General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
(NASA-CR-158743) SLICING OF SILICON INTO SHEET MATERIAL. SILICON SHEET GROWTH DEVELOPMENT FOR THE LARGE ARE' SILICON SHEET
TASK OF THE LOW COST SILICON SOLAR ARRAY PROJECT (Varian Associates, Lexington, G3/76 Unclas 27805

Varia!/lexington vacuum division
121 hartwell avenue / lexington / massachusetts 02173

SLICING OF SILICON INTO SFEET MATERIAL Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Silicon Solar Array Project

ELEVENTH QUARTERLY REPORT
By
J. R. FLEMING

SLICING OF SILICON INTO SHEET MATERIAL

Silicon Sheet Growth Develoment for the Large Area Silicon Sheet Task of the Low Cost Silicon Solar Array Project

ELEVENTH QUARTERLY REPORT

By

J. R. FLEMING

January 20, 1979

Reporting Period October 28, 1978 to December 29, 1978

JPL Contract No. 954374

Varian Associates
Lexington Vacuum Division
121 Hartwell Avenue
Lexington, Massachusetts 02173

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, under NASA Contract NAS7-100 for the U. S. Department of Energy (DOE).

The JPL Low-Cost Solar Array Project is funded by the DOE and forms part of the DOE Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

TABLE OF CONTENTS

10 SU:MARY 1
2.0 PROGRESS 2
2.1 Slurry Tests 2
2.2 Prototype Tests 2
2.3 Other Progress 4
3.0 PROBLEMS 5
4.0 PLANS 5
Appendix
Test SummaryProgram Plan (Updated)

1.0 SUMMARY

Tests on mineral oil slurries have shown that the potential for workability and low cost is present. However, slurries tested to date which had sufficient lubricity have exhibited wafer breakage problems near the end of the run for as-yet unknown reasons.

The first test of the large prototype saw under cutting force control was largely successful in that the controller worked perfectly. Unfortunately a technique error (excessive stroke shortening) caused blade breakage and low yield.

The latest run of the large saw pointed up the fact that an indication of end-of-stroke vertical motion, or "bounce", is necessary. A circuit to provide such indication has been fabricated and installed. Preliminary tests show it to be excessively noise sensitive, and we are now working on grounding and shielding to reduce this sensitivity.

2.0 PROGRESS
 2.1 Slurry Tests

Previous tests with a slurry fluid of low viscosity (100 SUS) mineral oil with lard oil lubricity additive mixed $5: 1$ by volume have shown mixed results. The drag force problem has been eliminated. Cutting times have beer, made reasonable by increasing the amount of abrasive, 'which should not be necessary in newer saws due to decreased abrasive "laydown" in the ri.turn path to the slurry bucket. Yield has been poor, and wafer quality has ranzed from poor to excellent.
.n Test \#2-3-28, we reduced the proportion of lard oil to $40: 1$, which is recommended for many abplications. If the large amount of lard oil was causing the problem, this reduction should allow the yield to be raised. All conditions were standard except the abrasive mix, which was increased to $0.48 \mathrm{~kg} / 1(4 \mathrm{~g} / \mathrm{gal})$ as in Test \#2-3-27.

Unfortunately, there was too little lard oil to prevent the drag force problem, and several fuses blew. At 41 mm (1.6 in.) cut depth the mineral oil/lard oil ratio was decreased to 20:1 by adding lard oil. No more fuses blew, but wafer breakage started almost immediately.

Final yield was 66%. Cutting time was 38.3 hours, bow was $198 \mu \mathrm{~m}$ (. $008 \mathrm{in}$.) and taper was $87 \mu \mathrm{~m}$ (. 0035 in.$)$.

We conclude that mineral oil slurries with li:bricity additives seem workable, but lard oil may not be the right additive. We will test other additives.

2.2 Prototype Tests

In Test \#2-7-05, we first tested the feed force controller. This controller uses the fact that the ingot is mounted on a spring loaded table, much like the bounce fixture. The deflection of this table is sensed by an LVDT, and the resulting signal is
compared to a reference signal which is proportional to the desired total load. Depending on the results of the comparison, the motor driving the bladehead into the work is sped up, slowed down, or kept at constant speed. To avoid instability, the signal to the motor is the integral of the "error" or difference between the LVDT and reference signals.

The run started very well. Cutting rate was high, so we increased the load to full load very slowly.

About $1 / 3$ of the way through the run, a banging noise was noticed. Hindsight shows that this was due to a worn bearing. The bearing had accumulated slurry due to insufficient slurry bucket sealing.

At the time of the run, we could not tear down the machine sufficiently to discover the worn bearing without terminating the run. It seemed (wrongly) that the noise was something banging against the inside of the slurry bucket, and that shortening the stroke reduced the noise for a while.

The operator continually shortened the stroke until the firal stroke was about 50 mm (2 in .). Since the volume of blades worn away is roughly constant, this short stroke caused excessive blade height wear. With about 2.5 mm (. 1 in .) of ingo t left to be cut, blades started breaking. By the time the blades were sufficiently into the submount to remove the wafers, enough blades had broken to make the final yield 31%.

Cutting time was long, 41.6 hours, again because of the short stroke. NTV was $105 \mu \mathrm{~m}$ (. 004 in .) and bow was $324 \mu \mathrm{~m}$ (. 013 in.). These were also probably a result of excessive blade wear.

In spite of the problems, the feed force controller worked very well, and we still feel that our problems are associated with learning how to use the prototype.

2.3 Other Progress

The prototype tests have pointed up the necessity of displaying the bounce to the operator so that good decisions can be made as to when to shorten the stroke. The information is already contained in the LVDT signal. A peak-to-peak detector circuit has been designed and built, and is now being installed. Since the frequencies are low (about $0.1-1 \mathrm{~Hz}$), time constants must be long, so impedances must be high, which makes the circuit very noise sensitive.

No significant problems occurred during tiee reporting period.

4.0 PLANS

Plans for the next quarter include:

- Further testing of mineral oil slurry vehicies with various additives.
- "Fine Tuning" and testing of the bounce indicator circuit on the large prototype.
- Testing the large prototype under both baseline and more stringent conditions.
- Tests and operation of the 686 bounce fixture.
- Continued investigation of abrasive recycling.

PARAMETER TEST	2-3-28	2-7-05	
Material Size (mm) Area/Slice $\left(\mathrm{cm}^{2}\right)$	$\begin{gathered} S i \\ 100 \mathrm{dia} \\ 78.5 \end{gathered}$	$\begin{gathered} \text { Si } \\ 100 \mathrm{dia} \\ 78.5 \end{gathered}$	
Blade Thickness (mm) Spacer Thickness (mm) Blade Height (mm) Number of Blades	$\begin{array}{r} 0.15 \\ 0.36 \\ 6.35 \\ 150 \end{array}$	$\begin{array}{r} 0.15 \\ 0.36 \\ 6.35 \\ 975 \end{array}$	
Load (gram/blade) Sliding Speed $(\mathrm{cm} / \mathrm{sec})$	$\begin{array}{r} 85 \\ 58.16 \end{array}$	85	
Abrasive (type/grit size) 0il Volume (liters) Mix (kg/liter)	$\begin{gathered} \mathrm{SiC} / \# 600 \\ 7.6 \\ 0.48 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{SiC} / \# 600 \\ 37.9 \\ 0.36 \end{gathered}$	
Slice Thickness (mm) Kerf Width (mm) Cbrasive Kerf Loss (mm) Cutting Time (hours)	$\begin{aligned} & 0.278 \\ & 0.230 \\ & 0.080 \\ & 38.33 \end{aligned}$	$\begin{aligned} & 0.285 \\ & 0.224 \\ & 0.074 \\ & 41.58 \end{aligned}$	
Efficiency (full test) (typical) (maximum) Abrasion Rate (full test) $\left(\mathrm{cm}^{3} / \mathrm{hr} / \mathrm{bl}\right.$) (typical) (maximum) Productivity (full test) (cm $^{2} / \mathrm{hr} / \mathrm{bl}$) (typical) (maximum)	$\begin{aligned} & 0.954 \\ & 1.293 \\ & 1.686 \\ & 0.047 \\ & 0.064 \\ & 0.083 \\ & 2.049 \\ & 2.784 \\ & 3.611 \end{aligned}$	$\begin{aligned} & 0.042 \\ & 1.889 \end{aligned}$	
Yield Slice Taper (mm) Slice Bow (mm) Abrasive Utilization $\left(\mathrm{cm}^{3} / \mathrm{kg}\right)$ Oil Utilization $\left(\mathrm{cm}^{3} / 1 i t e r\right)$ Blade Wear Ratio $\left(\mathrm{cm}^{3} / \mathrm{cm}^{3}\right)$	$\begin{gathered} 66 \% \\ 0.087 \\ 0.099 \\ 74.23 \\ 35.63 \\ 0.042 \end{gathered}$	31\% 0.105 0.162 125.44 45.16	

MAN-HOURS AND COSTS (PHASE II)

During the reporting period of October 28, 1978 to December 29, 1973, total man-hours were 706.5 hours and total costs were $\$ 29,458$. Previous expenditures were 13192.7 hours and $\$ 588,030$. As of December 29, 1978, total program man-hours were 13899.2 hours and total program costs were $\$ 617,488$.

Varian Associates/Lexington 1. cuum Division
Phase II JPL Contract 954374
Starting Date: 1/9/76 (I) 5/19/77 (II)

SLICING OF SILICON INTO SHEET MATERIAL
Varian Associates/Lexington Vacuum Division
Phase II JPL Contract 954374

Program Plán
Starting Date: 1/9/76 (I) 5/19/77 (II)
Page 5 of 8
PROJECT MILESTONES
(PHASE II)
PROCESS INTERFACE
Task 17 Comp. Cost Analysis Identify Cost Elements Baseline Cost Analysis Update - MS Slicing Other Slicing Techniques
Task 18 Cell Fabrication Fabricate Standard Slices Fabricate Prepared Wafers Evaluate $V_{o C}$, $I_{S C}$, FF, eff.
Task 19 Surface Preparation Chem/Mech. Damage Removal Combined Removal Techniques Evaluate Cell Performance Damage Characterization Optimize Removal Techniques
Task 20 Mech. Wafer Testing Design/Fabricate 4 Point Bending Fixture
Background Analysis
Test Wafer Strength
Specify Handiling/Cutting Limitations of Wafers

Varian Associates/Lexington Vacuum Division
Phase II
JPL Contract 954374
Program Plan
Page 6 of 8

SLICING OF SILICON INTO SHEET MATERIAL
Varian Associates/Lexington Vacuum Division
Phase II
Program Plan

Page 7 of 8

1977								1978										1979			
M	J	J	A	S	0	N	D	J	F	$M \mid A$	M	J	$1 \mathrm{~J} \mid$ A	S	0	N	0	J	F	M	A
										-											
																				,	
																		,			
														1			7				
													,								
													, 1								
													-								
													-								
										1	1										
										1	1										

SLICING OF SILICON INTO SHEET MATERIAL

Varian Associates/Lexington Vacuum Division JPL Contract 954374 Starting Date: 1/9/76 (I) 5/19/77 (II)

Phase II
Program Plan Page 8 of 8
$\operatorname{COST}(\$ 000$ OMITTED)
300

1977																							
M	J	J	A	S	0	N	D	J	F	M	A	M	J	J	A	S	0	N	D	J	F	M	A

