN

The objective of the program was to generate data in the
following areas:

1., 1Identification and quantification of the space radiation
environment on a space station mission.

2. Analysis of radiation damage mechanisms in different
glasses, and determination of merit ranking fo:r various glass
systems.

T RESEARCH INSTITUTE
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3. Laboratory studies involving glass systems with an
expected range of poor to excellent resistance to radiation
damage. '

The research program was conducted in three phases which
are as follows: '

1. Review of open literature and discussions with cognizant
government/industrial personnel to accomplish points 1 and 2 above.
Recommendation of glass systems representing poor to excellent
resistance to radiation, for MSFC concurrence for laboratory studies.

2. Space simulation studies of the aforementioned glass
systems. Evaluation and analysis of induced changes in ortical
and mechanical properties.

3. Recommendations for additional study. Details of these
studies are presented in the following sections.

3.1 Phase One: Background Studies

3.1.1 Identification of Space Environment

The highly complex and dynamic nature of a space environment
demands in situ and current data for good definition. This type
of information is best obtained from a source such as the Goddard
Spare Flight Center which continually monitors and anlayzes such
data. IITRI has established a dialogue with Mr., Epaminondas G.
Stassinopoulis, Senior Acquisition Scientist, Radiation Environment.

Mr. Stassinopoulis pointed out that the space environment
near the earth was extremely variable, both spacially and temporally.
Photon radiation remains relatively constant at 1 Sun but particu-
late radiation, which is mainly protons and electrons, strongly
depends on the orbit of the spacecraft and the solar acti. ity
during the time in orbit.
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The space environment in which the glasses are to be used
was further discussed with Mr. Ron Nichols and Mr. Jerry Wright,
Astrophysics, and with Mr. Peter Priest, Space Programs, NASA/MSFC.

The conclusion from these discussions was that average
conditions should be selected for the initial simulated solar
radiation experiments. Later experiments could than explore the
effect of variations from average.

The conditions which were selected for the space
simulation testing carried out by Mr. Lawrence Fogdall,
Boeing Aerospace Company, are listed below:

Table 1
Space Simulation Testing Conditions

Continuum Ultraviolet Radiation (Xenon arc): sunms

Vacuum Ultraviolet Radiation (121.6 nm): 1 Sun

Electrons: 1 X 909 e/cm2 - sec flux at 50 KeV

Protons: 1 X 109 P/cm2 - sec flux at 30 KeV

Temperature: 20°C

Vacuum: greater than 5 x 1078 Torr

These conditions do not exactly simulate conditions in
space since the higher energy electrons and protons are absent,

but they should show any effects of solar radiation on glass and
are within the equipment capabilities.

3.1. 2 Literature Review. Radiation Damage in Glasses

The review of literature to analyze radiaticn damage
mechanisms in glasses was initiated by a computer search of the
technical literature performed in conjunction with the IITRI
Computer Search Center. The search was primarily concerned with
the period from 1964 to date since an annotated bibliography of
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the literature from before 1964 was available. The search strategy
was to make a broad first search with shallow indexing to include
all possible documents, and then to sharpen it as familiarity with
the literature was gained. The data bases searched are listed in
Table I1I. The results are contained in Appendix A-Selective
Bibliographs: The Effects of Radiation in Glass.

The types of radiation damage to glass systems can be
optical and/or mechanical. Loss of transmission at different
wavelengths can occur due to: color center formation: discoloration
due to valency changes in the chemical constituents; and to
opacification from devitrification. Mechanical damage can be in the
form of brittle failure or breaking, pitting from particulate
impingement causing loss of transmission or flaws which can act as
crack initiators, or spalling due to electrical breakdown.

The damage depends upon the glass composition and thermal
history, the types of particulate radiation and the wavelengths of
electromagnetic radiation, the duration, energy spectrum and com-
binations of radiation, and the chemical and physical environment
of the glass. The damage can be either superficial or bulk,
depending primarily on the type of radiation. In fact, there are
so many parameters that it is impossible to make valid generaliza-
tions and a priori predictions of glass performance.

3.1.3 Establishment of Glasses for Space Simulation Studies

In order to establish a merit ranking of various glasses,
a dialogue was conducted with Dr. Alfred G. Eubanks, Senior Scientist,
Ceramics Materials, NASA Goddard Space Flight Center. Dr. Eubanks
advises on the selection of optical materials for space missions of
approximately oen year duration such as the Nimbus spacecraft. The
approach taken is to use radiation resistant materials, or to prevent
degradation.

IIT RESEARCH INSTITUTE
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Their standard radiation resistant optical materials are
sapphire and Corning 7940 fused silica glass. These are used
for the front elements of optical systems whenever possible. If
other materials must be used, a 2-3mm thick fused silica glass
window is used in front of the optical components. The window
elimninates almost 907% of the particulate radiation and also the
very short wavelength ultraviolet. If a window can not be used,
thun the equipment is designed to compensate for the degradation.
Fur example, solar cell cover glass, Corning 0020, degrades
approximately 5% in one year when exposed directly to solar
radiation. Hence, for a one year mission, the cell is designed
to have an initial output which is 57 greater than required.

The conclusion from this discussion was that sapphire or
fused silica glass were the best materials available for re-
sisting degradation by solar radiation in space.

A further review of the literature supported this conclusion
and was used to develop the following ranking of resistance to
radiation damage:

1. Excellent - sapphire
2. Good - fused silica
3. Fuir - optical glass
4, Poor - ultra low expansion glass

These materials were chosen for exposure in a simulated space
environment for the following reasons:

1. Sapphire is exceptionally strong and hard (9 on the
Mohs scale) and is by all reports the best material for resist-
ing radiation damage. While it is not a glass, it is available
in singic crystal form which is nearly as transparent as glass
and veadily available in sizes up to 12 inches diameter. Union
Ca bide Czochralski grown sapphire crystals were chosen since
ney are more uniform than Verneuil grown crystals and are produced
in quantity ior IC substrates.

1IT RESEARCH INSTITUTE
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2. Fused silica is a close second to sapphire in strength
and hardness (7 on the Mohs scale) and in radiation resistance.
It has been used on numerous space missions. It is available
in sizes up to 10 feet in diameter. Corning 7940 synthetic fused
silica was chosen because it is a well characterized, uniform
material with very low solar absorptance.

3. Optical crown glass is used in many optical devices
as the front element of the objective lens. It was observed to
darken when exposed directly to the space environment in Spacelab
experiments. Shott BK-7 was chosen since it is the most widely
used glass of this type and readily available.

4. Ultra low expansion glass is a very interesting optical
material which is almost immume to thermal shock failure., Window
made of this material, either simple or composite, could be used
for observation during the thermal heating caused by reentry
without failyre. Corning 7971 was chosen because it was readily
available.

These four materials have had or may have wide application
in the space program. Their differences in composition and
atomic structure will aid in analyzing radiation damage in optical
materials.

1T RESEARCH INSTITUTE
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3.2 Phase "wo: Space Sirmulation Studies

321 Simulated Space Exposure Apparatus

The simulated space exposure for this program was
performed in a facility at Boeing known as the CRETC (combined
radiation effects test chamber). This facility was originally
designed after completion of a number of years of testing
thermal control coatings for government and corporate customers.
It has a high quality of simulation of the space radiation
environment as knowledge and the state-of-the-art will allow.
Exposure capabilities include electron radiation and Lyman-a
vacuum ultraviolet sources in addition to the usual proton
accelerator and solar simulator.

The space simulation capabilities of the CRETC facility
can be summarized as follows:

1. Continuum ultraviolet radiation (xenon arc discharge)
at selectable intensities ranging from less than one
solar constant to 20 solar constants (1 A.U.),
simultaneously with:

2. Electrons with energies between approximately 10 eV
and 200 keV and/or protons with energies from 0.5 to
85 KeV (kilo electron volts). Electrons of greater
than ~ 15 KeV are foil-scattered; protons are
magnetically analyzed.

3. Vacuum ultraviolet radiation (VUV), primarily the Lyman-a
wavelength of 1216 K, from a contained discharge (no
introduction of contamination into vacuum chamber).
Intensity selectable up to and above one VUV sun at
1216 & at 1 A.U.

11T RESEARCH INSTITUTE
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Controlled temperatures for test and reference
(standard) samples; temperatures range from -195°C -
(-320°F) to +180°C (+360°F). Temperature control is
not interrupted for measurements in the chamber's
integrating sphere.

Vacuum pumping (both rough and final) without resorting
to organic and other contaminating fluids. The sequence
used is (a) dry nitrogen gas aspiration, (b) cryo-sorp-
tion, (c) large-surface LN, cryogenic, and (d) ion
pumping, to obtain a 5 x 1078 torr vacuum before testing
begins.

Extensive automation, interlocks, and sequential shutdown
procedures during unmanned night-time operations, to
allow as high a reliability as possible during long-term,
continous testing.

High-precision spectral reflectance data system with

in situ integrating sphere and double-beam spectrophoto-
meter coupled to a data-logging module whose output is
ready for computer processing.

Residual gas analysis from 1-100 amu with scan rates
down to C.l1 second/scan and minimum partial pressure
detectability of 2x10-1l torr.

Electrical discharge event counter with relative magnitude
indication.

The CRETC utilizes an integrating sphere reflectometer

with detectors in situ. Only the measurement light sources,
monochromator, and electronic and light chopping apparatus are
external to the chamber. Sample reflectance measurements are made

relative to the reflectance of the integrating sphere's magnesium

oxide wall,

Normalization to absolute reflectance (derived from

(IT RESEARCH INSTITUTE
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National Bureau of Standards and other known reference measure-
ments) is handled by computer since all original sample data is
computer-processed routinely.

The thermophysical property of chief interest for this
program, solar absorptance, is derived from solar reflectance,
which is defined as

fIg(A)R(A)dA
fIg(1)dx

Solar reflectance, Rg =

where I (1) is the solar irradiance as a function of wavelength
A, and R(A) is sample reflectance, generally a function of A. By
measuring the reflectance of transmissive glasses with a suitable
metal backing (aluminum), double sensitivity to radiation-induced
changes is obtained. The measurement beam passing through the
integrating sphere makes a double-pass through the sample, yield-
ing a measurement proportional to change in transmission squared.
This allowed'a more exact determination of dawage in the various
optical quality glasses studied and compared during this program.
In practice, change in transmission generally will be found to be
half the measured change in reflectance.

Radiation dosimetry systems are integral to the CRETC and
operating personnel have long-time experience in obtaining the
pertinent irradiation and exposure parameters. Faraday cups and
tabs are both employed for measuring on-coming particle radiation
beams at the sample plane.

For ultraviolet radiation parameters, sun rates are
determined from radiometer output levels taken with and without a
UV-absorbing filter over the radiometer detector. Since the UV-
absorbing filter also excludes ten percent of the incident radiation
at wavelengths longer than the ultraviolet (five Percent reflection
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at each surface of the filter), a correction is made for
radiometer readings taken with the filter over the radiometer
sensor. For a total radiation reading T and a UV-filtered

reading F, T 10 .
CH

Ultraviolet Sun rate = (8.0) (0.091) =1,37 (T - 1.11 F),

where 8.0 is the radiometer sensitivity in millivolts per incident
sun (=0.14 watts/cm?) and 0.91 represents the ultraviolet content
of the sun (at air mass zero). The uniformity of ultraviolet
radiation intensity across the sample array is determined by
"mapping' with the radiometer held in a precise jig. Spatial
unifromity of ulcraviolet radiation can be maintained within plus
or minus 10 percent across the sample array. The F and T values
indicate that the ultraviolet content of the long-arc xenon
sources is approximately 10 percent of their total input. Charac-
teristic of all xenon arcs, the shape of this ultraviolet content
is somewhat more steep than the sun at air mass zero (AMO).

3 2.2 Specimen Preparation

Specimens were not available from a single source and in
most cases were obtained directly from the manufacturer. The
sapphire specimens were obtained from the Crystal Products Division
of Union Carbide Corporation as standard optical windows 25.4 mm
diameter and 2 mm thick. The optical glass specimens were also
standard windows, 25.4 mm diameter and 3mm thick obtained from
Melles Griot Inc., Irvine, California. The fused silica and
ultra low ex’ insion glasses were obtained from the Corning Glass
Works as rough cut discs. They were ground and polished to 2.5.4mm
diameter and 3mm thick by the Karl Lambrecht Corporation, Chicago,
Illinois.

All the specimens were made of commercially produced
materials. Standard industrial pitch polishing procedures were
used to produce specimens which were flat within 1/4 wavelength of
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light per 25mm, parallel within 30 seconds of arc, and surface
quality of 80-50 scratch and dig.

Samples were cleaned and approximately one half of the
surface of each sample was coated with aluminum and then with
silica by vacuum evaporation, The coating provided a back
surface mirror for transmission optical measures by double
reflection.

The samples of the selected glasses were furnished to
Boeing Airospace Corporation. Brief descriptions of the glasses,
the number of specimens supplied, and the number of each type put
into the exposure array, are indicated below.

Table III

WINDOW MATERIALS FOR
SPACE SIMULATION STUDIES

GLASS TYPE NO. SUPPLIED NO. TESTED
7971'(10w expansion glass) 3 2
BK-7 (crown glass) 3 2
7940 (fused silica) 2 1
Sapphire (alpha-aiumina) 2 1

The test array configuration was three horizontal rows having two
samples each. Each sample is apnroximately one inch in diameter,

so a 2-inch by 3-inch (approximate dimensions) array was irradiated.
The sample array, as placed in the Boeing CRETC II chamber, is
shown in Figure 1. The reflective half of each sample was mounted
closest to the center of the array. The CRETC II's spectrophoto-
meter's measuring beam (approximately 1/4-inch square) measured

the centers of the reflective halves during each periodic measure-
ment cycle.
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The best six samnles were selected by Roeing from the ten
supplied for testing. The six actually irradiated were spe:imen
numbers 1 and 2 of type 7971; 2 and 3 of type BK-7; specimen
number 1 of type 7940; and sapphire specimen number 1. These
full designators and abbreviations used on data charts and graphs
during th.e program z2re indicated below. The two BK-7 samples were

DESIGNATION OF TESTED SAMPLES CHART ABBREVIATION

7971, Specimen #1 71-1
7971, Specimen #2 71-2
BK-7, Specimen #3 K-3
BK-7, Specimen 32 K-2
7940, Specimen #1 4-1
Sapphire, Specimen #1 S-1

placed in the top row of the exposure array, the two 7971 samples
in the middle row, and the sapphire sz.ple and the 7940 sample in
the bottom row.

3.2;3E§posuré Conditions

Irradiation parameters were as follows:

1. Solar UV—one sun intensity, assuming Earth orbit and
air mass zero conditions; 0.2- to O.4-micrometer spectral content
from xenon arc continuum; infrared X > 1.4 micrometer suppressed
by water column around xenon arc; radiation introduced into CRETC
II chamber through fused silica window.

2. Vasuum UV—one sun intensity at hydrogen Lyman-o wave-
leneth (1216 A); radiation introduced into chamber through the VUV
source's window.

3. Electrons—intensity (flux) 1 x 10° e/cmz-sec, at 50-KeV
energy.

4, Protons—intensity 1 x 109 p/cmz-sec, at 30-KeV energy;
introduced into chamber after magnetic bending ton separate mass-
one (H+)from Hi and other species.
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The protons were incident upon the sample array at a ne r-
normal angle. The other forms of radiation were incident at angles
approximately, 30° from the normal. Their intensities were
increased by a factor equal to the secant of 30°.

Uniformity of radiation over the exposure array was + 107 for
solar UV, + 20% for vacuum UV, + 15% for protons, and + 5% for
electrons. Constancy with time was + 10% for solar UV, +0 to -10%
for VUV, + 20% for protons, and + 20% for electroms.

The reflective coating of the test samples was held at a
temperature of 20°C throughout the test. All six samples were
mounted on a copper block through which water at 20°C was circulated
once and returned to city drains,

The ..-ecimens were in a contamination-free hard vacuum through-
out the irradiation and measurement periods of the test. Average
levels were 5 x 10~8 torr during exposure periods and 2 x 1078 torr
during spectral. reflectance measurement periods. Vacuum was obtained
with a sequence of (1) dry nitrogen g=3 aspiration, (2) cryosorptionm,
(3) cryogenic surface pumping, and (+ ion pumping (no mercuric or
orzanic pumping fluids was involved in any step).

The hemispherical spectral reflectance value of each sample was
measured using precise double-beam, ratio-recording equipment indicated
in Figure 2, Measurements were made befo. 2 exposure, after 50 hours,
after 154 hours, after 313 hours, and finally after 503 hours exposurc,

without breaking wvacuu. At these times the follow.ng proton and
electron fluence value. were reached:

able TV
IRRADIATION PARAMETFRS VS EXPOSURE TIME
EXPOSURE TIME PROTON FLUENCE ELLCTRON FLUENCE
0 0 0
50 1.8 x 1014 p/em? 1.8 x 104 e/cm?
154 5.5 x 1014 5.5 x 1014
313 1.1 x 1013 1.1 x 1012
503 1.8 x 1015 1.8 x 1015
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Each reflectance measurement scan resulted in an 11 x 17
inch chart of continuous wavelength data (not point-by-point data).
To provide very fine wavelength resolution, separate charts were
made for three wavelength regions: 250-360 nanometers, 360-710
nanometers, and 710-2500 nanometers, Simultaneously with each scan,
computer cards were punched and subsequently processed to provide
graphs of absolute reflectance data as a function of wavelength.

3.2.4 Effect of Simulated Space Exposure

Examination of the specimens immediately after 503 hours of
exposure showed that the optical glass and ultra low expansion
glass specimens were appreciably darkened. All specimens were
intact after exposure and did not suffer any gross mechanical
damage. Since the specimens were in good thermal and electrical
contact with the water cooled copper support, heating and charge
buildup during exposure was probably very small.

The graphs of the absolute reflectance data for each specimen
are shown as Figures 3 through 8. In each of these figures the
uppermost data curve was obtained before exposure began. Small
reflectance changes were measured at each subseqrent measurement
point, with the 503-hour data being represented by the lowest curve.
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The computer program also calculated solar absorptance
coefficient values corresponding to each measurement. These
are tabulated below.

Table V
SOLAR ABSORPTANCL CHANGES IN SPACE SIMULATION STUDIES
PRE-IRRAD AFTER EXPOSURE FOR INCREASE AFTER
SAMPLE IN VACUMM 50 HR. 154 HR. 313 HR, 503 HR. 503 HOURS
Sapphire 0.109 0.112 0.110 0.115 0.118 .009 §.3%
Crown #3 0.094 0.106 0.109 0.114 0.118 . 024 25.5%
Crown 2 0.098 0.109 0.111 0.117 0.11¢ 021 21.4%

Low exp. #1 0.085 0.092 0.094 0.101 0.108 .023  27.1%
Low exp. 2 0.083 0.088 0.090 0.097 0.108 .020  24.17%
Fused Silica 0.078 0.080 0.081 0.088 0.087 009 11.4%

The change in the absorptance of the sapphire and fused silica
specimens was very small and close to the limit of accuracy of the

measurements,

A plot of these ag values against exposure time (Figure 2)
shows that sapphire and fused silica have no particular initial
increase in og, but rather have a somewhat regular ag increase rate.
On the other hand, the crown glass samples and the low expansion
glass samples underwent larger initial increases in ag that tapered
to the slower rates of increase more typical of fused silica and
sapphire. (Scatter in og data values, such as fused silica at
313 hours, up to about 0.005 can be attributed to the reflectance

measuring apparatus).
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3.2.5 Discussion

Examination of the reflectance curves before and after
various exposure times does not reveal the appearance of any
new absorption regions. Rather for all specimens there is an
increase in absorption with time, particularly at the fundamental
absorption edge in the near UV. The damage threshold, if any
must be less than 50 hours for all specimens. Ttke absorptions
at 1.3 and 2.2 micrometers of the glasses relate to the silica
network and is most pronounced in fused silica. Sapphire being
alumina does not, of course, show these. It is surprising that
the modifiers present in the optical glass and ultra-low expan-
sion glass do not result in new absorptance regions after
exposure although they do suppress the silica regions in optical
glass.

The change in solar absorptance values with time which was
tabulated in the previous section and shown in Figure 9 indicate
that the a priori ranking of the optical materials was correct.
Sapphire is the most stable material followad by fused silica,
crown optical glass and ultra-low expansion glass. For some
applications fused silica may be preferred because of its lower
initial absorption since even after 503 hours of exposure it was
still less than sapphire. The optical glass and ultra low
expansicn glass on the other hand, while reasonably stable for
503 hours, would have limited usefulness for very long space
missions.

3.3 Phase Three: Recommendations for Future Work

The recommendations for future work can be divided into
two parts: further analysis of the specimens exposed in this
program and additional exposures in simulated space environments.

The principal method used to characterize the specimen
changes induced by simulated sclar exposure was optical trans-
mittance by a reflected beam technique. Although this is a true
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measurement of the change in transparency of the materials, it
did not add in indentification of the mechanisms causing the
changes since the change was fairly uniform.

Thermoluminescence is a technique which can be used to
identify changes caused by irradition. 1In this method, the
specimen is slowly heatad and the light given off (luminescence)
is measured. The mechanism causing the changes may be inferred
from the brightness and ¢ >lor of the light as a function of
temperature.

Windows for space missions are required to not only have
transparency but also mechanical integrity after exposure.
There were no gross changes in the integrity of the specimens
but there may have been subtle changes which could cause
failure on a long mission. The effect of exposure on the
mechanical properties of the specimens can be determined by
measuring the microhardness as a function of depth from the
exposed surface.

Additional exposures should be carried out under conditions
in which eacl: parameter: light and particulate beams; are varied.
This would allow the effect of each parameter to be determined,
and also allow the presence of syngeristic interactions to be
detected.

Longer exposures also should be made since 503 hours is
only about three weeks, an insignificant part of the time
required for some long space missions which may last for years.

Particular emphasis should be placed on studying the effects
on optical glass materials which are suitable for front elements
of optical instruments or which are available in large sizes.
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