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FIGURE

1.	 Various double-laver models.

(a) Transition region between two plasmas with a potential

difference.

(b) Space-charge-limited diode. (Particles enter with zero

velocity, but with non-zero flux.)

(c) Space-charge-limited cathode (Cathodic electrons enter

with zero velocity, but with non-zero flux. Plasma

electrons are reflected by the double-layer; ions are trans-

mitted through it).

(d) Double-layer between two plasmas. (Four species of particles

are reflected and transmitted).

(e) Double-layer between two plasmas. (Ions from Plasma 1 are

transmitted by the double-layer. Only one species of particles

is reflected: electrons in Plasma 2).

2.	 Double-layer regions: Cold plasma theory.

3.	 Double-layer characteristics (N = 1.1, Q 	 0.8).

(a) Cold plasma theory (U e	5i	0).

(b) Macroscopic plasma theory (Ue _ U i	0.1).

4.	 Normalized potential 
0M 

/ It 0 ) at location of maximum electric field

in a double-layer: cold plasma theory.

5.	 Double-layer solut i ons for non-zero reflected particle temperatures.

(a) Modification of cold plasma solution.

(b) Additional solution.

b.	 Variation of double-layer potential (m 0 ) with separate variation

of particle temperatures.

7. Effect of reflected particle temperature variation on double-layer

solutions (Ho 	 - 0) .

8. Double-layer region: non-zero reflected particle temperatures.

9. Double-layer length.

(a) Cold plasma theory.

(b),(c) Macroscopic plasma theory.
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FIGURE

A.I.	 Variation of functions FY and F  (Arrows correspond to q@
l

decreasing).

(a) Adiabatic.

(b) Isothermal.

B.1.	 Velocity distribution functions at qm - 0 and q i < 0.

(a) Waterbag with all particles forward-going.

(b) Waterbag with forward- and backward-going particles.

(c) Maxwellian with large drift-to-thermal velocity ratio.

(d) Half-Maxwellian.

B.2.	 Variation of N(t) for the velocity distribution functions

of figure B.1.
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A FLUID DESCRIPTION OF PLASMA DOUBLE-LAYERS

by

.I. S. Levine and F. W. Crawford

.nstitute for Plasma Research
Stanford University, CA 94305, USA

ABSTRACT

This paper describes the space-charge double-layer that forms

between two plasmas with different densities and thermal energies.

Three progressively more realistic models are treated by fluid theory,

taking: into account four species of particles: electrons and ions

reflected by the double-layer, and electrons and ions transmitted

through it. First, the two plasmas are assumed to be cold, and the self-

consistent potential, electric field and space-charge distributions within

the double-layer are determined. Second, the effects of thermal velo-

cities are taken into account for the reflected particles, and the modifi-

cations to the cold plasma solutions are established. Third, the further

modifications due to thermal velocities of the transmitted particles are

examined. The applicability of a one-dimensional fluid description,

rather than plasma kinetic theory, is discussed. One valuable product

of this description is the potential difference across the double-layer

in terms of the parameters of the two plasmas which it separates. A

useful length parameter is defined characterizing the distance over

which most of this potential is dropped. Comparisons are then made

between theoretical predictions, and double-layer potentials and lengths

deduced from laboratory and space plasma experiments.
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1 . 1 NTHODa"I' I ON

Double-layers consist of two space-charge layers in close proximity,

one positively charged and one negatively. "they are commonly observed

in the laboratory as cathode sheaths (Langmuir 1929; Crawford & Cannara

19t,-; Prewett & Allen 197(,), or as constriction sheaths if the vessel con-

taining a plasma column has a reduction in cross-sectional area (Crawford

& Freest on 1963; Anders son et al. 1>69; 5andah1 1971; .lacol, son & Fuhank

1973).

Double-layers can occur that are not controlled by electrodes or by

the boundary. Laboratory experiments on positive columns in a variety of

neutral gases, with Lutsenko et al. 197`); Torven & Andersson 1976) and

without (Bab ic & Torven 1^4 '4; Armstrong & Torvi6n 1474; Armstrong 197j;

Levine et al. 1978) magnetic fields, have demonstrated the onset of double-

layers as the current density is raised. They have also been observed in

double- ( Quon & wing 1,.)7;") and triple-plasma ( Coakley et al. 19'78) devices

as transitions between plasmas of differing characteristics and in various

computer Simulations of such plasmas (Goertz & Joyce 1)7` ; DeGroot et al.

1977; Joyce ca Hubbard 1176; Hubbard ot Joyce 1974). The experimental evidence

for double-layers has been reviewed by TorvEtn (1978). There is a growing

body of evidence that double-layers form in the magnetosphere, accelerating

the high energy electrons that are associated with auroral displays (see,

e.g. Shawhan et al. 1978 and references therein). Double-layers have also been

invoked in discussions of solar flares (Alfven ^i, Carlgvist 1967; Carlqvist

19t,); Hasan 6e ter I1aar 19'76), ana to explain how Io modulates Jovian deca-

metric radiation (Smith:^s Goertz 19715).

A variety of theoretical models of state-state double-layers have

been proposed which can he understood qualitatively from figure 1(a): a

monotonic potential variation occurs over a length that is long on the

scale of the electron and ion Debye lengths, but small on the scale of

laboratory or space dimensions. The localization of the potential step,

and the associated electric field, implies= that although neutrality is

violated within the double-layer, the charge, integrated across the double-

layer, is zero. The plasmas in Regions 1 and 2 may be characterized by

different densities, drift velocities and temperatures. The double-layer

is assumed to be much shorter than the co111sional mean free path, so that

2



• ,r

collision effects within it may be ignored, though they may be important

in Regions 1 and P. The double-layer is generally treated as a one-

dimensional structure, thus excluding magnetic field effects, but a two-

dimensional model in which the double-layer is oblique to the magnetic
I
{	 field , has been treated (Swift 1971). A general review o r double-layer

theory has been given by Carlqvist (1978).

Several specific models of double - layers that have been studied are

shown in figure 1(b)-(e). In the first of these, Region 1 is replaced by

an electron-emitting cathode, injecting a flux j-
e 

of cold electrons, and

Region 2 is replaced by an ion-emitting anode, injecting a flux TI of

cold ions, as shown in figure 1(b). The Langmuir (1929) theory of a space-

charge-limited diode can be applied to the double-layer. In this, Poisson's

equation is solved consistently with the particle fluxe'. The well known

Langmuir relation, F e/r i = (mi/me)1/2, is derived from the assumption that

the electric field vanishes at the emitting surfaces.

In a model studied by Crawford 6c Cannara (19r:J), appropriate to a hot

cathode discharge, Region 1 is replaced by an electron-emitting cathode,

and Region 2 is taken to be a uniform infinite plasma, as illustrated in

figure 1(c). Plasma electrons reflected within the sheath are assumed to

obey Boltzmann's law. Ions entering the double-layer from the plasma are

taken as monoenergetic. A minimum ion velocity is found which, in the

limit of a low flux of electrons injected from the cathode, is the Bohm

(19+9) sheath condition, v2 ? Te/m i .

Block (1972) treats the double-lover between two infinite plasmas,

using fluid theory to include temperature effects, and taking account of

a population of ions in Region 1, and of electrons in Region '.that are

reflected by the potential Ftep, as shown in figure 1(d). For the case of

an infinite potential difference across the double-layer, Block shows that

the Langmuir condition is obeyed, and that modified Bohm conditions must

be satisfied for the model to be self-consistent.

Montgomery ^z .Joyce (19)9) use kinetic theory to show that a double-

layer may be constructed as a stationary shock-like solution of the Vlasov

equation in a system with no current. As illustrated in figure 1(e), they

assume two streaming populations in Region 1; electrons that are accelerated

by the potential,and ions of the same density and velocity that are decele-

rated, but transmitted through the double-layer. A second electron

3
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population is required on the high potential side of the double-layer to

ensure electrical neutrality. The transmission of the ions imposes an

tipper limit on the potential difference equal to the ion streaming energy.

Kan (117`x) extends the Montgomery ca Joyce (1969) model to show that

electrostatic shock solutions can exist in a 	 Ti >> T  plasma under

conditions of the high latitude plasma sheet. Populations of reflected

ions in Region 1 and transmitted ions from Region ; are included,and the

assumption of zero current is eliminated. Magnetic field effects are

treated in this one-dimensional theory by using loss-cone distribution

functions. Necessary conditions for existence of the shock are derived

in terms of the ratios of drift to thermal velocity for ions and electrons,

for an assumed potential difference.

,lndrews d Allen (19'71) describe double-layers in terms of averages

over unspecified distribution functions, and use Maxwellian distributions

for the reflected particles, as in figure 1(d). Numerical results for

transmitted particles with delta-function distributions are presented,

which satisfy i3olmc conditions, but give values of I e/I i that are less

than the Langmuir condition.

Hasan 61 ter Haar (1976) analyze the double-layer for delta-function

and power law distributions for the transmitted particles in figure 1(d),

using waterbag distributions for the reflected particles. Conditions

analogous to the Bohm conditions are derived, and a modified Langmuir con-

dition is derived for delta-function distributions of transmitted particles.

l p ing a different approach, Knorr a Goertz (19'(4) assume forms for

the potential and for the velocity distributions of three of the four particle

,pecies in figure l(d),and then show that the fourth velocity distribution

can be found self-consistently, By setting the reflected ion population

to zero, and applying the Penrose (1960) criterion, they show that the

plasma is stable against small perturbations if the double-layer is long

enough,and the transmitted ion population is fast enough.

In this paper, the double-layer is analyzed using fluid theory.

Section 2 treats the case of cold particles; thermal effects for the

reflected particles are included in §3, and for the transmitted particles

in §4. The emphasis is on finding a relationship between the magnitude of

the potential step, and the parameters characterizing the adjoining plasmas.

In §`., qualitative statements are made about the length of the double-

layer and a characteristic length useful as a quantitative measure is

defined and discussed.

!^



2. COU) PLASMAS

As it starting; point, all of the particles in figure 1(d) are taken to

be at zero temperature. The "reflected' particles are actually stationary,

and cannot penetrate the double-layer. Consequently, only transmitted

particles need be considered in establishing the self-consistent potential.

The density of the stationary particles will be determined so as to satisfy

neutrality outside th, double-layer.

Electrons enter the double-layer from Region 1 with velocity uel '

density nei and flux r'e(_ 
neluel ) . Ions from Region 2 enter with

velocity 
U 1 , 

density n ip and flux I i ( n  u ip )
 . At a point, x ,

within the double-layer, where the potential is m , the particle velo-

cities and densities, determined from conservation of energy and particle

f lux are

u (x)
e	

( u +
el	 m

e

r
n	 (x)	 =

e
e

2 2 eO T

A + m
e

`1 /2
u i ( x ) _ (ui2 + mQ

	
C-0)

1
i

:i

'	 ni(x)	 /2 '	 (1)
1 	 2e

where me(m i ) is the electron (ion) mass, and a is the magnitude of the

electronic charge. Substituting; the densities frci Eq. (1) in Poisson's

equation yields,

2	 r
iC e p -n	

e —
	

e	
-	 2

ddx t ( e i )	 e C, /u2 	 2 e /^'	
2	

P e O0- 1 12	 ( )

t` e i	 m	 C u	 +	 )
e	 i2	 mi

Equation (2) can be used to define a function P(0) such that

d20_ dP

dx2
	

dQ

Integrating, %e obtain

(3)
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P(0) =	
[(U2
	 i /2

P 	 mer`,	 el + me 	 - 
u el J

	

m i l i t ( u i2 + m (m^,^))	 - (u i2 + L 00 )	 (4)

	

l	 i 

%here the constant of integration is chosen so that P(0) - 0 . Alterna-

tively, P can be expressed as

X
P(x) = e(0)2

- E2(x)_ - o(x')E(x')dx'	 G)

0

The electric field is assumed to vanish at the edges of the double-layer,

	

F(0)	 E ( xl ) = 0 •	 (0

This ensL:es that the charge density integrated across the double-layer

vanishes. The function P is thus constrained to satisfy

P(xl ) = 0 9	 P(m0) = 0 0
	 (7)

and is negative within the double-layer. Since the integrand in the last

equality in Eq. (,^') is the force between the double-layer and the particles,

Eq. ( 'T) can be viewed as a statement of mechanical equilibrium.

Setting P(m0 ) = C. in Eq. (4) yields

	

m0	
e 1

= 2MI^ r (1 euel - Mriui2) ( T i uel	 I eui2)

(re _ n,ri)

where M - m 1 /M . Although Eq. (8) predicts a positive value for 00L

within the ranges

(8)

u 	 r u
el _ e el > M

ui r1 u2	 12

reuel uel

ui2 r i ui2

(y)

the actual range is more restrictive. This can be seen by solving

P(^5 0 ) _ 0 for 1' e/r i ,

6
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(
 em	

1 /:
I ^ 1 	0

re
	 ( u i2)	 miui2	 X10)

	

u 
el	

(1 +	 0	 - 1

me_ el

which varies monotonically from uel/u 12 to M
1/2 

as 00 varies from

zero to infinity. 'rhe r.inges of possible double-layer solutions are thus

	

u2	 r2	 u2	 12
u21 > r̂ > M , u2 <

1r'I'__ <M .

	

12	 1	 12	 1

Langmuir's model (Langmuir 19?9; Block 1 1,M) of the space-charge-

limited diode is contained in this formalism as a special case. Finite

fluxes of particles enter the double-layer with zero velocity, so that

the numerator of Eq. (6) vanishes. (The emissive powers of the cathode

and the anode are assumed infinite.) Therefore 00	 0 can be obtained

only if the denominator also vanishes. This yields the Lang-muir .1929)

condition

re/Fi _ (mi/me) 1/2 P

and leaves the potential difference indeterminate.

Equation (8) may be rewritten with the fluxes eliminated in favor

of the particle densities,

^0 = 2NO 1-
NU)(N -1

( 1 - "Q),

where we have irtroduced the norrializatiOn

2

N

	

= 
e^	 n12	 Q _ m i ui2	 (iu)

^ 

	

U 	 n2

	

me el	 el	
meuel

(11)

(12)

(13)



Equation (11) retit:ces to the limits

These regions in (N,Q) space are shown shaded in figure 2.

For neutrality in Plasmas 1 and 2, the reflected particle populations,

normalized to nel , must satisfy

_ n il	 N	 ne	 1	 (15^= 1 —	 --^' , T1 _	 —	 ,
el	

//i	 n	
11 + Q 10/ ^
	 •	 nel	

N
 (1 + 2§ 0)1/2

where nil is the density of reflected ions in Plasma 1 and n eI is

the density of reflected eleLtrons in Plasma 2. Since 11
i and Tle

represent particle densities, they must not be negative. For N < 1 ^

T)i is always positive, while for N > 1 1 Tje is always positive. Using

Eq. (13), and examining the non-trivial cases yields

N` Q - 
Ir^	 (N < 1)	 N - Q < p+ll	 (N > 1)	 ^Y7)

The conditions of Eq. (17) are less stringent than those for existence

of a double-layer, Eq. (15). It follows that fvr double-layer formation

there must be reflected particles on both sides of the double-layer.

Fipure 3(a) shows the electrical potential, 1(7) , electric field,

L(7.) , and charge density, c(7), for N = 1.1 and Q = 0.8. The normaliza-

tion for the spatial coordinate, Z , is

n e
L	 .	

el	 (18)
In t; U uel

The electric field and charge density are normalized so that

dF./dZ	 - dG^/dZ`

Although the precise spatial variation of the electric potential

can be determined only by integration of Eq. (3), some symmetry properties

can be deduced from the function 11

8
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A„	 `OP.- 1 _ ( 1 + ^, O) 11*2 _ 	 + 
I 

(a" - 0
1/2 _ 	 + 

Q
et	

o	
/ 1 .

	

11	 U,
	

J	 `
(19)

For the electric potential to be symmetric about 2 ^/2 j, A must also be

symmetric about t o^/2	 Phis is ^^^uivalent to rvyuiring all odd derivatives

to vanish at that point,

	

— I

1-.'m	 1= m

	

m;;	 ^U1	 m

	

d m	
(2m- S)	 m T (1 + Q J	 * (_1] m (1 + 00) m	 - 0

d ; 
	@ /2	

V

0
	(m odd).	 (20)

This rearranges to

n
01 + 1	

l 
N	 1-^m

0 \@m-1^t + Q

which to Fntisficd by N Q 1 or ?Q = 1 , where 10 - m , only.

The asymmetry of the electric potential can be gauged by determining the

value of 
^A1 

at which the minimum of r occurs; this corresponds to

vanishing charge density and thus to the maximum electric field,

` At	 N3Q + W Q - 3N + 1	 (22)
4N( NQ-1 )

0
By expanding; for weak (N	 1) and strong (Pf"fl k, 1) double - layers,
these cases are found to be nearly symmetrical,

	

T

t'	 +	 (N=1+ O)	 At	 1	 6

	

O	
C_

Contour plots of I AlA0 in the (N,Q) plane are shown in figure i.and
indicate 4 A1/fn x 1/2 over a broad range of N and 0 .

To summarize the foregoing results for cold particles, we note that

the double-layer may be completely characterized by the densities and

energies of ttte ions and electrons streaming into it. The densities of

the stationary, "reflected" particles, and the magnitude and spatial

variation of the electric potential, are uniquely determined.

(21)

c^



RI:FLIX'TEU PARTICU. TEMPERATURE NON-'ZERO

Thermal spread of the reflected particles will be described by assuming

a Bolti.mann distribution within the doubles-layer. The temperatures of the

reflected tons and electrons, expressed in energy units, are TiZ and Tel

respectively. Although this allows an exponentially small number of

"reflected' particles to cross the double-layer, for 
T 11 ' Te2 	 e`'0

this error will be negligible.

The non-zero temperature of the reflected particles allows them to
w

penetrate and partially neutralize the double-layer. The sharp boundaries

associated with cold particles are thus smoothed out. The potential drop

across the double-layer is also affected.

The normalized Poisson equation is

^
—	 + -1 exp -	

_ (	 N
—•	 + 	 exp -	 I

dZ`	 dQ	
I (1+24)112	

t	 ^e ( ' (i +

	

1	 l	 Q (; 0 )}

r	 2
where ^1(- Til/meuel	

and	 ( re2 /meuel ) are the normalized ion and

electron temperatures.

Equation (24) is integrated to find A , corrected for the non-zero

reflected particle temperatures. Noting that Lq. (1 , ) is still the proper

idei,:ification for ale and ^1 , it is found that

	

112	 1	 ^
	 t-0

(	 1/^	 exp ^- S	 exp ( J )^e (	 (1+2 )	
e	 cI0

r	 1/2	 1 "?

L	 Q 0 — 
I	 Q J

2N 
l /^ (exp (- 51 - 1^	 (25)

11+
'^^CI	 `

0,.

10
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"his reduces to

1/2

N	
372—

-1,112
N - ( l + 2 t0)

+ (1 + 2 0u)-3/2

The self -consistent value, @() , is again determined from the require-
meut n(IU )	 r . In this case, 

f0 
must be found numerically. For very

low temperatures, an approximation to the difference, d'. , between the

true value, to , and that based on FA. (13), 1c , for cold particles, is
found to be

\t /2

	

N(1+2^ ) 1/2 - 1	 1 +	 J	 _ N

N(1	 112 (1 + Q Ic} 112 - 1	 ^1 
+ Q f c /	 (1+2t c )	 -N

(26)

	

At either edge of the drnible-laver, both 	 and CM6 vanl p h; near the
edge , Il is thus approximately

n( ) 
ti	

d21,	 ..

d^ ` 	 I	 _	 C;

Since E must be negative within the double-lever, d ` il/0	 is required

to be negative at ^-(),¢ C	from t^I. (2')) the derivative is

d$2 - (1 + 
2t)_ 3/^_ - ^e eXp ^-	

/ + Q ll + @ (^0-$)^ 	 exp (- 
I-e	 e	 `	 ei	 ` ^i

i

(2 c))

The temperatures are thus bounded from above, j  < 1 and 9e <

In terms of linnorma lized variables, these become Til < meuel and
ID

Ten, < m i ui2 , which may be recognized as Bohm (1949) conditions for

collection of electrons and ions, respectively, through a sheath.

The limits expressed by Eq. (29) must be compared with the physical

requirement that the trapped particle densities not be nelative. Consider-

ing N as the dependent variable, and ^ 0 as an independent variable,

Eq. (29) may be rewritten as

11
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) `1 +	 (? 11/2	 Q 1 +--+-2^—

	

J	
> N >	 1A,	 (30)

1 + i	 (Q-je)(1 +	 0)

Q+  0

These bounds on N are more stringent than those derived from the require-

went that the trapped particle densiti i not be negative,

	

11+2

	 112>N>	 1
Q 0	 (1 + 2§0)

As for cold particlej, a self-consistent solution for the double-layer

requires trapped particles on both sides of the double-layer.

Figure 3(b) shows ^(z) , E(Z) and p(7.) 	 for the values o ` N and Q

used in figure 3(a), but with warm reflected particles. The penetration

of the double-layer by the reflected particles produces the smooth variations

of $ , E and C

Examination of R(^ ) for small	 0 indicates the possible existence

of a new root II(^) = 0 , and thus a new double-layer solution (see figure 5).

If the solution satisfies Eq. (30), it is physically admissible. The cause

of this modification may be identified by considering n($0) as a function

of 
00 , and evaluating its derivative at t0 = 0 from Eq. (25). we obtain

1 - N	 (32)d^0	
L0-0

This compares with	 dll(t G)/00 = N-1	 t ^0 = 0 when the reflected

particles are cold, as can be seen from Eq. (19). Each of the reflected

species contributes a term 1-N , so that the slope of rt(^^) is changed

in sii;n by the inclusion of non-zero temperatures.

If only one of the thermal terms is retained, the first derivative

vanishes and the second derivative is found to be

( 0
	

e
(33)

00	 -0	 u-1 + Q + 1	 (vi 0)
0	 i

W.

(31)

A

12



The value of 11(f 0)us 40 
approaches infinity is unaffected by

the finite temperatures:

11(t
0 	 (210)1/2 (NO112 .. 1)	 ( 0	 m ) .

	
(34)

For example, if the initial slope of 7(^ r ) is negative [ N > 1 , from

Eq. ( .30)] and the asymptotic value is positive [ N 2Q > 1 , from Eq. (34)],

there must be at least one root ( in general , an odd number of roots) n(t 0) = 0

The analysis based on cold particles excluded any roots in this case. Similar

Figure- shows the behavior of 	
j 
	 and j 
	

are separately

increased from zero. The curves marked :je and j
i 

are based on the

linear approximation, tXl. (2iJ). It is seen that 
t  

decreases with increasing

^e for N>1  and with increasing 
01 

for N < 1 . The upper bound on

the temperature for these cases comes from Eq. (29), and not from the Bohm

conditions, which are its high-potential limits. For certain values of

N and Q , the second double-layor solution introduced by the non-zero

temperature is physically admissible. As figure 7 shows, the two roots

n(^ 0) = 0 coalesce at a finitr : 0 and then disappear.

Figure 8 shows ;shaded) the regions in (N,Q) space within which double-

layer solutions can be found for non-zero reflected particle temperatures.

The boundary at N = 1(^ 0	0) for cold particles is found to vary with

temperature. The value of $0 along this boundary also varies, but is

everywhere greater than zero. The W -)Q = 1 boundary, with infinite ¢0

is unaffected by the inclusion of temperature.

To establish the validity of the double-layer solutions along the lc.w

potential boundary, an additional criterion should be investigated. If

^
0
 is not significantly greater than the reflected particle temperatures,

a considerable fraction of the "reflected" particles will be transmitted

through the double-layer, thus invalidating the model. In fact,all points

along the boundary are found to satisfy 1 0 j	 For reference, the line

kO	
j is shown in figure 8.
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4•

TRANSMITTED PARTICLE TEMPEIL%TUBE NON-ZERO

If the transmitted particle velocity distributions have narrow widths

about their streaming velocities, a fluid model can be used to deEcribe

the particle dynamics. Denoting; the electron temperature by T
e , 

with

value Tcl within Plasma 1, and the ion temperature by T i , with value

Tit within Plasma 2, the momentum transfer equations are

1 dped , dO 1
me J e -dx dx n dx pe = n e e

e

t`id d:
(^ )m i ) - 

e
'dx c dx n dx pi ni P i

i

:Assuming that the particles are accelerated adiabatically,

dT = (Y-1) do 2 do
T	 n	 n

where Y=3 for one-dimensional adiabatic acceleration, the thermal terms

on the right-hand side of Eq. (3.) are

l d (nT)	 dI	 3 d
n dx	 o	 (37)_ 2 dx =	 dr (\	 /J

n

Nhere T and n are evaluated at some reference position.. Using; tht•

cantinuity of particle flux for cacti species,

	

U - u,
	

(38)n '

and Eq. (37), Eq. (35) can be varitten as a conservation principle,

2 c	 ^
d	 nel uel _ e	 jTel ne
dx	 2	 m ^+ 2m	 2e	 ^^

c n	 c	 e nel

2 2	 2
d	 nit u i2	 e + 3 T 1 ni

	
(39)

i	 12

36)
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104- 3T	
r

e+ 1 - I (210+ 3T e+ 1) 2 e
)1/21112- U^T 	

I

J
e

(44)

With the normalization given in 9 2 , the conserved quantities become

1 + 1 T N = conat 	̂ ?.,2Q + I+	 T	 1	 const,	 (40)2 e	 2 e e	 21f	 1 N2

where the normalized temperatures and densities are

T	 Tel	 T _ Tip	 N = n 
	

N	 n 	 (al).,	 ,	 1	 7e 
meuel	 meuel	

e nel	 i	
nel

The constants in Eq. (40) are found by evaluating + e left-hand sides In

Plasmas 1 and	 for the electrons and ions, respectively. The expressions

in (40) can be solved to yieid

1112
21 + 3Te + 1 - [(2$ + 3Te +1)2-12

Tee(l) _	 ,	 (42)
fj T

e

1/'

+ 3 T i + Q - [20 ('4 ) + 3 T i + Q^ 2 - lc^ TiQ
N ì(^) - N`

tb T i

These expressions are valid only for

3 T e < 1 ,	 3 T 1	 Q.	 (4.$)

For higher temperatures,

Appendix A.

The densities given

generate a new function

double-layer, i.e. that c

values for the reflected

the finid approach breaks down.as discusseJ in

by Eq. (42) can be used in Poisson's equation to

5 . The requirement of neutrality outside the

III/dt vanish at I = 0 , $0 , yields appropriate

particle densities,

^^	 o

2 ^ 0 + 3T I+ 0 - [(2 t 0+ 3T1+ 0)2	
12T1<?

1	
b 

Ti

15



The function	 T;	 can be divided into four components, one for each of

the transmitted and reflected classes of electrons and ions,

IIel + Ae2 + Ail + Ifi`

1

el = 1 - R7 V ' IT ( 1 - NQ(`^))

e

A	 = ^1 A	 exp(- e /) - exp I - ^e 
Je.-	 e e	 ^	 \

Ail = Ti`^i 1 - exp (- Li

A1P = itQ1 1TT - N 1z	
Ti 

\Ni(0)i	 N

The self-consistent value of the potential step, 1 0 , must again

.e found numerically. Noting that dl:(^0)/0 0
 
=1 - N at ^r = 4 , and

that A (''¢0)1/2(NQ1/`- 1) as ^ 	 ao , we see that the gross behavior

of ,i(^ 0) is unaffected by the inclusion of the transmitted particle

temperatures. No new double-layer solutions are to be expected, though

their location and physical admissibility may be modified.

The change, b^ , between the value predicted for cold particles, ¢
c

and the true ^(	 can be approximated for small 
T 
	 and T i by

1 - 3 (1+:'^c)-1/2+ n (1+28c

T

	

	

) -3

lc
e (1+2^ ) -1/2 _ N(1 + A ^ - i„

	

J-1/2 1	 2	 3/2
+	 +	 +

c+ T N	 Q ^1	 2	 Q 	 (46)
N^1 + Q ^c/	 - ( 1 + 2 c)

Equations (24 ) and (44) are ndditive when all four species have finite

!	 temperatures.

	

Figure , shows the variation of ^ 0 as T 	 and T i are separately

increased from zero. The curves marked T 	 and T i are based or the

16



linear approximation, E,. (46). The qualitative effects are similar to

those for non-zero ^ e and 5 1 , thougb @o is not double-valued and has
1)	 2

no low potential cutoff. The condition d` TI/dQ <0 for	 u , r0

becomes

dNe -t
- 0^- r ê- exp	 (- } - 1 exp	 - + i <d¢ 0	 (t = opt (47)

e	 \ c	 / i i

where dNe/d;	 and	 dN i /d` are evaluated from Ell.

dN )T	 + 1 - ^(24 +	 }T !	 - T
e e e ^•

T, [(^'
e r

1 /^
/`

dNi '(1U-1) Ti Q - (^	 (: -$) +i	 ..^'' _ 1c TiQ11

N
J

.

d
l

Since dNe /d^	 is negative and	 dNi /dl is positive, i.e.	 electrons

become less dense and ions more dense in moving to higher potential,
e

and	 '^ have positive lower bounds. In the limit of strong double-layers,
i

s4.	 '4'()	 reducer► to

5 i `-	 3Te ! _L (^=o) Ue + < Q =0o) (49), -)T i

or, in terms of unnormalized variables

Til + 3Te1 < meuel , T
ed + 3T1„ < mi ui2	 (50)

These upper bounds ar,piy only in the infinite potential limit; for finite

potentials, Eq. (47) is more restrictive and is thus the appropriate

criterion to be applied.

If the reflected particles are cold, dll/dt is discontinuous at

= o , t^) even though the transmitted particles are warm. Equation (47)

is then replaced by the requirement that the density of the reflected

particles, 171 , 're from Eq. (44)], not be negative.

17
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DOUBLE:-LAYER DIMENSIONS

Having determined how the potential drop, t o , of the double-layer

uepends oil 	 physical parameters of the adjoining plasmas the remaining

question accessible to this analysis is how the spatial extent of the double-

layer is determined.

in determining the distance required for the potential to vary from

0 to 1
0 

, two distinct cases can be distinguished by making a power-

series expansion for	 If the reflected particles are cold, the charge

density, p( = dA/dC)	 will be discontinuous at the double-layer edge.

We thus have

A , - Ct

(t > 0)

d 2	 d11 
ti 

a	
(51)

d Z,

which can be solved to yield

2 
a 7	 > 0)	 (52)

From FYI. (52), we see that a finite distance is required for the potential

to vary from zero to a given non-zero value.

If the reflected particles are warm there will be no discontinuity

in p at the double-layer edge. We thus have

Y

(0 > 0)	 (53)

dZ2	
dt

which yields

I =y expl(2^) 1/?_ Z 1	(. . 0),	 (54)

The exponential dependence in Eq. (54) indicates that the potential approaches

zero for any finite Z 	 but attains it only asymptotically at Z = - m .

The behavior at	 0 is determint"A by the reflected ions in

Plasma 1; similar arguments apply at ^ _ 1 0 , with the behavior

dependent on the reflected electrons in Plasma 2. 'Therefore, with warm

reflected particles,the double-laver is infinitely long, i.e., electrical

18



neutrality oftains only at 7 - t m . even though most of the potential

variation occurs over a finite length. A general method of defining the

length of a doutle-layer is thus redulred.

Andrews ow Allen ( 19(1) define the double - layer length as the distance

over which the potential varies from a tenth of the trapped ion temperature

on the low potential side to within a tenth of the trapped electron tempera-

ture on the high potential side of its asymptotic value. flasan di ter Haar

(1y'(8) measure between points on both sides of the double-layer where the

potential is within a tenth of the trapped electron temperature of its

asymptotic value. Knorr d Goertz (1971) assume a hyperbolic tangent form

for their analysis of a double-layer, t 	 0 tanh(x/^) , and therefore have

the built-in length scale, a .

We choose to define the characteristic length, L , of a double-layer

as the length over which the constant electric field evaluated at t0/2

would have to exist in order to produce the potential difference t0 ,

as indicated by the dashed lines in figure j,

L - 	
^c	

1/2	 (55)

While this definition is no less arbitrary than previous definitions, it

commends itself as requiring less numerical integration, and defines the

region of strong electric field, over which most of the potential varia-

tion occurs.

Applying Eq. (55) to the case of cold particles, the length of the

double-layer is found to be

t0

C-2[1 - (1+to)1/2+NQ(1+Q 10)1/2 -NQ(1+ 
4

Q0l
•	 (56)

When the double-layer is very strong, t o	W [ N?Q	 1 , see Eq. (L3)1, this

reduces to

L	 0.92 t03/k ,	 (57)

or, in unnormalized variables,
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2	 1 /4	 d 3/1+

0.92 ( ^ 0 @ ^	 0	 (5e)
m^	

(enelued

This differs by a factor of order unity from Child's Law for a diode,

where en
el e^
u l is the electron current density. This is consistent with

the assumption of a large potential difference, i.e. that the particles

enter the double-layer with negligible kinetic energy relative to that
,,

with which they leave. We note further that N `Q	 1 !s the normalized

form of the Langmuir condition, Eq. (12).

For weak layers, 40 - 0(N -- 1) , Eq. (56) reduces to

1/2
L ^ ^ ( 1̂ ^	 ( 59)

so that the length of very weak double-layers varies smoothly from L = 0 to

L = 2 as Q varies from zero to infinity.

Figure 9 shows the dependence of the length of the double-layer on

the parameters describing the adjoining plasmas. In those cases where an

increase in one of the temperatures causes a decrease in the potential

difference across the double-layer, there is an associated decrease in its

length as well.

It is important to note that distances are not normalized to the

electron or ion Debye length, but to the distance a transmitted electron

travels in it plasma period, before it enters the layer. The scaling is

thus independent of temperature. It follows that no difficulty arises in

treating the case of cold particles, where the double-layer extends over

an infinite number of Uebye lengths.
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DISCUSSION

it is instructive to apply our model to conditions characteristic of

laboratory and space plasmas that may sustain double-layers. Although

the physical parameters, i.e, density, temperature, and drift velocity,

differ by orders of magnitude, the normalized variables may be similar.

For the double-layers observed by Quon A Wong (197b). we make the

rough estimates

Nn 1.^ , Qmt- 0.' , Te .-z 0.2 0 T 1 ^ 0.1 , U  ^. 0.1 , .7 1 ^ 0.3 ,	 (60)

which produce a double-layer of magnitude and length t0 s 4.9 , L - 5.6_
For a density of 10

8
cm -3, and electron energy of 1 eV in Plasma I t this

corresponds to a potential difference of 20 V with a characteristic distance

of 0.3 cm. This is somewhat stronger than the 3-15 V and sharper than

the 3	 cm reported, but of the right order of magnitude.

As we have shown, comparison of the admissibility criteria with the

requirement that the reflected particle densities not be negative indi-

cates that reflected particles must be present on both sides of the double-

layer. In their experiment, Quon q Wong were able to remove the reflected

ion population by biasing a grid appropriately. They report that.without

the reflected ions, they could not produce a double-layer.

Although we lack a complete set of measurements made during an active

aurora, we assume a current of 1 "A/m2 may be carried by a 100 eV electron

beam above the double-layer. For parameters

N - 1.5,	 Q =0.4,	 Te =0.1 , T =0.1,	 Ue =0.1)	 ii =0.1j,

Q 1)

(compare with values used by Swift 1970), a double-layer of magnitude and

length, t 0 = 10.3 , L : 7.4 , results. This corresponds to a ^ kV

potential, in a 0.7 km long step,which requires an average electric field

of 2.3 V/m. This field is a factor of five greater than that measured by

satellite (Mozer et al. 1977), but the measurements may not have been made

in the center of the double-layer. If the current above the double-layer

is carried by 1 keV electrons, the strength of the double-layer increases

to ?0 kV, while the electric field increases to only .0 V/m. These

potentials are of the right magnitude to produce the observations of

high-energy electrons precipitation ( see, e.g. Shawhan et al. 1978, and

references therein).
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For self-consistency the relationships of FAs. (29) and (47) between
;he particle energies and temperatures have been devcloticd. If tNewt.

conditions are not satisfied outside the double-layer, a "pre-sheath"

(Schott 19t:,b) may be postulated that would accelerate the particles suffi-

ciently. The excitation of pulses at the ion acoustic speed, as seen in

some positive column discharges (Babic a Torven 1974) may originate in
such a pre-sheath.

The reflected particles with non-zero temperature have been assumed

to obey Boltzmann's law within the double-layer. This can result either

from an isothermal equation of state in a fluid theory approach.or from

a Maxwellian velocity dietribi. • tion in .+ kinetic theory approach. Non -zero

temperature of the transmitted particles has been handled in a fluid theory

approach, with an adiabatic equation of state. However, as is shown in

Appendix 13, the same results call 	 obtained from a kinetic theory approach

with waterhaK distribution functions; results for other distribution

functions are considered, and com pared with the results of fluid theory.

One irrortant aspect of the double-laver that Is not treated within

this time-independent analvsis is that of stability. The Penrose (1960)

criterior for determining; stalility applies only to homogeneous systems.

It may thus be possible to find velocity distribution functions that are

Penrose strl , le, but which are unstable due to the inhomogeneity (Wahllerg

1977). Also stability, as determined from the Penrose criterion, devends

criticall y on the distribution functions. As a solution of Poisson's

equation, the double-layer is dependent only on the density of the particles,

i.e. the integral of the distril • utior functions. Furthermore, there is

evidence from 1•oth laboratory ( sal le & Torven 1474; Armstrong; 1975; Quon &

Wong 1976) a d comnuter ex periments Olubbard & Joyce 1 0 78) that dculle-

lavers can co-exist with some festal,ility.

The analysis presented Mere stuc: es the self-consistency of the doul,le-

layer as an independent entity. However, since double-layers form a part

of a larger circuit, whether in the laboratory or in space, there are

further problems relating to consistency with the external circuit that

will rewire investigation in future work.
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APPENDIX A: LIMITS of mum THEORY

For y 'f 1 in (36). (37) is rewritten

	

 
y-1

1 
d (nT)	 dT	 d	 T ^njr	 (A.1)

n dx	 y-1 dx	 Y -1 d 	 n^

	The isothermal equation of state, y	 1 , will he treated separately,

below.

The conserved quantity analogous to (40) is

n_u + EL +
	 T (n)y-'

 u +	

+ --t- 'C

2n2	 m	
Y-1 m IAI	 2	 ^^	 -1 m	

(A.2)
Y 

where q is the charge of the particle, u is the drift velocity, 1'

is the temperature, and	 is the potential at the reference position.

Rearranging (A.2) yields

I nj
F 	

u' 	 + y 1 m I^n	 u^ +	 0 -d ) +	 m	 (A. 3)

l

The function F
r 
(n/n) is oiotted in figure A.1(a), and shows a minimum at

1

i
ni _	 mu ly +I

n1J m	 Y T J
(A.4)

As n' decreases, the density must increase or decrease as indicated in

figure A.1 in order to satisfv (A.3). However, decreasing a: 	 rev-resents

acceleration which, to conserve particle number, must he accompanied by

a decrease in the density. n . Valuea of n/n greater than (n/n)m

are therefore nonphysical. Thus, evaluating (A.4) at the reference position

yields

Y T ^ mu ? .	 (A. 5)

Applying (A.5) to the electrons entering the douH a-layer from their

reference point in Plasma 1, or to the ions entering from their reference

point in Plasma 2, and normalizing as in ( L 1), yields
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I

Y T e 	 ► YTi <

which, for y-3, gives (43).

For y-1, (A.1) takes the form 	 I

	n dx W)
	 T dY (]n n)	

(A.7)

g o tila^ (A.2) becomes

n^u? + at +T in n = 1'-L + it + t in n	 (A. 8)

2n2	
m m	 2	 m	 m

011ecting terms in n/n vields

	

F 1 
I
rn,

I
2 • u? (r ? + 2 T_ In I n - u2 +	 (4-^)	 (A.9)

l n 1	 (nj	 m	 ^n	
m

which is plotted in figure A.1(b), and has its minimum at

112

nI _ mu ^	
(A.1C)

n^	 T
n

This is the result of ('1.4) for y-1, and therefore it^plies the temperatijrn

limitations of (A.6) again.
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APPENDIX B: COMPAPISON OF FLUID AND KI 17ETIC MODEI.S
FOR TRANSMITTED PARTICLES

Instead of using a fluid model for the transmitted particles, and

then assuming an equation of state, it is possible to assume a form for

the velocity distribution function, f(u) , before the particles enter the

double-layer, and determine its dependence on the potential, m , by the

%I lasov equation. Taking f(u) as time-independent, the Vlasov equation,

in one dimension, is satisfied for any distribution that is a function of

the total energy;

Zak 1/2

J
l

where m and q are the mass and charge of the particle. The spatial

dependence of f enters through the potential, 	 The sign of the argu-

ment in (B.1) is the sign of t}+-7 velocity.

A simple choice for the distribution function at Q-0 is a waterbab

with all particles forward-going, [see figure B.1(a)]

- 3 112 n0

fku,0) -	
h	 ti t

j0

u-uDl< 3
1/2 ut

(u-uD 1 > 3
1/2 u 

(B.2)

The identifications of n0 as the density, u 	 as the drift velocity,

and u 	 as the thermal velocity,are ma0e by calculating the appropriate

moments of the distribution.

Normalizing the density and potential,.and defining a temperature con-

sistent with	 `•4,

n	 q	 ut

	

0	 mun	 uD

the densit y as a function of t is

1/2 	 2	 1/2	 2
N(^) - 3112	

(
1 + (31) 1/21	 + 2C	 - (1 - (301/21

L	
I	 J

1

(B.3)

1/2
+ 2t	 (B.4)
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-.-hich is equivalent to (42) for electrons. The assumption of all forward-

going particles is

	

3T < I ,
	 R. 5)

which is (43) for the use of fluid theory. Thus as far as the analysis

in +4 is concerned, the waterbag and fluid models are identical.

If the velocity distribution is allowed to have some backward-going

particles, as in figure B.1(b), the density, normalized according to (B.3)

is

N(4)	
3112 ( ^, t ^ 3T) 1/2	 + 2^ 1/2+ II - 3r) 1/2

)2 
+ 2 ]1/2 (8^) 112 ,̂ .

6,r[	 ]	 l 
1	 ^

(B. 6)

Although the mathematics does not allow the general case of a drifting

Maxwellian to be treated analytically, two particular cases can be studied.

If the distribution is as in figure B.I;c), a Maxwellian with a large

drift-to-thermal velocity ratio, and thus with a negligible numher of

backward-going particles, the distribution function is

n	 (u-u )2

	

f(u,0) _ -	 0 1 12 
exp -
	 2n	

(B.7)
u  (2n )	 '	 2u t

To second order in T , the normalized density is

3^'r	
+ 15	 3^ -2 D TI I	 (B.8)

(y + 2^)
ti 	 (1 + 2t) 2 	 ( 1 + 2^) `

This agrees to first order with the small-t expansion of N for the

fluid/waterhag model, the second order term of (11.8) being larger by a

factor of 5/3 than in the fluid/waterbag model.

For the forward-going half of a Maxwellian at Q =O, illustrated in

figure B.1(d), the distribution function, drift velocity and thermal

velocity are
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11 0 2 1/2U2
exp

f (u,0) _	 110	 J	 2u2
0,

0

(u > 0) ,

l
(u < 0)

•

i

11/2
U1)	

u0ln^	

= 0.80 u0

^Z_ 21 1/2 = 0.60 u

TM1	
0u t	 u0

(B.9)

It can be seen from (B.9) that the normalized temperature is a constant,

T - (r-2)/2	 0.57. The normalized density, as the particles are accele-

rated, is

N(^) _ exp C=) 1 - erf	 —)	 J	 (B.10)
T	 T,

Figure B.2 shows the dependence of the density on the potential

for the various distribution functions considered here. Fot all but

T - 0.3, the fluid/waterbag and laxwellian curves totally overlap; the

Maxwellian is the lower of the r = 0.3 curves. Since Poisson's equation

depends only on the density, and not on the detailed shape of the distri-

bution, the fluid/waterbag model may bA used for a Maxwellian with a large

drift-to-thermal velocity ratio, but not for a half-Alaxwellian.
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FIG. 1. Various double-laver models.

(a) Transition region between two plasmas with a potential

difference.

(b) Space-charge-limited diode. (Particles enter with zero
velocity, but with non-zero flux.)

(c) Space-charge-limited cathode (Cathodic electrons enter with
zero velocity, but with non-zero flux. Plasma electrons

are reflected by the double-layer; ions are transmitted
through it.)

(d) Double-layer between two plasmas. (Four species of particles

are reflected and transmitted.)

(e) Double-layer between two plasmas. (Ions from Plasma 1 are

transmitted by the double-layer. Only one species of particles

is reflected: electrons in Plasma 2.)
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FIG. 2. Double-layer regions: Cold plasma theory.
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FIG. 3. Double-laver characteristics (N = 1.1, Q = 0.8).
IF(a) Cold Plasma theory (7e

 = 
U, = 0).

(b) Macroscopic plasma theory (;T, = J, = O'l).
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FIG. 4. Normalized potential (1 M/0 0) at location of maximum

electric field in a double-layer: cold plasma theory.
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FIG. 5. Double-laver s-lutions for non-zero reflected particle
temperatures.

(a) Modification of cold plasma solution.

(b) Additional solution.
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FIG. 6. Variation of double-layer potential (S0)

with separate variation of particle temperatures.
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on double-laver solutions (II(t 0 ) = 0).



M

`^ z

—^	 ^zC-)
^^ e	 o w z

	

^O -4	 a m	 0

M
00

O

Q>-

_ Q

z q

	

8^--	 owz

	

CS	 00 r^

	

N	 a_m	 p
0 z

M

to	 00O II	 i,

--- z
Q}
z oeowz0 

C14	 00
M Co

-^	 M

0

	

	 .-

C3
C

y
a

ya
^i

J
•.w
r+

ru
CL

a

v
a

w
Q0
w

0
v
N
I
C
O
G

a
0to

y

sr
vT

^-1

I

4!

^o
a

I;
LL.



L

5.C) 1.5 0.8
0 = 200	 i	 0-5	 nt

2.5

(a)
F^-

NMN 2 0	 N'MN20

0	 1	 2

N

FIG. 9. Double-layer length.

(a) Cold plasma theory.
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FIG. 9. (Contd.) Double-layer length.

(b), (c) Macroscopic p lasma theory.
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FIG. A.1. Variation of functions F	 and F 
'Y

(Arrows correspond to qm decreasing).

(a) Adiabatic.

(b) Isothermal.
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FIG. B.1. Velocity distribution functions at qQ = 0 and q^ < 0.

(a) Waterbag with all particles forward-going.

(b) l•::iterbag with forward- and backward-going particles.

(c) Maxwellian with large drift-to-thermal velocity ratio.

(d) Half-Maxwellian.
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