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ABSTRACT 

The compati b i  1  i t y  o f  e las tomer ic  composit ions of known 

res is tance  t o  a i r c r a f t  f u e l s  was t es ted  f o r  p o t e n t i a l  use i n  J e t  A t ype  

f u e l s  ob ta inab le  from a l t e r n a t e  sources, such as coa l .  Since such 

f u e l s  were no t  a v a i l a b l e  a t  t he  t ime, syn the t i c  a l t e r n a t e  f ue i s  were 

prepared by  adding t e t r a l i n  t o  a  petroleum based J e t  A type fue l  t o  

s imulate  coal  de r i ved  f u e l s  which a re  expected t o  con ta i n  h igher  amounts 

o f  aromat ic and hydroaromatic hydrocarbons. The e lastomer ic  compounds 

t es ted  were based on b u t a d i e n e - a c r y l o n i t r i l e  rubber (NBR), a  castab le  

Th ioko l  p o l y s u l f i d e  rubber ( T ) ,  and a castab le  f l u o r o s i l i c o n e  rubber 

(FVMQ). Batches o f  var ious cross-1 i n k  dens i t i e s  o f  ttiese rubb2rs were 

made and t h e i r  chemical s t ress  r e l a x a t i o n  behavior i n  f u e l ,  a i r ,  and 

n i t rogen ,  t h e i r  swel l  i n g  p rope r t i es ,  and res?onse t o  mechanical t e s t i n g  

were determined. The o b j e c t  was t o  understand the nature o f  the  chemi- 

c a l  changes t h a t  take p lace  i n  these elastomer composit ions on aging and 

t o  be ab le  t o  make approximate est imates o f  t h e i r  se rv ice  l i f e  from the  

data obtained. 
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SECTION I 

INTRODUCTION 

The purpose o f  t h i s  program was t o  inves t iga te  the e f f e c t s  

of a l te rna te  j e t  fue ls  on polymeric mater ia ls  used as fue l  tank sealants 

and as pa r t s  t h a t  are exposed t o  j e t  fue ls .  Since there are d i f ferences 

i n  the chemical composition o f  petroleum-based j e t  f ue l s  and j e t  f ue l s  

derived from coal and o i l  shale, i t  becomes necessary t o  determine the 

compatibi 1 i t y  and aging e f f e c t s  o f  a1 ternate fue l s  on polymeric compo- 

s i  t ions .  Some expected d i f ferences i n  the fue l s  include increased 

percentage o f  aromatic and heterocycl ic  compounds and la rger  amounts o f  

t race elements. 

The experimental approach included chemical s t ress re lax-  

a t i o n  measurements on selected e l  astomeric compounds whi 1 e they were i n  

a fue l  environment, sol  -gel (ex t rac t ion)  determinations a f te r  aging i n  

f uz l ,  and s t ress-s t ra in  measurements a t  d i f f e r e n t  s t r a i n  rates and tern- 

peratures. From these measurements ce r ta in  chemical changes i n  the 

polymers were determined, such as the nature and r a t e  o f  degradation 

when the elastomer was stressed, the s i t e  o f  the breakdown, and the 

c ross- l ink  densi t ies.  The s t ress-s t ra in  measurements provided proper ty  

surfaces which served as the basis f o r  the p red i c t i on  o f  the t ime t o  

break i n  the absence o f  chemical degradation. Changes i n  the c ross- l ink  

density,  v a f t e r  aging were used t o  estimate service l i f e  when chemi- e ' 
ca l  degradation was a iso present, as represented by change i n  v,. 

Compounds made from three d i f f e r e n t  elastomers were evalu- 

ated dur ing the present task, namely, butadiene-acryloni tri l e  rubber 

(NBR) , a Dow Corning f 1 uorosi 1 icone seal ant (FVMQ) , and polysul f i  de 

sealant PR 1422 (T). Castings o r  moldings w i t h  three d i f f e r e n t  cross- 

l i n k  densi t ies were made from NBR and FVMQ, and two from T. The st ress 

re laxa t i on  o f  NBR and FVMQ compositions was measured i n  three fuels  

which d i f f e r e d  i n  t h s i r  aromatic hydrocarbon content. The fue ls  were 

suppl ied by NASA-Lewis Research Center and were described as fol lows: 



Fuel I - J e t  A f u e l  (which o r i g i n a l l y  contained about 20% 

aromatics, by volume. ) 

Fuel I1 - J e t  A f ue l  + enough t e t r a l i n  t o  y i e l d  40% aroma- 

t i c s ,  by volume. 

Fuel 111 - J e t  A f ue l  + enough t e t r a l i n  t o  y i e l d  60% aroma- 

t i c s ,  by volume. 

More extensive t e s t s  were made i n  Fuels I and 111. The e f f e c t s  o f  Fuel 

I1 were intermediate t o  Fuels I and 111. Stre,; re laxa t ion  measurements 

could 11ot be ca r r i ed  out w i t h  T because i t  relaxes rap id l y  even a t  room 

temperature. This i s  ascribed t o  d i s u l  f i d e - d i s b l f i d e  o r  su l f i de -su l f i de  

i nterchange i n the polysul  f i de network (Ref. 1). 

SECTION I 1  

EXPERIMENTAL 

A. PREPARATION OF VULCANIZATES 

1. Butadiene-Acryloni tri l e  Rubber (NBR) 

Molded sheets o f  NBR were obtained from Parker Seal Company. 

Three d i f f e r e n t  batches, Nos. 1, 2 and 3, w i t h  increasing c ross- l ink  

densi t ies,  were supplied. No. 2  was the m i l i t a r y  spec i f i ca t i on  mater ia l  

N602-70. The sheets had been cured three minutes a t  188OC (370°F) and 

30 minutes a t  107OC (225OF). 

F 1 uorosi 1  i cone Seal an t  DC 77-028 (FVMQ 

Three batches o f  vulcanizates, 1, 2 and 3, were prepared 

using 4, 5 and 10 par ts  per hundred by weight, repsect ive ly ,  o f  the 

propr ie ta ry  cur ing  agent suppl ied by Dow-Corning w i t h  the base sealant, 

DC 77-028, (FVMQ). 

The preparat ioa and cure o f  the sealant was ca r r i ed  out as 

fol lows: the base sealant and the required amount o f  ca ta l ys t  were 



weighed w i th in  3.01 g and then mixed by hand thoroughly f o r  8-10 

minutes. The mixture was then degassed ((2 m Hg) f o r  4 t o  1 hour de- 

pending upon the quant i ty  o f  the mixture, which varied from 150 t o  6009. 

Occasionally, the vacuum was broken t o  f a c i l i t a t e  the degassing. Using 

an i n e r t  gas rather than a i r  t o  break the vacuum seemed t o  enhance the 

e f f ic iency 9 f  degassing. The mixture was then t ransferred i n t o  sui table 

molds, and sheets o f  two d i f f e ren t  thicknesses were cast: 1.78 m 
(0.070") f o r  tens i le  measurements, and 0.51 nnn (0.02") f o r  stress. relax- 

a t ion measurements. Any occluded a i r ,  along w i th  excess sealant, could 

be pressed out i n t o  the perimeter o f  the cast ing t o  give bubble-free, 

flawless sheets. The sealant a 7und the perimeter was discardeLJ. 

Cure was ef fected according t o  the fo l lowing schedule: 

48 hrs. a t  room temperature: 24 + Z°C (75 3OF) 

24 hrs. a t  71 + 1°C (160 + Z°F) 

1 hr. a t  149 2 l a c  (300 + Z°F) 

5 hrs. a t  230 + 2.Z°C (448 + 4OF) i n  dry nitrogen. 

3. Polysulf ide Sealant PR 1422 (T) 

The polysul f ide sealant (T) was supplied premixed i n  frozen 

cartr idges by Products Research and Chemical Co. o f  Burbank, CA. A f te r  

thawing out, the material  was cast i n  the same manner as the FVMQ. Only 

1.78mm th ick  sheets were cast from which r i n g  specimens were prepared 

f o r  tens i le  test ing. The castings were cured a t  room temperature for 48 

hours and f o r  1 hour a t  14g°C (300°F). Two batches, T-1 and T-2, w i th  

increasing ve, were prepared. 

8. STRESS RELAXATION MEASUREMENTS 

1. Description of the Relaxometer 

The relaxometer used f o r  the measurement o f  stress decay, 

shown i n  Figure 1, consists o f  a low-force-range load c e l l  placed out- 

side the oven, t e s t  specimens and gr ips  housed i n  the gas-t ight cy l i n -  

d r i ca l  t es t  chamber mounted i n  the oven, and a movable cyl inder attached 



LOAD CELL ROD 

APPLYING LOAD 
TO SPECIMEN 

Figure  1. Schematic of High Tempera tu re  G-is and Liquid Stress Relaxometer  



t o  the lower g r i p  which provides the desi red elongat ion o f  the rubber 

specimen. The upper g r i p  i s  attached t o  the load c e l l ,  which measures 

the force. The load c e l l  i s  maintainted a t  o r  near room temperature by 

the continuous c i r c u l a t i o n  o f  water i n  a heat exchanger. The temper- 

ature i n  the t e s t  chamber and the oven and the e l e c t r i c a l  output o f  the  

load c e l l  are monitored remotely. 

2. Measurements i n  Nitrogen, Fuel and A i r  

For measurements i n  any f 1 u i d  environment, dogbone specimtns 

12.70 mm wide, 68.58 mm long and approximately 0.50 mm t h i c k  were used 

a t  28.5% extension. For measurements i n  ni trogen, the chamber was f i r s t  

flushed several times w i t h  pure ni trogen, and thereaf te r  a steady f low 

o f  the i n e r t  gas was maintained dur ing the e n t i r e  course o f  the tes t .  

For measurements i n  a l t e rna te  fuels,  the chamber was f i l l e d  w i t h  the 

l i q u i d  frcm a reservo i r  connected t o  the chamber. The oven was f lushed 

w i t h  n i t rogen t o  minimize f i r e  hazards. There were no precautions 

requi red f o r  measurements made i n  a i r .  For i n t e r m i t t e n t  s t ress re lax-  

a t i o n  measurements, the elastomer spec imen was st retched f o r  t en  minutes 

and relaxed f o r  f i f t y  minutes. 

C. SWELL I NG MEASUREMENTS 

Swel l ing measurements were made on NBR batch 1, FVMQ batch 

3, and T-1 and T-2. Weighed samples of these elastomer compositions 

were ir.-a.*c;ed i n  la rge  excess o f  n-butyl  acetate a t  room temperature. 

A f t e r  seven days, the swollen samples were removed, surface d r i e d  and 

weighed. The solvent was then dr iven o f f  and the samples weighed again. 

V a l ~ e s  o f  0.8824, 1.2770, 1.3685 and 1.452 were used as dens i t ies  o f  the 

solvent and o f  NBR 2, FVMQ 3, and T-1 and T-2, respect ive ly .  

D. MECHANICAL TESTING 

1. Preparation o f  Ring Specimens 

The s t ress -s t ra in  tes ts  were ca r r i ed  out using r i n g  speci- 

mens approximately 2.15 cm (0.85") ins ide  diameter and 2.54 cm (1.0") 



outs ide  diameter. The r i n g s  were c u t  from vu lcan ized sheets us ing a  

high-speed r o t a r y  c u t t e r  mounted i n  a  p r e c i s i o n  d r i l l  i n g  machine. The 

sp ind le  was operated a t  between 300 and 700 RPM, depending on the mod- 

u lus  o f  the  sample, us ing d i s t i l l e d  water as a  l u b r i c a n t  t o  f a c i l i t a t e  

c u t t i n g .  Dur ing the c u t t i n g  operat ion,  the  sheet was adhered t o  a  b l ock  

o f  po lyethy lene us ing tape w i t h  adhesive on bo th  s ides (doub le -s t i ck  

tape). A f t e r  the  sheet had been cu t ,  the r i n g s  were c a r e f u l l y  removed 

from the  tape and the cond i t i on  o f  the  r i ngs ,  e s p e c i a l l y  t he  c u t  sur-  

faces, were examined us ing a  low-power magn i f ie r .  

S t ress -S t ra in  Measurements 

The u n i a x i a l  s t r e s s - s t r a i n  response was measured us ing two 

I n s t r o n  t e s t i n g  machines. One t e s t i n g  machine was used f o r  t he  h i gh  

temperature runs, i . e. , t e s t  temperatu;les g rea te r  than 353 K (80°C) 

wh i l e  the o ther  machine was used f o r  low temperature runs, i. e. , ? s t  

temperatures lower than 353 K (80°C). Test speeds were va r i ed  from 

0.0508 cm/min (0.02in/min) t o  50.8 cm/min (20in/min).  The r i n g s  were 

placed on two 0.635 cm diameter (0.250 i n )  hooks mounted on the  load 

c e l l  and t he  movable crosshead, r espec t i ve l y .  The s t ress  was ca l cu l a ted  

us ing the  f o l l o w i n g  equation: 

where f i s  the  load, a  i s  the th ickness.  and Do and Di a re  the  ou ts ide  

and i n s i d e  diameter,  respec t i ve ly .  The s t r a i n  was ca l cu l a ted  us ing 

where Q i s  the d is tance along the t ime ax i s  o f  the I n s t r o n  t race,  XS i s  

the  crosshead speed and CS i s  the  c h a r t  speed. I n  p r a c t i c e ,  t he  i n i t i a l  

p o r t i o n  o f  the  I n s t r o n  t r ace  i s  charac te r i zed  by the occurreilce o f  a  

" toe"  which i s  produced dur ing  the t ime the i n i t i a l l y  c i r c u l a r  specimen 

i s  s t r a i ned  s u f f i c i e n t l y  so t h a t  the  specimen b~comes p a r a l l e l  s ided. 

The l i n e a r  p o r t i o n  o f  the  t r ace  correspondi l~g t o  t he  s t r e t c h i n g  o f  the 

p a r a l l e l  s ided specimen was ex t rapo la ted  t o  zero load and t h i s  p o i n t  was 

taken as t he  zero o f  the  t ime scale as w e l l .  The t ime was ca l cu l a ted  

us i ng  t = B / R  where R i s  the s t r a i n  r a t e  de f ined  by 9 = ZXS/nDi .  Nor- 



mal ly ,  about 10-20 po in t s ,  i n c l ud ing  the break p o i n t ,  were read from the  

I n s t r o n  cha r t  and converted t o  o and E values. 

3. Swol l e n  S t ress -S t ra i  n Measurements 

Some s t r e s s - s t r a i n  measurements were made on the  swol len 

: Iscomers f o r  the  determinat ions o f  cross-1 i n k  dens i t i e s .  The apparatus 

ust : i s  shown i n  F igure 2. Weighed specimens 12.70 by 76.2 mm and a ~ o u t  

0.5 mm t h i c k  were immersed i n  n -bu ty l  acetate  u n t i l  e q u i l i b r i u m  was 

ihstablished, which took 6-7 days. The swol len samples were sur face 

d r i e d  and weighed. They were then placed s i n g l y  i n  the  swol len-stress- 

s t r a i n  t es te r .  A f t e r  i n s e r t i n g  two p i n s  v e r t i c a l l y  apar t  by 37 mm, t he  

sample was s t ressed by adding loads t o  the  beam balance ana t he  s t r a i n ,  

i . e . ,  the  change i n  the d is tance between t he  two p i ns  was measured w i t h  

a cathetometer. The swol len samples were then d r i e d  and weighed. 

E. AGING EXPERIMENTS 

Weighed r i n g  specimens o f  each o f  the  th ree  rubbers were 

placed i n  sealed, s t a i n l ess  s tee l  pressure tubes, f i l l e d  u j t h  the  var -  

ious f ue l s  and heated a t  d i f f e r e n t  temperatures. Each r i n g  cou ld  be 

i d e n t i f i e d  by i t s  p o s i t i o n  on a hanger t h a t  was placed i n  each tube. 

Samples were withdrawn p e r i a d i  ca l  l y  and t h e i r  cross-1 i n k  dens i t i e s  were 

ca lcu la ted  from the swe l l i ng  and s t r e s s - s t r a i n  measurements performed. 

SECTION 111 

RESULTS AND DISCUSSION 

A .  CHEMICAL STRESS RELAXATION MEASUREMENTS 

Developed by A .  Tobolsky and others  (Ref. 2) ,  t h i s  method 

has a unique value f o r  the study o f  changes i n  the  network o f  polymers 

dur ing  aging. In fo rmat ion ,  such as degradat ion r a tes ,  the  nature o f  

degradat ion,  i . e .  , bond sc iss ion ,  c ross - l i n k i ng ,  o r  both, the  s i t e  o f  

s c i ss i on ,  whether a t  the  backbone chain  o r  a t  the c ross - l i n k ,  can be 



F i g u r e  2 .  A p p a r a t u s  f o r  Mcsasur inc  Swol lcn  St rcss-St ra in  oi F71nstonic I-s 

8 



obtained from chemical stress re laxa t i on  measurements. Two types o f  

chemical s t ress re1 axat i  on measurements can be made: a) continuous , i n  

whish the sample i s  he ld  a t  constant s t r a i n  (extension) throuqhout the  

experiment; and b) i n te rm i t t en t ,  i n  which the sample i s  s t ra ined on ly  a t  

such times as the st ress i s  measured. According t o  network theory, the  

decrease i n  s t ress i n  a continuously-stretched sample i s  a d i r e c t  mea- 

sure o f  tbc! number o f  network chains broken. It i s  assumed t h a t  new 

networks formed, wh i le  the elastomer i s  strained, w i l l  no t  cont r ibu te  t o  

s t ress when the sample i s  strained, as i s  the case i n  the i n t e r m i t t e n t  

type o f  s t ress re laxat ion.  The i n t e r m i t t e n t  measurements show the  

st ress due t o  the residue o f  the o r i g i n a l  network p lus  the st ress due t o  

the new network, and may d i f f e r  considerably from the continuous mea- 

surements. I f  only  sc iss ion were occurring, the  continuous and i n t e r -  

m i  t t e n t  curves, obtained by monitor ing the st ress re1 axation, would be 

i d e n t i c a l .  I f ,  on the other hand, the st ress a t  a given t ime i n  the 

i n te rm i t t en t  experiment i s  l a rge r  than t h a t  i n  the continuous experi-  

ments, the d i f fe rence would represent the con t r i bu t i on  t o  the network o f  

any new cross- l inks formed during aging (Ref. 3). 

1. Stress Relaxation o f  NBR i n  Fuels I, I1  and 111 

Three d i f f e r e n t  batches o f  NBR, 1, 2 and 3, were tes ted  i n  

the three fuels.  The cross-1 f nk dens i t ies  were obtained from both 

s t ress-s t ra i  n and sue1 1 i n g  measurements. Values obtained from swel l  i n g  

measurements were lower than those r e s d l t i n g  f-om s t ress -s t ra in  measure- 

ment;. The crosb-1 i n k  density range from e i t h e r  source was, however, 

la rge  enough t o  assess c l e a r l y  the inf luence o f  aging on c ross- l ink  

densi ty  and vice-versa. The ve val ues obtained from sue1 1 i ng measure- 

ments are given i n  Table 1. 

NBR 2, commercial designation N 602-70, i s  the m i l i t a r y  

spec i f i ca t i on  material  and has an intermediate v 
e(o>- 

Figure 3 shows 

the chemical stress re laxa t i on  o f  t h i s  rubber i n  the three fue l s  a t  

various temperatures. It can be seen t h a t  i t s  reduced stress, ft/fo, 

where f and f ara t e n s i l e  forces a t  t ime t and to, decays t o  zero i n  a t 0 
matter of minutes a t  120°C i n  Fuel 111. The re laxa t i on  i s  slower i n  

Fuel 1 and has an intermediate r a t e  i n  Fuel 11. As expected, the r a t e  



TABLE 1. CROSS-LINK DENSITIES 
L 

. 

*Includes 300h exposure t o  l i q u i d  Fuel I a t  60'~. 

Batch 

T- 1 

T- 2 

NBR- 1 
NBR-2 

NBR-3 

FVMQ 1 
FVMQ 2 
NMQ 3 

Casting a 

b 

UNAGED 

v m l e s l m  3 

90.0 

278.0 

73.0 
260.0 

804.0 

8.1 
76.1 

240 
240 
200 

AGED 

, 

Medi urn 

Fuel I 

Fuel I 1 1  

Fuel I 

Fuel I 1 1  

Fuel I 

Fuel I 1 1  

Fuel I 
Fuel I 1 1  
Fuel I 

*Fuel I 
vapor 

" e ( t )  molesln3 

22.5 
42.7 
15.7 
29.0 

281 
283 
289 
2 98 
296 
2 88 

5 70 
32 1 
218 

59.0 

161 
137 
100 

8 
4 3 
70 

199 

Aging Temp. 

OC 

150 
140 
150 
140 

80 
100 
120 
80 

100 
120 

140 
150 
140 
150 

150 
150 
230 
2 30 
250 
2 70 
227 

% Change ' 

i n  v, 

- 75 
- 52.5 
- 82.5 
- 68.0 

+ 1.1 
+ 1.8 
+ 4.0 
+ 7.2 
+ 6.5 
+ 3.6 

t119.2 
+ 23.5 
- 16.1 
- 77.3 

- 33 
- 12 
- 50 
- 96 
- 73 
- 5'l 

0 

Duration 

h 

160 
160 
160 
160 

160 
160 
120 
160 
160 
120 

160 
160 
160 
160 

240 
240 
2 00 

1000 
2 00 

5 4 
2500 
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o f  re laxat ion increases w i th  temperature and seems t o  fo l low f i r s t  order 

k inet ics.  

Figure 4 i l l u s t r a t e s  the e f f ec t  o f  cross-l ink density on the 

stress re laxat ion o f  NBR i n  Fuels I and I 1  a t  150°C. I t  can be noticed 

tha t  the stress re laxat ion o f  NBR i s  inversely proport ional t o  the 

cross-l ink density, namely the higher the v e  the lower the re laxat ion 

ra te  i n  any o f  the fuels. It has been show~l tha t  random scission along 

the polymer chain i s  indicated when the ra te  o f  re laxat ion i s  found t o  

be inversely proportional t o  the cross-l ink density, and scission i n  the 

cross-l ink i s  indicated when the ra te  o f  re laxat ion i s  independent o f  the 

cross-l ink density (Ref. 3). The slower stress re laxat ion rate, shown by 

the higher cross-1 inked NBR, suggests t ha t  degradation occurs predom- 

inant ly  i n  the polymer chain, rather than a t  the cross-link. 

The relaxat ion o f  NBR 1 and 2 i n  Fuel I11  a t  120°C o r  above 

was so fas t  tha t  meaningful data could not be obtained. Experiments i n  

t h i s  fuel  were, therefore, carr ied out w i th  NBR 3. The influence o f  the 

highly aromatic fuels on the stress decay o f  NBR i s  also shown i n  Figure 

5. When measured a t  150°C, NBR relaxes approximately s i x  times faster  

i n  Fuel I11 than i n  Fuel I. The inf luence o f  temperature on the relax- 

a t ion ra te  o f  NBR 3 i n  Fuel I11 i s  shown i n  Figure 6. These and s imi lar  

curves were used t o  calculate act iva t ion energies and fo;* extrapolat ion 

t o  service l i f e .  

The extents o f  cross-l inking that  may occur simultaneously 

w i th  scission during aging can be obtained by comparison o f  in termi t tent  

w i th  continuous stress re laxat ion measurements. For in termi t tent  mea- 

surements, the rubber i s  stressed f o r  a short period and relaxed f o r  a 

longer period, repeatedly. Figure 7 shows t ha t  cross-l inking as wel l  as 

scission takes place when NBH ages i n  Fuel I11  a t  150°C. The number o f  

addit ional cross-links,~,, i s  not very large as deduced from the close- 

ness o f  the two curves and the resu l ts  o f  computatidns made, which are 

shown graphical ly i n  Figure 8. For NBR 3, the number o f  addit ional 

network chains (cross-l inks) formed i n  4 hours a t  150°C amounts t o  about 
3 7 moles/m (see Figure 8, curve 3). The fol lowing equations were used 

t o  calculate the addit ional cross-1 inks: 
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TIME, hr 

F i g u r e  8. Additional Network Chains  F o r m e d  in NBR and FVMQ B a s e d  

Sealant  S a m p l e s  a t  1 5 0 ° C .  a NBR 3 in F u e l  I; @ NBR 3 in F u e l  11; 

@ NBR 3 in F u e l  111; @ NBR 2 in A i r ;  @ FVMQ 2 in F u e l  I; 

@ FVMQ 2 in Fue l  111 



" 4 0 )  
was ca l cu l a ted  from 

"e(o) 
= fo/ART (A - 

where fo = s t r ess  a t  t ime  "zero," f t  = s t r ess  a t  t ime t ( t he  super- 

s c r i p t s  i and c stand f o r  i n t e r m i t t e n t  and cont inuous);  A = cross sec- 

t i o n a l  area o f  t he  sample, A = extens ion r a t i o ,  and R and T have t h e i r  

usual meanings. The terms and 
" d o )  

denote c r o s s - l i n k  d e n s i t i e s  a t  

t ime t and "zero." 

Stress Relaxat ion o f  FVMQ i n  Fuels I, I 1  and I 1 1  

The i n f l uence  o f  temperature on the  s t ress  r e l a x a t i o n  o f  

d i f f e r e n t  FVMQ batches i n  Fuels I t o  I 1 1  i s  shown i n  F igures 9 t o  15. 

Table 1 shows the  unequal c r o s s - l i n k  dens i t i es ,  v 
e(o) ' o f  t he  t h ree  FVMQ 

batches. The changes i n  t h e  s t r ess  r e l a x a t i o n  w i t h  temperature a re  n o t  

pronounced i n  the  temperature range used (120-150°C f o r  FVMQ 1, Figure 

9, and 150-190°C f o r  FVMQ 3, F igure 10). These temperatures a re  cons i -  

dered r e l a t i v e l y  low f o r  t h i s  h i gh  temperature and hydrocarbon fue l -  

r e s i s t a n t  sealant.  

The r e l a t i v e  e f f e c t  o f  the  th ree  f u e l s  on FVMQ 2 i s  shown i n  

F igure  11 and t h a t  o f  Fuels I and I 1 1  on FVMQ 3 s t  190°C i s  shown i n  

F igure 12. Al though the  s t r ess  r e l a x a t i o n  r a t e  o f  the  sea lants  i s  h igher  

i n  Fuel 111, the  e f f e c t  i s  no t  as pronounced as i n  t he  case o f  NBR. 

S i m i l a r  r e s u l t s ,  no t  shown, were obta ined f o r  FVMQ 1. This  i nd i ca tes  

t h a t  the  f l  uoros i  1 icone sea lan t  has r e l a t i v e l y  good ag ing p rope r t i es  i n  

h i g h l y  aromatic fue ls .  

The s t ress  r e l a x a t i o n  o f  FVMQ i n  Fuel I 1 1  cou ld  no t  be 

measured a t  temperatures h igher  than 190°C, because the  r a p i d  evapo- 

r a t i o n  o f  t he  t e t r a l i n  c o n s t i t u e n t  changed t he  nature o f  the  remaining 

f u e l .  Measurements a t  h igher  temperatures cou ld  be made i n  Fuel I, and 

r e s u l t s  g iven i n  F igures 13, 14 and 15 show the  good res is tance  o f  FVMQ 

1, 2 and 3 t o  hydrocarbon f ue l s .  
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The closeness o f  the st ress re laxa t i on  curves o f  FVMQ w i t h  

various cross- l ink dens i t ies  show? i n  Figure 16 (compared, f o r  example, 

w i t h  NBR data shown irl Figure 4) suggests t h a t  sc iss ion  a t  the cross- 

l i n k s  o f  the network i s  predominant when aged i n  Fuel I 1 1  a t  150°C. 

This content ion was confirmed by sol-gel measurements as discussed 

below. 

Continuous and i n te rm i t t en t  runs w i t h  FVMQ 2 i n  Fuels I and 

I11 a t  150°C are shown i n  Figure 17. That o f  FVMQ 2 i n  Fuel I a t  210°C 

i s  shown i n  Figure 18. The closeness o f  the i n te rm i t t en t  and continuous 

curves i n  each case indicates tha t  very few add i t iona l  network chains, 

' e  * are formed urlder these condit ions. This i s  a lso shown i n  Figure 8, 

curves 5 and 6. 

3. Stress Relaxation o f  NBR and FVMQ i n  A i r  and Ni t rogen 

The stress re laxa t i on  o f  both NBR and FVMQ was a lso measured 

i n  a i r  and n i t rogen as "reference standards" t o  which runs i n  the fue ls  

could be compared. The r e s u l t s  f o r  NBR 3 and FVMQ 2 a t  150°C i n  a i r ,  

are shown i n  Figures ? and 17, respect ive ly ;  those f o r  FVMQ 3 i n  a i r  and 

n i t rogen a t  250 and 27S°C are shown i n  Figure 19. A t  150°C f o r  both NBR 
3 and FVMQ 2, the reduced force of stress, f t / fo,  increases i n i t i a l l y  

and then leve ls  o f f ,  bu t  stays above ttie o r i g i n a l  stress force f o r  the 

durat ion o f  the experiment. This ind icates tha t ,  wh i le  the rubbers are 

tested a t  150°C, some cross-1 i nk ing  o f  the rubber specimen occurs. A t  

the higher temperatures, however, (Figure 19) ,  str-ess re laxa t i on  curves 

obtained both i n  a i r  and n i t rogen slope downward, i n d i c a t i n g  t b a t  sc is-  

s ion predominates cross-1 ink ing.  The fas te r  s t ress re laxa t i on  o f  FVMQ i n  

a i r  compared t o  n i t rogen indicates t h a t  re laxa t i on  due t o  chemical 

changes i s  caused more by atmospheric oxygen than by thermal e f fec ts  a t  

the temperatures used. 

4. Ac t iva t ion  Energies from Stress Relaxation Measurements 

Tile temperature dependence o f  the SR r a t e  constants from 

FVMQ 3 i n  Fuel 111, NBR 3 i n  Fuels I and 111, and NBR 2 i n  Fuel I are 











shown i n  F igure 20. The r a t e  constants were s e t  t o  equal l / r ,  where t 

equals t ime t o  r e l a x  a d e f i n i t e  percentage. These values ranged from 

15% f o r  FVMQ 3 i n  Fuel I11 t o  70% f o r  NBR 3 i n  Fuel 111. Not ice  t he  

lower a c t i v a t i o n  energies obtained f o r  NBR 3 i n  Fuel 111 and NBR 2 i n  

Fuel I. The Ea o f  NBR 2 i n  Fuel I11 was ca l cu la ted  t o  be a low 22.8 KJ. 

An Arrhenius curve f o r  t h i s  case i s  no t  shown because data p o i n t s  fa1  1 

outs ide the range o f  F igure  20. 

5.  -- Ex t rapo la t ion  o f  Chemical Stress Relaxat ion Data f o r  

an Approximate Est imate o f  Service L i f e  

I n  the temperature ranges explored, i t  i s  seen t h a t  the  

ma te r i a l s  t es ted  obey Arrhenius '  law. A1 though i t  i s  recognized t h a t  i t  

i s  hazardous t o  ex t rapo la te  ra tes  t o  lower temperature, the  r e s u l t s  have 

been ext rapolated as approximate est imates o f  se rv ice  l i f e ,  and as an 

i n d i c a t i o n  o f  the  much g rea te r  expected s t a b i l i t y  o f  FVMQ r e l a t i v e  t o  

NBR a t  lower use temperatures. The curves i n  F igure  2 1  were obtained by 

superposing the s t ress  r e l a x a t i o n  curves obta ined a t  var ious tempera- 

tures.  Thus, t o  p l o t  a curve, s h i f t  fac to rs ,  l o g  K o r  l o g  , were 

obtained by s h i f t i n g  along the  logar i thmic  t ime ax i s  the ft/fo vs. l o g  t 

curves obtained a t  d i f f e r e n t  temperatures, over t h a t  obta ined a t  t he  

reference teqperature.  The quan t i t y ,  t, i s  the t ime i t  should take t o  

ob ta i n  the  same amount o f  s t ress  r e l a x a t i o n  as a t  the  re ference temper- 

ature.  The ex ten t  o f  s t ress  r e l a x a t i o n  a t  the  re ference temperatures i s  

shown i n  Table 2. 

The t imes i nd i ca ted  on the curves i n  F igure 2 1  were obtained 

by drawing 1 ines from the t ime ax i s  (o rd ina te )  t o  the p a r t i c u l a r  curve 

and i n te r cep t i ng  then w i t h  l i n e s  drawn from the des i red temperatures on 

the temperature ax i s  (abscissa). I t  should be remembered t h a t  the t ime 

ax i s  represents rec ip roca l  t ime t o  the  percent s t ress  r e l a x a t i o n  values 

shown i n  Table 2. For example, the  r e s u l t s  i n d i c a t e  i t  would take 8 

hours a t  100°C f o r  NBR 2 i n  Fuel I (curve 1, Figure 21) t o  r e l a x  15%, o r  

26 days a t  25OC t o  r e l a x  t o  the same extent .  S i m i l a r l y ,  e x t r a p o l a t i  .i 

i nd ica tes  i t  would take more than 1000 years f o r  FVMQ 3 i n  Fuel I a t  

100°C t o  r e l a x  20% which i nd i ca tes  the  much g rea te r  r e l a t i v e  s t a b i l i t y  



Figure 20. Temperature Dependence of S t r e s s  Realization Rates  @ FVMO 3 

in Fuel 111. Ea = 79. 8 KJ; @ NBR 3 In Fuel  111. Ea = 46. 0 KJ;  

@ NBR 2 in Fuel  I. Ea = 57. 5 KJ; @ NBR 3 in Fuel  I. 

Ea = 88.9 KJ 





TABLE 2. EXTENT OF CHEMICAL STRESS RELAXATION 

AT REFERENCE TEMPERATURES 

Curve No. 
(F ig .  21) 

1 

2 

3 

4 

5 

M a t e r i a l  

NBR 2 i n  Fuel I 

NBR 3 i n  Fuel 111 

FVMQ 3 i n  Fuel I 1 1  

FVMQ 3 i n  a i r  

FVMQ 3 i n  Fuel I 

Reference 
Temp. , OC 

150 

150 

190 

275 

250 

Extent  o f  Stress 
Relaxat ion % 

15 

4 5 

15 

2 0 

20 



- "I, rc- . .  . . .  ' "4 

o f  the  f l u o r o s i l i c o n e  sealant  i n  t h i s  f ue l .  The percent  s t ress  r e l ax -  

a t i ons  shown i n  Table 2  do no t  represent  extens ive chemical degradat ion.  

I t  would be very des i rab le  t o  extend the  du ra t i on  o f  the  s t ress  r e l a x -  

a t i o n  experiments a t  lower temperatures t o  ob ta i n  more re1 i a b l e  e s t i -  

mates o f  s ~ r v i c e  1 i f e .  

B SWELLING (SOL-GEL) MEASIJREMENTS 

Swel l ing measurements were made t o  determine t he  i n i t i a l  

(unaged) cross-1 i n k  dens i t i es ,  'e(o) ' t h e  polymer-sol vent  i n t e r a c t i o n  

c o e f f i c i e n t .  xl, and v 
e ( t )  ' the  c r o s s - l i n k  dens i t y  of t he  aged e las to -  

mers. 

The 
" 4 0 )  

was determined us ing the f o l  lowing r e l a t i o n s h i p  

based on the  k i n e t i c  theory o f  e l a s t i c i t y :  

where f = s t ress  force,  A 1  = change i n  l eng th  o f  specimen, A = d ry  

unstressed area, R i s  the  gas constant  and T ;s absolu te  temperature. 

The 'e(o) values were used i n  the  mod i f ied  Flory-Rehner equat ion (Ref. 

4)  t o  eva luate xl, the  solvent-polymer i n t e r a c t i o n  c o e f f i c i e n t ,  

where V, = molar volume o f  so lven t ,  g  = ge l  f r a c t i o n ,  and vp = volume 

f r a c t i o n  o f  the  rubber i n  the swol len ge l .  The v2 was determined by the  

"weight method" us ing the f o l l o w i n g  eq l~a t i on .  

where W S  - weight o f  so lven t  absorbed a t  equ i l i b r i um ,  Wr = d r i e d  weight  

o f  rubber a f t e r  swel l  i ng ,  pr  = dens i t y  o f  rubber,  and pS = dens i t y  o f  

so lven t ,  which, i n  the  present  cases was n-bct.yl acetate .  The v 
e ( t )  

~ a l u e s  cou ld  be ca l cu l a ted  from the  Flory-Rehner equat ion,  once x f o r  1 



each rubber was known, and g and v2 were determined experimentally. The 

x1 values were as fol lows: 

FVMQ: x1 = 2.44 V2 + 0.915 

NBR: x1 = 4.51 V2 + 1.319 

T: x1 = 0.5590 

The 'e(o) values from swollen st ress measurements are shown i n  Table 1, 

together w i t h  the ve o f  aged materials.  

Aging was ca r r i ed  out  i n  r r le ls  I and 111. NBR 2 and T - i  

were aged a t  140, 150 and 160°C, and FVMQ a t  150, 160, 190, and on'ly i n  

Fuel I a t  230-290°C. Ring samples were placed i n  sealed s ta in iess  

s tee l  tubes. Samples were withdrawn p e r i o d i c a l l y  and t h e i r  cross-1 i n k  

dens i t ies  were calculated from swel l  i n g  and s t ress -s t ra in  data obtained 

(Table 1). It was observed tha t  T-1 ( v ~ ( ~ )  = 90. O), was degrading ra- 

p i d l y  even i n  Fuel I a t  140°C. A f t e r  160 hours i n  thFs environment, the 

gel f r a c t i o n  had fa1 l e n  by more than 50%, i nd i ca t i ng  severe degradation. 

Results were worse i n  Fuel 111. The aged samples were b r i t t l e  and t h e i r  

t e n s i l e  s t rength was very low o r  unmeasurable. The cross- i  i n k  dens i t ies  

o f  the aged samples, ca lcu lated from swel l ing  data, had f a l l e n  by as 

much as 82%. The temperature res  stance o f  T i n  a fue l  environment i s  

ev ident ly  l i m i  ted  t o  l o w  * temperatures. 

A t  a l a t e r  date, T-2 ( V  
e(o) 

= 278. O), was aged a t  lower 

temperatures, namely 80, 100 and 120°C, i n  Fuels I and 111. A t  these 

temperatures, degradation was much less severe. A s l i g h t  increase 5n 

c ross- l ink  dens,! t i e s  was observed on aging (Table 1). The gel  f r ac t i on ,  

g, decreased w i t h  t ime and temperature, bu t  not as d r a s t i c a l l y  as be- 

fore. P lo ts  o f  reduced gel f rac t ions ,  g/go vs. t ime are shown i n  Figure 

22. The i n i t i a l  gel  f r ac t i on ,  go, was taken as un i ty .  The l i n e a r i t y  o f  

the curves indicates f i r s t - o r d e r  react ions. On aging 160 h i n  Fuel I a t  

140-160°C, NBR 2 showed extensive add i t iona l  cross- l  ink ing,  as shown i n  

Table 1, but  substant ia l  decrease i n  the c ross- l ink  densi ty  occurred 

a f t e r  aging i n  Fuel 111, a t  the same temperatures and aging period. 





The accelerated aging o f  FVMQ 3 was c a r r i e d  out i n  Fuels I 

and I 1 1  a t  150, 160 and 190°C, and only  i n  Fuel I a t  230-290°C. An 

experiment i n  Fuel I vapor i s  a lso  reported. Results are shown i n  Table 

1. Aging i n  Fuel I 1 1  was fas te r  than i n  Fuel I. For example, a f t e r  240 
3 

h exposure t o  Fuel I11 a t  150°C, ve decreased from 240 t o  137 moles/m , 
3 whereas i t  had decreased t o  161 moles/m i n  Fuel I. The same pa t te rn  

was observed a t  160 and 190°C. Degradation, as manifested by the de- 

crease i n  ue, increased w i t h  temperature as expected. For example, 

a f t e r  200 h i n  Fuel I a t  23f1°C, the ue decreased from 200 t o  100 
3 ~ l e s / m ~ ,  bu t  t o  43 moles/m a t  250°C. Compared w i t h  the ac t i on  o f  '-21 

I vapor on FVMQ 3, the e f f e c t  o f  l i q u i d  Fuel I i n  the sealed conta iner  

was much more severe. A f t e r  300 h i n  l i q u i d  Fuel I a t  60°C and 2500 h 

i n  Fuel I vapor a t  227OC. the decrease i n  ue was less than 6% (from 21.1 
3 t o  19.9 moles/m ), whereas i n  1 i q u i d  Fuel I a t  230°C a f t e r  only  200 h, 

the decrease was SO%, and a f t e r  1000 h, 96%. 

The extensive degradation i n  the conf ined l i q u i d  Fuel I 

could be explained thusly :  both the f 1 uorosi 1 icone backbone chain and 

the cross- l inks contain si loxane bonds, Si-0: w i t h  reported bond energy 

ranging from 369 KJ/mol ( r e f .  5)  t o  489 KJ/mol ( r e f .  6). A1 though these 

values represent strong bonds, the nearly 40% i o n i c  character ( r e f s .  7, 

8) o f  the si loxane bond makes i t  suscept ible t o  nuc leoph i l i c  and elec- 

t r o p h i l i c  a t tack  by basic and ac id i c  degradation products tha t  may have 

formed dur ing the thermal breakdown o f  e i ,~ier f ue l  and f luoros i 1 icone 

polymer, o r  by impur i t ies ,  such as polymerizat ion ca ta lys ts  present 

i n i t i a l l y .  Any such substance formed i n  the FVMQ o r  present t o  s t a r t  

with, may have been washed away by the fue l  vapor from the reac t i on  

zone. I f  damaging t a r  conta in ing ac id i c  and basic compor,ents was formed 

by the thermolysis o f  Fuel I, they would y~*obably no t  be v o l a t i l e  enough 

a t  the t e s t  temperature t o  reach the FVMQ wh i le  exposed t o  fue l  vapor, 

bu t  would be i n  in t imate  contact w i t h  i t  dur ing the l i q u i d  fue l  ex- 

posure. 

Swel l ing o r  sol-gel determinations can a lso y i e l d  i n f o r -  

mation about the s i t e  o f  cleavage i n  the polymer. Horikx (Ref. 9) 

showed tha t  the fo l lowing re la t ionsh ips  hold f o r  random sciss ion,  

equation (7), and c ross- l ink  scission, equation (8) :  



where So and S are so l  f rac t ions  o f  unaged and aged mater ia ls ,  respec- 

t i v e l y .  The curves f o r  these equations are shown i n  Figure 23, together 

w i t h  the p l o t s  f o r  the data obtained from T-1 aged i n  Fuel 111 (curve 

3). and FVMQ 3 aged i n  Fuel 1 (curve 4). Curve 1 represents the response 

predic ted f o r  random chain scission, equation (7).  whi le  curve 2 repre- 

sents the response predic ted f o r  c ross- l inksc iss ion ,  equation (8). The 

shape o f  curve 3 i s  s i m i l a r  t o  t h a t  o f  curve 1, suggesting t h a t  sc iss ion  

takes place randomly i n  the backbone chain o f  T. The p l o t  f o r  FVMQ 3 

(curve 4), i s  unmistakably s i m i l a r  t o  curve 2 and confirms the r e s u l t s  

suggested from st ress re laxa t i on  measurements t h a t  sc iss ion  i n  FVMQ i s  

predominant a t  the cross- l inks.  The ge l  f r ac t i ons  o f  NBR changed so 

s l i g h t l y  on aging t h a t  Horikx curves could no t  be p lo t ted .  

C. MEASUREMENT OF MECHANICAL PROPERTIES 

Extensive s t ress-s t ra in  measurements were made on unaged NBR 

and FVMQ compositions. 8lechariical t e s t i n g  o f  T was l i m i t e d  t o  one 

c ross- l ink  densi ty  mater ia l  aged i n  Fuels I and I 1 1  a t  80, 100 and 120°C 

The r e l a t i v e  st ress a t  break o f  these samples vs. aging t ime are p l o t t e d  

i n  Figure 24. The temperature dependence o f  the 3ging r a t e  i s  shown i n  

Figure 25. Here, t f o r  cases 1 and 2 i s  the t ime i t  takes fo r  g/go, the 

r e l a t i v e  gel f rac t ion ,  t o  decrease 5%; f o r  cases 3 and 4, i t  i s  the t ime 

necessary f o r  the st ress t o  decay 40 and 70%, respect ive ly .  Ac t i va t i on  

energies obtained from temperature dependence o f  aging r a t e  measured 

from the change i n  gel f rac t ions ,  g, were higher than those obtained 

from the temperature o f  the aging r a t e  as measured from the change i n  

Ob' 







F i g u r e  25.  T e m p e r a t u r e  D e p e n d e n c e  of T e n s i l e  S t r e s s  D e c a y  R a t e  a n d  C h a n g e  in  

G e l  F r a c t i o n  of  P o l y s u l f i d e  T-1 in F u e l s  I  a n d  111. @ In F u e l  I ,  E . 
a 

56. 7 K J  ( F r o m  C h a n g e  i n  G e l  F r a c t i o n )  @ In F u e l  111, Eat  40. 2 K J  

( F r o m  C h a n g e  in  G e l  F r a c t i o n ) ;  @ In  F u e l  I, E a ,  47'. (1 K.T ( F r o m  

S t r s s s  D e c a y ) ;  @ In F u e l  111. E a ,  37. (2 K.J ( F r o n ~  S t r e s s  D e c a y )  



I he  purpose o f  the dynamic mechanical t e s t i n g  o f  the unaged 

rubbers was t o  es tab l ish  a basis f o r  the p red i c t i on  o f  the long-time 

behavior o f  these elastomers. This approach i s  based on the existence 

and approximate invariance o f  the t e n s i l e  proper ty  surface. A t y p i c a l  

t e n s i l e  proper ty  surface f o r  a Vi ton ~ i e l a s t o m e r  i s  shown i n  Figure 26. 

The concept o f  the proper ty  surface i s  based on the  f a c t  t h a t  the mechan- 

i c a l  response o f  an elastomer can be considered i n  terms o f  these va r i -  

ables: stress, a; s t r a i n ,  E ;  and time, t. The e f f e c t  o f  temperature i s  

incorporated i n t o  the t ime scale by the re la t i onsh ip  l o g  t/aT, where the 

value o f  l o g  aT i s  the experimental ly-determined, time-temperature s h i f t  

fac tor .  The development o f  the  t e n s i l e  proper ty  surface which re la tes  

these parameters by a s ing le  ana ly t i c  surface w i t h  a s ing le  rupture 

f a i l u r e  boundary i s  described i n  Ref. 10. 

The surface i s  convenient ly generated by measuring the 

un iax ia l  s t ress-s t ra in  response o f  the given elastomer as a func t ion  o f  

s t r a i n  r a t e  and temperature. Typ ica l l y ,  i t  i s  necessary t o  t e s t  the 

elastomer a t  about 10 d i f f e r e n t  s t r a i n  rates a t  each o f  10 t o  15 t e s t  

temperatures. A 1  though t h i s  represents a considerable expenditure of 

t ime and e f f o r t ,  knowledge o f  the surface i s  o f  fundamental importance 

i n  understanding and p red i c t i ng  the mechanical response o f  an elastomer. 

The response o f  an elastomer t o  any un iax ia l  i npu t  w i l l  

simply be a path traced out on the surface. For example, the path 

traced out dur ing a creep experiment (i. e. , constant load) s t a r t i  ~g a t  

p o i n t  A i n  Figure 26 and terminat ing a t  the p o i n t  B, w i  11 be the curve 

AB, which i s  generated by the i n te rsec t i on  o f  t h i s  surface w i t h  a plane 

p a r a l l e l  t o  the s t ra in - t ime plane and which passes through both A and B.  

The p ro jec t i on  o f  t h i s  path t o  the s t ra in - t ime plane i s  depicted by the 

lower curve AB: t h i s  l a t t e r  curve corresponds t o  creep data as normally 

p lo t ted .  S imi la r  considerat ion can be used f o r  experiments ca r r i ed  out 

under other  t e s t  modes. Thus, the path traced out  on the surface by a 

stress re laxa t ion  ( i .e . ,  f i xed  s t r a i n )  experiment ca r r i ed  out by s t a r t -  

ing  from the same p o i n t  A used f o r  the creep experiment i s  shown i n  

Figure 26 as the curve AC.  

' ~ e ~ i s t e r e d  trademark o f  E. I. duPont deNemours & Co., Inc.  
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Rupture on t h i s  surface i s  represented graph ica l l y  as discon- 

t i n u i t y  o r  boundary which can be considered t o  r e s u l t  from the in tersec-  

t i o n  o f  the physical proper ty  surface w i t h  another surface represent ing 

f a i l u r e .  I n  Figure 26, t h i s  rupture cond i t ion  i s  represented by the 

terminat ing l i n e  on the r i g h t .  Hence, the specimen undergoing creep and il. 

fo l low ing the surface along path A0 w i l l  break when t h i s  path in te rsec ts  

the boundary ( a t  p o i n t  C). I 
i :  

i: 

The e f f e c t  o f  changes i n  the  c ross- l ink  densi ty  o f  the elastomer 

on the l oca t i on  o f  the proper ty  surface has a lso  been studied f o r  three , . 

chemically d i f f e r e n t  types o f  rubber, v iz :  a hydrocarbon, a f luoro-  . . 

carbon, and a f l u o r o s i l  icone rubber. For a1 1 three types, the e f f e c t  o f  

a change i n  c ross- l ink  densi ty  i s  simply t o  change the t ime scale o f  the 

experiment analogously t o  the change i n  t ime scale observed when the 

temperature i s  changed. 

The e f f e c t  o f  the  changes i n  the cross-1 i n k  densi ty  on the 

time scale i s  given by the c ross- l ink  density-t ime s h i f t  fac tor ,  ax, 

which i s  expressed by 

l o g  ax = -7.7 l o g  ve + c (9)  

where C i s  a constant dependent on the chemical nature o f  the elastomer. 

Thus, when temperature and cross- l ink densi ty  are both changed, the 

reduced time i s  t/aTax. 

1. B iax ia l  Deformations 

I n  many appl icat ions,  the elastomer i s  subjected t o  b i a x i a l  

deformations (e. g. , f l e x i n g  and folding;, wh i le  the experience presented 

above was l i m i t e d  t o  t e s t s  ca r r i ed  out  i n  un iax ia l  deformation. However, 

i t  can be said t h a t  the f a i l u r e  t ime i n  b i a x i a l  deformation can never 

exceed t h a t  under condi t ions o f  unaxial  deformation. Hence, the  r e s u l t s  

obtained w i t h  the un iax ia l  t e s t  can be used t o  assess the promise o f  a 

candidate material .  For example, i f  the candidate mater ia l  does not  

have s u f f i c i e n t  l i f e t i m e  i n  a un iax ia l  t es t ,  it should no t  be a caddi- 

date f o r  an app l ica t ion  i nvo l v ing  b i a x i a l  deformation. I n  t h i s  discus- 

sion, i t  i s  assumed t h a t  no chemical degradation o f  the elastomer has 

occurred. 



Analysis o f  the Data 

The f o l  lowing parameters were ca lcu la ted  from the  load-time 

data obtained from the Ins t ron  s t r i p  charts:  

"bTo = t e n s i l e  s t ress a t  f a i l u r e  (break), p s i  
f 

cb = s t r a i n  a t  f a i l u r e  

tb = t ime a t  f a i l u r e  

To and T are an a r b i t r a r y  reference temperature, 298 K and T are the 

t e s t  temperatures, respect ive ly .  

The three NBR formulations were tested a t  298, 323 and 

353 K, and the three FVMQ compounds were tes ted  a t  298, 323 and 363 K. 

P lo ts  o f  l o g  ob 298/T vs. l o g  tb were prepared. The process i s  i l l u s -  

t r a t e d  i n  Figure 27 where the data obtained f o r  NBR 2 a t  298, 323 and 

353 K are p lo t ted .  The d e f i n i t i o n s  o f  the p l o t t i n g  symbols are given i n  

Table 3. The curve shown i n  Figure 28 was obtained by s h i f t i n g  the 

p l o t s  i n  Figure 27 hor izonta l l y ,  r e l a t i v e  t o  the reference curve a t  

298 K t o  ob ta in  the s ing le  response shown i n  Figure 28. A l i g h t  t ab le  

and t ranslucent  graph paper were used t o  car ry  out the s h i f t i n g  process. 

Log ob 298/T versus l o g  t rerponses f o r  NBR 1 and 3, and FVMQ 1, 2 and 

3 were s i m i l a r l y  obtained and are shown i n  Figures 29-33. I n  a1 l cases, 

the reference temperature was 298 K. 

The amount o f  hor izonta l  s h i f t  i s  l o g  aT and i s  temperature 

dependent. This dependence i s  shown f o r  NBR and FVMQ i n  Figure 34. 

Although there i s  1 i t t l e  o r  no overlap o f  the data, the s h i f t e d  curves, 

Figures 29-33 are be1 ieved t o  be v a l i d  because they agree w i t h  known 

data on other rubber systems. 

Superposit ion of the f a i l u r e  resporlse o f  NBR w i t h  d i f f e r e n t  

cross-1 i n k  densi t ies,  ve (Figures 28-30), by hor izonta l  s h i f t i n g  w i t h  

respect t o  NBR 3 as reference gave the master p l o t  shown i n  Figure 35. 

Simi lar  treatment o f  the three f a i l u r e  data f o r  FVMQ 1, 2, and 3 

(Figures 31-33) w i t h  respect t o  FVMQ 3 as reference gave the master p l o t  

shown i n  Figure 36. The amount o f  the c ross- l ink  density-t ime s h i f t  

46 



TABLE 3 .  DEFINITION OF PLOTTING SYMBOLS 

Symbol 

A 

0 

0 

A, @, @ 

A O  e 
A o  0 

Flag 

d 
d 
0- 

9 
? 
P 
-0 

43- 

Cross-1 ink 
Density 

LOW (1) 

Medium ( 2 )  

High (3 )  

Rate 
in/min 

20 

12 

10 

5 

2 

1 

0.5 

0.2 

0.1 

I 

Temperature 
OC 

25 

50 

80 (90) 
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F i g u r e  27. S t r e s s  R u p t u r e  D a t a  for  NBR 2 at V a r i o u s  T e m p e r a t u r e s  
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F i g u r e  28. Dependence  of  ob on t,, f o r  NBR 2 
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Figure 29. Dependence  of a on t f o r  NBR 1 b b 



F i g u r e  30. Dependence of cr on t for N n R  3 
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F i g u r e  31 .  Dependence  o f  cb o n  t f o r  FVMQ 1 b 
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Pigure  32. Dependence of on  tb for F V M Q  2 b 
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Figure 33 .  Dependence of ab on tb f o r  F V M Q  3 



F i g n r t  34. Temperature Dependence of aT. NBR 2, @ FVMQ 3 
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F i g u r e  3 5 .  Dependence  of  Reduced  ub o n  Reduced tb f o r  NRR 2 
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Figure 36 .  Dependence of Reduced Stress at Break to Reduced tb for FVMQ 3 



f ac to r  i s  l o g  ax as mentioned e a r l i e r .  Figures 35 and 36 can thus be 

used t o  p r e d i c t  serv ice l i f e  a t  long times when the cross- l ink densi ty  o f  

the elastomer tested i s  known. 

The e f f e c t  o f  temperature on the t ime t o  break, tb, o f  NBR 2 

and FVMQ 3 a t  various st ress values are shown i n  Figures 37 and 38, 

respect ive ly .  They were obtained from ob vs. l o g  t curves using the 

slopes o f  the f a i l u r e  envelope p l o t s  o f  Figures 30-35. The curves i n  

Figures 37 and 38, as we l l  as Figures 35 and 36, represent the major re-  

s u l t s  o f  measurements made f o r  p red i c t i ng  the l i f e t i m e  o f  these e lasto-  - 
mers. It must be emphasized t h a t  values are t ime t o  break i n  absence o f  - 
chemical degradation. Because o f  the sca t te r  i n  the  data, estimated 

t b t s  can vary up t o  a hundred f a l d  a t  a given st ress leve l .  The curves 

i n  Figures 35-38 show the minimum time requi red t o  break; t h a t  i s ,  

f a i l u r e  cannot occur sooner than the times indicated, bu t  i t could take 

much longer, up t o  about 100 times longer t o  f a i l .  To est imate t,,, 

1 ines from the ordinate, represent ing st ress levels ,  are drawn t o  the 

curves and then traced t o  the abscissa, the t ime axis.  For example, a t  

a s t ress l eve l  o f  690 kP (100 ps i ) ,  i t can be found from Figure 38 t h a t  

i t  should take FVMQ 3 32 minutes t o  break a t  363 K (90°C), 69 days a t  
5 323 K. (50°C) and > 1.92 x 10 years a t  198 K (25OC). These numbers show 

the dramatic in f luence o f  temperature on tb. 

S im i la r l y ,  a t  a s t ress  l eve l  of 2760 kP (400 ps i ) ,  i t  should 

take NBR 2 (Figure 37) 3.2 minutes t o  break a t  353 K (80°C), 22 days a t  

323 K (50°C), and 3300 years a t  298 K (25'. ). The suscept ibi  1 i ty o f  the 

mechanical proper t ies o f  the elastomers t o  temperature are again shown 

by these values. An increase i n  temperature from 25 t.o 80°C i s  pre- 

d i c ted  t o  decrease the tb o f  NBR by about 8 orders o f  magnitude. 

The p l o t s  i n  Figures 35 and 36 are used t o  estimate tb when 

the cross- l ink density, ve, and the two s h i f t  fac tors ,  aT and a,, are 

known. Thus, these curves are useful  i n  est imating l i fe t imes i n  presence 

o f  chemical degradation, because changes i n  v r e f l e c t s  chemical degra- e 
dation. It i s  assumed i n  these ca lcu la t ions  t h a t  the chemical degradation 

occurs before the sample i s  subjected t o  a mechanical load. The f o l -  







lowing examples are i l l u s t r a t i v e :  a t  a s t ress  l e v e l  o f  434 kP (63 p s i )  

and a t  363 K, aT = 7.5 and a, = 0. The V, o f  unaged FVMQ 3 i s  240 
3 3 moles/m (240 x moles/cm ). The tb i s  ca lcu la ted  as fol lows: 

l o g  o = 1.80 

l o g  ve  -3.619 
l o g  (ob/ve)(298/363)= 1.80 + 3.619 - 0.09 = 5.329 

l o g  tb/aTaX = 12.5 (from master curve, Figure 36) 

l o g  tb = 12.5 - 7.5 + O =  5 

tb = 70 days 

The value o f  tb/aTaX was obtained by the l i n e a r  ex t rapo la t ion  o f  the 

master curve (Figure 36). Previous work w i t h  other  elastomers has shown 

t h a t  the curve i s  l i n e a r  over very wide ranges i n  the t ime scale. (The 

same tb value i s  obtained when i t  i s  estimated from Figure 38). A f t e r  

240 hours o f  aging i n  Fuel 111 a t  150°C, the ve o f  FVMQ 3 drops down t o  
3 140 moles/m from 240. Under the  same condi t ions o f  the  above example, 

the tb o f  the aged sealant i s  ca lcu lated t o  be 35.5 minutes! 

These ca lcu la t ions  demonstrate the marked e f f e c t s  o f  aging 

a t  h igh  temperatures; however, i n  many cases these mater ia ls  may not  be 

subjected t o  such h igh thermal o r  mechanical stresses and could have 

very long 1 i fe t imes,  espec ia l l y  FVMQ. For c r i t i c a l  appl icat ions,  new 

mater ia ls  w i  11 be required. 

SECTION I V .  

SUMMARY 

Data obtained from both chemical s t ress  re laxa t i on  and 

t e n s i l e  s t ress vs. t ime t o  break measurements on NBR, FVMQ and T based 

seal and sealant compositions were used t o  p r e d i c t  t h e i r  l i f e t imes .  

Stress re laxa t i on  experiments could no t  be ca r r i ed  out  w i t h  the poly-  

s u l f i d e  sealant T because o f  inherent  d i  f f  i c u l  t i e s  and tens i  l e  t e s t i n g  

was a lso 1 im i ted  t o  samples aged i n  fue ls  a t  lower temperatured. 

Treatment o f  the data from chemical s t ress re laxa t i on  measurements i n  



fue ls  y ie lded ind ica ted  l i f e t i m e s  t o  a given extent  o f  s t ress re lax-  

at ion. Stress re laxat ions were measured over a r e l a t i v e l y  shor t  per iod  

o f  time arld, therefore, p red ic t ions  t o  l a rge r  extent  o f  re laxa t i on  could 

not  be obtained. From st ress and s t r a i n  vs. t ime t o  break measurements 

a t  d i f f e r e n t  temperatures, curves were constructed which were used t o  

p red i c t  1 i fetime i n  the absence o f  chemical degradation. These curves, 

constructed from data obtained a t  only 3 temperatures, were not  as 

complete as desired. The existence o f  ax, the cross-1 i n k  densi ty- t ime 

s h i f t  fac tor ,  and i t s  incorporat ion i n t o  the t ime scale, make i t  possible 

t o  estimate the l i f e t i m e s  i n  presence o f  chemical degradation, i f  i t  i s  

assumed t h a t  the degradation and resu l tan t  change i n  ve occur before the 

sample i s  subjected t o  stress. 

Stress r e laxat ion  experiments furnished other  in format ion as 

we1 1 : the nature o f  network breakdown, whether sc iss ion o r  cross-1 inking, 

or both; the s i t e  o f  t i le  breakdown, whether a t  the cross- l inks o r  a t  the 

backbone; the r e l a t i v e  rates o f  degradation, etc.  I t  was shown both by 

stress re laxa t i on  and sol -gel  determinations t h a t  breakdown i n  both NBR 

and T, when aged i n  a l te rna te  fue ls  a t  elevated temperatures, occurs a t  

the polymer backbone a t  random. Scission i n  FVMQ i s  a t  the cross- l inks.  

The fas te r  re laxa t i on  o f  FVMQ i n  a i r  than i n  the i n e r t  atmoshpere o f  

n i t rogen showed t h a t  bond cleavage i s  caused more by atmospheric oxygen 

than by thermal e f fec ts .  Much severer degradation o f  the FVMQ was 

observed i n  l i q u i d  fue l  heated i n  sealed containers than when exposed t o  

fue l  vapor a t  the sme temperatures. This was explained on the grounds 

t h a t  i o n i c  nature o f  the st rong Si-0 bonds, present i n  both the cross- 

l i n k s  and the backbone chain, may make them suscept ible t o  e l e c t r o p h i l i c  

and nucleophi l ic  at tack by possible ac id i c  and basic impur i t i es  formed 

i n  the FVMQ and the fue l  dur ing thermal breakdown. I n  the l i q u i d  fue l  

environment, these impur i t ies  would be i n  contact w i t h  the FVMQ, whereas 

i n  the fue l  vapor, they would be washed away from the reac t ion  zone. 

Nor would i t  be expect d t h a t  any ac id i c  or  basic t a r s  formed i n  the 

fue l  v o l a t i l i z e  enough t o  get i n t o  the vapor phase a t  the t e s t  tempcr- 

atures. 



It was shown t h a t  degradat ion o f  NBR and T i n  h i g h l y  aroma- 

t i c  f u e l s  i s  very  f a s t  as compared w i t h  t h a t  o f  FVMQ. The r a t e  o f  

-e laxa t ion  i s  d i r e c t l y  p ropo r t i ona l  t o  t h e  aromat ic hydrocarbon content  

o f  the  f u e l .  Temperature has a dramat ic e f f e c t  on t he  t ime t o  break, tb, 

o f  t he  rubbers tes ted,  even i n  the absence o f  chemical degradat ion.  
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