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FIGURE

FIGURES

Various double-layer models.

(a) Transition region between two plasmas with a potential
difference.

(b) Space-charge-limited diode. (Particles enter with zero
velocity, but with non-zero flux.)

(c) Space-charge-limited cathode (Cathodic electrons enter
with zero velocity, but with non-zero flux. Plasma
electrons are reflected by the double-layer; ions are trans-
mitted through it).

(d) Double-layer between two plasmas. (Four species of particles
are reflected and transmitted).

(e) Double-layer between two plasmas. (Ions from Plasma 1 are
transmitted by the double-layer. Only one species of particles

is reflected: electrons in Plasma 2).
Double-layer regions: Cold plasma theory.

Double-layer characteristics (N = 1.1, Q = 0.8).

(a) Cold plasma theory (Ue = 31 = 0).

(b) Macroscopic plasma theory (Se = 31 = 0.1).

Normalized potential (¢M/¢0) at location of maximum electric field

in a double-layer: cold plasma theory.

Double-layer solutions for non-zero reflected particle temperatures.
(a) Modification of cold plasma solution.
(b) Additional solution.

Variation of double-layer potential (¢0) with separate variation
of particle temperatures.
Effect of reflected particle temperature variation on double-layer

solutions (ﬂ(@o) = 0).
Double-layer region: non-zero reflected particle temperatures.

Double-layer length.
(a) Cold plasma theory.

(b),(c) Macroscopic plasma theory.
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Variation of functions FY and Fl (Arrows correspond to q¢

decreasing).
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Adiabatic.

Isothermal.

Velocity distribution functions at q¢ = 0 and q¢ < 0.

(a)
(b)
(c)
(d)

Waterbag with all particles forward-going.

Waterbag with forward- and backward-going particles.
Maxwellian with large drift-to-thermal velocity ratio.
Half-Maxwellian.

Variation of N(%) for the velocity distribution functions
of figure B.1.
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A FLUID DESCRIPTION OF PLASMA DOUBLE-LAYERS
by

J. S. Levine and F. W, Crawford
nstitute for Plasma Research
Stanford University, CA 94305, USA

ABSTRACT

This paper describes the space-charge double-layer that forms
between two plasmas with different densities and thermal energies.
Three progressively more realistic models are treated by fluid theory,
taking into account four species of particles: electrons and ions
reflected by the double-layer, and electrons and ions transmitted
through it. First, the two plasmas are assumed to be cold, and the self-
consistent potential, electric field and space-charge distributions within
the double-layer are determined. Second, the effects of thermal velo-
cities are taken into account for the reflected particles, and the modifi-
cations to the cold plasma solutions are established. Third, the further
modifications due to thermal velocities of the transmitted particles are
examined. The applicability of a one-dimensional fluid description,
rather than plasma kinetic theory, is discussed. One valuable product
of this description is the potential difference across the double-layer
in terms of the parameters of the two plasmas which it separates. A
useful length parameter is defined characterizing the distance over
which most of this potential is dropped. Comparisons are then made
between theoretical predictions, and double-layer potentials and lengths

deduced from laboratory and space plasma experiments,



1. INTRODUCTION

Double-layers consist of two space-charge layers in close proximity,
one positively charged and one negatively., They are commonly observed
in the laboratory as cathode sheaths (Langmuir 1%9; Crawford & Cannara
1% ; Prewett & Allen 1770 ) or as constriction sheaths if the vessel con-
taining a plasma column has a reduction in cross-sectional area (Crawford
& Freeston 1963; Andersson et al. 1%69; Sandahl 1971; Jacobson & Fubank
1973).

Double~layers can occur that are not controlled by electrodes or by
the boundary, Laboratory experiments on positive columns in a variety of
neutral gases, with (Lutsenko et al, 1957 Torvén & Andersson 1975) and
without (Babié & Torvén 1374; Armstrong & Torvén 1J74; Armstrong 197" ;
Levine et gl. l;rn) magnetic fields, have demonstrated the onset of double-
layers as the current density is raised. They have also been observed in
double- (Quon & Wong 197 ) and triple-plasma (Coakley et al, 1978) devices
as transitions between plasmas of differing characteristics, and in various
computer simulations of such plasmas (Goertz & Joyce 177" ; DeGroot et al,
1977; Joyce % Hubbard 1)75; Hubbard « Joyce 1973). The experimental evidence
for double-layers has been réviewed by Torvén (1375). There is a growing
body of evidence that double-layers form in the magnetosphere, accelerating
the high energy electrons that are associated with auroral displays (see,
e.g. Shawhan EE E&, 1974 and references therein). Double-layers have also been
invoked in discussions of solar flares (Alfvén & Carlqvist 1967; Carlqvist
1% 7; Hasan ¢ ter Haar 1J75) ana to explain how Io modulates Jovian deca-
metric radiation (Smith % Goertz 19573),

A variety of theoretical models of state-state double-layers have
been proposed which can be understood qualitatively from figure 1(a): a
monotonic potential variation occurs over & length that is long on the
scale of the electron and ion Debye lengths, but small on the scale of
laboratory or space dimensions. The localization of the potential step,
and the associated electric field, implies that although neutrality is
violated within the double-layer, the charge, integrated across the double-
layer, is zero. The plasmas in Regions 1 and 2 may be characterized by
different densities, drift velocities and temperatures. The double-layer

is assumed to be much shorter than the collisional mean free path, so that



collision effects within it may be ignored, though they may be important
in Regions 1 and 2, The double-layer is generally treated as a one-
dimensional structure, thus excluding magnetic field effects, but a two-
dimensional model in which the double-layer is oblique to the magnetic
field, has been treated (Swift 197°)., A general review of double-layer
theory has been given by Carlqvist (19783),

Several specific models of double-layers that have been studied are
shown in figure 1(b)-(e). 1In the first of these, Region 1 is replaced by
an electron-emitting cathode, injecting a flux re of cold electrons, and
Region £ is replaced by an ion-emitting anode, injecting a flux ri of
cold ions, as shown in figure 1(b). The Langmuir (1%¢9) theory of a space-
charge-limited diode can be applied to the double-layer, In this, Poisson's
equation is solved consistently with the particle fluxe~ ., The well known

1/2

, is derived from the assumption that

Langmuir relation, Ye/fl = (mi/me)
the electric field vanishes at the emitting surfaces,

In a model studied by Crawford % Cannara (1% '), appropriate to a hot
cathode discharge, Region 1 is replaced by an electron-emitting cathode,
and Region 2 is taken to be a uniform infinite plasma, as illustrated in
figure 1(c), Plasma electrons reflected within the sheath are assumed to
obey Boltzmann's law, lons entering the double-layer from the plasma are
taken as monoenergetic, A minimum ion velocity is found which, in the
limit of a low flux of electrons injected from the cathode, is the Bohm
(1949) sheath condition, vﬁ > Te/m1 .

Block (1972) treats the double-loyer between two infinite plasmas,
using fluid theory to include temperature effects, and taking account of
a population of ions in Region 1, and of electrons in Region Z that are
reflected by the potential step, as shown in figure 1(d). For the case of
an infinite potential difference across the double-layer, Block shows that
the Langmuir condition is obeyed, and that modified Bohm conditions must
be satisfied for the model to be self-consistent,

Montgomery % Joyce (1% ) use kinetic theory to show that a double-
layer may be constructed as a stationary shock-like solution of the Vlasov
equation in a system with no current, As illustrated in figure l(e), they
assume two streaming populations in Region 1; electrons that are accelerated

by the potential, and ions of the same density and velocity that are decele-

rated, but transmitted through the double-layer, A second electron



population is required on the high potential side of the double-layer to
ensure electrical neutrality. The transmission of the ions imposes an
upper limit on the potential difference equal to the ion streaming energy.

Kan (197 ) extends the Montgomery « Joyce (13 9) model to show that
electrostatic shock solutions can exist in a 'r1 >> Te plasma under
conditioas of the high latitude plasma sheet. Populations of reflectea
ions in Region 1 and transmitted ions from Region ? are included, and the
assumption of zero current is eliminated. Magnetic field effects are
treated in this one-dimensional theory by using loss-cone distribution
functions, Necessary conditions for existence of the shock are derived
in terms of the ratios of drift to thermal velocity for ions und electrons,
for an assumed potential difference,.

Andrews % Allen (1971) describe double-layers in terms of averages
over unspecified distribution functions, and use Maxwellian distributions
for the reflected particles, as in figure 1(d). Numerical results for
transmitted particles with delta-function distributions are presented,
which satisfy Bohm conditions, but give values of [ /I'/ that are less
than the Langmuir condition.

Hasan % ter Haar (1979) analyze the double-layer for delta-function
and power law distributions for the transmitted particles in figure 1(d),
using waterbag distributions for the reflected particles. Conditions
analogous to the Bohm ccnditions are derived, and a modified Langmuir con-
dition is derived for delta-function distributions of transmitted particles,

Using a different approach, Knorr & Goertz (1974) assume forms for
the potential and for the velocity distributions of three of the four particle
species in figure |(d),and then show that the fourth velocity distribution
can be found self-consistently. By setting the reflected i1on population
to zero, and applying the Penrose (1%0) criterion, they show that the
plasma is stable against small perturbations if the double-layer is long
enough and the transmitted ion population is fast enough.

In this paper, the double-layer is analyzed using fluid theory.
Section 2 treats the case of cold particles; thermal effects for the
reflected particles are included in %3, and for the transmitted particles
in %#4. The emphasis is on finding a relationship between the magnitude of
the potential step, and the parameters characterizing the adjoining plasmas,
In &, qualitative statements are made about the length of the double-
layer and a characteristic length useful as a quantitative measure is

defined and discussed.
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2., COLD PLASMAS

As a starting point, all of the particles in figure 1(d) are taken to
be at zero temperature., The "reflected"” particles are actually stationary,
and cannot penetrate the double-layer, Consequently, only transmitted
particles need be considered in establishing the self-consistent potential,
The density of the stationary particles will be determined so as to satisfy
neutrality outside th. double-layer.

Electrons enter the double-layer from Region 1 with velocity v 2
density N1 and flux re(: “olual) . JIons from Region ©? enter with

velocity u density n and flux =n,.u

’ I ( ) .
i2 12 i 12 12
within the double-layer, where the potential is ¢ , the particle velo-

At a point, x ,

cities and densities, determined from conservation of energy and particle

flux,are
1/2 1/
2 , 2e0 (2 420 (g -
ug®) = (o + Z2)T ) = (v 22 (e)
e i

r !

e i
"e(x) S o —x7/5 ni(x) - a—— T2 * (1)

(uel + E:-) (u12 + m—i" (@ -¢))

where me(mi) is the electron {1on) mass, and e 1is the magnitude of the
electronic charge. Substituting the densities frc1 Eq. (1) in Poisson's
equation yields,

2 I
24 . r,

e 1! T e VT2 5 72 " °(o-<§rrﬁ'(2)
dx’ 5 = €o ef + aﬂﬂf'ﬁ ( 5 cel?, ) <
m
(5]

el u +
i2 m
1

Equation () can be used to define a function P(¢) such that

f.@.:‘--d_l’ (3)
dxd dg

Integrating, we obtain



s 1/2
P(®) = - Ll-ere [(u;l. ¥ QL‘_) - ucl]

| "o

5 ’ 1/2 p 2 1/21|
P, + =2 o (o, + 2 ] g
tmy 1[(1!12 4 n (@O-¢)) (u12 . n ﬁo) ‘ ’ (%)
where the constant of integration is chosen so that P(0) = O . Alterna-

tively, P can be expressed as

ey o 000 ), f o(x)E(x")ax" . (5)
0

The electric field is assumed to vanish at the edges of the double-layer,

E(0) = E(xl) =0, (6)

This ensuses that the charge density integrated across the double-layer

vanishes, The function P is thus constrained to satisfy

P(xy) = O P(2,) =0, (1)

and is negative within the double-layer. Since the integrand in the last
equality in Eq., (*) is the force between the double-layer and the particles,

Eq. (7) can be viewed as a statement of mechanical equilibrium,

Setting P(QO) = 0 in Eq. (4) yields
? oM’ T (I‘euel - Mriu12)(r1uel - reu12) (8)
0 “Tet 2 ’
e Sy
(2 - wr)

where M = m, /p . Although Eq. (8) predicts a positive value for ¢
e

within the ranges

~ [ u 2 r
Yel e el _ " Vel < 8 Vel < M (9)
- = 2 2
i, f1'%e “Ee Moy
Y

the actual range is more restrictive. This can be seen by solving
P(ﬁo) = 0 for Ie/Ti g
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ped 1/2

b5
r u miu
:-‘S‘-M(-«Q) 12 ] (10)
1 Vel 20@0 172

(l-o- -1

| Pe'el '
which varies monotonically from u.lluiz to nl/g as 00 varies from

zero to infinity, The ranges of possible double-layer solutions are thus

uil PE u2l r2
2—:-;—?—‘-&1 s 1’—<;3—<M. (11)
Yy 1 Yo 'y

Langmuir's model (Langmuir 1900; Block 1972) of the space-charge-
limited diode 1s contained in this formalism as a special case, Finite
fluxes of particles enter the double-layer with zero velocity, so that
the numerator of Eq, () vanishes, (The emissive powers of the cathode
and the anode are assumed infinite.) Therefore % # O can be obtained
only if the denominator also vanishes. This yields the Langmuir (1909)

condition

1/2
)

I“e,fi‘i . (mi/me % (12)

and leaves the potential difference indeterminate,
Equation (%) may be rewritten with the fluxes eliminated in favor

of the particle densities,

&8 = 2NO LE:EEI&E:EL ) (13)

(1-N“Q)°

where we have irntroduced the normalization

PR 12 i 12 (14)




Equation (11) reduces to the limits
N>1:-K?Q ’ N(l(fq. (1&/]) \

These regions in (N,Q) space are shown shaded in figure 2.
For neutrality in Plasmas 1 and 2, the reflected particle populations,

normalized to nel s, must satisfy

n n 1

'Hl = “Ll : 1 = ——-—N———m » ﬂ. =l-l-.-2- = N = » (1“)
o 14+24 ) ol (1 + 28,2
*q % 0

where na is the density of reflected ions in Plasma 1 and N is

the density of reflected electrons in Plasma 2., Since ﬂi and n'
represent particle densities, they must not be negative, For N < 1,

Ny is always positive, while for N > 1, Ne is always positive. Using
Eq. (13), and examining the non-trivial cases yields

NQQ > I-;:_% (¥ <1)3 #’}Q < g%}'l (N>1) . (17)

The conditions of Eq. (17) are less stringent than those for existence

of a double-laver, Eq. (15). It follows that for double-layer formation

there must be reflected particles on both sides of the double-layer.
Figure 3(a) shows the electrical potential, ¢(2) , electric field,

E(Z) , and charge density, p(7Z), for N = 1.1 and Q = 0.8. The normaliza-

tion for the spatial coordinate, 2 , is

(18)

The electric field and charge density are normalized so that
o = dE/dZ = - d°8/dZ° .
Although the precise spatial variation of the electric potential
can be determined only by integration of Eq. (3), some symmetry properties

can be deduced from the function I,



R TR I —

e P 1/0 ‘ 1/1]
.« - .-1-(1+r‘¢)1’3-m[(1+%(00-e)) -(1+% QU) g

[

mn . u
¢ el el (19)

For the electric potential to be symmetric about § /2, I must also be
symmetric about 4\/? . This is equivalent to requiring all odd derivatives
to vanish at that point,

1-2m 1-Cm

v \
“‘ ) = (
d e ~ N U m - m lll . ’
._.-'E Y {Lm-j)!! ?I (1 + 6——) + [ l] (l + ¢'TJ)
at |, Q
¢l
(m odd), (20)
This rearranges to
) 1\ N . r
H m-1 ’ \"_l)
1+ Q;

which i satisfied by N - Q 1 or N2Q -1, where il - o , only,
The asymmetry of the electric potential can be gauged by determining the
value of éM at which the minimum of [I occurs; this corresponds to

vanishing charge density and thus to the maximum electric field,

-

M Nj

LN(NQ-1) ; )

4r-|

2.
By expanding for weak (N = 1) and strong (N0 =~ 1) double-layers,

these cases are found to be nearly symmetrical,

-
e
-

|
0

o]
'
Flom
A
o
[T

1+8). (23)

-

Ll

Contour plots of émfir in the (N,Q) plane are shown in figure 4+, and
indicate ¢M/¢d =~ 1/7 over a broad range of N and @ ,

To summarize the foregoing results for cold particles, we note that
the double-layer may be completely characterized by the densities and
energies of the ions and electrons streaming into it, The densities of
the stationary, "reflected” particles, and the magnitude and spatial

variation of the electric potential, are uniquely determined.



3+  REFLECTED PARTICLE TEMPERATURE NON-ZERO

Thermal spread of the reflected particles will be described by assuming
4 Boltzmann distribution within the double-layer. The temperatures of the
reflected ions and electrons, expressed in energy units, are "rn and ‘l‘02 »
respectively, Although this allows an exponentially small number of
"reflected” particles to cross the double-layer, for Tyg » Tep << €09 »
this error will be negligible,

The non-zero temperature of the reflected pgfticlea allows them to
penetrate and partially neutralize the double-layer. The sharp boundaries
associated with cold particles are thus smoothed out. The potential drop
across the double-layer is also affected.

The normalized Poisson equation is

N + 7. exp|- , 38 '
o-‘ﬂffg ! "( 31)‘ '

1/2 e 2
1l + 6’(\"

o ook

(21)

where 3i(~ Til/meuil) and 3e (: Tef/meuil) are the normalized ion and
electron temperatures,

Equation (2&) is integrated to find [l , corrected for the non-zero
reflected particle temperatures. Noting that Eq, (1-) is stiil the proper
ideun:tification for ne and nl , it is found that

n(¢) =1 (l—-ﬂw 8 1 T7) ( : ) ( - ))
‘ e( (1+28,) 8 (exp i B § Je
1l/2 1,2
- NQ[(l " Q ("‘0"» . (]' + 5 QC) ]
= N ¢
=Yy 1 - - 75 (exp (“ 3’:) i l) . (2)
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The self-consistent value, 'U ; 1s again determined from the require-
ment ﬂ(#o) 0O . 1In this case, QU must be found numerically. For very
low temperatures, an approximation to the difference, &{ , between the

true value, ¢ and that based on Eq., (13), ¥, , for culd particles, is

o
found to be
N(1+28% )1/2 -1
§¢ == Se 2.. . 51 I7" .
" 1/2 2 -1/ »
N(1+c¢c) (1 + 6'°c) * -3 (1 + -N
(26)

At either edge of the double-layer, both [ and d1/dé vanieh:; near the
edge , [l 1is thus apgroximately

n(e) » GH" 41

‘ (8-0,8,) - (27)
dd .

§=8

~
Since [ must be negative within the double-layer, d"ﬂ/dé2 is required

to be negative at é:ﬂ,#l From Eq. (2°) the derivative is

)

a°n 372 Te (8,-9) N 2 =32 1,
-z = (1 + 28) - = exp |- , (1 + = (8 _Q)) . - (_ 3 )
o T 3, Q Q0 - My T/
(28)
""his reduces to
. - 1/2 _4.9n

1 _ (- .- ) < F o =
. B N 1l + Q ‘:\U N - (I. ¢ D2 q'")
3y —r (¢=2), 3 < ‘ (8=¢)

1+§(1+='1*)'L ¢ N -3/2 o

0 Q 'C' 6 + ('L + 2 @\) 2/
(29)

The temperatures are thus bounded from above, 7, < 1 and 3e < Q.

In terms of unnormalized variables, these become Til S meuel and
TP? < miur”:2 , Which may be recognized as Bohm (1949) conditions for
collection of electrons and ions, respectively, through a sheath.

The limits expressed by Eq. (29) must be compared with the physical
requirement that the trapped particle densities not be negative. Consider-
ing N as the dependent variable, and @O as an independent variable,

Eq. (29) may be rewritten as

11



3
L)
(1-5,)(1 + & 2, )7 0(1 ‘ r—es;)
! o & > N> i (30)
T 4 1ﬁ (Q-Se)(l + Péu)
L

These bounds on N are more stringent than those derived from the require-

ment that the trapped particle densiti :s not be negative,

T
(1+%¢)2"“7’ - (31)

As for cold particles, a self-consistent solution for the double-layer
requires trapped particlies on both sides of the double-layer,

Figure 3(b) shows &(Z) , E(Z) and p(2) for the values o° N and Q
used in figure 3(a), but with warm reflected particles. The penetration
of the double-layer by the reflected particles produces the smooth variations
of ¢, E and p .

Examination of H(#U) for small %O indicates the possible existence
of a new root H(éu) = 0 , and thus a new double-layer solution (see figure “).
If the solution satisfies Eq. (30), it is physically admissible. The cause
of this modification may be identified by considering H(QO) as a function

of &, , and evaluating its derivative at & = O from Er. (22). we obtain
v

O (32)

This compares with dﬂ(#h)/dQD = N=1 -t QO -~ 0 when the reflected
particles are cold, as can be seen from Eq, (19), Each of the reflected
species contributes a term 1-N , so that the slope of H(@O) is changed
in sign by the inclusion of non-zero temperatures,

If only one of the thermal terms is retained, the first derivative

vanishes and the second derivative is found to be

N-1 N .
e (e s L. £0
a°1(8,) e © T
— . (33)
dd” N-1 N
= —+ =+ 1 (3, # 0) ,
¢‘0_3 gy Q i



The value of ﬂ(¢0) as ¢ approaches infinity is unaffected by

0
the finite temperatures:

1/2 .
n(zo) - (2%.) / (noV° - 1) (¢

: DF (3)

0

For example, if the initial slope of H(QO) is negative [N> 1 , from
Eq. (3)] and the asymptotic value is positive [N'?Q > 1, from Eq. (34)],
there must be at least one root (in general an odd number of roots) H(to) =0 .
The analysis based on cold particles excluded any roots in this case., Similar
reasoning shows that in the ranges limited by the cold particle analysis,
¥ 21 2 N?Q , there will be either two roots or none (in general &n even
number of roots).

Figure ¢ shows the behavior of QD as 30 and 31 are separately
increased from zero, The curves marked Je and 31 are based on the
linear approximation, Eq., (21 ), It is seen that & decreases with increasing

0
J for N> 1 and with increasing 31 for N < 1 . The upper bound on

t:e temperature for these cases comes from Eq. (29), and not from the Bohm
conditions, which are its high-potential limits. For certain values of

N and Q , the second double-~layer solution introduced by the non-zero
temperature is physically admissible, As figure 7 shows, the two roots
ﬂ(éo) = 0 coalesce at a finite 10 and then disappear.

Figure 8 shows {shaded) the regions in (N,Q) space within which double-
layer solutions can be found for non-zero reflected particle temperatures.
The boundary at N = l(én - 0) for cold particles is found to vary with
temperature, The value éf QO along this boundary also varies, but is
everywhere greater than zero, The NEQ = 1 boundary, with infinite ¢0 ’
is unaffected by the inclusion of temperature.

To establish the validity of the double-layer solutions along the low
potential boundary, an additional criterion should be investigated., 1If
#O is not significantly greater than the reflected particle temperatures,
a-conslderable fraction of the "reflected" particles will be transmitted
through the double-layer, thus invalidating the model, In fact,all points
along the boundary are found to satisfy QO > & . For reference, the line

i, = T 1is shown in figure 8.
v

13



. TRANSMITTED PARTICLE TEMPERATURE NON-ZERO

If the transmitted particle velocity distributions have narrow widths
about their streaming velocities, a fluid model can be used to describe
the particle dynamics, Denoting the electron temperature by Te , With
value Tel within Plasma 1, and the ion temperature by 'r1 , with value

T,, within Plasma 2, the momentum transfer equations are

12
. 9_(.‘.'_e_)_ de 1 P
e dx \7 dx n_ dx L R
F d
u p
a (") e 1 1 .
" Ox (? ) T ngoax 2 Pty 5 (3)

Assuming that the particles are accelerated adiabatically,

dT d d
T—:(V-l)zﬂzen—n, (%)

where Yy=3 for one-dimensional adiabatic acceleration, the thermal terms

on the right-hand side of Eq. (3 ) are

ld , 34T 3 4 [s 8¢ 3
+ AL RN & R _(T(,«TT)- (37)

~ -~

where T and n are evaluated at some reference position, Using the
continuity of particle flux for each species,
u

w=3 (38)

and Eq. (37), Eq. (3 ) can be written as a conservation principle,

d_ nel uel -8 5. 3Tel ne .
x 2 m 2m 2 a 4
2n e n
el

a W Ui 3 T “i
& :_nic+e_?+ - 7, - . a0, (3))
dx on° mi cmi nC

“4 i2



With the normalization given in 32, the conserved quantities become

1 3 X Q 3 _ %
r o & £ eN?e -~ const, ;—NE?-+ $ + 5 'l'1 ;2- = const, (40)
“Te s '

where the normalized temperatures and densities are

'l‘el T n n

T = ™ » T = 12 » N = L » N = "1-" .
. i - u? e nel i nel
e el e el

The constants in Eq. (40) are found by evaluating * e left-

Plasmas 1 and . for the electrons and ions, respectively.

in (40) can be solved to yieid

2

o L
28 + 37+ 1 - BEQ + 37 +1)° -12+ ]
N%;ﬁ) . o e e

’
6T
e

~ 5 2(4’0‘4‘) +37,+Q -[(2(@0-‘#) + 3 T, * Q)2

(41)

hand sides in

The expressions

Ny(#) = ¥

Lo 8 ¢
i

These expressions are valid only for

3 s 15 3 T, < Q.

(43)

For higher temperatures, the fluid approach breaks down,as discussed in

Appendix A,

The densities given by Eq, (42) can be used in Poisson's equation to

generate a new function [l . The requirement of neutrality outside the

double-layer, i.e. that dll/d$ vanish at § = 0, QO , vields appropriate

values for the reflected particle densities,

1211
2¢+3T+o—[(2¢+3T+0)2-12TQ]/ =
) i 0 i i
T]:l-N . 2 »
i 67T
' i
o 11
2% + 3r + 1 - BP% + 3T + 1)2 - 127 ]1/ e
0 © 0 © e Ll
'ne:N- 6T - . (#)

e
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The function [ can be divided into four components, one for each of

the transmitted and reflected classes of electrons and ions,

I = nel+ n92+ nil+ nl&’

) 1 3
lg =1 RO (1 - x8) ,
§ ? -8
: %0 0
ne? = el exp( 5—) - exp(} o )] g
-] e
1 =7,9, (1 - exp(- .
11 i1 3y :
e = ¥a (broe - hr) ¢ =5 (W00) - ) (45)
e T TN (0) TN (E)) T 2\t T . ; £

The self-consistent value of the potential step, @O , must again
ve found numerically, Noting that dli(¢ )/d$ =1 -Nat & =0, and
1/2 ¢ nl/2 g ¢ 0
that [I - (E#V) (NQ " "=1) as ¢0
o \
of ﬁ(éu) is unaffected by the incliusion of the transmitted particle

—~ = , we see that the gross behavior

temperatures. No new double-layer solutions are to be expected, though
their location and physical admissibility may be modified.
The change, &% , between the vilue predicted for cold particles, Qc ’

and the true ¢L can be approximated for small Ty and 11 by
- - - 1~ ..\ 2
! (128 ) /e , }T (1+28,) 4
0% -~ T 4 =
¥ e .~ -1/2 2 "11,2
h(lv,g@c) - N(1 + 5 @c)
. =1/2 -3/2
1-21+i¢) +£(1+§¢)
+ 1, N £ 8¢ £ 9 _c : (m')
i o )-T/E‘ -1/2 i
] N1+6¢c‘ - (1+28)

Equations (P€) and (1F) are additive when all four species have finite

temperatures,

Figure  shows the variation of QO as Te and Ti are separately

increased from zero, The curves marked 7; and ;1 are based or the
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linear approximation, Er., (4 ), The qualitative effects are similar to
L thoughb '0 is not double-valued and has

those for non-zero 3e and I
o o]
no low potential cutoff, The condition d“ll/d¢" < O for & - 0O, LN

hecomes

aN. M ¢0-¢ Ny s dN,
i S e ST F, o (’ 3—1) =<0 (¢ =0,8)), (47)

o e i

where dN /df and dN /di are evaluated from En. (42),

dN _f¢ 37 + 1 - [(ff + 3r + 1) - 127 ]l/f 1/2
e e e ¢
3 2
‘ o [L ¢ + 3¢+ 1) - 1lov ] (48)
i e o e
1/2
e i an o me ool 1/2
dN1 1, ] (Gu—f) + 31, + Q- ‘. (¢,-8) + 37, Q) - lETig] )
dd ol d b 2 i ‘
) : 71[(,_,U-,) + 37, 4 Q) - l.TiQ]

Since dNe/dé is negative and dN1/d¢ is positive, i.e. electrons
become less dense and ions more dense in moving to higher potential, ne
and 71 have positive lower bounds. In the limit of strong double-layers,

: |
§ =, Ey. (47) reduces to

0]

Jg+# 37, <1 (8=0), T +3r, <Q (20, (49)

or, in terms of unnormalized variables

+ 3T, < n e . (50)

< 2 T
Tel'el ? 'e2 12 =~ ™%

These upper bounds apply only in the infinite potential limit; for finite
potentials, Eq. (47) is more restrictive and is thus the appropriate
criterion to be applied.

I1f the reflected particles are cold, dll/d% 1is discontinuous at
$ =0, ¢O even though the transmitted particles are warm, Equation (L47)
is then replaced by the requirement that the density of the reflected
particles, [7, , 7, from Fa. (44)], not be negative.
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"+« DOUBLE-LAYER DIMENS IONS

Having determined how the potential drop, .O , of the double-layer
aepends on the physical parameters of the adjoining plasmas, the remaining
question accessible to this analysis is how the spatial extent of the double-
layer is determined.

in determining the distance required for the potential to vary from

0 to 30 y two distinct cases can be distinguished by making a power-
series expansion for I ., If the reflected particles are cold, the charge
density, p(= dii/d%) , will pe discontinuous at the double-layer edge.

We thus have
nz-aﬁ,

(¢ > 0)
d2¢ dll
—2:-3%0, (“1)
dz
which can be solved to yield
1
tzxxa 2 (o3 0) . (52)

From Eq, ("2), we see that a finite distance is required for the potential
to vary from zero to a given non-zero value.
1f the reflected particles are warm there will be no discontinuity

in p at the double-layer edge. We thus have

Ta - pe° ’
(¢ > 0) (53)
d”$ dll 288
——m e e oD »
dz2 dé
which yields
§ =y OXp((gﬁ)l/EZ) (¢ > 0). (54)

The exponential dependence in Eq. (54) indicates that the potential approaches
zero for any finite Z , but attains it only asymptotically at Z = - = ,
The behavior at § = O 1is determined by the reflected ions in
Plasma 1; similar arguments apply at & = QO , wWith the behavior
dependent on the reflected electrons in Plasma 2, Therefore, with warm

reflected particles, the double~laver is infinitelv long, i.e., electrical
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neutrality obttains only at 2 = ¥ =« | even though most of the potential
variation occurs over a finite length. A general method of defining the
length of a doutle-layer is thus required.

Andrews @ Allen (1y/l) define the double-layer length as the distance
over which the potential varies from a tenth of the trapped ion temperature
on the low potential side to within a tenth of the trapped electron tempera-
ture on the high potential side of its asymptotic value, Hasan & ter Haar
(1575) measure between points on both sides of the double-layer where the
potential is within a tenth of the trapped electron temperature of its
asymptotic value., Knorr & Goertz (1974) assume a hyperbolic tangent form
for their analysis of a double-layer, § = 60 tanh(x/g) , and therefore have
the built-in length scale, £ .

We choose to define the characteristic length, L , of a double-layer
as the length over which the constant electric field evaluated at QO/Q
would have to exist in order to produce the potential difference QO ’
as indicated by the dashed lines in figure 3,

- 0 . (55)

While this definition is no less arbitrary than previous definitions, it
commends itself as requiring less numerical integration, and defines the
region of strong electric field, over which most of the potential varia-
tion occurs.

Applying Eq. (*°) to the case of cold particles, the length of the

double-layer is found to be

¥

L - o 1T ¢ OF)
S YTy Ty |
When the double-layer is very stromg, &, = [NQQ-- 1, see Eq. (13)], this
reduces to
L=~ 0.9 %3/& . (57)

or, in unnormalized variables,
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ol ¢ 1/4 ¢ 3/
e

eneluol)

This differs by a factor of order unity from Child's Lew for a diode,
where °“aluol is the electron current density, This is consistent with
the assumption of a large potential difference, i.e. that the particles
enter the double-layer with negligible kinetic energy relative to that
with which they leave, We note further that NEQ =1 38 the normalized
form of the Langmuir condition, Eq. (12).

For weak layers, & - O(N= 1), Eq. (%6) reduces to

1/2
L=>~2 (—Q— (59)

so that the length of very weak double-layers varies smoothly from L = 0O to
L =2 as Q varies from zero to infinity.

Figure © shows the dependence of the length of the double-layer on
the parameters describing the adjoining plasmas, In those cases where an
increase in one of the temperatures causes a decrease in the potential
difference across the double-layer, there is an associated decrease in its
length as well,

It is important to note that distances are not normalized to the
electron or ion Debye length, but to the distance & transmitted electron
travels in a plasma period, before it enters the layer, The scaling is
thus independent of temperature, It follows that no difficulty arises in
treating the case of cold particles, where the double-layer extends over

an infinite number of Debye lengths.
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t DISCUSSION

it is instructive to apply our model to conditions characteristic of
laboratory and space plasmas that may sustain double-layers. Although
the physical parameters, i.e. density, temperature, and drift velocity,
differ by orders of magnitude, the normalized variables may be similar,

For the double-layers observed by Quon &« Wong (197 ),we make the
rough estimates

Na~11l.2, Q= 0.5, T, ™ 0.2, v =01, 3. ~ 0.1, 31 ~ 0.3, (60)

i

which produce a double-layer of magnitude and length QO =4,9 , L = 5,6.
3 -3

For a density of 10bcm- y and electron energy of 1 eV in Plasma 1, this
corresponds to a potential difference of 20 V with a characteristic distance
of 0.3 em, This is somewhat stronger than the 3-1° V and sharper than
the 5~ cm reported, but of the right order of magnitude,

As we have shown, comparison of the admissibility criteria with the
requirement that the reflected particle densities not be negative indi-
cates that reflected particles must be present on both sides of the double-
layer, In their experiment, Quon , Wong were asble to remove the reflected
fon population by biasing a grid appropriately, They report that,without
the reflected ions, they could not produce a double-layer,

Although we lack a complete set of measurements made during an active
aurora, we assume a current of 1 uA/mQ may be carried by a 100 eV electron
beam above the double-layer., For parameters

N=15, Q=0M4, * =01, *=0.1, ‘Je = 0.1, 31 = 0.1,
(61)
(compare with vaiues used by Swift 1570), a double-layer of magnitude and

length, eg = 10,3, L = 7.4 , results, This corresponds to a 2 kV
potential in a 0.7 km long step which requires an average electric field
of 2.5 V/m. This field is a factor of five greater than that measured by
satellite (Mozer et al. 1577), but the measurements may not have been made
in the center of the double-layer. If the current above the double-layer
is carried by 1 keV electrons, the strength of the double-layer increases
to 20 kV, while the electric field increases to only ".0 V/m. These
potentials are of the right magnitude to produce the observations of
high-energy clectron precipitation (see, e.g. Shawhan et al. 1978, and

references therein).
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For self-consistency the relationships of Eqs. (29) and (47) between
the particle energies and temperatures have been developed, If these
conditions are not satisfied outside the double-layer, a "pre-sheath”
(Schott 1% ) may be postulated that would accelerate *he pariicles suffi-
ciently. The excitation of pulses at the ion acousiic speed, as seen in
some positive column discharges (Babié & Torvén 1774) may originate in
such a pre-sheath,

The reflected particles with non-zero temperature have been assumed
to obey Boltzmann's law within the double-layer, This can result either
from an isothermal equation of state in a fluid theory approach,or from
a Maxwellian velocity dictribvtion in a kinetic theory approach. Non-zero
temperature of the transmitted particles has been handled in a fluid theory
approach, with an adiabatic equation of state. However, as is shown in
Appendix B, the same results can be obtained from a kinetic theory approach
with waterbag distritution functions; results for other distributionr
functions are considered, and compared with the results of fluid theory.

One important aspect of the double-layer that is not treated within
this time-independent analysis is that of stability. The Penrose (1960)
criterior for determining stalility applies only to homogeneous systems.

It may thus be possible to find velocity distribution functions that are
Penrose stelle, but which are unstable due to the inhomogeneity (Wahlberg
1977). Also stahility, as determined from the Penrose criterion, derends
critically on the distritution functions. As a solution of Poisson's
equation, the double~layer is dependent only on the density of the particles,
i.e. the integral of the distritution functions. Furthermore, there is
evidence from lLoth latoratory (Dabié & Torver 1974; Armstrong 1975; Quon &
Wong 1976) ard computer exneriments (Hubbard & Jovce 1978) that doulble-
lavers can co-exist with some fustatility.

The analysis presented here stuu es the self-consistency of the double-
layer as an independent entity. However, since double-layers form a part
of a larger circuit, whether in thc laboratory or in space, there are
further problems relating to consistency with the external circuit that

will reouire investigation in future work.
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APPENDIX A: LIMITS OF FILUID THEORY
For v 7 1 in (36), (37) is rewritten
14 Y 4T _ y d ‘ﬂ]""l
b - (nT) = — i i e o~ 1'[:] . (A1)
The isothermal equation of state, y = 1 , will be treated separately,

below.

The conserved quantity analogous to (40) is

TN TR, 3 '\ Al AN S
a1 d e 8L (A.2)

where q 1is the charge of the particle, u is the drift velocity, i
is the temperature, and + 1is the potential at the reference position.
Rearranging (A.2) vields

. A -1
nl _ -2fn 2y T (o) a2, 29 2 1
FA{. u[]+ : '“l“] Ry W EET S (A.3)

The function F}(n/ﬁ) is piotted in figure A.l(a), and shows a minimum at

- (A'h)

——

sy 1
o) . g e
YT )

——

3

As a? decreases, the density must increase or decrease as indicated in
figure A.l1 in order to satisfy (A.3). However, decreasing a? rejresents
acceleration which, to conserve particle number, must be accompanied by

a decrease in the density, n . Values of n/n greater than (n/ﬁ)m

are therefore nonphysical. Thus, evaluating (A.4) at the reference position

vields

y T < mi? (A.5)

Applying (A.5) to the electrons entering the doukle-layer from their
reference point in Plasma 1, or to the ions entering from their reference

point in Plasma 2, and normalizing as in (41), yields
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B

yve. 2 3 4, yti e Q (A.6)

which, for y=3, pgives (43).
For vy=1, (A.l1) takes the form

1 d e d
: (nT) = 1 = (In n) , (A.7)
g0 Ltna. (A.2) becomes
n’. o ,.? -~ -
2?6? a0 7 82 ef % lnn, (A.8)
m m . m m

2n?

Collecting terms in n/n vields

' 2 - -~ ? - R
F, |2 = u? [ﬂ + 21 1n [Ble 32+ 28 4p) , (A.9)
L ) " n :

which is plotted in figure A.1(b), and has its minimum at

A1/
[-I‘—l . ﬂ‘-“—] : (A.10)
an TJ

This is the result of (A.4) for =1, and therefore imnlies the temperature

limitations of (A.6) again.
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APPENDIX B: COMPARISON OF FLUID AND KIMETIC MODELS
FOR TRANSMITTED PARTICLES

Instead of using a fluid model for the transmitted particles, and
then assuming an equation of state, it is possible to assume a form for
the velocity distribution function, f(u; , before the particles enter the
double~layer, and determine its dependence on the potential, ¢ , by the
Vlasov eauation. Taking f(u) as time-independent, the Vlasov equation,
in one dimension, is satisfied for any distribution that is a function of

the total energy;

f(u,8) = £l

1/2
ul + Zﬁi] (B.1)

where m and q are the mass and charge of the particle. The spatial
dependence of f enters through the potential, 4 . The sign of the argu-
ment in (B.l1) is the sign of tb- velocity.

A simple choice for the distribution function at ¢=0 1is a waterbag
with all paiticles forward-going, [see figure_B.l(a)]

31/2 EQ |u—u
£iu,0) = 6 u, D
1/2

0 ’u-unl > 3 u,_ . (B.2)

. 31/2 u

¢

The identifications of N as the density, u, as the drift velocity,
and u, as the thermal velocity are made by calculating the appropriate
moments of the distribution.

Normalizing the density and potential,and defining a temperature con-

sistent with &4,

ul
3 t
N = X » ¢-"1?_ p T &= (B.3)
n0 mu? u?
n D

the density as a function of ¢ {is

[ 4

1/2

N(%) = N
671'2

2 1/2 2 1/2
[1 + o0t 4 2 —[[1 = (3:)1/2] + 2¢] v (B.4)
J
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which is equivalent to (42) for electrons. The assumption of all forward-

going particles is
Jr <}, f“.S)

which is (43) for the use of fluid theory. Thus as far as the analysis
in 54 is concerned, the waterbag and fluid models are identical.

I1f the velocity distribution is allowed to have some backward-going
particles, as in figure B.l(b), the density, normalized according to (B.3)
is

1/2 2 1/2 2 1/2
N(8) = (3—}72-{[(1 + (31)1’2) N 2@] +[(1 - (3n2) . 2@] -(80)t/2}

(B.6)
Although the mathematics does not allow the general case of a drifting
Maxwellian to be treated analytically, two particular cases can be studied.
If the distribution is as in figure B.l{c), a Maxwellian with a large
drift-to-thermal velocity ratio, and thus with a negligible number of
backward-going particles, the distribution function is

(uu)>

no U-UD

f(u,0) = ———-——m exp |- —2— : (B.7)
ut(Zﬂ) l 2ut

To second order in 1 , the normalized density is

3¢ , 2 1
. 1 15 (38-2)ér
N’\Q) = l - b T . (B-B)
(1 + 24»)[:2 (1+28)° 2 (1+28) _|

This agrees to first order with the small-t expansion of N for the
fluid/waterbag model, the second order term of (B.8) being larger by a
factor of 5/3 than in the fluid/waterbag model.

For the forward-going half of a Maxwellian at ¢=0, illustrated in
figure B.1(d), the distribution function, drift velocity and thermal

velocity are
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3\
Ny (2]1/2 w? (u>0),
ol G Bl e
f(u.o) - uo 2“0

0 (u<0),

21[/2
up = u{’[;J = 0,80 uo »

(B.9)

It can be seen from (B.9) that the normalized temperature is a constant,

T = (n=2)/2 = 0.57. The normalized density, as the particles are accele-

rated, is
N(§) = exp (%) [1 - erf ((%)1/2)] 3 (B.10)

Figure B.2 shows the dependence of the density on the potential
for the various distribution functions considered here. For all but
T = 0.3, the fluid/waterbag and faxwellian curves totally overlap; the
Maxwellian is the lower of the 1 = 0.3 curves. Since Poisson's eauation
depends only on the density, and not on the detailed shape of the distri-
bution, the fluid/waterbag model may be used for a Maxwellian with a large

drift-to-thermal velocity ratio, but not for a half-Maxwellian.
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FIG. 1. Various double-layer models.

(a) Transition region between two plasmas with a potential
difference.

(b) Space-charge-limited diode. (Particles enter with zero
velocity, but with non-zero flux.)

(c¢) Space-charge-limited cathode (Cathodic electrons enter with
zero velocity, but with non-zerc flux. Plasma electrons
are reflected by the double-layer; ions are transmitted
through it.)

(d) Double-layer between two plasmas. (Four species of particles
are reflected and transmitted.)

(e) Double-layer between two plasmas. (Ions from Plasma 1 are
transmitted by the double-layer. Only one species of particles
is reflected: electrons in Plasma 2.)
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Double-laver regions:

Cold plasma theory.
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FIG.

Double-layer characteristics (N = 1.1, Q = 0.8).
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(b) Macroscopic plasma theory (Je = 31 =0.1).

(a) Cold Plasma theory (J
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FIG. 4. Normalized potential (¢, /% ) at location of maximum

electric field in a double-layer: cold plasma theory.
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FIG. 5. Double-layer s lutions for non-zero reflected particle
temperatures.

(a) Modification of cold plasma solution.
(b) Additional solution.
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FIG. 6. Variation of double-layer potential (fo)

with separate variation of particle temperatures.
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FIG. 9. Double-layer length.
(a) Cold plasma theory.
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FIG. 9. (Contd.) Double-layer length.

(b), (c)

Macroscopic plasma theory.
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FIG. A.1. Variation of functions FY and Fl
(Arrows correspond to q¢ decreasing).
(a) Adiabatic.

(b) Isothermal.
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FIG. B.1. Velocity distribution functions at q¢ = 0 and q¢ < O.
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Waterbag with all particles forward-going.

Waterbag with forward- and backward-going particles.

Maxwellian with large drift-to-thermal velocity ratio.

Half-Maxwellian.
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FIG. B.2. Variation of N(®) for the velocity distribution

functions of figure B.l.
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