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I. INTRODUCTION
 

The work performed by the author while at the Langley Research
 

Center (LRC) during the period June 1, 1977 through May 31, 1978 on
 

an IPA assigment agreement provided the necessary continuity between
 

the work carried out under the grant NSG 47-004-114 and the present
 

grant NSG 1546. Several ideas evolved or were stimulated as a result
 

of author's collaboration with the technical monitors Robert Hayduk and
 

Robert Thomson of LRC.
 

A multitude of problems common to the development of a successful
 

nonlinear analysis code prevented ACTION~from being able to solve even
 

the simplest of the nonlinear problems during the early stages. Most
 

of these problems having been overcome ACTION's performance looked cau­

tiously optimistic. Hence, the need to validate the ACTION computer
 

code on an aircraft-like structure followed by its finalization for pub­

lic release were recognized.
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II. TECHNICAL PROGRESS
 

The technical efforts during the past year were concentrated in
 

several different areas. These are discussed below. Each group of
 

paragraphs provides a background, a brief statement of the problem,
 

approach to solution, the progress made and is some cases recommenda­

tions for future work.
 

1. 	Structuring of the ACTION Code to Handle Relatively Large Scale
 

Problems
 

In order to make ACTION suitable to handle large scale problems
 

involving finite element models with stringer, frame and membrane ele­

ments, it was necessary to undertake the following tasks.
 

a. Implementation of Analytic Gradients for the Membrane Element
 

The calculation of gradients of the strain energy of deformation of
 

the membrane element was hitherto being performed by the use of central
 

differences in ACTION. This is nearly twice as more expensive as when
 

the gradients are calculated analytically. This is especially crucial.
 

when a model contains a large number of membrane elements. It was thus
 

imperative that gradients of strain energy of deformation of the mem­

brane elements be calculated analytically in ACTION. Accordingly, on
 

lines similar to those used for the frame element explicit expressions
 

were developed for the calculation of the gradients of the strain energy
 

both in the elastic and the inelastic range. In the inelastic range the
 

computations were simplified by the use of the total deformation theory
 

[1]. If incremental flow theory of plasticity is to be used then the
 

definition of the potential function must be altered to allow the use of
 

certain minimum principles in plasticity 1[2]. This novel formulation
 

using the direct minimization approach appears like a topic suitable for
 

Master's thesis and hence Mr. Lin T. Duong who has been working as a
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graduate research assistant on the project indicated his interest in
 

pursuing this line of research towards his Master of Science degree.
 

Whether such a formulation will be computationally more efficient or
 

will result in improved response prediction remains to be seen.
 

b. Quasi-Newton Minimization Algorithms that Exploit Sparsity
 

Of the two minimization algorithms available in ACTION, Powell'-s
 

conjugate algorithm can handle problems involving thousands of variables
 

but its convergence rate is at best linear. Hence, it is unlikely that
 

it can be competitive with second order algorithms like the Fletcher's
 

algorithms.(BFGS) [3] whose convergence rate is at least superlinear.
 

Flet~her's method is especially suited for solution of transient pro­

blems in steps since it has a reasonably good approximation to the
 

variables and the inverse Hessian of the potential surface. The number 

of minimizations required for convergence to a solution after the first 

time step is thus a very small fraction of the total number of degrees 

of freedom. The drawback of Fletcher's algorithm is however it's stor­

age requirements - NX(N+I)/2 for a N degree of freedom problem. This 

is because Fletcher's algorithm approximates the Hessian inverse rather 

than the Hessian itself which is usually banded and very sparse. Thus,
 

if an extremely large scalq nonlinear transient problem is to be solved
 

using energy minimization technique it is imperative to use a variable
 

metric algorithm which updates the Hessian rather than its inverse and.
 

thereby exploits and maintains its sparsity in its march,to the minimum.
 

It appeared at one point that for solving problems with as few as 325 de­

grees of freedom using Fletcher's method the available core on the CDC
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system may be insufficient.* Accordingly, work was initiated to im­

plement into ACTION a minimization algorithm that exploits sparsity.
 

Such an algorithm based on the work of Sghubert [4] has been implemented
 

into one of VPI & SU's version of ACTION. The algorithm, however,
 

remains to be validated. A survey of the state-of-the-art of minimiza­

tion techniques for extremely large scale problems, which was conducted
 

in this connection, may be found in reference [5].
 

2. Drop Test of the Navajo Fuselage Section:
 

VPI & SU was entrusted with the task of development of a model for
 

nonlinear crash dynamic analysis of the Navajo fuselage section using
 

the ACTION code. The response characteristics of such a model was to be
 

compared with comparable models developed using DYCAST [6] and -KASH
 

[7]. Such a comparison was subsequently reported in reference [8].
 

An ACTION model of the Navajo fuselage section was developed using
 

the corresponding DYCAST model (an initial cruder model different from
 

the one reported in [8]) as its basis. This model shown in Fig. 1 has
 

105 nodes, 209 members (36 stringers, 77 frame elements and 96 mem­

branes), 71 lumped masses and a total of about 336 degrees of freedom.
 

This is the largest model ever attempted using ACTION.
 

Although the model could be run using the Powell's conjugate
 

gradient minimization-algorithm (MIN5) which requires very little stor­

age, it was believed, as explained before, that in going from one step
 

to the next this algorithm does not have the same advantages of the
 

*An ACTION version which could handle problems with up to about 475
 

degrees of freedom using the Fletcher's method was put together at VPI
 
& SU. This was possible because of the almost unlimited storage avail­
able on the IBM system. Although some preliminary runs were made using
 
this version the task of simulation of large scale problems like the
 
Navajo drop test had to be relegated to the CDC computer at LRC because
 
of extremely tight funding situation at VPI & SUT.
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second order algorithm of Fletcher (MIN7). The latter has a good ap­

proximation to the inverse Hessian in addition to a good initial guess
 

for the variables at hand at the end of each time step.
 

To run this model using the more efficient Fletcher's minimization
 

algorithm in ACTION it was necessary to overlay the ACTION code on
 

NASA's CDC system using the segloader. The assistance of Ms. Barbara
 

Durling of NASA Langley in accomplishing this task is greatly appreciated.
 

Of simulation interest was the occupant chest motion and its ver­

tical acceleration at the pelvis location. The occupant was modeled by
 

a single lumped mass while the seat was modeled by a set of four non­

linear stringer elements whose stress-strain behavior was based on
 

previous, independent static crash tests on similar seats. This infor­

mation was provided by LRC. Although, the ground plane capability
 

(terrain model) in ACTION could have been exercised for this problem, in
 

the interest of simplicity, the aircraft substructure was assumed to be
 

in contact with the ground plane at nodes (86) and (91) while a velocity
 

of 330 inches/sec. was imparted to the entire model. Thus one would
 

expect correlation only in the initial phases of the response.
 

Figures 2 through 5 provide the correlation between the analysis
 

and test results. For additional model and simulation details it is
 

suggested that reference [8] be consulted. This reference also provides
 

a comparison of the performance of the energy minimization technique
 

vis-a-vis the so-called hybrid technique (KRASH) and another technique
 

which utilizes the pseudo force technique (DYCAST).
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3. 	Implementation of the Frame Element with Cross-Sectional Flexi­

bility into DYCAST
 

VPI & SU was entrusted with the task of aiding Greenman Engineers
 

in implementing the frame element with cross-sectional flexibility into
 

their program DYCAST. The frame element with cross-sectional flexibility
 

was developed by VPI & SU in the ACTION code environment [9] which uses
 

the direct minimization approach. Implementation of this element re­

quires the development of a tangent stiffness matrix for such an ele­

ment. This task was given a very low priority dictated by the conclu­

sions of the studyreported in reference [9] and other experiences in
 

simulating the crash response of the Navajo section.
 

Report [9] concludes that the frame elements in both ACTION and
 

DYCAST which do not currently allow for cross-sectional deformations are
 

adequate in predicting gross response parameters even though the struc­

tures in question may undergo severe localized cross-sectional deforma­

tions. By gross parameters is meant total energies, load-deflection
 

response, etc. The report goes on to conclude that purely from the
 

point of view of crashworthiness where the trauma measures are deter­

mined more by gross parameters it seems highly unlikely that they will
 

be significantly influenced by highly localized cross-sectional deforma­

tions. The inclusion of such effects can only make the already expen­

sive nonlinear analysis only more so without any significant pay-off by
 

way of improvement in response. Considering the cost comparisons of
 

KRASH, ACTION & DYCAST in reference [8] vis-a-vis the quality of their
 

respective response predictions this would warrant a careful assessment
 

of the necessity of including such a costly element into either ACTION
 

or DYCAST. In any event if such an implementation is to be carried out
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into DYCAST at some future date, VPI & SU's cooperation in this matter
 

can always be counted upon. The formulation details outlined in ref­

erence [9] will provide the required basis for this purpose.
 

4., Documentation and Wrap-up of the ACTION Code
 

a. 	ACTION Theory Document
 

The old ACTION theory -ocument was thoroughly revised to reflect
 

the current formulation basis in ACTION (especially the part pertaining
 

to the calculation of analytic gradients and the new minimization algo­

rithms). A copy of the completed- rough draft of this document will be
 

mailed to LRC within the next few days. Upon receipt of comments from
 

LRC the document will be revised accordingly and the final version of
 

this document will be completed under NASA's Master Agreement arrange­

ment with VPI & SU (NASl-15080 Task #10).
 

b. ACTION User's Guide
 

The existing ACTION user's manual was revised to be consistent with
 

the final ACTION version to be released through COSMIC. Additional
 

features included analytic gradients, selection of Newmark-Beta para­

meters, automatic calculation of lumped masses, a new solid rectangular
 

frame cross-section, etc. Several outdated, unvalidated ACTION features
 

have been removed from the present version as called for in the grant
 

proposal. The revised ACTION version, however, remains to be thoroughly
 

tested. This testing will be performed again under the Master Agreement
 

arrangement contract NASl-15080 Task #10. A copy of the completed rough
 

draft of this document will be mailed to LRC within the next few days
 

for their comments to be implemented in the final version.
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c. Publication of VPI&SU Reports and Papers in Referred Journals.
 

Progress in this area was extremely satisfactory. A report [9] en­

titled "An Investigation into the Effects of Cross-Sectional Flexibility
 

on Response" VPI-E-78-30 was completed and four copies of the same were
 

mailed to LRC (see Appendix A). This study summarizes the findings
 

of the importance of cross-sectional flexibility on gross response and
 

attempts to identify reasons for the discrepancy between analytical
 

and experimental predictions. A technical note entitled "On the Impor­

tance of Cross-Sectional Flexibility on Gross Response" has been ac­

cepted for publication by the Journal of Computers and Structures (see
 

Appendix B).
 

A synoptic summarizing the ACTION formulation and validation en­

titled "Nonlinear Transient Analysis via Energy Minimization" has been
 

accepted for publication by the Journal of American Institute of Aero­

nautics and Astronautics. The full length paper by the same title has
 

been accepted as a backup NTIS document number N79-22819 for the synop­

tic. The same full lengthtwas previously released as a VPI & SU report
 

number VPI-E-79-10 entitled "Nonlinear Transient Analysis of Aircraft­

like Structures - Theory and Validation" (see Appendix C). The nec­

essary number of copies were mailed to LRC.
 

A paper entitled "Energy Minimization versus Pseudo Force Technique
 

for Nonlinear Structural Analysis" has been accepted for publication
 

by the Journal of Computers and Structures (see Appendix D). This paper
 

compares the efficiency of the minimization technique (ACTION) vis-a-vis
 

the pseudo force technique (DYCAST) for the solution of nonlinear pro­

blems. It also explores the feasibility of extending the minimization
 

technique for the solution of extremely large scale nonlinear problems
 

competitively.
 



5. Simplified Modeling Techniques
 

This is the only task which received the least attention because of
 

lack of time and also because of lack of suitable personnel who could be
 

assigned to tackle this problem. Some nominal progress was, however,
 

made. A literature survey on the topic revealed that ideas similar to
 

thoseproposed in the proposal have been explored in much greater detail
 

by Kawai and his associates [10]. Their work suggests that ideas like
 

the ones proposed in the proposal should be worthwhile to pursue es­

pecially if codes like DYCAST or ACTION can ever hope to be cost effec­

tive with codes like KRASH [8].
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III. OPERATIONAL SET-UP
 

The work reported in this report was carried out by the principal
 

investigator, Dr. M. P. Kamat, with the aid of Mr. Linh T. Duong, a
 

graduate research assistant in the department of Engineering Science and
 

Mechanics of VPI & SU. Because of lack of students with the appropriate
 

background and the time required to familiarize them with the ACTION
 

code no attempt was made to hire other graduate research assistants.
 

Instead the principal investigator undertook a larger share of the
 

responsibility inorder that he may meet the grant obligations more
 

fully.
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IV. CONCLUSIONS
 

The work performed under this grant achieved several objectives.
 

It successfully demonstrated ACTION's capablility to model and analyze
 

aircraft for nonlinear crash response at a cost which is comparable
 

with that of other similar analytical tools like DYCAST. It was estab­

lished that computer programs like ACTION & DYCAST in their present
 

status are quite adequate in predicting gross response parameters in­

spite of the fact that structures in question may undergo severe local­

ized cross-sectional deformations. The theoretical and user's documen­

tation for the ACTION code were nearly finalized for public release. In
 

addition to a few technical reports several papers were published in
 

referred Journals. State-of-the-art survey conducted indicates minimi­

zation techniques to be quite suitable for the solution of large scale
 

nonlinear problems. A similar survey also indicates that simplified
 

modeling techniques are not only viable but should be pursued if pro­

grams like ACTION or DYCAST are to be cost effective with programs like
 

KRASH.
 

17
 



APPENDIX ',A
 

An Investigation Into the Effect
 

of Beam Cross-Sectional Flexibility on Response
 

by
 

M. P. Kamat
 

Department of Engineering Science and Mechanics
 

Virginia Polytechnic Institute and State University
 

Blacksburg, Virginia 24061
 

December, 1978
 



TABLE OF CONTENTS
 

Page Number
 

1. Introduction ......... ............... 
 1
 

2. Formulation.......... ............... 3
 

a. Assumptions ........ ................ 3
 

b. Formulation Details ......... ...... 4
 

c. Simplification of the Model .... ........ 7
 

d. Limitations and Deficiencies of the Model-. 7
 

3. Results and Conclusions...... ........... 9
 

a. Discussion of Results ...... . .. ...... 9
 

b. Conclusions .... .............. .... 12
 

4. References ..... ...................... 13
 

S. Acknowledgement.... .................. 14
 

i
 



LIST OF FIGURES
 

Figure Page 
Number Number 

1. Geometry of It Cross-Section ....... ........[1S 

2. 	A Typical Plate Element (I d.o.f./node)........ 16
 

,3. Post-Buckling Response of a Thin-Walled 
Channel Section Beam-Column.... ...... .... 17 

4. 	Responses Using ACTION and PLANS 
(Ignoring Beam Cross-Sectional Flexibility). . 8 

5. 	Beam Cross-Sectional Flexibility ......... . 19
 

6. 	NASA's Angular Frame-Experimental Data and
 
Old Analytical Predictions ... ........... ... 20
 

ii
 



LIST OF TABLES
 

Table Page 
Number Number 

1. Effects of Cross-Sectional Flexibility 
(Initial Stages) ...... .............. ... 21
 

2. 	Sensitivity of Response to Modeling of
 
NASA's Angular Frame ... .................. 22
 

iii
 



Abstract
 

A simplified frame element (3D-beam) formulation which accounts
 

for the beam cross-sectional flexibility is presented. The effectiveness
 

of such a formulation as opposed to modeling the frame element using
 

membranes and plate bending elements is investigated on the post-buckling
 

response of a beam column with a thin-walled channel cross-section.
 

The fidelity of the simulation with and without such effects is determined
 

on the basis of a comparison with available experimental results and
 

other independent simulations. The study concludes that in view of the
 

excellent correlation between experimental and mathematical predictions
 

using simulators like ACTION and 0-PLANE-MG which do not account for
 

cross-sectional flexibility, a beam element ,with cross-sectional
 

flexibility will have little.pay-off, especially so for the response
 

parameters of importance,in crashworthiness.
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1. Introduction
 

Static and dynamic load tests on tubular and angular frame structures
 

conducted by the Dynamic Loads Branch of the NASA Langley Research Center
 

reveal that significant cross-sectional warping and distortions occur
 

near the joints [1]. It is believed that the lack of correlation between
 

experimental and theoretical predictions may be attributed, at least in
 

part, to cross-sectional flexibility during deformation hitherto not
 

.accounted for by most mathematical simulators of such nonlinear phenomena.
 

The present investigation was thus initiated with the objective of
 

implementing such a capability into existing programs for nonlinear
 

analysis of structures.
 

In the context of the cross-sectional flexibility the word "beam" is
 

perhaps a misnomer since it is implicit in its usage that its response is
 

predominantly in the direction of its longest dimension which is supposedly
 

an order of magnitude larger than its other cross-sectional dimensions.
 

Hence when cross-sectional flexibility effects are significant it would
 

be more appropriate to refer to the structure as either a three dimensional
 

solid or in the case of thin-walled open or closed sections as an
 

assemblage of flat or curved plates. In other words, cross-sectional
 

flexibility in the case of thin-walled structures would be most naturally
 

accounted for by idealizing the member or structure with membranes and
 

plate bending finite elements. However, the degrees of freedom of the
 

resulting model would in most cases, be prohibitive for a general nonlinear
 

analysis. Hence, some other cheaper formulation which perhaps sacrifices
 

some of the rigor of the formulation would be desirable.
 



A thin-walled open section frame (3D-beam) element formulation which
 

abandons the assumptions of the elementary beam theory and accounts for
 

the flexibility of its cross-section in an approximate manner was undertaken.
 

The objective was to develop a model which is simple and in terms of its
 

size well below that which would result from building up the frame element
 

using membrane and plate bending elements. Consequently, certain simplifying
 

assumptions were incorporated in its development. The development was
 

initially carried out in the context of the ACTION simulator. This
 

simulator uses the minimization of the total potential energy for
 

nonlinear analysis [2].,
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2. Formulation
 

a. Assumptions: Restricted to beams with thin-walled cross-sections,
 

the formulation focusses on distortions in the plane of the cross-sections
 

only since warping, at least of the unrestrained type is usually accounted
 

-for in most conventional frame element development. This.is true of the
 

ACTION simulator as well.
 

The development consists in abandoning the assumption of the
 

elementary beam theory about cross-sections remaining rigid during
 

deformation. Co-ordinates of a select few reference points on the cross­

section are treated as additional degrees of freedom with a prescribed
 

co-ordinate variation in between reference points. In essence then this
 

is tantamount to treating the co-ordinates of the integration or
 

quadrature points used for the evaluation of the strain energy of
 

deformation of the frame element as additional degrees of freedom of the
 

model. Since the problem now becomes extremely nonlinear it is reasonable
 

to adopt a linearization procedure of the following type. At the beginning
 

of each load increment elementary beam theory is used to predict overall
 

deformations of the frame element assuming a rigid cross-section. At the
 

end of the increment the load is maintained constant and the additional
 

deformations of the elements of the cross-section are determined by
 

treating the elements as prestressed plate elements with a known initial
 

eccentricity. The shape of the cross-section is determined by minimizing
 

the corresponding potential energy of additional deformations which consists
 

of the ,strain energy of additional deformations and the potential of the
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prestress. Using this new cross-section the process is then repeated for
 

the next load increment. Iteration at constant,load could be employed to
 

obtain improved results.
 

b. Formulation Details: Consider the IE cross-section shown in
 

Figure 1. This cross-section has five flange pieces and two web pieces.
 

This element as implemented in the*ACTION Simulator has the option of
 

specifying zero thicknesses for all but the two web pieces. This enables
 

the generation of cross-sections of many well-known shapes. Each of the
 

seven pieces is treated like a flat plate element extending between the
 

two end nodes of the beam or frame element. A total of seven reference
 

points(throughDas shown in Figure 1 are chosen on the cross-section
 

at each end of the beam element and half-way between the two nodes.
 

Incidently, these locations of reference points are coincident with the
 

Lobatto integration points (at the ends of the intervals of integrations)
 

used for each of the seven plate elements. The stress-strain history at
 

all of these points is thus available without additional calculation
 

effort or storage. The cross-section is allowed to deform relative to 

the fixed point ® in the cross-section. At each of the reference 

points 0, 0,®, Q and ® only one independent displacement 

transverse to the respective plate elements QI, rn, I] and [] isIL 
allowed and at each of the reference points and onlyoneindependent
 

displacement transverse to the respective plate elements M and MJ is
 

allowed. The other position co-ordinate of each of the reference points
 

is determined on the basis of the additional deformations of the plate
 

elements being inextensional.
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For the IE section of Figure 1 the potential energy of additional 

deformations, n, is thus given by [3] 

T= Ti+ 7 (1-a) 

where 

7 2­xxi. ax(Vo+Vi 2 +N i[.cvv L-V v xzi1b 

-21u
11 R. 

and
 

+W )2}dxdy+ . 2 + 'No 2w 
f'Lf +x - 20-v - (v j dxdz (l-)D1 


i=3R­i93N5 i 

2
[2 2vi 2,, fP+i v (ai.\ d
[ 


i94 1 

The deformation shapes w. andv. re chosen as in the finite element
 

formulation namely as polynomials with the values of the independent
 

co-ordinates at the six reference points as coefficients of the
 

-interpolants. Thus for a typical element shown in Figure 2-a
 

6
 
wi = w..N.(,n) i =, 2, 4, 6, 7 

E ff az -5- ax TZ 

j=l
 

6.
 
vD = 3(2-b)+and N 3__92V 

j=l
 



where N.'s are the interpolating polynomials given below
 
3 

Ni, = (l-y)(E2-O) 

N2 = k (+y)( -) 

N = (l-y)(l-C2) 
(2-c) 

N = ('ky)(l-C2) 

N = (1-y)(2+o) 

N = (l+y) (C2+) 

2= and y is equal to either d or 2 depending upon"whether 

d. 1 

3 and 5. 2 in Equation (1-c)
i =-I, 2, 4, 6 and 7 or i = In evaluating 7­

it is assumed that D ETavhl 

i 24 (l-v2) 

with v = 0.5. ETav is the average tangent modulus for the ith plate 

element. This is taken to be the average of the tangent moduliat all
 

the nine Lobatto integration points for the element. This approximation
 

enables an explicit evaluation of the integrals in the expression for
 

iT2 " Thus typically for the element shown in Figure 2-a 

==2)i9 [Tav- (Wl-2w+w ) 2 +(w -2w +wi ) 2 
il i3 is i2 i4 i6 

+w2w.+ "Qw 2w.+w""
+' (w 22 w 

-.
l wi +W5)(w - )w )-w 

(Wi4 - i3 2 2 Wi1W 1 4 w -. -Ww Wi3 4 w1 3 ) ' w 

+ (-) i2 -wil)(wi6 -wi5 i = 1, 2, 4, 6 & (4) 
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For i=3 or 5,w in Equation (4) is replaced by v. No such explicit 

expression is however possible for i because of the occurrence of 

stress resultant terms N±., N0 . and N . within the integrands.xxi' xyi XZl 

IT1 is therefore evaluated numerically using Lobatto quadratures. For 

three points in each direction Lobatto quadratures reduces to the 

well-known Simpson's rule. 

c. Simplification of the model: The model described previously 

may be simplified by reducing the number of reference points per plate 

element from six to four. For a typical element shown in Figure 2-b 

equations (2) are then replaced by 

4 

w.= wij Nj ( ,n) i = 1, 2, 4, 6, 7 

j=l 

(2-d) 

and 

v. 

-4 

j=l 

V_ N (,p) i= 3 and 5 (2-e) 

where N.'s are the interpolating polynomials given belowJ 

N1 

..N2 

= 

= 

(1- (1-n) 

"(1- )(l+n) 

N3 = k ( 1 Z+Cl-n) 

N4 = (l+) (1+n) 

d. Limitations and Deficiencies of the Model: Firstly, like in 

most other simulators, the frame element material modelfin ACTION is 

strictly uniaxial, i.e. interaction between shear and normal stresses is 

ignored. Shear stresses are thus evaluated by using the shear flow 

theory of thin-walled structures assuming linear elastic behavior. 
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Secondly, with changes in cross-section the shift -of the position
 

of the shear center should be accounted for. The transverse forces Vy
 

and V which are assumed to pass through the shear center of the original
 

rigid cross-section will then give rise to additional twisting moments.
 

Because the calculation of the shear center for a thin-walled open
 

cross-section of arbitrary shape is highly complicated in the interest
 

of simplicity and efficiency this is avoided.
 

Thirdly, for the assumed deformation patterns of the flanges and
 

webs it is not possible to maintain the right angle bends between the
 

flanges and webs at every point along the length. The deformation patterns
 

imply that the plate elements are effectively hinged at some points along
 

intersections. To obta-in-any sort of slope continuity it will be
 

necessary to assume higher order interpolation functions in the n direction.
 

This defeats the original objective of this model. Hence agaiTi in the
 

interest of simplicity such a deficiency is"tolerdted.
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3. Results and Conclusions
 

a. Discussion of Results:
 

For validating the proposed model the tests conducted by McIvor et al
 

on thin-walled open section beam columns and reported in reference [4]
 

seemed appropriate. One such test involved the post-buckling response
 

of a beam-column with a thin-walled channel cross-section as shown in
 

Figure 3. To prevent failure by direct compression the column was tested
 

at an inclination of S' from the vertical with both ends of the column
 

being clamped. A column under these conditions is extremely imperfection
 

sensitive. Hence Mclvor suggests assuming an additional 10 offset for
 

the mathematical model to simulate the inherent imperfections of the
 

actual column tested. The post-buckling response of this column as
 

observed in the experiment and as reported in [4] shows extremely severe
 

cross-sectional deformations and is presumably a good problem for validation
 

of the new beam element proposed herein.
 

Before validating the proposed new beam element it was necessary to
 

assess the importance of the magnitude of the degradation of response
 

without allowing for such effects. This effort was initially undertaken.
 

The results of this study are shown in Figures 3 and 4. Surprisingly
 

enough the responses predicted by both ACTION and O-PLANE-MG [5] correlate
 

extremely well with the experimental prediction. It would appear then
 

that gross responses like load-deflection are not likely to be affected by
 

localized cross-sectional deformations, irrespective of thei severity,.
 

especially when the beam material models in both ACTION and O-PLANE-MG
 

permit simulation of plastic hinges. This leads very naturally to the
 

-9­



investigation of the original problem, namely the NASA angular frame
 

wherein large discrepancies between the mathematical and experimental
 

predictions were responsible for initiating the study of the effects of
 

beam cross-sectional flexibility.
 

Before we get into a discussion of this study however, it may be 

appropriate to discuss the results of the attempts of using the new beam 

model in predicting the post-buckling response of the-beam-column of 

Figure 3. These attempts were not very successful. The simplified 

beam model with j=4 (see Eqs. 2-d & 2-e) failed to produce any significant 

cross-sectional deformations and had to be abandoned in place of the 

more refined model with j=6 (see Eqs. 2-a & 2-b). The new beam elements 

were employed only between nodes Q-®,0 -0, 0-0, 0­

and @-@ . This model although instrumental in predicting rather 

severe distortions of the cross-section troubles in converging to an 

accurate solution for the prescribed load steps,presumably because of 

an increased degree of nonlinearity,prevented completion of this study. 

Drastic reductions in load steps may overcome this problem but only so
 

at a very high computational cost. Limited results of this study are
 

tabulated in Table 1. To say the least, At is disturbing to see that
 

initially the column has a tendency to stiffen leading to a higher
 

axial load carrying capability. This does not seem impossible however,
 

because it is quite likely that the plastic section modulus of the
 

slightly deformed beam cross-section may be higher than that of the
 

undeformed cross-section. With increasing cross-sectional deformations
 

however, the trend is likely to be reversed and this does appear to be
 

characteristic of the results of Table 1. The cross-sectional shapes'
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at different locations along the length of the beam ar illustrated
 

qualitatively in Figure 5. While in some places these shapes appear to
 

be intuitively reasonable in other places they do not. This may be the
 

result of the simplicity of the model along with its underlying assumptions.
 

Undoubtedly these results warrant further improvement and an investigation
 

into the accuracy of the results generated using the new beam element.
 

Next, as regards NASA's angular frame the lack of correlation
 

between mathematical simulation and experimental results, if any, at least
 

in the linear range must be attributed to either (i) lack of inappropriate
 

boundary conditions that is to say boundary conditions of the mathematical
 

model different from those in the experiment; (ii)assumptions regarding
 

rigidity of the bulkheads'too conservative; (iii) insufficiently refined
 

model or inappropriate discretization; (iv)lack of inclusion of some
 

important response features like shear deformation.
 

The results of a study entailing the sensitivity of response (due
 

to'a 10 lb total load) to variations in modeling parameters are outlined
 

in Table 2. The maximum deflection of the model of class 4 in Table 2
 

agrees closely with that of the experimental model. Shear deformation
 

effects which are likely to be important for this frame were not included
 

in this analysis, however. With the inclusion of such effects the mathematical
 

model will undoubtedly be even more flexible than the experimental model.
 

It would appear that the correlation between the mathematical and
 

experimental models -can be substantially improved by using the class 4
 

model of Table 2 or refinements thereof and allowing for shear flexibility.
 

The frame in question is very much like a vierendel truss wherein the
 

sheat forces give rise to secondary bending.
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The results of Table 2 suggest that the discrepancy between experi­

mental and mathematical simulations as in Figure 6 are most likely.the result
 

of inappropriate modeling of the angular frame and not the result of
 

some highly localized cross-sectional deformations as was anticipated.
 

b. Conclusions:
 

It is clear from this study that computer programs like ACTION and
 

O-PLANE-MG in their present status are quite adequate in predicting
 

gross response parameters in spite of the fact that the structures in
 

question may undergo severe localized cross-sectional deformations.
 

By gross parameters we mean total energies, load-deflection responses etc.
 

which are the quantities directly solved for in the displacement formulation.
 

They are not derived quantities like strains, stresses etc. which are
 

derived through spatial differentiation. If derived quantities are of
 

importance we are talking of pointwise correlation rather than a global
 

or gross correlation. In such an event the displacement formulations
 

of programs like ACTION or 0-PLANE-MG even with the inclusion of the
 

effects of the cross-sectional flexibility (in the manner outlined in this
 

report) would be inadequate. One will'have to then resort to some sort
 

of hybrid or mixed formulations for better response predictions.
 

Purely from the point of view of crashworthiness where the trauma
 

measures are determined more by gross parameters it seems highly unlikely
 

that they will be significantly influenced,by highly localized cross­

sectional deformations. The inclusion of such effects can only make the
 

already expensive nonlinear analysis only more so without any
 

significant pay-off by way of improvement'in response.
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Figure 6. NASAt S ANGULAR FRAME
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TABLE 1.
 

EFFECTS OF CROSS-SECTIONAL FLEXIBILITY (INITIAL STAGES):
 

VERTICAL LOAD P (KIPS) 

DEFL. (pp WITHOUT (p2) WITH 
IN CSF CSF PI,-= 2 

0.03 10,228 10.217 0.011
 

0.08 8.6639 8.7798 -0.1159
 

0.130 6.0146 6,2641 -0.2495
 

0.150 5.5161 5.9241 -0.408
 

0.200, 4,6866 4.7734 -0.0868
 

0,225 4.3972* 4.6097 -0,2125
 



TABLE 2.
 

SENSITIVITY OF RESPONSE TO'MODELLING OF NASA'S ANGULAR FRAME
 

MAX DEFL. x 103 IN,
 

TYPE OF MODEL FOR P=1O LB,
 

ACTION
 

1. A. THREE D.O,F. PER NODE 7.551 
B. BLKHDS. NOT RIGID
 
c, END FULLY FIXED
 

2. A. SIX D.O,F, PER NODE 8,3433 p 
2
B. BLKHDS NOT RIGID 


c. END FULLY FIXED 

3. A. SIX D.O.F. PER NODE 5.6992 

B. BLKHDS, RIGID
 
c, END FULLY FIXED
 

4. A. SIX D.O.F., PER NODE 16.5658 
B. BLKHDS. NOT RIGID
 
c, END REPLACED BY A FLEXIBLE
 

BLKHD, WITH PROPER SUPPORT
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ABSTRACT
 

Most nonlinear analyzers like ACTION and PLANS do not account
 

for cross-sectional flexibility of thin-walled frame members. They
 

do however, permit-simulation of plastic hinges. Judging by the
 

excellent correlation between theory and experiment, such analyzers
 

appear quite adequate in predicting reasonably accurately gross re­

sponse parameters of thin-walled frame structures even though they
 

may undergo severe cross-sectional deformations.
 

INTRODUCTION
 

The 	crush response of structural components of an automobile or
 

aircraft which are built-up from thin-walled open section frame ele­

ments entails severe deformations of the cross-section. Static and
 

dynamic load tests on tubular and angular frame structures conduct­

ed by the Dynamic Loads Branch of the NASA Langley Research Center
 

revealed that significant cross-sectional warping and distortions
 

occur near the joints[l]. Infact, itwas conjectured that the
 

* 	 This work was supported by NASA Langley under grant NGR 47-004-114 

under the congnizance of the technical monitor, Robert J.Hayduk. 



large discrepancies between experimental and theoretical predictions
 

may, at least in part, be attributable to such phenomena which are
 

normally not accounted for in a conventional nonlinear finite ele
 

ment analysis.
 

Recently, attempts have been made to model the phenomenon of
 

cross-sectional deformations analytically [2],[3]. The purpose of
 

this paper however, is not to evaluate these attempts but rather to
 

assess the degradation of the fidelity of mathematical simulation of
 

the response using nonlinear analyzers like ACTION [4] and PLANS [5]
 

which currently do not permit such modeling.
 

RESULTS AND CONCLUSIONS
 

Anderson, Mclvor and Kimball have conducted several tests on
 

thin-walled open section columns and these have been reported in ref­

erence [6]. These tests seem appropriate for the present investiga­

tion. One such test involved the post-buckling.elastic-plastic re­

sponse of a beam-column with a thin-walled channel cross-section as
 

shown in Figure 1. To prevent failure by direct compression, the
 

column was tested at an inclination of 50 from the vertical with both
 

ends of the column being clamped. A column under these conditions
 

is extremely imperfection sensitive. Hence, Anderson et al [6]
 

° 
suggest assuming an additional 1 offset for the mathematical model
 

to simulate the inherent imperfections of the actual column tested.
 

The post-buckling response of this column as observed in the experi­

ment and as reported in reference [6] involves extremely gross cross­

sectional deformations and is presumably a good problem for the pur­

poses of this paper.
 

2
 



The column of Figure 1 exhibits a bifurcation phenomenon with
 

a highly unstable branch. For reasons very well known, most nonlin­

ear finite element analyzers like ACTION and PLANS have to resort to
 

a displacement rather than a load incrementation for predicting re­

sponse along an unstable branch. The mathematical predictions of
 

ACTION and PLANS have been illustrated in Figure 2 along with the
 

experimental and that predicted by UMVCS-l [7].
 

Surprisingly enough, the responses predicted by ACTION and
 

PLANS correlate extremely well with the experimental prediction.
 

This excellent correlation between theory and experiment may be
 

the result of several compensating assumptions, especially when one
 

considers the fact that both ACTION and PLANS permit only large
 

rotations with only small strains. The slight differences between
 

the responses of ACTION and PLANS may be due to one or all of the
 

following causes: (i)ACTION uses an energy minimization approach
 

whereas PLANS uses a one-step Newton-Raphson psuedo force technique;
 

(ii)the deformation models of ACTION and PLANS differ in the in­

elastic range; (iii) the number of quadrature points for integration
 

of energy densities and stresses are not identical. It-must be re­

marked, however, that with an elastic-perfectly plastic stress strain
 

curve, both ACTION and PLANS do indeed possess the capability of simu­

lating a plastic hinge. UMVCS-l is a program based on the assump­

tion that plastic deformations occur at idealized hinges located at
 

nodal points. A generalized hinge theory which accounts for biaxial
 

bending, .torsion and axial loading is employed. The user has to
 

test the different types of joints and cross-sections experimentally
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to gather data required for the constitutive laws employed in
 

the analytical formulation. In this sense, it is more of a hybrid
 

program.
 

It is interesting to note that while the UMVCS-l model is con­

sistently stiffer than the actual that of PLANS is consistently more
 

flexible than the actual and that of ACTION is more like an "average"
 

model. If one were to account for cross-sectional flexibility in
 

ACTION or PLANS, it would appear that this would lead to a deteriora­

tion of the excellent correlation.
 

It appears that the excellent agreement between theory and ex­

periment in Figure 2 , in spite of the absence of cross-sectional flex­

ibility, is attributable to the capability of both ACTION and PLANS to 

permit simulation of plastic hinges. Gross responses like strain 

energy, load versus deflection are not likely to be affected by highly 

localized cross-sectional deformations, irrespective of their severity. 

It is the view of this author that nonlinear analyzers like ACTION 

and PLANS in their present status seem quite adequate in predicting 

reasonably accurately gross parameters like total strain energies,
 

load-deflection responses, etc. of structures that undergo severe
 

localized cross-sectional deformations. Gross parameters are para­

meters which are directly solved for in the displacement formulations
 

of ACTION and PLANS. They are not derived quantities like strains,
 

stresses, etc. which are derived through spatial differentiation.
 

If derived quantities are of importance, one is talking of pointwise
 

correlation rather than a global or gross correlation. In such an
 

event, the displacement formulations of programs like ACTION or PLANS,
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even with the inclusion of the effects of cross-sectional felxibility,
 

would 	be inadequate. One will have to then resort to some sort of a
 

hybrid or a mixed formulation with the inclusion of large strain ef­

fects 	for better response prediction.
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I. Introduction
 

Nonlinear transient analysis of structures has been of increasing
 

interest to engineers by virtue of their interest in minimizing human
 

and property damage resulting from the catastrophic failure of such
 

structures under crash or-seismic conditions. Complexities of the
 

structural configuration and its equally complex transient response in
 

the presence of material inelasticity make finite element modeling of
 

such structures a very natural and plausible recourse. Portions of the
 

structures may remain elastic and undergo infinitesimally small deforma­

tions while other portions may experience finite deformations and mo­

tions and respond inelastically under time-varying loads that may lead
 

to a complete failure of the structure. If finite strains are to be
 

permitted in the model, distinction must be made between undeformed and
 

deformed configurations and the concepts of pseudo stresses and con­

jugate strain measures which have intricate physical interpretations
 

must be introduced [1]. Furthermore, strictly speaking most elastic­

plastic theories which hypothesize an additive decomposition of the
 

total strain into an elastic and a plastic component lose their validity
 

in the large strain domain [2]. Because of this, most developers of
 

nonlinear analysis codes restrict themselves to a small strain for­

mulation but permit finite displacements and rotations thereby allowing
 

buckling and collapse of the structure to occur. There are some indi­

cations that this may be adequate for most practical purposes.
 

With this hypothesis as its basis, the present discussion focuses
 

on the simulation of response of a structure modeled as an assemblage of
 

membrane, frame (3-D beam), stringer elements and rigid links (see
 

Figure 1). The mathematical model is a finite element displacement
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Figure 1. Finite Element Model of an Aircraft Fuselage Substructure
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model which consists of discretizing the actual structure by an assem­

blage of finite elements and approximating the response of each element
 

by a finite number of deformation states expressed as linear functions
 

of the generalized nodal displacements.
 

Two distinct solution approaches exist: (i) the vector approach
 

and (ii) the scalar approach. In the former, the mathematical model is
 

derived on the basis of the principle of virtual work and reduces to a
 

system of nonlinear second-order differential equations in time. In the
 

latter approach, a scalar or potential function associated with the
 

energy of the model is introduced, minimization of which yields the
 

desired 'equilibrium configuration. In both approaches a temporal finite
 

difference scheme is utilized to effectively eliminate time as a var­

iable. As a result, in the vector approach the equations of motion are
 

reduced to a system of nonlinear algebraic equations in the unknown
 

- [6 ]
nodal parameters of the finite element model [31 . In-the scalar
 

approach, which is of relevance to this report, the problem is reduced
 

to a well known problem in mathematical programming namely the uncon­

strained minimization of a nonlinear function of several variables.
 

The scalar approach has been used for nonlinear analysis by previous
 

investigators [7]-[9]. However, with the possible exception of reference
 

[9] ,most of the previous work using the energy minimization technique
 

has been restricted to static analysis of structures. The algorithm of
 

reference [9] had difficulties in'converging to correct solutions bedause
 

of inherent element formulation deficiencies and use of extremely in­

efficient and expensive finite difference operations for gradients
 

besides being restricted to stringer and frame element models only. As a
 

result, no meaningful results using the energy minimization approach
 

were obtained. -The present formulation overcomes such limitations
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using analytically derived gradients, consistent element formulations
 

and the best current variable metric update formula [10] for use in un­

constrained minimization [11].
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II. Minimization Technique for Nonlinear Analysis
 

a. Formulation Basis
 

In this case the problem of response prediction is posed as the
 

minimization of a potential function of the unknown nodal parameters of
 

the finite element model. For all structural problems with geometric
 

and material nonlinearities of the type considered herein such a potential
 

function always exists. Although this technique has been hitherto used
 

for mainly positive or negative definite systems, other systems which
 

fail to be positive or negative definite can be handled by using the
 

least squares method or the modified conjugate gradient method with
 

preconditioning [12]. In some cases for such systems displacement
 

incrementation rather than load incrementation in conjunction with
 

conventional unconstrained minimization techniques can also be equally
 

effective [13].
 

The minimization scheme as applied to the solution of transient
 

nonlinear structural analysis problems consists of minimizing a poten­

tial function associated with the system for an assumed relationship
 

between displacements and time. The displacement-time relation for each
 

generalized nodal displacement of a finite element model may be assumed
 

of the form [14]
 

= 
qei O(At) 2qei + (4- )(At) 2 0i+ (At)q0i + q0 i (1-a)
 

qei y - y)(At)q0i (1-b)
y(At)ei + (1 + qoi" 


where qei is the i-th generalized nodal displacement at the end of the
 

time step and S and y are constants. The quantities qei and 4ei can
 

now be expressed in terms of the i-th generalized nodal displacement,
 

velocity, q0i and acceleration, %0i at the beginning of the time
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step and the generalized nodal displacement, qei' at the end of the time
 

step. It can be easily verified that the equation of equilibrium for
 

an N degree-of-freedom system with lumped masses
 

Miqei --Fi + @_= 0 ; i = 1,2...N (2)
ieiqei
 

correspond to the necessary conditions for the functional
 

N 1 2 1 3 • 
i=l 2$(At) 2 q± 2 + (-At)q0i + ( l)401)qe]M.

0At)T_,M 
­

i=1 (t ei
2 2 

- F (t+At)qei + U + C (3) 

to be stationary. In Equation (3), U is the strain energy and C is an 

arbitrary constant. Thus, knowing q0i q0 i and4 0i at time t for any 

given load F. at time (t+At), the functional S-may be minimized with 
1
 

respect to the generalized nodal displacements, qe (1=1,...N), in order
 

to determine the corresponding stable-equilibrium configuration. Thus,
 

this scheme satisfies equilibrium at the end of the time step, thereby
 

providing an implicit temporal integration scheme. The size of the time
 

step is automatically controlled so that the error at half time based
 

on interpolated configuration data is less than a prescribed change in
 

total eneigy. In general, the strain energy U will be a nonlinear '
 

function (at the very least a quadratic) of the generalized nodal dis­

placements q.. Details on the explicit evaluation of U as a function
 

of qei will be touched upon later.
 

Of all the available techniques for unconstrained minimization only
 

the quasi-Newton or the variable metric methods have been more frequently
 

used for structural analysis, because of their higher effectiveness
 

[15]. Again, unless one accounts for the sparsity of the Hessian matrix
 

and an update scheme which maintains it, one has to almost invariably
 

resort to some form of a conjugate gradient technique for problems
 

wherein N is an extremely large number. The extension of the minimi­
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zation techniques to extremely large scale nonlinear structural analysis
 

problems is a subject of separate research [16] in itself and is beyond
 

the scope of this paper.
 

Most algorithms for unconstrained minimization seek a direction of
 

travel and the amount of travel in that direction. The manner in which
 

these are sought depends upon the sophistication of the particular
 

algorithm invoked. Most often the directions of travel are sought in a
 

manner which guarantees not only a decrease in the value of the function
 

to be minimized at each iteration but also a convergence to the minimum
 

in a finite number of iterations (usually N+I for an N dimensional
 

space) in the case of quadratic functionals. It is important to note
 

that all functionals are very nearly quadratic in the neighborhood of
 

the minimum. The present formulation uses the well-known Broyden­

Fletcher-Goldfarb-Shanno (BFGS) variable metric algorithm which dis­

penses with the exact line searches while using an Hessian update formula
 

which, in the case of a quadratic functional, guarantees a monotonic
 

convergence of the eigenvalues of the approximating matrix to the inverse
 

Hessian. The iterative scheme is begun with an initial guess which is
 

usually the null vector in the absence of other better estimates. For
 

the variable metric or the conjugate gradient methods the required
 

gradient of S is evaluated either analytically or by.a finite difference
 

operation on S. The use of an analytic gradient results in a substan­

tial saving in computational effort. This saving is the result of not
 

only a cheaper gradient evaluation but most often a faster convergence
 

of the solution because of higher accuracy of all computed quantities
 

[15]. The i-th component of the gradient of S can be written as
 

as_ anS -- F+i 3U (4)Oqe. Miei 


ei 
 qei
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The term in Eq. (4) requiring significant computational effort is
 

3U
 
@--as it embraces the geometric and material nonlinearities. 

Using
 

half-station central differences this is given by
 

m 1
 
Uk(qel' qe2'.... qei + 2 Aqjei' qei+l qeN)
 

DU k=l
 

qei Aqei
 

m 1 

U(el' eeeil'"e- - 2 ei' (5) 

k=l ei
 

where Aqei is a small change in the i-th component and m is the number
 

of members or elements which has the i-th degree of freedom in common.
 

In evaluating the gradient vector analytically [17], each of its com­

ponent involves the evaluation of only a single function similar to the
 

function for member energy evaluation. Thus,
 

DU 3 m f dW. . )D v 
an = W k l f t)kt)k dvk (6-a) 

e k-1 ei k=vk vk
 

where 

W = strain energy density 

=732 (xx +2 xx + 4 2 1/2Cyy2 yy 3 xy ) 

two dimensional stress state
 
effective (6-b)
 

E for a uniaxial stress state
xx 
vk = volume of the k-th element
 

and for one step incremental loading or unloading
 

2 + 2 a + 3r2 )1/2 
0
( (a x + y x 

)for a two dimensional stress statedi 

d = = effective stress 
 (6-c)

de'I 
 = Cxx for a uniaxial stress state
 

Equations (6-a) through (6-c) imply the use of Hencky's total strain
 

theory along with its assumption that in the strain hardening range the
 

inelastic component of the total strain is predominant [18]. This in a
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way is consistent with the assumption that the total strain can be de­

composed into an elastic and a plastic part especially in cases where
 

the strains are large [2]. According to reference [2-] it is only when
 

plastic strains are predominant that such a decomposition is justified.
 

The problem at hand could have equally well been formulated using
 

the incremental flow theories of plasticity in the strain hardening
 

range. The potential function instead of being a function of the total
 

quantities need then be expressed in terms of incremental quanties
 

and the minimization technique can still be used [19].' As a matter
 

of fact, it may be conjectured that the performance of the solution
 

algorithm will perhaps be significantly improved using such a formula­

tion even though the material model may then be slightly more complex.
 

In any event, it is immediately obvious that a significant reduction in
 

computational time will be realized if analytic gradients are used in
 

preference to central difference gradients.
 

The complexity of the strain energy evaluation for any element is
 

determined by its deformation model. This is discussed next.
 

b. Deformation model:
 

The deformation model of the entire structure is synthesized from
 

deformation states of each element of the structure. These states are
 

expressed in terms of generalized displacements of the nodes of the
 

structure at which the elements interface. The displacement field
 

within each element is chosen as a continuously differentiable function
 

of the local spatial coordinates and the generalized nodal displace­

ments. The field maintains interelement continuity of its essential
 

derivatives thereby providing a Galerkin model of the system. The local
 

generalized nodal displacements of each element are then related to the
 

global displacements of the assemblage. These relations, which can be
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interpreted as transformations of the local coordinate system to the
 

global coordinate system, may be linear or nonlinear depending upon
 

whether the motions and deformations of the elements are infinitesimal
 

or finite. For large rigid body rotations, these transformations are
 

accomplished using Euler angles which are linearly independent by virtue
 

of the fact that the rotations are performed in a prescribed order.
 

There are three kinematic descriptions most commonly used for char­

acterizing large displacements of finite element models of structures.
 

These are: (i) the total Lagrangian formulation wherein the initial
 

undeformed configuration is the reference configuration, (ii) the up­

dated Lagrangian formulation which uses a total Lagrangian formulation
 

within each load or time step but updates the reference configuration at
 

the end of each step and (iii) the co-rotational or rigid convected
 

coordinate formulation which utilizes a coordinate system rigidly at­

tached to an element and moving with the element. For development of a
 

large rotation formulation vital for crashworthiness studies the use of
 

the total Lagrangian formulation is unsuitable since most structural
 

theories permit only moderately small rotations [20]. The co-rotational
 

formulation decomposes the total displacements into a rigid body motion
 

component and a strain producing component. Thus, with the restriction
 

of small relative rotations within the element, this formulation leads
 

to a simplification of the strain-displacement relationship on the
 

element level while still permitting arbitrarily large rotations of the
 

element. The present deformation model uses the co-rotational or rigid­

convected formulation for its kinematic description.
 

Through appropriate kinematic constraints modeling of massless
 

degrees of freedom or of deformation-free rigid links or even the simu­

lation of contact with an impenetrable, rough plane are easily achieved.
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Rigid links can be used to simulate either joint eccentrices or rigid
 

parts of a structure. In the interest of a truly unconstrained minimi­

zation Lagrange multipliers or penalty functions are avoided. Rather
 

kinematic constraints are formulated as prescribed displacements under
 

reactive forces provided by the gradients of the strain energy with
 

respect to the corresponding degrees of freedom.
 

c. Material model:
 

Although closed form analytic expressions for U can be developed
 

when the material is elastic the same is not true when elements yield.
 

Then the response depends upon the current values of stress components
 

and the past history. Von Mises' yield criterion together with Henckey's
 

total strain theory provides a simple means of calculating strain
 

energy density distributions throughout an element that has yielded.
 

Because total stresses and total strains are no longer linearly related
 

recourse must be made to numerical integration (Gaussian or Lobatto) of
 

the strain energy density over the volume of the element.
 

It is clear then that when an element yields, the complexity of
 

the strain energy evaluation increases several times in relation to its
 

purely elastic behavior. A number of quadrature points have to be
 

assigned over the volume of the element and using the material model
 

stresses and strain energy densities have to be evaluated at each of
 

these points for known values of strains (Figure 2). The average strain
 

energy density which is simply the weighted sum of these strain energy
 

densities then enables the .calculation of the total strain energy. It
 

must be noted, however, that the stress-strain history at each of these
 

quadrature points, which corresponds to a unique location on an ideal­

ized effective stress-effective strain curve for the material of the
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element (Figure 3), must be made available at all times. This places
 

highly increased demands on computer storage as inelastic deformations
 

progress with time.
 

Thus, a frame element which was strictly a uniaxial member in the
 

elastic range, typified by its cross-sectional area and moments of
 

inertia, requires a full three dimensional characterization in the
 

inelastic range. In other words, frame elements for inelastic analysis
 

require a classification based on the different cross-sections. This
 

development is restricted to frame elements with thin-walled sections of
 

the closed and open (Box, Tube, Elip and E) variety -"a characteristic
 

of general aviation aircraft frames. However, in the elastic range the
 

development does permit frame elements with arbitrary cross-sections
 

characterized by their gross section properties. In the interest of
 

simplicity, classical shear flow theory for thin-walled sections is used
 

and certain simplifying assumptions regarding torsion, warping and shear
 

deformations in the inelastic range are introduced. This is characteristi
 

of most nonlinear analyzers mainly because the development of a truly
 

three-dimensional frame element for nonlinear inelastic response is a
 

formidable task perhaps even more challenging than that of the develop­

ment of a plate bending or a shell element for the same purpose. In
 

fact, in the inelastic range it may be easier to model a thin-walled
 

beam of arbitrary cross-section by an assemblage of a large number of
 

plate and shell elements thereby permitting a faithful representation of
 

very complex effects like restrained warping, torsion, cross-sectional
 

distortions, etc.
 

The material is assumed to unload elastically. For modeling plas­

ticity under cyclic loading kinematic hardening with an idealized
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Bauschinger effect is assumed. Specialized elements like the gap ele­

ments and stays can be easily modeled simply through an appropriate
 

modification of the material model of the conventional elements.
 

The details of the total strain energy calculations for the dif­

ferent element types considered and the transformations relating element
 

behavior to global variables is relegated to the appendix.
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III. Results and Discussion
 

The effectiveness of the minimization technique in solving non­

linear problems is very much a function of not only the size of the load
 

or time step but also the extent and type of the nonlinearity-geometric
 

or material and even the type of the temporal discretization scheme used
 

which is to say the assumed values of a and y in Eq. (I). With this in
 

mind, the process of selection of problems for validation was geared
 

towards providing an evaluation of the techniques under different types
 

of nonlinearities. Problems belonging to three distinct classes namely:
 

(i) quasi-static, elastic with geometric nonlinearities, (ii) quasi­

static, elastic-plastic with geometric nonlinearities and (iii) transient,
 

elastic-plastic with geometric nonlinearities were selected. Independent
 

solutions or experimental results for these problems were available for
 

comparison purposes.
 

Figure 4 shows the case of a rod-spring problem wherein the stiff­

ness of the spring is just enough to prevent a snap-through and provide
 

a single-valued load deflection response. Most researchers regard this
 

problem as geometrically highly nonlinear. Using stringer elements with
 

load steps as high as I lb., the energy minimization solution is indis­

tinguishable from the easily obtainable exact solution to this problem.
 

Higher load steps could have been chosen but caution must be exercised
 

with extremely large load steps since the performance (the number of
 

minimizations required for convergence) of the minimization algorithm
 

may be adversely affected. In other words, the computational effort
 

within a load step may increase substantially enough to offset the sav­

ings ancured from fewer load steps.
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Figure 5 provides yet another example of such a nonlinearity except
 

that in this case the load response curve is no longer single valued but
 

is a composite of stable and unstable branches. Using straight-forward
 

load incrementation, it is possible to locate only the stable equili­

brium configurations as indicated in Figure 5. Using displacement
 

incrementation, however, the entire load response curve can be easily
 

obtained. The response predicted by energy minimization agrees very
 

closely with that predicted by the nonlinear analyzer developed by
 

Stricklin and Haisler [21] for an identical model of the shallow arch
 

using frame elements.
 

While both of the previous problems involved only geometric non­

linearities, Figure 6 presents the case wherein both material and geo­

metric nonlinearities interact. The experimental prediction of the
 

post-buckling, elastic-plastic response of this beam-column with a thin­

walled channel cross-section was the result of a test carried out by
 

Anderson et al [22]. To prevent failure by direct compression, the
 

column was tested at an inclination of 50 from the vertical with both
 

ends of the column being clamped. A column under these conditions is
 

highly imperfection sensitive and hence Anderson et al assume an addi­

tional 10 offset, as shown in the figure, for the mathematical model
 

hoping to simulate the inherent imperfections of the actual column
 

tested. Because the response involves a highly unstable branch, dis­

placement incrementation had to be used in place of load incrementation.
 

The response predicted by energy minimization agrees extremely well with
 

the experimental prediction and even more so by comparison with that
 

predicted using UMVCS-l[23].
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Figure 7 illustrates the case of the transient response in the 

presence of both geometric and material nonlinearities. The impulse is 

large enough to cause the entire beam to respond inelastically while 

experiencing moderately large relative rotations. The experimental re­

sponse for this beam was 6btained by Krieg et al [24]. It is immediately 

obvious that the quality of the response prediction is very much a func­

tion of the values of 8 and y. This is not to say that optimum values 

of 8 and y exist which guarantee optimum fidelity of the response pre­

diction. As a matter of fact, optimum values of 8 and y appear to be 

very much problem dependent. Use of 8 = 0.276 and y = 0.55 has been 

recommended by Goudreau and Taylor [25] for smoothing out the high 

frequency oscillations. Again, the response may be significantly 

affected by the use of a consistent mass matrix and with rotatory iner­

tia and shear deformation effects included. 

With the possible exception of the problem of Figure 8, all the
 

previous problems involved only a relatively few degrees of freedom.
 

Furthermore, the state of stress in all of these problems was essen­

tially uniaxial for all practical purposes. Using constant strain
 

membrane elements the maximum strain in the vicinity of a notch in the
 

direction of loading is determined and compared with the experimental
 

results. The agreement between the two predictions is good but could
 

perhaps be improved upon by the use of nonlinear strain displacement
 

relationships in the co-rotational coordinate system.
 

Next, by way of a reasonably large scale problem consider the drop
 

test of a twin engine, low wing Navajo substructure conducted by NASA
 

Langley's Impact Dynamics Research Facility under the auspices of the
 

joint NASA-FAA general aviation crash test program. The substructure
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including the disposition of the occupants and their seats being sym­

metric about B.L.O.O, a finite element model of only half the structure
 

as indicated in Figure 1, suffices. The depth of the substructure floor
 

is implicit in the frame elements used for this portion of the substruc­

ture. Of simulation interest was the occupant chest motion and its
 

vertical acceleration at the pelvis location. The occupant was modeled
 

by a single lumped mass while the seat was modeled by a set of four
 

nonlinear stringer elements whose stress-strain behavior was based on
 

previous, independent static crash tests on similar seats. Although,
 

the ground plane capability could be exercised for this problem, in the
 

interest of simplicity, the aircraft substructure was assumed to be in
 

contact with the ground plane at nodes ( through 9 while a velo­

city of 330 inches/sec was imparted to the entire model. Thus one would
 

expect correlation in only in the initial phases of the response.
 

Figures 9 and 10 provide the correlation between the analysis and
 

test results. The chest motion history was obtained from high-speed
 

film analysis, performed by NASA Langley. The reduced data for the
 

acceleration trace at the pelvis location was obtained by NASA by least­

square-fit filtering technique. The differences in the two traces on
 

the left and right side of the substructure indicate slightly unsym­

metrical test conditions. The time of occurrence of the initial peak
 

and its magnitude obtained by analysis agrees reasonably well with the
 

corresponding test values. For additional model and simulation details
 

the interested reader should consult reference [26]. This reference
 

also provides a comparison of the performance of the energy minimization
 

technique vis-avis the so-called hybrid technique and another technique
 

which utilizes the vector approach.
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Indeed, one may say that this demonstration of the effectiveness of
 

the minimization technique as a tool for nonlinear analysis has been,
 

restricted to problems with a relatively few degrees of freedom. For
 

such small scale problems the energy minimization technique has been
 

shown to be at least comparable to, 1f not better than, the pseudo force
 

technique [16]. Extensions to large scale problems like a full aircraft
 

may involve several thousands of degrees of freedom. The state-of-the­

art in nonlinear transient analysis in general, does not appear to be at
 

a point where such large scale problems can be solved efficiently and
 

with any high degree of confidence in the simulation fidelity. Likewise
 

the effectiveness of the present technique for response prediction of
 

such large scale structures remains to be demonstrated. Using precon­

ditioned conjugate gradient technique or variable metric methods which
 

exploit sparsity, it is believed that this is no longer an insurmount­

able task.
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VI. Appendix
 

Evaluation of the Total Strain Energy
 

The scalar approach for the solution of problems of structural
 

analysis requires that the strain energy of the system be expressed,
 

explicitly or implicitly, as a function of the global generalized nodal
 

displacements of the finite element model.
 

From a known,vector of the generalized nodal variables in the
 

global co-ordinate system, consistent with the prescribed boundary
 

conditions, a vector of local generalized variables in the co-rotational
 

co-ordinate system of each element is established through transforma­

tions which are functions of its geometry and its rigid body rotations.
 

The assumption of deformation patterns of the element as functions of
 

these local generalized nodal variables (interpolating polynomials)
 

yields element strains. Recourse.to the element material model then
 

yields the corresponding stresses and strain energy densities at various
 

predetermined points (quadrature points) over the extent of the element.
 

Barring purely elastic response, a simple weighted summation of these
 

quantities over the element volume yields stress resultants and strain
 

energies respectively. For purely elastic response these are provided
 

by well-known closed form expressions. For the elastic-plastic response
 

the strain energy density may be decomposed into an elastic part and an
 

incremental-dissipative part thereby providing an estimate of the total
 

energy of the system that has been dissipated through inelastic deforma­

tions. Thus, as shown in Figure 3 for a system with M elements
 

M 3 M M -

U i i Ue + A Y ( f W'dv + f AW'dv) (A1) 
1=1 v. v. 

where the dissipative energy AU is the incremental energyndissipative 
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computed from the previous stress state typied by the point a0 on the
 

effective stress-effective strain curve of Figure 3.
 

In the following sections expressions for the strain-displacement
 

relations are developed for the different elements.
 

(i) 	Stringer Element
 

A structural component of uniform cross section which is initially
 

straight and which is capable of resisting only axial loads is known as
 

a stringer element.
 

From Figure (A-1) it can be seen that for assumed nodal displace­

ments (Up, Vp, Wp) and (Uq Vq, Wq) of nodes p and q, the change in
 

length,'DL, of the element is given by
 

+ (yq +V - Y Vp) 2 
DL= 	[(Xq +U - )2DL q +q p Up q q P p
 

+ (Zq + Wq Zp Wp)2]/2 _ [(Xq XP 2 + (yq - yp)2 

+ (Z - Z )2]11 /2 (A-2)
 

which can be simplified to
 

DL = 	L[l + 2(AXAU+AYAV+AZAW) + AU2+AV2+AW2 1/2
2 2 	 (A-3)
 

A being the difference operator for q and p end values. Assumption of
 

the usual linear interpolation function in the corotational coordinate
 

system then yields
 

DL() 

(A-4)
 

(ii) 	Frame Element (3D Beam)
 

A frame element (Figure A-2) is a structural component which is
 

initially straight and which undergoes axial, bending and torsional
 

deformations resulting from finite displacements and rotations of its
 

ends.
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From Figure (A-3), the displacements of the end q relative to the 

end p can be seen to be 

u=(Rq-R p) - L+(U q-U)p (A-5) 

or in terms of the three components as 

6u)J 
q-U 

6vv= [TJp + [TIP Vq (A-6) 
Zq 	 p
Zp
6wi 0 W g ­

q P q P 

where again Ui, Vi and Wi (i=p or q) denote the global displacements of 

the nodes. The matrix [TI can be shown to be [9] 

[TIP = [T4()X, 4y, 4 )][T 1(0xp, eyp, ezp)] (A-7) 

with 

rec C S -s 
y z y z y 

[Tj ,lj% = 	 cc z+sx s y sxcyy az)] 	 j-cx z+ssyC sz (A-8) 

L Sz+Cxsc -sC +c s S ccix z 	 -Szx z x y z X yj 

c. = cos a. and s. = sin a. for i=x,y and z. Angles ) , 4y and z are
1 	 1 1 1 Xx y 

the initial orientation angles described in Figure (A-2) and angles 

xp , 0yp and 6 are the rigid body rotations of the end p. In deriving 

Eq. (A-7) Euler angle transformations are implied with the order of the 

rotations being az,ay and ax" 

Similarly, with the restriction of small relative rotations within
 

the element, the rotations x' y and z of the end q relative to the
 

end p are
 

, = [TIP -en, (A-9) 

Z zq zp 

With the relative generalized displacements {6u, 6v, 6w} and 

{X, * Iz I known the usual deformation patterns of the reference axis 

of the beam element in the co-rotational co-ordinate system are assumed 



z z3 Y3
 

z 
2i "x

35
 



to be
 

u(O) = 

v() (32 - 2E3)( Sv - zs) + (E3 _ 2)A
L s x z(A-10) 

w(E) =1 (32 - 23)(6w + Y * - (E3 _ 2)y 

S= CIx 

where E = x/L and ys and zs are the co-ordinates of the shear center of 

the cross-section of the beam. The strain of the reference axis can 

then be shown to be 

e u n[--(l-2C)(Sv-z + 2(3g-l)
L L s x z (A-11)


6 
-[ (l-2C)(6w+ys'x) - 2(3 -)y]
 

with n = y/L and = z/L. In the above equations it is implicitly as­

sumed that the lateral displacements and twists are referenced to a 

longitudinal axis through the shear center while the axial displacements 

and rotations are referenced to the centroidal axis. As shown in ref­

erence [27] this assumption necessitates the introduction of an addi­

tional degree of freedom in the axial direction in the interest of equi­

librium satisfaction in the inelastic range.
 

(iii) Membrane Element
 

The membrane element of Figure (A-4) is a plane triangular thin
 

plate element under constant strain. The element can undergo large
 

rigid body motions but its deformation is restricted-to only in-plane
 

stretching resulting from finite displacements of its vertices.
 

The orientation of the element is uniquely determined by the global
 

co-ordinates of its three vertices, p', q° and r'. The relative dis­

placements 6uq, 6ur and defined in Figure (A-4) can be seen to be
vr 
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'Figure A-4. Deformation of a Membrane Element
 



6
u = R - R q
 

6u = Q cos- Q0 cos (A-12)

r
 

6V = Q sin 8 - Q- sin a
r 

with
 

2+ y2 + Z2 ) 1/2 
rp rp rp
 

R=(2U ) 2 r)2]l/2
+ (Zrp + Wrp
R = [(Xrp + Urp) + (Yrp + Vrp 


QO = (X2 + y2 + Z2 )1/2
 
qp qp p2
 

Q = [(Xqp + U qp) 2+ (Yqp + V )2 + (zqp + W )2/2 (A-13) 

Cos a = (XqpXrp + YqpYrp + ZqpZrp)/(QOR°)
 

= 
[(Xqp + Uqp )(Xrp +
Cos q + Urp ) + (Yqp + Vqp )(Yrp + Vrp 


(Zqp + qp)(Zrp rp)]/(QR)
 

and typically a.. = a. - a . Next, as in the case of the two previous13 1
 

elements, deformation patterns u(x,y) and v(x,y) in the co-rotational
 

co-ordinate system when expressed in terms of the local nodal displace­

ments yield
 
6u Su 6u
 

q )x+ r -- cot]y
o
u(x,y) = U+ ( [ QOsin R
 

(A-14)
 
6v 6V 8Sv
 

v(xy) = v + ( )x + r - cot]y

RO 

p ) [ QOsina 

with the strains C, Eyy and y determined on the basis of the small 

deformation theory as
 

= (6u
xx ax )
 

Cyy ay= Qs (A-15)
 

Y = u vr Su cota).
 
axy ax R°
 
au av 

y Q sina 
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Thus, with the assumption that- the total deformation theory of plas­

ticity is applicable, the effective strain and effective stress defined
 

by Eqs. (6-b) and (6-c) yield estimates of the stresses and strain
 

energy densities from the material model. It. is obvious that the inte­

grations over the volume of the element are rendered trivial by virtue
 

of the assumption that strains and hence the stresses and strain energy
 

densities within the element are constant.
 

(iv) Rigid Link
 

Rigid link is an element which merely translates and rotates
 

without any appreciable deformations. The element is identified by two
 

nodes located with reference to the global co-ordinate system. One of
 

these two nodes is referred to as the master or primary node, p, with a
 

maximum of six independent degrees of freedom. The motions of the slave
 

or secondary node or nodes, q, are determined purely from kinematics by
 

setting the left hand side of equation (A-5) to zero. Knowing the
 

dependent displacements of the secondary nodes,
 

{Ut = ful + [T] {L + (RI - {RI (A-16)

q p p p q 

the contribution, to the total potential energy, of loads applied
 

directly at the secondary nodes can thus be- determined.
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T: Introduction
 

The prediction of transient linear or nonlinear response of structures is
 

almost invariably accomplished by using a temporal finite-difference scheme to
 

effectively eliminate time as a variable and reduce the system to a set of
 

algebraic equations in the unknown nodal variables of the finite element dis­

cretization. Finite differencing in time may be either of the explicit or
 

implicit type.
 

Most nonlinear analyzers linearize response within a time step and use an
 

explicit scheme [I]-[3] or an implicit scheme [3]-[4], while a select few do
 

not linearize response within the time step and use an implici-t scheme [5] or
 

an explicit scheme [6]. At the present time there are no clear cut guidelines
 

or criteria for the selection of these procedures. Use of hybrid explicit­

implicit (on-off) schemes have been advocated and is the subject of current and
 

future research [7]-[9].
 

For schemes which do not linearize the response within a time or load­

step, several different techniques for the solution of the nonlinear equations
 

may be used. Such techniques have been discussed at great lengths by Bergan
 

[101 and Stricklin et al. [111. Of particular interest is the technique utili­

zing the minimization algorithms of mathematical programming. This approach
 

has been used successfully for nonlinear structural analyses [5], [12]-[14].
 

In this case, the problem of finding the solution of the equilibrium equations
 

can be equivalently posed-as the one corresponding to the minimum value of a
 

potential function
 

In the past there has been considerable skepticism with regard to the
 

effectiveness of the energy minization technique, when compared to other
 

methods, such as the pseudo force technique-. It has been also claimed that the
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extension of the minimization algorithms to large scale problems is virtually
 

impossible. The purpose of this paper is to demonstrate by comparison with the
 

pseudo force technique that minimization techniques have and can overcome some
 

of these objections and that future improvements,in minimization algorithms
 

will further improve their efficiency.
 

II. Summary of Minimization Techniques for Nonlinear Analysis
 

The solution of the equilibrium equations can be equivalently posed as
 

the minimization of a potential function. For all structural problems with
 

geometric and material nonlinearities of the type considered herein, such a
 

potential function always exists. Although this technique has been previously
 

used for mainly positive or negative definite systems, other systems can be
 

handled by using least squares methods or modified conjugate gradient methods
 

with preconditioning.
 

The minimization problem as applied to the solution of transient nonlinear
 

structural problems (reduction to the static case is obvious) consists of mini­

mizing a potential function associated with the system for an assumed relation­

ship between displacements and time. The displacement-time relation for each
 

generalized nodal variable of the finite element model may be assumed to be of
 

the form [16].
 

2
X = t(At) At)2 + (At) oi + Xi (1-a)
ei Xei 2 s)At x0 ±A)o~xi 

=
Xei Y(At)Xei + (1 -Y) (At)Xoi + Roi (1-b)
 

where Xei is the i-th generalized nodal displacement at the end of the time
 

step. The 0 and y constants are selected by the analyst to define the inte­

gration algorithm. It can be easily verified that the equilibrium equation
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corresponding to the i-th degree of freedom of a lumped mass system
 

M.X. F. + 'U 02)
1 ei 1 32 

is the stationary condition of the functional 
= N [ 1 21 (---- 21 ++ -1 + ( - 0)Xoi)Xei]Mi 

2('At)2 ei -(At) 01 O(At) oi 

- FiXei + U + C (3) 

where C is an arbitrary constant, U is the strain energy, and Mi and Fi
 

are the lumped mass and external force, respectively, associated with the i-th
 

degree of freedom.
 

Thus, once the assumption of the displacement-time relation is made, the
 

minimization approach, unlike the incremental stiffness approach, solves the
 

actual nonlinear problem within a given load or time step without linearization.
 

Consequently iteration at constant load to improve equilibrium or force
 

imbalance at the end of a load or time step is not required.
 

In the realm of mathematical.programming, the algorithms used for uicon­

strained minimization can be broadly classified into three distinct classes
 

stemming from the level of computational sophistication: (i)the zeroth order
 

requiring only function evaluations, (ii)the first order requiring evaluation
 

of the gradient as well as the function and (iii) the second order requiring in
 

addition a variable metric related to the curvatures of the functional S. Only
 

the techniques belonging to the latter two categories have been more frequently 

used for structural analysis, because of their higher effectiveness in compari­

son with zeroth order techniques [17].
 

For first and second order methods the' required gradient of S can be
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evaluated either by a finite difference operation on S or analytically. The
 

use of an analytic gradient results in a substantial saving in computational
 

effort. This saving is the result of not only a cheaper gradient evaluation
 

but in most cases, a faster convergence to the solution because of higher
 

accuracy of all computed-quantities [17].
 

The i-th component of the gradient of S can be written as
 

as M - F @U (5) 
ax ei Mi ei aX.i 

The term requiring an analytic expression is (which can be evaluated
axei
 
as
 

DU_ = i aw dV mdW(6 

e 
-Dei 

k] e 
k = 

=l 
f%)k (-i)kdVk (6) 

where k Vk 

W - the strain energy density for the k-th member
 

m - the number of members or elements which have the i-th degree
 
in common
 

Vk - volume of element k
 

2 (.xx. Cx 2 + E 2 _xx 3 xy2)1/2yy xx y 4 

= effective strain for two dimensional stress state (7-a) 

: for one dimensional stress state 

For one step incremental loading or unloading 

(axx+ 2 yy xxyy 3xy2 + x y2)1/2 

dW - effective stress for two-dimensional stress state (7-b) 

S for one dimensional stress state 
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Thus
 

m 

au Zi dV (7-c) 
e1 k=l Vk ei 

Equations (7-a) through (7-c) imply the use of Henckey's total strain or
 

the deformation theory of plasticity. In addition, unloading takes place elas­

tically with the load path described by the initial elastic portion of the curve
 

and formodeling plasticity under cyclic loading kinematic-hardening is pre­

scribed.with an idealized Bauschinger effect.
 

The term in Eq. (7-c) involves a volume integral which is very
aXei
 

similar to that required for a member energy evaluation. Hence, each compo­

nent of the analytic gradient vector involves approximately the same calcula­

tion effort as one member energy evaluation, two if the node is common to
 

two elements, three if the node is common to three elements and so on. Con­

sequently a significant reduction in the number of member energy evaluations
 

and in CPU time should be realized if analytic gradients are used instead of
 

finite difference gradients. This has been vividly demonstrated for problems
 

involving different types of nonlinearities in reference [17].
 

III. Summary of Pseudo Force Technique
 

The pseudo force technique, as applied here, uses the initial strain con:
 

cept for the treatment of material nonlinear behavior and an incremental up­

dated Lagrangian formulation for the geometric nonlinear behavior [43], [44].
 

The governing equation at the (n+l)th time step for the transient nonlinear
 

analysis of a discretized structural problem is
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{AP~.(0++{KQl)]{[K(n)l} {Rn1
[MJ{AU I = TAPnI + {AQnI - [K{n + {R (8) 

with the following definitions:
 

}
Un+l {yn} ++ I 

{P = {Pn} + {APn.ll (9)
 

{Qn+l} = {} + {AQn+1I 

{Rn {Pn} + {Q n - [M{UnI -{F nI 

[K(0 )]
where - linear stiffness matrix 

1)]
[K I - nonlinear geometric stiffness matrixn
 

{APn+iI - increments of generalized nodal forces
 

{AQn+I} - increments of the effective plastic load
 

{Rn} - .vector of residual forces due to equilibrium imbalance 

{AUn+l}, {A n+l,'{An+lI - increments of displacement, velocity and 
acceleration 

[MI mass matrix 

{FnI - vector of internal forces. 

The equations for the static case are obtained by simply neglecting the
 

inertia term in Equation (8). For the transient solution a convenient finite
 

difference approximation is the central difference integration algori'thm. The
 

recurrence relations for this temporal operator are
 

{AUn+I = 2{AUnI - {AUn_ I} 
 + At2{A d
 
(10)U - {AUn-1­{AUn+l I 

n 
 2At
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where At is the time step. The integration procedure is explicit because
 

{AU 1 is obtained directly from Eq. (10) using previous information, and it
n+l 


is also notable that {Aun+l} is obtained from Eq. (8)without factorization
 

of the (effective) stiffness matrix in the step-by-step solution.
 

Equation (8) is valid for large elastic-plastic deformation provided that
 

the appropriate nonlinear terms are included in the strain-displacement rela­

tions and that the total strain increment can be simply decomposed into elastic
 

and plastic components [43]. With an assumption on the plastic strain dis­

tribution within an element, the effective plastic load increment can be
 

expressed as {AQn+ I} = [k*J {A n+l where (Asn+ I is the increment of nodal
I 


or element plastic strain and -[k*] is the initial strain stiffness matrix
 

used to represent initial strains and to reflect the assumed distribution of
 

both total and plastic strains within an element. Incremental plasticity
 

relations are used to determine values of stress and plastic strain developed
 

throughout the loading history. This technique has the capability of handling
 

both strain hardening and ideally plastic behavior.
 

IV. Energy Minimization Versus Pseudo Force Techniques
 

Structural analysis computer programs differ significantly in their treat­

ment of elastic-plastic response. Most explicit Codes appear to tolerate
 

violation of equilibrium in the inelastic range while implicit codes cannot
 

get by with such a deficiency. At least two well-known explicit codes, after
 

conversion to implicit type using the same element deformation and material
 

models, experienced difficulty in converging to a solution and violation of
 

equilibrium. For frame elements, the implicit formulation requires an axial
 

displacement field in the inelastic range which is an order higher than the
 

linear field which is commonly used for a two noded beam-column element in the
 

7
 



elastic range [19]. Furthermore, the number of quadrature points used for in­

tegration of strain energy densities, stresses, etc. differ from code to code.
 

Thus, even if the two finite element models are identical in the undeformed
 

state they differ signficantly as-deformation proceeds. This factor has to be
 

taken into account before undertaking an efficiency assessment of the' two
 

procedures.
 

An obvious follow-on to the work reported in reference [17] was a
 

comparative efficiency evaluation of pseudo force techniques-(incremental
 

linearization-explicit) versus energy minimization techniques (nonlinear­

implicit). For the purposes of Figures 1 through 5, to be discussed below,
 

analytic rather than finite difference gradients were employed and Fletcher's
 

algorithm [18], more commonly known as the BFGS (Broyden-Fletcher Goldfarb-


Shanno) algorithm, was used for unconstrained minimization of the functional S.
 

Figure 1 illustrates the case of a rod-spring problem involving a single
 

degree of freedom but regarded as a highly nonlinear problem. The technique
 

using energy minimization predicted the 'exact' solution using load increments
 

as high as 1 lb. (Larger increments could have been tried but were not
 

attempted. For quasi-static loading conditions the energy minimization code
 

does not provide an automatic selection of load steps guided by error
 

tolerances or the like). The pseudo force technique using 1/10th of the load
 

increment§ did not do quite as well. Since it is only a single degree of
 

freedom problem a comparison of running times- was not considered meaningful
 

although the energy minimization technique was several times faster than the
 

pseudo force technique.
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Next, Figure 2 illustrates the case of the classic snap through of a
 

shallow arch. Since the unstable equilibrium branch presents computational
 

problems using both techniques, displacement incrementation rather than load
 

incrementation was used. The problem using the pseudo force technique was run
 

on a CDC 6600 machine (taking 10C29,2CP0 secs)'ywlis known to be about
 

2 1/2 times slower than the CYBER 175. The energy minimization method'took
 

9.618 CPU seconds on the CYBER 175, A comparison of the equivalent running 

times shows that the pseudo force technique is about ffve times slower in com­

parison with the energy minimization technique and the, quality of the response 

prediction does-not appear to be as, good. Using strictly load incrementation 

the energy minimization technique using potential energy as the potential 

function can locate-only stable equilibrium configurations as indicated in 

Figure 2 by the circles and dotted load path. The pseudo force technique with 

load incrementation becomes singular at the limit load where the tangential
 

stiffness vanishes. As a point of reference the square symbols represent a
 

first order self-correcting solution from [I1].
 

Figure 3 illustrates the post-buckling elastic-plastic response of a thin­

walled channel cross-section column. Again, displacement rather than load
 

incrementation is used because of the unstable equilibrium branch. For the
 

,range of deformations considered the entire column, built-up from 12 frame
 

elements, responded inelastically. Figure 3 indicates that the energy minimiza­

tion technique is comparable to the pseudo force technique.for this problem.
 

Figure 4 provides an example of transient response-in the presence of
 

both geometric and material nonlinearities. The problem consists of a clamped­

clamped beam of rectangular cross-section subjected to an explosive loading
 

over a central region. The experimental data was taken from the literature [41].
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The impulse is large enough to cause the entire beam to behave inelastically.
 

In this case, the amount of nonlineari'ty within a time step is very much depen­

dent not only on the size of the time step but also on the temporal algorithm
 

used. That is to say it is very much dependent on the values of 0 and y.
 

Thus, it is rather difficult to settle upon a common denominator for comparison
 

of the two procedures. In addition, all the previous comments regarding the
 

violation of equilibrium in the elastic range and the complications for the
 

implicit techniques thereof, hold true for this case as well. With this in
 

mind, one would tend to conclude that the efficiencies of the two procedures
 

are comparable, although the pseudo force technique appears to have a slight
 

edge over the energy minimization technique when the entire structure responds
 

inelastically. The particular pseudo force technique code used here for com­

parison purposes provided the options of using either the central difference
 

or Adams predictor'corrector algorithm. Of these two algorithms the former
 

was found to be the more efficient and hence it is used for comparison with the
 

energy minimization technique which employed variations of the Newmark-Beta
 

algorithm. One should note in passing, however, that the transient response
 

appears to be tremendously influenced by the val-ues of and y. This is
 

not to say that optimum values of 8 and y exist which can guarantee optimum
. 

fidelity of the response prediction. As a matter of fact, optimum values of
 

o and y appear to be very much problem dependent and itmay indeed pay-off
 

to use a hybrid explicit-implicit (on-off) scheme.
 

Finally, Figure 5 provides the case of a structure built-up from two
 

dimensional membrane elements. The experimental results for the notched tensile
 

specimen are taken from [42]. A comparison of the running times for this
 

problem reveals that the time of execution psing the pseudo force technique is
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nearly twice that required by energy minimization. This may be in part due to
 

the fact that the pseudo force technique formulates the problem using the
 

incremental flow theory of plasticity whereas the energy minimization technique
 

uses the simpler deformation theory of plasticity which postulates the exis­

tence of a strain energy density function of the total stresses and strains as
 

in Eq. (7). A comparison of the responses, however, brings out quite vividly
 

the effectiveness of both the techniques. It may be remarked in passing that
 

the problem at hand could have equally well been formulated using the incre­

mental flow theory when energy minimization is used as the solution procedure.
 

The potential function, in this case, instead of being a function of the total
 

quantities need then be-expressed in terms of incremental quantities [20].
 

With the possible exception of the problem of Figure 5 all the other pro­

blems involve only a relatively few degrees of freedom. However, based on the 

results of Figures 1 through 5 it can be safely concluded that at least for 

small scale problems the energy minimization technique is better suited than 

the pseudo force technique for solving highly nonlinear problems-. If anything, 

it is the extent of the inelasticity requiring very costly numerical volume 

integrations which mars its'performance. Ignoring the scale of the problem for 

the moment, such a conclusion can have profound implications in the selection 

of a technique for analyzing the highly nonlinear crush response of vehicles ­

wherein inelastic deformations are usually confined to avery small portion of 

the entire structure with a major portion behaving either elastically or like 

a rigid body. 

Results of Figures 1 through 5 certainly dispel the skepticism with which
 

investigators in the past have regarded the effectiveness of the energy minimi­

zation technique. Needless to say, the solution algorithms of the pseudo
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force techniques can be considerably improved upon resulting in a much higher 

efficiency. However, by the very repetitive nature of the computations of an 

implicit technique like the enfgy minimization techniqe, savings of as high 

as 50 percent in the computational effort may be-reali-zed simply by an expert 

restructuring of the computer logic alone,. 

It has been also claimed that the extension of the minimization algorithms
 

to large scale problems is virtually impossible. One would not have challenged
 

the veracity of such an assertion back in the sixties, but not any longer.
 

Within the past decade mathematicians and computer scientists have extended the
 

scope of the mathematical programming techniques significantly.
 

IV. Extension of Minimization Techniques to Large Scale Nonlinear Systems
 

Reference [17] concludes that for general-nonlinear structural analysis,
 

Fletcher's variable metric method (BFGS) [18] with analytic gradients is the best 

minimization algorithm of those considered therein. This algorithm is initially 

very slow in coverging to a solution presumably because it uses the null, vector 

as an initi-al guess for the unknown variables and the identity matri-x as an 

approximation to the inverse Hessian matrix [H. Thus the solution for the
 

first time or load step is a strong function Df the total number of degrees of 

freedom of the problem. The same is not true, however, of the subsequent time
 

or load steps. Having a good approximation to the inverse Hessian [H] and a
 

good initial estimate of the variables the number of minimizations required
 

for convergence in subsequent steps is only a smal fraction of the total num­

ber of degrees of freedom. Although, Fletcher's variable metric algorithm
 

is a very powerful tool its storage requirements (upper or lower half of the
 

symmetric matrix [H] requiring n x (n + 1)/2 storage locations for a n
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degree of freedom system) limits its applicability to small scale problems.
 

To alleviate the problems of storage one could fall back upon conjugate gra­

dient algorithms of Fletcher-Reeves [211 and Powell [22]. But both these
 

algorithms have been found to be 'not nearlyas efficient as the variable metric
 

(BFGS) or the Davidon-Fletcher-Powell's (DFP) algorithms [23] presumably be­

cause of some ill-conditioning. So an extension of the minimization algorithms
 

to large scale problems centers on reducing the storage requirements of the
 

second order quasi-Newton methods (BFGS, DFP, etc.) or improving the efficiency
 

of the first order conjugate gradient techniques. It is essentially these
 

very features which have received the tremendous attention of the mathemati­

cians and the computer scientists in the past few years.
 

The convergence rate of the conventional conjugate gradient method has
 

been considerably improved by the use of pteconditioning. Briefly, precondi­

tioning involves the modification of the residuals (components of the gradient
 

of the potential function) and working with the pseudo residuals rather than
 

the residuals themselves. The modification in designed to reduce the spectral
 

condition number of the Hessian of the potential surface and thereby accelerate
 

convergence to the minimum. Preconditioned conjugate gradient or generalized
 

conjugate gradient methods have been used for both linear and nonlinear problems
 

with a great degree of success [24]-[28]. Recently, Axelsson has extended the
 

use of generalized conjugate gradient techniques to mixed finite element varia­

tional formulations [29]. Again, using preconditioning Axelsson [29] and
 

Widlund [30] have demonstrated the effectiveness of the generalized conjugate
 

gradient method in solving problems pertaining to nonpositive definite systems.
 

The details on the application of the generalized conjugate gradient technique
 

to nonlinear elliptic boundary value problems in irregular regions, as for
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instance the nonlinear problems of structural analysis using a finite element
 

discretization, are found in reference [27]. An additional improvement is an
 

attempt to eliminate convergence problems resulting from round-off errors by
 

a modification of the linear searches [311-[32].
 

In order to be able to use second order quasi-Newton methods for large 

scale problems one has to exploit the fact that the Hessian of the potential 

surface for most finite element discretizations is symmetric and banded with 

a very narrow band width. However, the inverse of a banded matrix is not 

necessarily banded and since most variable metric methods in their original 

form required approximations to the inverse of the Hessian the fact that the 

Hessian is banded could not be exploited. Recently however, several investiga­

tors [331-[36] have modified the variable metric methods by utilizing anapprox­

imation to the Hessian rather thafi its inverse in their march to the minimum 

without destroying the sparsity of the approximation during its updating at 

every step. It has been shown that by doing so the modified method still 

retains the convergence properties of the original method of Broyden [333 which 

did not account for sparsity [37]. This is a major step in the direction of 

extending the minimization techniques for the solution of large scale nonlinear 

problems of structural .analysis. 

Disgressing for a moment; the differential equations of motion describing
 

the nonlinear impulsive response of structures are stiff because of the pre­

sence of very high and low frequency components in the initial stages of the
 

response. In fact, a boundary layer phenomenon exists such that within the
 

boundary layer the use of a standard explicit integration technique will lead
 

to stability and round-off problems or in the case of an implicit technique
 

will lead to inaccuracies which may destroy the reliability of the computed
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transient. Specialized techniques utilizing the concepts from the singular
 

perturbation theory have been used to tackle such stiff differential equations
 

[37]-[39]. When using minimization techniques to solve such problems the
 

boundary layer effect exhibits itself as an ill-conditioned minimization prob­

lem. Boggs [40] has extended the singular perturbation techniques of Miranker
 

and others [37]-[39) to modify the conventional variable metric methods so as
 

to accelerate the convergence to the minimum value.
 

Several other investigators [45]-[47] have advocated the use of self­

scaling variable metric algorithms. These algorithms use a two-parameter
 

family of approximations to the inverse Hessian and determine conditions on
 

one of the parameters to improve the condition number of the approximated
 

Hessian inverse. The effectiveness of such scaling in conjunction with the
 

Hessian updates themselves rather than the inverse updates is a matter that
 

needs further investigation.
 

Thus, two alternatives are available in extending the minimization tech­

niques to large scale nonlinear systems, namely: (i)the preconditioned con­

-jugate gradient technique or (ii)the variable metric methods that exploit
 

sparsity and utilize singular perturbation theory or scaling to eliminate ill­

conditioning. The relative performance of these two alternatives is unknown
 

at the moment, but it is clear that they both offer the promise of being able
 

to solve extremely large scale problems efficiently. Their performance vis a
 

vis the pseudo force or other techniques remains to be established.
 

VI. Concluding Remarks
 

A comparative efficiency evaluation of the pseudo force technique (incre­

mental linearization - explicit) versus energy minimization techniques (non­

linear - implicit) is presented in this paper for the purpose of dispeling
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some of the skepticism of the past with regard to the effectiveness of the 

energy minimization technique. The use-of analytic gradients rather than 

finite difference gradients significantly improves the-tfficiency of the energy 

minimization technique in the s6lutJon,of nonlT'inear structures problems. For 

small scale problems the energy-minimization technique-is better suited than 

the pseudo force technique for solving highly nonlinear problems. 

In the past few years the mathematicians and computer scientists have 

been attacking the problem areas which inhibit the extension of the minimiza­

tion algorithms to large scale problems. Two alternatives are presently 

available, namely- (i)the preconditioned conjugate gradient technique or 

(ii)the variable metric methods that exploit sparsityand utilize singular
 

perturbation theory or scaling to- eliminate ill-conditioning.
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Figure Legend 

Figure No. Title 

1 The-Rod-Spring Problem 

2 Snap-Through of a Shallow Arch 

3 Post-Buckling Elastic-Plastic Response of a 
Thin-Walled Column 

4 Impulsively Loaded Clamped Beam 

.5 The Notch Specimen 

26
 


