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INTRODUCTION

The documentation for the NASTRAN computer program consists of four manuals: the Theoretical
Manual, the User's Manual, the Programmer's Manual and the Demonstrat1on Problem Manual. Since an
effort has been made to avo1d duplication of material, a brief statement of the content of the
other three manua]s will serve as a useful point of departure in 1ntroduc1ng the Theoretical Manual.

The intent of the User's Manual is that it provide all of the information needed to solve
problems with NASTRAN. User's should find it to be both instructional and encyclopedic. It
includes instruction in structural modeling techniques, instruction in input preparation and infor-
mation to assist the interpretation of output. It contains descriptions of all input data cards,
restart procedures and diagnostic messages. It is hoped that it can serve as a self-help instruc-
tion book. A

The intent of the Programmer's Manual is that it provide a complete description of the program
code, 1nc1ud1ng the mathemat1ca1 equations that are implemented 1n the Funct1ona1 Modules. _It des-
cribes the Execut1ve System and the coding practices that have been emp]oyed It cqntans the in-
formation that is required for maintenanee and modification of the prpb]em: |

AThe intent of the.Demonstration Problem Manuat is tb i]]ustratenthe)formu]ation of types of
prob1em§ that can be solved with NASTRAN and to show the results obtained are valid. Generally,
this manueT discusses the nature ofltne problem, the under]yingAtbeqry, the specific geometric and
physical inpbt quantities,ané the comparison of theoretical and NASTRAN results. At least one
prob]em for each of the rigie formats and nearly all of the elements is provided.

One of the roles that has been assigned to the Theoretical Manua] 15 that of a commentary on
the program. It is, f1rst of all, intended to be an 1ntroduct1on to NASTRAN for all 1nterested
persons, including those who will go on to use the program and those whoseulnterests are less
direct. For this purpose, the structure and the prob]em:sp]ying capabilitjes gfrtheAprogrem are

described in a narrative style. The manual's most important funetion, however, is to present

deVe]opments of the analytical and numerical ‘procedures that underlie the program.

The selection of material for the Theoretical Manual has not been an easy task because not
everyone has the same concept of what the word “theory" means when it is applied to a computer
program. For some, theory is restricted to include only the formulation of the equations that
will be solved; for others, theory also includes the development of the procedures, or algorithms,
that will be used in the solution; still others regard the organization of the program and the

flow of data through the computer as important theoretical topics.
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A broad view concerning the selection of material has been adopted, and the reader will find

that all of the above aspects of the program are treated. Some structural analysts may be sur-

prised at the emphasis on program organization and data processing, particularly in the early

sections of the manual. These subjects are emphasized because they are vitally important to the'
success of a large computer program and should not be taken for granted.‘

In regard to the more mathematical subjects, such as the derivation of the equations for
‘structura] elements and the development of eigenvalue extraction procedures, the reader will find
‘that the Tevel of sophistication is geared to the difficulty of the subject matter. Thus, it is
. assumed that a reader with an interest in an advanced topic (such as shell elements) will have the
necessary theoretical background. In most cases the derivations are intended to be complete and
rigorous. For a few of the structural elements, the reader is referred to the Programmer's Manual
for the detailed expression of matrix coefficients that are regafded as too combersome to have
genéra] interest. -

The Theoretical Manual is divided into seventeen major sections and numerous subsections.

- Section 1 deals with some of the organizational aspects of NASTRAN and Section 2 with utility

matrix routines. Sections 3, 4, 5 and 7 deal with static structural analysis. It will be noted ‘
that no material has been included in Section 6, which is reserved for topics to be defined in
the future. Section 8 treats heat transfer. Sections 9 through 12 deal with dynémic structural
analysis. Sections 13 through 15 deal with miscellaneous topics, including computer graphics,
gpecial structural modeling techniques and error analysis. Section 16 deals with the interaction
between fluids and structures. Section 17 dealis with flutter analysis.
The style of the Theoretical Manual, 1ike that of the other three manuals, has been designed
to accommodate future additions and modifications. Each major subsection stands alone with its
own pa§e numbers, equation numbers and figure numbers, so that changes can be made without signif-

icant disruption.
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Direct matrix abstraction program (DMAP) 1.1-3, 1.3-2
modification of rigid formats 1.3-2
Discrete (finite) element appreach 3.1-1/p
Displacement coordinate system 3.4-2, 3.4-9/f
see coordinate systems 3.4-5/p
for concial shell 5.9-1, 5.9-34/f
Displacement components (degrees of freedom) 3.3-1/p
in conical shell element 5.9-2/p
in isoparametric elements 5.8-34
quadrilateral membrane 5.8-34, 5.8-41
in plates 5.8-2
for bending 5.8-7
for Clough element 5.8-25 .
for membrane 5.8-2
reduction of stiffness for center point 5.8-28/p
Displacement functions 5.8-3
for bending plate element 5.8-10
see Clough bending triangle 5.3-24
for conical shell element 5.9-2
for membrane plate element 5.8-3
Displacement method (see static analysis) 3.1-1/p-
Displacement recovery 3.7-1/pa
Displacement sets 3.3-1/p
for dynamic analysis 9.3-2
Displacements - axisymmetric 4.1-1
DMAP (see direct matrix abstraction program) 1.1-3
Double precision arithmetic 3.6-5
Double reduction technique 4.3-4
see substructural analysis 4.3-1
Double curved shell element 5.10-1/pr
coordinate system for 5.10-3, 5.10-33/f
metric (Lame") .parameters specifying 5.10-3/m
transition to conical segment ring 5.10-4
transition to cylindrical segment ring 5.10-5
transition to shell cap element 5.10-5
displacement functions 5.10-1/p, 5.10-6/pm
admissibility requirement 5.10-6
flexural 5.10-8/m
improved stress continuity using 5.10-6/p
elastic relations for 5.10-12/m
membrane 5.10-6/m
generalized coordinates 5.10-6/p
transform to grid point displacements 5.10-7
kinetic energy 5.10-28/m
load vectors 5.10-17/pm
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Double curved shell element

gravity 5.10-20/pm
pressure 5.10-18/pm
prestrain 5.10-17/pm
thermal 5.10-20/pm
mass matrix - consistent 5.10-28/pmr
modeling with 5.10-1
potential energy 5.10-11/pm
prestress and prestrailn assumptions 5.10-13
stiffness matrix 5.10-15/pm
strain-displacement relations 5.10-11/m
for temperature effects 5.10-20/m
strain energy 5.10-12/m
stress recovery 5.10-23/pmr
stress resultants 5.10-23/p, 5.10- 34/f
matrices for 5.10-25/m
prestrain and thermal effects 5.10-26
prestress conditions 5.10-27
gpecialized to shell .cap element 5.10-25
transverse shear 5.10-23/m
transverse shear force 5.10-23/m

Dynamic analysis 12.1-17p, 9.1-1/p

comparison of model and direct methods 9.1-1
complete dynamic matrices (direct method) 9.3-7/pm
coupled equations 11.3-1/p

see dynamic matrix assembly 9.3-1/p"

see eigenvalue extraction 10.1-1/pam
frequency dependent coefficients 9.3-3

see frequency response analysis 12.1-1/pam
general problem flow for 9.1-1/p, 9.1-3/c
see inertia properties 5.5-1

modal dynamic matrices 9.3-10/m

nonlinear effects 11.2-1/p

see organization of dynamic analysis 9.1-1/p
see random analysis 12.2-1/p

rigid formats for 9.1-1

see transient response analysis 11.0-1/pam

Errors

Eigenvalue analysis 9.2-1/p :
complex (CEAD) 9.2-6/pm
direct formulation 9.2-6
modal formulation 9.2-7
see eigenvalue extraction (mathematical) 10.1-1/pm
real (READ) 9.2-1/pm, 9.2-8/c
for buckling 9.2-2
see Cholesky decomposition 9.2-4
closeness test for determinant method 9.2-5/pm
mass orthogonality test for 9.2-5/m
normalization options for 9.2-6
purified eigenvectors (Schmidt method) 9.2-6
rigid ‘body -mode -calculations 9.2-3

Schmidt orthogonalization procedure for 9.2-3/pmr

for vibration modes 9.2-1
Eigenvalue extraction 10.1-1/pam
comparison :of methods 10.1-1/p, 10.1-3/t
see determinant method 10.3-1/p
see inverse power method with shifts 10.4-1/p
tracking (iterative) -procedure for 10.1-1 ’
transformation methods for 10.1-1
see tridiagonal method 10.2-1/p
.see upper Hessenberg eigenvalue method 10.5.1
Elastic axes 5.2-4 :
for bars 5.2-4
Elastic stability problems 1.1-3
see buckling 3.2-3
see piecewise linear 3.2-3
Element connection cards 5.1-2
Element coordinate systems &4.2-2/p
Element material capability 4.2-5/t
Element property definition cards 5.1-2
Element strain energy distribution 3.7-3/p
Enforced deformations 5.1-2
in metric structural elements 5.1-2
Error analysis 15.1-1/p

uncoupled equations 11.4-1/p
Dynamic analysis modules 1.3-2
Dynamic data recovery 9.4-1/p, 9.4-4/c

avoiding errors with multipoint constraints 15.1-5
for bending plate models 15.2-1/pm
mesh size - element comparisons w/figures 15.2-1/pf

a=algorithm

matrix method of 9.4-1/p
mode acceleration method 9.4-la/p, 9.4-2
standard method 9.4-2, 9.4-4/c

Dynamic matrix assembly 9.3-1/pm

direct dynamic matrix assembler (GKAD) 9.3-6/p
final assembly of matrices 9.3-7/p
Guyan reduction 9.3-6
input matrices for 9.3-6
steps for reduction procedure used in 9.3-6/p
direct input matrices 9.3-5
dynamic pool distributor (DPPD) 9.3-1, 9.1-3/c
extra points and transfer functions for 9.3-3/pm
loads proportional to displacements 9.3-5
modal dynamic matrix assembler (GKAM) 9.3-8/p
dynamic system properties used by 9.3-9
final assembly of matrices 9.3-10
restrictions for damping matrices 9.3-9
multipoint constraints 9.3-6
notation system for displacements 9.3-1/pt
single point constraints 9.3-7

Dynamic matrix reduction 3.5-9

see Guyan reduction 3.5-6/m

Dynamic partitioning techniques 14.1-6/r

see vibration modes used for modeling 14.1-1/p
see control systems representation of 14.2-2/p

Dynamic pool distributor (DPD) 9.3-1, 9.1-3/c
Eigenvalue analysis 3.2-3

see buckling analysis 3.2-3
see differential stiffness 7.1-7

r=reference c=flowchart

f=figure

modeling errors 15.2-2
quadrilateral element 15.2-1/pr
triangular element (Clough) 15.2-1/r

in dynamic problems - eigenvalue extraction 15.1-4/p

improved accuracy by iteration 15.1-4

justification for double precision arith. 15.1-1/p

for membrane plate models 15.3-1/pm
cantilever beam modeled 15.3-3/f

flexibility comparisons (bending-couple) 15. 3 2/ft

quadrilateral elements 15.3-1/r
precision of matrix and:table data blocks 15.1-1
round-off error 15.1-1/p

for cantilever beams (static solution) 15.1-2/pm,

15.1-6/f
in matrix decomposition 15.1-1, 15.1-3, 15.1-7/f
for square frames 15.1-3, 15.1-6/f
in structural stiffness matrices 15.1-1
single vs. double precision (PM2 and 5.5.1) 15.1-1
in static analysis problems 15.1-2/pm
with very stiff members 15.1-5
in structural modeling 13.1-1
study results of 15.1-1/p
in transient analysis problems 15.1-5
Errors 1.2-5
in frequency due to mass idealization 5.5-10/pmr
file allocation 1.2-5
heat transfer nonlinear steady state 8.4-5
heat transfer trapsient analysis 8.4-5
due to ill-conditioning 3.6-5
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Errors

see integration of coupled equations 11.3-8
in iterative solutions 2.1-1
numerical round-off 2.1-1, 3.6-5
in solution of linear equations 2.3-2/a
Executive control deck 1.2-5, 3.4-4
Executive system 1.2~1/p
bulk data deck 1.2-6
case control deck 1.2-5
checkpoint 1.2-5
control table 1.2-5
data blocks 1.2-4
design criteria 1.2-1/p
executive control deck 1.2-5
file allocation (management) 1.2-4
functional modules 1.3-1
input data analysis 3.4-4
input/output control 1.2-5
input/output operations 1.2-9
intermodule communication 1.2-3
P#SCAR 1.2-7
other operations-1.2-9
parameter tables 1.2-3
preface, operations during 1.2-4
preface, program flow 1.2-10/c
problem ‘initialization 1.2-7
programming constraints 1.2-3
restart after interrupt 1.2-3
rigid format instructions 1.3-1
segment file allocator 1.2-8
sequence monitor 1.2-7
user-defined modules (see DMAP) 1.3-2
Extensional bars and rods 7.2-1
see differential stiffness 7.2-1
Extra points 3.3-5
see control systems representation of 14.2-1/p
for dynamic analysis 9.3-3/p
see frequency response analysis 12.1-2
see modal formulation 14.2-1
File allocation (management) 1.2-4
insufficient 1.2-5
segmented 1.2-8
Finite element approach 3.1-1/p
Flat surface elements 4.2-2
material properties for 4.2-5/t
Flexibility matrix 5.7-1/p
see stiffness matrix 3.1-1/p
Fluid elements - axisymmetric 16.1-14/p
center (along axis of symmetry) 16.1-23/pm
displacement and strain analogies 16.1-14
expansion for pressure 16.1-14/m, 16.1-18/m,
16.1-23/m
fluid elements for slots 16.2-2/p
fluid grid points (grid circles) 16.1-14
generalized coordinates for 16.1-14/p
kinetic energy for 16.1-16/m
mass matrix derived 16.1-16/m
coefficients for triangular element 16.1-22/m
coefficients for center element 16.1-26/m
model for compressible fluid 16.1-14
potential energy 16.1-15/m
for center element 16.1-24/m
for triangular element 16.1-18/m
pressure coefficients 16.1-14/pm
quadrilateral 16.1-22
stiffness matrix derived 16.1-16/m
coefficients for triangular element 16.1-19/pm
coefficients for center element 16.1-24/pm
structural modeling with 16.1-14

a=algorithm r=reference c=flowchart f=figure

xviii

Grid points

triangular 16.1-18
Fluid elements for slots 16.2-2/pm
see acoustic analysis of cavities w/slots 16.2-1/p
Flutter analysis (see aerodynamic analysis) 17.4-1
Force recovery (reactions) 3.7-1/pa
Forward-backward solution pass 3.3-1/ap
Free body stiffness matrices 3.5-7/p, 3.6-5
Frequency response analysis 12.1-1/p
assumptions - basic 12.0-1
component load sets 12.1-1
applied to physical points 12.1-2
coefficients for 12.1-1/p
partitioning of 12.1-2/p
reduction to final form 12.1-2
transformation to modal coordinates 12.1-2
direct formuldtion 12.1-3
for frequency dependent matrices 12.1-3
efficiency of solution’12.1-4
error due to mass idealization 5.5-10/pmr
flexibility of input data 12.1-1
flow diagram for 12.1-5/f
generation of dynamic loads 12.1-1
due to traveling waves 12.1-2
" matrix decomposition options 12.1-4
method selection criteria (direct vs. modal) 12.1-4
modal formulation 12.1-3/p
solution for uncoupled equations 12.1-4/m
output options 12.1-4
solution for user-specified frequencies 12.1-3
static problems with nonstruc. stiffness 12.1-3
Fully stressed design 4.4-1/pa
assumptions - basic 4.4-1/p
control variables 4.4-2/p
design variables 4.4-1, &4.4-4/¢
modules used 4.4-3
optimization equations 4.4-2/ma
output 4.4-3
Functional modules (see control by user) 1.3-1/p
matrix operations 1.3-2
structural 1.3-2
user 1.3-3
utility 1.3-3
General structural element 5.7-1/pm
deletion of rigid body motions 5.7-3/m
development by stiffness coefficients 5.7-2/m
development by flexibility coefficients 5.7-1/m
input data for 5.7-2/m
Generalized coordinates 5.8-3/p
for bending plate elements 5.8-10/p
relation to curvatures 5.8-14
for conical shell elements 5.9-2
for inertia properties (coupled mass) 5.5-9/pm
for membrane plate elements 5.8-3
Generalized forces - inertia 5.5-9
Generation of loads (see load generation) 3.6-1/p
Geometry processor 3.2-1/p, 3.4-5/p
Global coordinate system (coordinate systems) 3.4-5
Gram-Schmidt orthogonalization of eigenvectors
10.2-12/ar
Gravity loads (see load generation) 3.2-2, 3.6-1,
4.1-3
on axisymmetric structures 4.1-3
see inertia properties 5.5-1/p
Grid circles (axisymmetric models) 4.1-1
see axisymmetric structural elements 4.1-1
loads on 4.1-3
Grid points 3.1-1/p, 3.4-5
concentrated loads at 3.1-3
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Grid points Integration of uncoupled equations

see constraints on grid points 3.1-3 elements not available for 5.5-2
coordinate systems defined for 3.4-2 generalized coordinates 5.5-9
transformation of 3.4-5 . direct input mass matrix 9.3-5
geometric 3.1-1 for dynamic analysis 5.5-1
identification numbers (external/internal) 3.4-3 general mass matrix properties 5.5-7/p
scalar 3.1-1 lumped mass matrix 5.5-8. 5.5-10/m
sequence numbers for 3.3-3 mass input data cards 5.5-5/p
singularity at 3.4-6 CPNM1, CPNM2 5.5-5/p
Grid point force balance 3.7-3/p see element of interest 5.5-8/p
Grid point singularity table (GPST) 3.4-6/p for metric structural elements 5.5-8
Grid point weight generator 5.5-12/p for rod and bar elements 5.5-11/pmr
center of gravity 5.5-15/m off diagonal terms interpretation 5.5-5/pm
mass matrix consistency 5.5-13 ¢ for plate elements 5.8-28c/pm
principal mass axes 5.5-15/m point mass 5.5-1/pm, 5.5-17/f
rotation test 5.5-14/m CPNM2, C@NM1 cards 5.5-5/p
transformation [S] matrix 5.5- 15/m rigidly offset 5.5-2/pm
mass matrix partitions 5.5-14/p rigid body inertia 5.5-2/p
output description of 5.5-12/p grid point weight generator 5.5-12/p
principal moments on inertia axes 5.5-16/m interpretation of point mass matrix 5.5-5
transformation [Q] matrix 5.5-16/m mass matrix for a point 5.5-3/p
procedures (flowchart) of 5.5-21/f for static analysis 5.5-1
rigid body transformation [D] matrix 5.5-13/pm transformation of coordinates 5.5-6/pm
example of 5.5-22/f Inertia relief 3.2-2, 3.2-4/c, 3.5-8
Guyan reduction 3.5-6/prm procedure for including in static analysis 3.6-6-ap
see constraints at grid points 3.1-3 see static analysis 3.1-1
in direct matrix assemoly 9.3-6/p Input data analysis (NASTRAN data preparatlon) 3.4-4
of frequency response loads 12.1-2 Input data decks (UM 2) 3.4-4
see transient loads 11.1-3 bulk data 1.2-5
Heat capacity matrix 8.2-7 case control 1.2-5
see constant gradient heat conduction 8.2-3/pm data blocks 1.2-4
Heat conductive matrix 8.2-3 for material property 4.2-1
see constant gradient heat conduction 8.2-3/pm old and new problem tapes 1.3-3
see volume heat conduction elements 8.2-1 see file allocation 1.2-4
Heat transfer analysis 8.1-1/pmr see tape usage 3.4-4
analogy to structural analysis 8.1-1/pr see input/output operations 5.1-2
see constant gradient heat conduction 8.2-3/pm processing of 3.4-4
heat flow components 8.1-2 for structural elements 5.1-2
matrices and vectors defined for 8.1-2 Input file processor (IFP) 1.2-6, 3.2-1/p, 3.4-5, 1.2-6
output data for 8.1-2 Input/output operations 1.2-9
scalar degrees of freedom for 8.1-1 Integration of coupled equations 11.3-1/pamr
single and multipoint constraints in 8.1-2 algorithm for (Newmark Beta Method) 11.3-1/pmr
see solution methods for heat transfer 8.4-1/pm change in time step 11.3-12
see surface heat transfer 8.3-1 direct integration algorithm 11.3-7/pm
thermal linear statics analysis 8.1-2 error of integration 11.3-8/p
thermal nonlinear statics analysis 8.1-3/c : estimating number of time steps 11.3-10
thermal transient analysis 8.1-4/c finite difference operators used in 11.3-1
see variable gradient conduction elements 8.2-8 initial conditions 11.3-10/p
see volume heat conduction elements 8.2-1/pm massless degrees of freedom in 11.3-7.
Hydrodynamic analysis 9.1-2 'ringing’' of 11.3-11
Hydroelastic capability (UM 1.7) 16.1-1/p, 4.1-4 number of computations for 11.3-8
see acoustic analysis of cavitles w/slots 16.2-1/p output from TRD module 11:3-12/p
see compressible fluids in axisym.tanks 16.1-1/p phase change per time.step 11.3-=5. .
Idealized structural model 3.1-3, 3.1-4/f stability considerations 11.3-1/p
Identification numbers for grid points 3.4-3 equations for 11.3-3/pm
Ill-conditioning of matrices 3.1-3, 3.6-5, 5.4-3 examples with uniform damping 11.3-5
see multipoint constraints 3.5-1 nonuniform damping 11.3-7
due to stiff members 5.4-3 stability triangle 11.3-4 -
Inertia loads 5.5-1/p stability limit 11.3-6
see coupled mass matrices 5. 5- 8/p see transient analysis module - (TRD) 11.1- 5/c
see inertia properties 5.5-1/p see transient loads 11.1-1/p
see load generation 3.2-2 . . triangular decomposition used. in 11. 3-7
see mass matrices 5.5-1/p . ) Integration of differential equations 1.1-2
Inertia properties 5.5-1/p ) ) Integration of uncoupled equations 11.0-1, 11.4-1/p
accuracy 5.5-10/pmr ’ acceleration output 11.4-2/m
coriolis and centrifugal acceleratlon 5.5-1 applied loads for 11.4-1/pm
coordinate systems 5.5-1/pf convolution integral for applied loads 11. 4 1
principal mass and inertia (GPWG) 5.5-12/p damping 11.4-1
transformation of (GPWG) 5.5- 13/p critically damped case 11.4-3/t
transformation of 5.5-6 ) " overdamped case 11.4-4/t
coupled (consistent) mass 5.5-8/pm undamped rigid body modes 11.4-5/t
a=algorithm r=reference c=flowchart f=figure p=pages following m=mathematical t=table
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‘Integration of uncoupled .equations .

underdamped 11.4-3/t
initial conditions 11.3-10
see transient loads 11.1-1/p
Interaction between structures and fluids 16.1-1/p
see acoustic analysis of cavities w/slots 16.12-1/p
basic assumptions and restrictions 16.1-1
see compressible fluids 16.1-1/p
see fluid elements - axisymmetric 16.1-14/p
Inverse power method - complex 10.4-24/pm
convergence 10.4-28/pm
proof for 10.4-28/pm
shift criteria for 10.4-32
tests for 10.4-39
damping matrix, if null 10.4-31
distribution of starting points 10.4-44/f
iteration algorithm for 106.4-24/m
limitations of method 10.4-31
orthogonality property (nonsym matrices) 10.4-26/pm
rate of convergency 10.4-29
search regions (user prescribed) 10.4-36
shift point for 10.4-24/pm
singularity of mass matrix 10.4-29
summary procedures 10.4-37/pam
sweeping of previous eigenvectors 10.4-29/pm
test to change shift point 10.4-29
Inverse power method - real 10.4-3/pm
convergence 10.4-4/pam
computational tests for 10.4-19/pm
criteria for 10.4-4/pam
proof of 10.4-3
distribution of starting points 10.4-14/pmf
extraction of multiple eigenvectors 10.4-13/p
initial trail vectors 10.4-13/p
iteration algorithm for 10.4-3/pam
mass orthogonality test 10.4-4/m
rapid convergence test 10.4-7/pm
reliability tests for 10.4-10/pm
shift point, change in 10.4-8/pm
summary of procedures 10.4-18/pm
sweeping of previous eigenvectors 10.4-11/pa
termination, reasons for 10.4-16/p
test to change shift point 10.4-9
Inverse power method with shifts (eigenvalues)
10.4-1/par
application of 10.1-1
convergence tests 10.4-43/c
overall flow diagram for 10.4-41/c
for desired frequency band 10.4-2
see inverse power method - complex 10.4-24/pm
see inverse power method - real 10.4-3/pm
iteration algorithm for 10.4-1
triangular decomposition used in 10.4-2
Isoparametric quadrilateral membrane (QDMEM1)
5.8-33/p
accuracy comparison with other elements 5.8-33
see composite 5.8-21/p
coordinate system 5.8-34, 5.8-43/f
displacement functions 5.8-34/m
elastic relations for 5.8-37/m
grid point forces 5.8-39, 5.9-44/f
inertia properties of 5.8-28¢
modeling with 5.8-33
stiffness matrix 5.8-37/p, 5.8-42/m
strain and potential energies 5.8-37/m
strain-displacement relations 5.8-35/pm
stress recovery 5.8-42/m
thermal load vector 5.8-37/p, 5.8-42/m
Isoparametric solid elements 5.13-1
coordinate system 5.13-2/m, 5.13-8, 5.13-10/f

a=algorithm r=reference c=flowchart f=figure
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Matrix operations

see differential stiffness 7.5-1/pm
displacement functions 5.13-11/t, 5.13-12/¢,
5.13-13/t, 5.13-2/m
elastic relations for 5.13-6/pm
inertia properties for 5.13-7/m
load relations for 5.13-6/pm
material properties 5.13-5/pm
modeling with 5.13-1, 5.13-8
numerical integration 5.13-8/m, 5.13-14/t
strain-displacement relations 5.13-3/pm
stress recovery 5.13-9/m
stress-strain relations 5.13-5/pm
thermal strain 5.13-5/pm
Isotropic material properties (MATL) 4.2-1/m
Iterative methods for eigenvalue extraction 10.1-1/p
see determinant method 10.3-1/pa
see inverse power method with shifts 10.4-1/par
Jacobi method of eigenvalue extraction (GPWG) 5.5-15
Large deflection (differential stiffness) 7.1-1
Line elements (see bar) 5.2-1/p
Linear equation solver 2.3-1/a
see decomposition 2.2-1/pa
Linear static analysis 3.1-1/p
for heat transfer analysis 8.4-1
Linkages (see mechanisms) 3.5-7
Load generation (see element of interest) 3.6-1
centrifugal 3.6-2
gravity 3.6-2
inertia loads 3.2-2, 3.6-6/p
pressure 3.6-1
reduction of load vectors 3.6-4
static 3.6-1
thermal 3.6-3
Load vector reduction 3.5-3, 3.6-4, 4.3-2
Load vectors (transient) 11.1-1/p
Local coordinate system 3.4-2, 3.4-5
element systems 4.2-2
Lumped element approach 3.1-1
Lumped mass 5.1-3, 5.5-8
see heat transfer analysis 8.2-3, 8.2-7
see inertia properties 5.5-10/m
Macro instructions (see DMAP) 1.3-2, 3.2-1
Mass matrices (see element of interest) 3.4-6
see gravity loads 3.6-2
see Guyan reduction 3.5-6
see inertial loads 3.6-6
transformation of 5.8-30
Mass properties 3.1-2, 5.5-1/p
see inertia properties 5.5-1
input data for 5.5-1
Material axes 5.2-1/p
see basic coordinate system 3.4-2
in plates 5.8-2/pf
for solid elements 4.2-1/p
for surface elements 4.2-3, 4.2-6/f
for triangular ring element 5.11-22/f
Material plasticity 3.8-1
Material property definition cards 4.2-1, 4.2-5/t,
. 5.1-2
Material properties table 4.2-5/t
Matrix assembler 1.3-3
Matrix assembly 3.4-6
for dynamic analysis 9.3-1/p
Matrix operations (see control by user) 2.1-1/p
accuracy 2.1-1
addition 2.1-4a/m
decomposition (triangle) 2.2-1/p
multiplication 2.1-3/a
by scalar 2.1-4
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Matrix operations

partitioning and merging 2.1-6/a
solution of matrix equation Ax=B 2.3-1/p
storage of matrices 2.1-2/a
timing estimates (see decomposition) 2.1-2/a
transposition 2.1-5/a
Matrix properties 2.1-3, 3.1-3
ill-conditioning 3.1-3, 3.6-5
active column concept (symmetric) 2.2-2/a
active column concept (unsymmetric) 2.2-6
bandwidth 2.2-6
denseness 2.1-3/p
Matrix reduction 3.5-1/p
see constraints on grid points 3.1-3
see Guyan reduction 3.5-6
of stiffness in composite plates 5.8-28
see triangular decomposition 2.1-1/pm
Matrix topology plotter (UM 5.3-2) 13.3-1
Matrix storage technique 2. 1- 2/a
peripheral file 2.1-5
Mean square response for random analysis 12.2-3/m
Mechanisms 3.5-7, 5.4-3
see multipoint constraints 3.5-1
Membrane triangle plate element 5.8-2/pf,
see differential stiffness 7.3-11/m
coordinate system for 5.8-2/f
generalized 5.8-3
displacement vector for 5.8-2
elastic relations for 5.8-4
transformation into element coordinates 5.8-4/m
loads in 5.8-6
membrane strains in 5.8-3
stiffness matrix for 5.8-5
element to global transformation of 5.8-5
strain energy for 5.8-3/p
stresses in 5.8-6
orientation of principal 5.8-6,
thermal expansion 5.8-5 I
loads due to 5.8-6
stresses due to 5.8-6
‘Merging of matrix partitions 2.1-
see partitioning operation 3.5-
Metric structural elements 5.1-1
Modal coordinate set 3.3-5/t )
Modal coordinates 5.4-4 ]
Modal dynamic matrix assembler (GKAM) 9.3-1, 9.3-8,
9.1-3/c .
see control systems 14.2-1
see frequency response analysis 12.1-1
see integration of uncoupled equations 11.4-1/pm
see random analysis 12.2-1 i
Modal formulation 14.2-1° : : o
Mode acceleration method-dynamic data recovery 9.4- 1/p
Modeling techniques - special 14.1-1/p
see control systems, representation of 14.2- -1/p
see vibration modes used for modellng 14.1-1/p
Module calls (see DMAP) 3.2-1
Module development (PM 6)1.2-3
Multiplication of matrices 2.1-3/a
see matrix operations 2.1-1/p
scalar 2.1-4a/a
Multipoint constraints 3.2-2, 3.5-1, 5.4-1/p
constraint elements 3.1-2
see dynamic matrix assembly 9.3-6
of frequency response loads 12.1-2
for heat transfer analysis 8.1-2
nonlinear steady state 8.4-1
reaction points on free bodies 5.4-1
single point 5.4-1/pm
for removing singularities 5.4-2

7.3-11/pm

|
!
6/a, 3.3-3
4!
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f=figure

Partitioning operation’

see transient loads 11.1-3
uses of 5.4-3
for defining mechanisms 5.4-3
described by modes of vibration 5.4-4
see vibration modes representing structures 14.1-1/p
Mutually independent vector sets 3.3-5/t
see notation system - matrices 3.3-1/p
NASTRAN overview 1.1-1/p
executive system 1.2-1
matrix abstraction (see DMAP) 1.1-3
problems solved 1.1-3
program design 1.1-1
rigid format 1.1-3
user control 1.3-1/p
NASTRAN material capability 4.2-5/t
Nested vector sets 3.3-1
New problem tape 3.4-5

see tape usage 1.2-4
Newmark Beta Method in transient analysis 11.3-1
Nodal points (see grid points) 3.1-1
Nonlinear analysis 3.2-1/pa
see control systems representation of 14.2-1
for heat transfer analysis 8.1-3/c, 8.4-1/pm
load vectors for transient analysis 11.2-1/pm
stiffness matrices for 3.8-3
Nonlinear motions (static) 7.1-1
see differential stiffness and buckling 7.1-1
Nonoverlapping plate elements 5.8-28
see composite plate elements 5.8-21
Nonpositive definite matrices 2.2-2
Nonstandard structural elements 5.4-4
Non-structural mass (see inertia properties) 5.5-8
Normal coordinates (model) 11.3-2 ’
Notation system - matrices 3.3-1/p
Numerical analysis 1.1-2
see error analysis 15.1-1/p
see matrix operations 2.1-1
Octahedral plastic strain 3.8-5
stress due to 3.8-5
Omitted coordinate set 3.3-5/t
analysis set 3.3-2
for dynamic analysis 9.3-2
see Guyan reduction 3.5-6
Operation sequence control array (¢SCAR) 1.2-7
Organization of dynamic analysis 9.1-1/p
convolution integrals-frequency response 9.3-3
direct versus modal approach 9.1-1
see dynamic data recovery 9.4-1, 9.4-4/c
see dynamic matrix assembly 9.3-1/p
see eigenvalue analysxs 9.2-1/p
see frequency response analysis 12.1-1/p
general problem flow 9.1-3/c
nonlinear functions-transient analysis 9.3-3
see random analysis 12.2-1
rigid .formats in NASTRAN 9.1-1
specification of input data 9.1-2
see transient response analysis 11.0.1/p
Orthotropic stress-strain relationship (MAT3) 4.2-2
limitation of usage in NASTRAN 4.2-2
PSCAR (see executive system) 1.2-7
Qutput file processor 3.2-2
see input/output operatiomns 1.2-9
Overlapping plate elements 5.8-21/p
see composite plate elements (5.8-21)
Overview of NASTRAN 1.1-1/p
Parameter tables (see executive system) 1.2-3
Partitioning of matrices (matrix operations) 2.1-6/a
Partitioning operation 3.3-2, 3.5-4/ap, 3.5-11/f
see Guyan reduction 3.5-6
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Partitioning operations

see matrix reduction 3.5-1
Perspective projection plots 13.1~3
see structural plotter 13.1-1
Piecewise linear analysis 3.2-3, 3.2-7/c, 3.8-1/pa,
3.8-10/c¢
limitations using 3.8-1
material properties for 4.2-1
for plate elements 3.8-5
problem options for 3.8-1
for rod, tube, and bar elements 3.8-4/pam
solution logic for 3.8-2
stress-strain functions for 3.8-3
Pivoting during decomposition 2.2-6
Plastic analysis (stress dependent) 3.8-1
see plecewise linear analysis 3.2-3
Plastic flow (Prandtl-Reuss theory) 3.8-5/m
Plate elements 5.8-1/p
see bending-triangle plate element 5.8-7
classification of NASTRAN elements 5.8-1
see Clough bending triangle 5.8-24
see composite plate elements 5.8-21
inertia properties of 5.8-28c/p
see isoparametric membrane elements 5.8-33/p
material properties for 5.8-4
see membrane triangular plate element 5.8-2
uncoupled membrane/bending stiffness 5.8-1
superposition of 5.8-23
Plot control 1.2-6
Plotting (UM 4) - computer graphics 13.1-1
curve plotter (UM 4.3) 13.2-1
matrix topology plotter (UM 5.3-2) 13.3-1
see structural plotter 3.4-5, 13.1-1
Polyhedron solid elements 5.12-1/p
see tetrahedron element 5.12-2/p
see wedge and hexahedron elements 5.12-5/p
PPPL (see file allocation) 1.2-7
Positive definite matrices 2.2-2
Power spectral density for random analysis 12.2-2
Prandtl-Reuss plastic flow theory 5.8-5/m
Preface operations 1.2-4, 1.2-10/f
Pressure loads 3.6-1
on axisymmetric structures 4.1-3
Prismatic beams with double symmetry 5.2-1
see differential stiffness 7.2-3
Problem formulation (static) 3.4-1
Problem formulation (dynamic) 9.1-1
Problems solved by NASTRAN 1.1-3
Program execution 1.2-4
Program organization 1.1-1/p
see executive system 1.2-1
Property optimization (see fully stressed design)
4.4-1/p
Pseudo-structure (see substructure analysis) 4.3-2
Quadrilateral bending plate (QUAD1, QUAD2) 5.8-22/p
see bending triangle plate element 5.8-7/p
combined membrane and bending effects 5.8-23
consistent displacements and rotations 5.8-22
see differential stiffness 7.3-13
inertia properties of 5.8-28c
modeling errors 15.2-1
stress recovery 5.8-23
uncoupled stiffness components 5.8-23
Quadrilateral membrane plate (QDMEM) 5.8-21
see composite plate elements 5.8-21
see differential stiffness 7.3-11
see isoparametric quadrilateral membrane 5.8-33/p
lumped mass representation only 5.8-28c
see membrane triangle plate element 5.8-2/pf
nonoverlapping (QDMEMZ) 5.8-28

a=algorithm r=reference c=flowchart

f=figure

Root symbols

degree of freedom reduction 5.8-28/p
shear flow 5.8-28b
stress recovery 5.8-28b
warping of 5.8-28a/p
overlapping (QDMEM) 5.8-21
see isoparametric quad membrane plate 5.8-33/p
stress recovery 5.8-21
representing a tetrahedral shell 5.8-21
Quadrilateral panel 5.3-1, 5.3-6/f
see shear panels and twist panels 5.3-1/p
Quadrilateral shear panel 7.2-2
see differential stiffness 7.2-2
Radiation exchange between surfaces 8.3-4/pm
see surface heat transfer 8.3-1/pm
Radiation from a distant source 8.3-3/pm
see surface heat transfer 8.3-1
Random analysis 12.2-1/p
assumptions - basic 12.0-1
auto correiation function 12.2-1/pm
approximate formula for 12.2-3
relation to power spectral density 12.2-1
time average value 12.2-1
cross~spectral density 12.2-2/m
defined as data reduction procedure 12.2-3
flow diagram for 12.2-4/c
mean square theorem 12.2-1
trapezoidal approximation 12.2-3
output options 12.2-3
plots by user request 12.2-3
power spectral density 12.2-1/m
response power spectral density 12.2-2/m
if statistically correlated sources 12.2-2
if statistically independent sources 12.2-2
root mean square of response 12.2-3
transfer function theorem 12.2-1/r

. Rectangular coordinate system 3.4-9/f

see coordinate systems 3.3-1
Reduction procedures 3.5-1/p
see Guyan reduction 3.5-6
for load vectors 3.6-4/pm
for substructure analysis 4.3-2
Residual load vector 3.6-6
improved vectors by iteration 3.6-6
Restart (see checkpointing) 1.2-5
changing rigid|format (M 3) 1.3-1
Rigid bodies 3.5-7
error test 3.5-10
see free body stiffness matrices 3.5-7
see inertia properties 5.5-1/p
reaction forces 3.5-8
transformationimatrix 3.5-8/p
Rigid format instructions (UM 3.2 to 3.13) 1.1-3
see executive system 1.2-1
see functional modules (PM 4) 1.3-1
modification oﬁ (UM 5) 1.3-2
restart tables !1.3-1
Rigid formats (dynamic) 9.1-1
Rigid formats (statics) 3.2-1
see buckling 3.2-6/c
see differentiél stiffness 3.2-5/c¢
see inertia releif 3.2-2
see piecewise linear 3.2-7/c
see static analysis (basic) 3.2-4/c
Rod elements (tube) 5.2-5
see bar elements 5.2-1/p
material axes for 4.2-2
physical properties of 5.2-1
viscous damper |lusing 5.2-5
Root symbols (physical qunatities) 3.3-1
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Scalar structural elements

Scalar structural elements 5.6-1
direct analog computer method using 5.6-1/r
scalar mass 5.6-1
stiffness matrix for sprlng 5.6-1
see vibration modes used for modellng 14 1-1/p
viscous damper 5.6-1

Segment file allocator and monitor 1.2-8

Sequence numbers for grid point identification 3.

Shear and twist panels 5.3-1/p
see differential stiffness 7 2-2
forces in 5.3-5/f
polygon of 5.3-6/f
mass distribution in 5.3~4/p
physical properties of 5.3-4
Garveys distribution of 5.3- 6/f
stiffness matrix 5.3-3 :
strain energy 5.3-1
stress recovery for (PM 4.87) 5.3-5
trapezoidal panel 5.3-7
Shear flow 5.3-1/p
Shift points (eigenvalue extraction) 10.4-1
see inverse power method - real 10.4-22
see inverse power method - complex 10.4-37
see triadiagonal method 10.2-9/r
Single point constraints 3.2-2, 5.4-1/p, 3.5-3
see dynamic matrix assembly 9.3-7
for heat transfer analysis 8.1-2
convective heat flux 8.3-3
nonlinear steady state 8.4-2
see special provisions for free bodies 3.5-7
see transient loads 11.1-3 ‘
Singularity of stiffness matrix 3.4-6/p
free bodies 3.5-7
piecewise linear analysis 3.
symmetric decomposition 2.2-
Skewed shear panels 5.3-4
Solid elements, constant strain 5.12-1/p
limitations of 5.12-1
see tetrahedron 5.12-2/pm
see wedge and hexahedron 5.12-5/p
see also concial shell elements 4.1-1/p
general development 5.11-2/p
coordinate notation 5.11-3 )
deriving the stiffness matrix 5.11-4/pm
displacement functions 5.11-3/pm
generalized coordinates 5.11-6/m
Lagrange equations 5.11-2/m
material definition (orthotropic) 5.1i-8/m
loading of 5.11-16
pressure 5.11-18/pm
thermal 5.11-16/pm
references 5.-1-31/r
stress recovery 5.11-25/pm
see also trapezoidal ring elements 5.11- 9/p
see also triangular ring elements 5.11-1/p
Solid of revolution elements 4.1-1/p, 5.11.1/p
loads on 4.1-3/p
material axes for 4.2-3
Solution to matrix equation Ax=B 2.3-1/a
see decomposition of matrices 2.2-1/pa
residual vector 2.3-2/a
Solution methods for heat transfer 8.4-1/pm
linear steady-state analysis 8.4-1
nonlinear steady-state analysis 8.4-1/pm
analogy with inverse power method 8.4-5/m
convergency criteria 8.4-4/m, 8.4-6/m
error estimates 8.4-5/m
initial estimates (user prescribed) 8.4-2
iterative algorithm 8.4-2/pm

8-2
4
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4-3/p

f=figure

Structural elements

multipoint constraints 8.4-1/pm
single point constraints 8.4-2
termination of algorithm 8.4-6
transient analysis 8.4-7/pm
accuracy, measure of 8.4-11/m
changing time steps 8.4-12
criteria for algorithm selection 8.4-8
difference equation approximations 8.4-8/pm
equations of state 8.4-7/n
extra points (see section 9.3-2) 8.4-7
initial conditions 8.4-11/pm
linearized radiation eifect 8.4-7
nonlinear texms for 8.4-7/m
stability criceria for 8.4-10/m
thermal loads 8.4-8/p
Sorting of bulk data 1.2-6
Sparce matrices 2.1-2/p
decomposition of 2.2-1
multiplication of 2.1-3
storage of 2.1-2
transposition of 2.1-5
Splines (see aerodynamic analysis) 17.3-1/p
Stability limits in transient analysis 11.3-7
Static analysis 3.1-1/p
basic description for solution 3.1-1
constraints 3.1-2/p, 3.2-2, 3.5-1
ill-conditioning ellmlnated by 3. 1-3

symmetric (antisymmetric) response 3.2-2, 3. 4- 3

data recovery for 3.7-1
displacements 3.7-1
stresses 3.7-2
free bodies 3.5-7 )
general problem flow within NASTRAN for 3.2-1
for heat transfer analysis 8.4-1
idealized structural model for 3.1-4/f
inertia relief 3.6-6/p
input load data for 3.1-3
partitioning 3.5-4/m
see substructural analysis '4.3- l/p
Static condensation 3.5-5/p
see Guyan reduction 3.5-6

Static solution with nonstructural stiffness 12.1-3

Stereoscopic projection plots (UM 4) 13.1-4
see structural plotter 13.1-1/p
Stiffness matrix (see element of 1nterest) 3.1-1
assembly of 3.4-6
see structural matrix assembler (EMA) 3.2-2
bending triangle plate element 5.8-16/pm
composite plates 5.8-21 .
superposition of matrices 5.8-21
superposition of membrane and bendlng 5.8-23
conical shell elément 5.9-6
decomposition of 3.2-2
doubly curved shell 5.10-15/pm
reduction 3.5-2
see Guyan reduction 3.5-6
singularity of 3.5-7
Storage of matrices 3.4-7
Strain energy - elements 3.7-3/p

- Stress recovery (see element of interest) 3.7-2

see data recovery 3.5-2
Stress optimization (see fully stressed design)
4.4-1/p
Structural elements 3.1-2
applied loads on (see pressure loads) 3.1-3
constraint 3.1-2
general 3.1-2
mass distribution for 3.1-2
material properties 3.1-2

p=pages following m=mathematical

omsmAL PAGE |
POOR - QUALITY

t=table



Structural elements

metrie 3.1-2
scalar 3.1-2
see structural element of interest 3.1-2
Structural matrix assembler (EMA) 3.4-6
see element strain energy distribution 3.7-3
see grid point force balance 3.7-3
Structural matrix generator (EMG) 3.4-6
Structural matrix reduction 3.5-2/p
see cyclic symmetry 4.5-1/p
see Guyan reduction 3.5-6/m
special provisions for free bodies 3.5-7/m
see substructure analysis 4.3-1
Structural material properties 4.2-1/p
for anisotropic materials (MAT2) 4.2-2
see flat surface elements 4.2-2
coordinate axes (see element of interest) 4.2-2/p
elements not needing 4.2-1
for isotropic materials (MAT1) 4.2-1
material axes, transformation of 4.2-3
NASTRAN material capabilities 4.2-5/t
for orthotropic materials (MAT3) 4.2-2
see solid of revolution elements 5.11-8
see surface of revolution elements 4.2-3
surface elements transverse shear matrix 4.2-3
thermal expansion coefficients 4.2-4
Structural modeling 3.4-8.f
figure 3.4-8/f
idealized structural model 3.1-3
Structural modules (PM 4) 1.3-2/p
Structural plotter (UM 4) 3.4-5
for deflections of structures 13.1-1
deformation scaling 13.1-5
for detecting geometric errors 13.1-1
examples with figures 13.1-5/pf
operations of plot generation modules 13.1-1
orthographic projection 13.1-1/p
orthographic transformation 13.1-2/pm
plotter coordinate system 13.1-2/f
perspective projection - geometry -13.1-3
projection plane coordinates 13.1-3
vantage point 13.1-3
projection to plane of plotter 13.1-4
stereoscopic projection 13.1-4
user requests for (UM 4) 13.1-1
for vibration and buckling modes 13.1-1
Subcase structure 3.4-4
see case control deck (UM 2.3) 1.2-5
Subsonic flow (see aerodynamic analysis) 17.1-1/p
Substructure analysis (UM 1.10) 3.1-3, 4.3-1/pr,
4.3-6/c
see component mode synthesis 14.1-6/r
in dynamic analysis 4.3-2/p
exceptions for usage 4.3-2
by partitioning 4.3-1/pm, 4.3-5/f, 14.1-5/pr
phases of solution 4.3-2/p
for differential stiffness 4.3-3
reduced load vector in 4.3-2/m
reduced stiffness matrix in 4.3-2/m
see structural matrix reduction 3.5-2
see vibration modes used for modeling 14.1-5/pr
Supersonic flow (see aerodynamic analysis) 17.1-1/p
Surface elements (see element of interest) 4.2-3
Surface heat transfer 8.3-1/pm
convective heat flux 8.3-2/pm
ambient temperature specification 8.3-3
degrees of freedom defined for 8.3-3
temperature distributions for 8.3-3
NASTRAN surface elements 8.3-1
prescribed heat flux 8.3-1/pm

a=algorithm r=reference c=flowchart f=figure

Transient loads

input options 8.3-1
subarea calculations for 8.3-2
radiation heat exchange between surfaces 8.3-4/r
input data for 8.3-7 .
net heat flow due to 8.3-6
radiation power 8.3-5
radiation from a distant source 8.3-3/pm
in dynamic analysis 8.3-4
Surface of revolution elements 4.1-1/p
see axisymmetric elements 4.1-1
see concial shell element 5.9-1
material axes for 4.2-3
see doubly curved shell element 5.10-1
see toroidal shell element 5.10-33/f
Sweeping of previously extracted eigenvalues 10.3- 4/pm . -
see determinant method 10.3-4/pm
see inverse power method - complex 10.4-29/pm
see inverse power method - real 10.4-11/pm
Symmetric matrices (see decomposition) 2.2-1/p
Symmetric shell motions (also antisymmetric) 4.1-2
Tape usage 1.2-4, 1.3-3
Temperature dependent properties 3.6-3
Temperature resultants 5.2-4
thermal loads 4.1-3
Tetrahedron element 5.12-2/p, 5.12-7/f
coordinate system 5.12-2
displacement functions 5.12- Z/m
generalized, transformation to 5.12-3
limitations of 5.12-1
mass distribution 5.12-5
material properties for 5.12-4/m
modeling with 5.12-1
stiffness matrix 5.12-5/m
strain~displacement components 5.12-3/m o T
strain energy 5.12-4/m
stress recovery 5.12-6/m
octahedral 5.12-6
stress-strain matrix 5.12-4
subtetrahedra for other solid elements 5.12-5
thermal loads on 5.12-5/m .
thermal strain vector 5.12-4
Thermal loads (see element of interest) 4.1-3
Toroidal shell element 5.10-33/f
Tracking methods for eigenvalue extraction 10.1-1/p
see determinant method 10.3-1/pa
see inverse power method with shifts 10.4-1/par
Transfer functions (see control systems) 14.2-1/pr
frequency domain 9.3-3/p
higher order of polynomial factoring Of 9.3-5/m
Transformation method (see eigenvalue extraction) 10.1-1
Transient analysis 11.0-1/p
displacement coordinates for 11.0-1
see dynamic analysis 9.1-1
flow diagram for transient analysis 11.1-5/c
for heat transfer analysis 8.1-4/c, 8.4-7
see integration of coupled equations 11.3-1/pr
see integration of uncoupled equations 11.4-1/p
results output 11.0-1

" Transient loads 11.1-1/p

component load sets defined 11.1-1/m
applied to physical points 11.1-2
functionally defined load sets 11.1-2
tabular defined load sets 11.1-I
input data (user prescribed) 11.1-1
nonlinear elements - displacement dependent 11.2-1/pm
arbitrary function generator 11.2-1
displacement set restriction 11.2-1
example - Coulomb damper 11.2-2/pm
example - plastic deformation element 11.2-4/pf
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Transient loads ' : Hedge and hexahedron elements

multiplier 11.2-2 Upper Hessenberg eigenvalue method 10.5-1
negative power function 11.2-2 procedures used 10.5-1
positive power function 11.2-2 canonical form 10.5-1/pm
restrictions on displacement sets used 11.2-1 convergence criteria 10.5-3/m
reduction to fimal. form 11.1-2 deflation 10.5-4/m
direct approach 11.1-2 . eigenvectors 10.5-4
modal approach 11.1-3 OR-iteration 10.5-2/m
transformation calculations for 11.1-2/pm shifting 10.5-3/m
due to traveling waves 11.1-1 Upper Hessenberg form 10.5-2/m
Transposition of matrices 2.1-5/a references for 10.5-5
Transverse shear in concial shell 5.9-1/p User defined modules (see control by user) 1.3-3
Transverse shear in plates 5.8-1/p USET partitioning 2.1-7
Transverse sheat matrix 4.2-3 Utility modules (UM 5.3) (see DMAP) 1.3-3
Trapezoidal panel 5.3-7/f see matrix topology plotter (SEEMAT) 13.3-1
see shear and twist panels 5.3-1 Variable gradient heat conduction elements 8.2-8
Trapezoidal ring elements (solid) 5.11-14/p conduction matrices for 8.2-8
harmonic mass matrix 5.11-15 ‘ isoparametric solid 8.2-8/m
consistent mass 5.11-15/m heat capacity matrix 8.2-9/m
lumped mass 15.11-12/pm Vector sets 3.3-1
harmonic stiffness matrix 5.11-15 for dynamics 9.3-2
load vectors 5.11-16/pm Vibration modes used for structural modeling 14.1-1/p
pressure (TRAPRG) 5.11-24/m : using analytical or test results 1l4.1-1
thermal (TRAPAX) 5.11-17/pm applicable to any rigid format 14.1-2
thermal (TRAPRG) 5.11-24/m multipoint constraints for 14.1-1/p
see also solid of revolution elements 5.11-1/p free connection points 14.1-1/pm, 14.1-7/f
stress recovery 5.11-25 ' free and restrained connection points 14.1-3/mr,
transformation matrix (displacements) 5.11-9/pm : 14.1-7/f
generalized harmonic displacements 5.11-14/pm restriction on usage 14.1-1
Triangle composite plate (see composite plate) 5.8-12 scalar structural elements for 14.1-1/p
see differential stiffness 7.3-12 modeling with 14.1-2, 14.1-5, 14.1-7/pf
Triangular decomposition 2.1-1/pm substructure partitioning (modeling) 14.1-5/pr
in eigenvalue extraction 10.1-1/pm 14.1-8/f
see determinant method 10.3-1/pm truncation of modes for 14.1-6/r
see inverse power method with shifts 10.4-2 Volume heat conduction elements 8.2-1/pm
see inverse power method - complex 10.4-26 bending characteristics excluded 8.2-1
see integration of coupled equations 11.3-7 see constant gradient conduction elements 8.2-3
Triangular plates (see plate elements) 5.8-1 heat capacity matrix 8.2-3/m
Triangular ring elements (solid) 5.11-9/p heat conduction matrix 8.2-3/m
harmonic mass matrix 5.11-12/p heat flux in 8.2-2/m
consistent mass 5.11-13/pm material properties specification 8.2-1
lumped mass 5.11-12/pm NASTRAN elements 8.2-1/t
harmonic stiffness matrix 5.11-12 single and multipoint constraints for 8.2-1
load vectors 5.11-16/pm thermal potential function 8.2-2/m
pressure (TRIARG) 5.11-18/pm thermal gradient vector 8.2-2/m
thermal (TRIAAX) 5.11-16/pm see variable gradient conduction elements 8.2-8
thermal (TRIARG) 5.11-22/pm Wedge and hexahedron elements 5.12-5/p, 5.12-7/f
stress recovery 5.11-25 see tetrahedron element 5.12-2/pm

transformation matrix (strains) 5.11-11/m
Tridiagonal method (elgenvalue extraction) 10.2-1/pmr
eigenvalue computations 10.2-10/pm
Gram-Schmidt orthogonalization 10.2-12/par
for multiple eigenvalues 10.2-12
partial pivoting 10.2-11
extraction by modified Q-R algorithm 10.2-5/pmr
rotation matrices for 10.2-6/p
uncoupling of partitions 10.2-10
origin shifting for 10.2-9/r
references for 10.2-15
restrictions of usage within NASTRAN 10.1-1
simplified flow diagram for 10.2-14/c
storage allocation requirements for 10.2-3
tridiagonalization by Givens method 10.2-1/pm
steps for Wilkinson modification to 10.2-3/par
Tube element (see rod element) 5.2-5
Twist panel (see shear panel) 5.3-1
Uncoupled plate stresses (membrane/bending) 5.8-1
superposition of stiffnesses 5.8-23
Uniform damping 11.3-2
Unsymmetric matrices 2.2-6/p
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PROGRAM ORGANIZATION
1.1 OVERVIEW OF THE PROGRAM

NASTRAN is a finite element computer program for structural analysis that is inténded f&r
general use. As such it must answer to a wide spectrum of requirements. The program must be
efficient, versatile and convenient to use. It must be standardized to permit interchange of
input and output between différent users. It must be structured to ﬁermit future modification and

extension to new problem areas and to new computer configurations without major redevelopment.

The intended range of applications of the program extends to almost every kind of structure
and to almost every type of construction. Structura]\e]ements are provided for the specific
representation of the more common'types of construction including rods, beams, shear panels,
plates, and shells of revolution. More general types of construction are treated by combinations
of these elements and by the use of "general” elements. Control systems, aerodynamic transfer

functions, and other nonstructural features can be incorporated into the structural probiem.

The range of analysis types in the program includes: static response to concentratedAand
distributed loads, to therma] expansionland to enforced deformation; dynamic response to transient
Toads, to steady-state sinusoidal loads and to random excitation; determination of real and com-
plex eigenvalues for use in vibration analysis, dynamic stability analysis, and elastic stability
analysis. The program includes a limited capability for the solution of nonlinear problems,
including piecewise linear analysis of nonliﬁear static response and transient analysis of non-

linear dynamic response.

NASTRAN Has been specifically designed to treat large problems with many degrees of freedom.
The oh]y 1imifations on problem size are those imposed by practicai considerations of running
time and by the ultimate capacity of auxiliary storage devices. The program is décidgdly.not a
core program. Computationé] procedures have been selected to provide the maximum qbtéinab]e o

effiéiency for large problems.

Research was conducted during the design of the program in order to ensure that the best
available methods were used. The areas of computer program design that are most sensitive fo
state-of-the-art considerations are program organization and numerical analysis. The 6rganiza-
tional demands on the program design are severe in view of the multiplicity of problem types and
user conveniences, the multiplicity of operating computer configurations, the requirement for

large problem capability, the requirement for futuFe modification, and the requirement for
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responsiveness to improvements in programming systems and computer hardware. The organizational
problems have been solved by applying techniques that are standard in the design of computer
operating systems but have not, as yet, been extensively used in the design of scientific applica-
tions programs. The main instrument of program organization in the program is an executive system
that schedules the operating sequence of functional modules and that'p1ans and allocates the
storage of files. An important aspect of the executive routine concépt ﬁsed in NASTRAN is that

it éreat]y reduces the cost of program coding and checkout by eliminating most module interface

problems and by reducing the remainder to a form that permits systematic treatment.

Most difficulties in numerical analysis arise in connection with three basic implicit opera-
tions: matrix decomposition (or inversion), eigenvalue extraction, and integration of differential

equations. The major difficulties that occur in the application of these operations to large

problems are excessive computing time, error accumulation and instability. Many methods that work

well with small or moderate sized problems are not acceptable for large problems.

The method employed for matrix decomposition is especially important due to its extensive
use as a base for the other two implicit operations. The method that is employed in the program

takes maximum advantage of matrix sparsity and bandedness. The latter aspect is particularly

important due to the enormous gain in efficiency that accrues when banding techniques are properly

employed by the user in setting up problems for the displacement method. . .}

In genera]rthe‘so1ution time for a large structural analysis of any type can be greatly
reduced by taking full advantage of the sparsity and bandwidth of the matrices that describe the
structural problem. Other means, in addition to the matrix decomposition routiné mentionéd |
above, have been uéed to improve efficiency for large problems. These include storing sparse
matrices in packed form; the avoidance of operations that reduce sparsity or destroy bandwidth,
well designed Input/Output strateg%es, the use of advanced techniques for eigenvalue extraction,

and specially tailored numerical integration algorithms.

The needs of the structural analyst have been considered in all aspects of the design of the
program. The first thing to be remembered is that, in view of the wide range of possible appli-
cations of the program, we do not know exactly what these rieeds may be. For this reason a high
degree of flexibility and generality has been incorporated into certain areas of the program.

For example, in addition to the usual list of structural elements that refer to specific types

of construction, the user is provided with more general elements that may be used to construct
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any type of special element, to represent part of a structure by deflection influence coefficients,
or to represent part of a structure by its vibration modes. For the more conventional types of
structural analysis, the user is presented with a large number of convenience features, including

plotting routines, which are definite necessities for large problems.

A major difficulty that the user faces in the solution of targe problems is tha avoidance of
errors in the preparation of input data. Card formats and card ordering are made as simple and
flexible as possible in NASTRAN in order to avoid errors caused by trivial violations of format

rules. A number of aids for the detection of legal but incorrect data are also provided.
The problems that can be solved by NASTRAN include the following general classes:
1. Static Structural Problems
2. Elastic Stability Problems
3. Dynamic Structural Problems

4. General Matrix Problems
5. Heat Transfer Problems

6. Aeroelasticity Problems

Each general problem class is further subdivided into case types which differ with regard to
the type of information desired, the environmental factors considered, or the method of analysis.
The mathematical computations required to solve problems are performed by subprogram units called
functional modules. Each case type requires a distinct sequence of functional module calls that

are scheduled by the Executive System.

For structural problem types the sequence of module calls and hence the general method of
solution is established internally for each case type according to a rigid format stored in the
Executive System. Execution of a structural problem proceeds in one run to final solution, or,

at the option of the user, to a desijred intermediate point.

A more flexible procedure is provided for the solution of gene#a] matrix problems. All of
the matrix operations (such as addition, multiplication, triangular decomposition, and eigenvalue
extraction) used in the progrém can be directly addressed by the user according to a system of
macro instructions called DMAP(for Direct Matrix Abstraction Program). The user constructs a

chain of DMAP instructions in order to effect the solution of general matrix problems.
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1.2 THE NASTRAN EXECUTIVE SYSTEM
1.2.1 Introduction

The overall effectiveness of a general purpose program depends in large measure on how well

the available programming technigues have been employed in the design of its organizational and °

-

control features. It may, therefore, be useful to precede the usual treatment of the engineering
and mathematical aspects of the program with a discussion of a relatively unfamiliar feature of

general purpose programs, namely the Executive System.

NASTRAN has been designed according to two classes of criteria. The first class relates to

functional requirements for the solution of an extremely wide range of large and complex problems

in structural analysis with high accuracy and computational efficiency, which are met by develop-
ing advanced mathematical models of the physical phenomena and incorporating their computation
algorithms into the program, The second class of criteria relates to the operational and organiza-
tional aspects of the program. These aspects are somewhat divorced from structural analysis itself;
yet they are of equal importance in determining the usefulness and quality of the program. Chief

among these criteria are:
1. Simplicity of problem input deck preparation.
2. Minimization of chances for human error in problem: preparation.
3. Minimization of need for manual intervention during program execution.
4. Capability for step by step problem solution, without penalty of repéated problem set-up.

5. Capability for problem restart following unplanned interruptions or problem preparétion

error.
6. Minimization of system overhead, in the three vital areas:
a. Diversion of core storage from functional use in problem solution.
b. Diversion of auxiliary storage units from functional to system usage.

¢. System housekeeping time for performing executive functions that do not directly

further problem solution.

7. Ease of program modification and extension to new functional capability.
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8. Ease of program extension to new computer configurations and operating systems, and .
generality in ability to operate efficiently under a wide set of configuration .

capabilities.

The second class of eight objectives is achieved in NASTRAN through modular separation of
functional capabilities, organized under an efficient, problem-independent executive system. This
approach is absolutely essential for any complex multioperation, multifile application program

such as NASTRAN. To see this, one must examine the implications of modularity in program

organization.

Any application computer program provides a selection of computational sequences that are
controlled by the user through externally provided options and parameter values. Since no user
will wish to observe the result of each calculation, these options also provide for the selection
of the data to be output. In addition to externally set options, internal decision switches whose
settings depend upon tests performed during the calculations will control the computation
sequences. There is, therefore, a natural separation of computations into fundtiona] blocks.

The principal blocks are called functional modules; modules themselves, of course, may and usually

must be further organized on a submodular basis.

Despite this separation, however, it is clear that modules cannot be completely independent,
since they are all directed toward solution of the same general problem. In particular, they must
intercommunicate data between themselves. The principa]vprob1em in organizing any application

program, large or small, is designing the data interfaces between modules.

For small programs, the standard techniques are to communicate data via subroutine calling
sequences and common data regions in core storage. For programs that handle larger amounts of
data, auxiliary storage is used; however, strict specifications of the devices used and of the
data record formats are usually imposed. The penalty paid is that of “side effects". A change
in a minor subroutine initiates a modification of the data interfaces that propagates through the
entire program. When the program is small, these effects may not be serious. For a complex pro-

gram 1ike NASTRAN, however, they may be disastrous.

This problem has been solved in NASTRAN by a separation of system functions, performed by an
executive routine, from pfob1em solution functions, accomplished by modules separated strictly
along functional lines. Each module is independent from all other modules in the sense that

modification of a module, or addition of a new module, will not, in general, require modification ‘
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‘ ~ of other modules. Even so, prdgrammihg constraints on module development are minor. The essential

restrictions are:

1. Modules may interface with other modules only through auxiliary storage files that con-

tain data blocks.

2. Since the availability of the auxiliary files required for the execution of a module
depends on the execution of other modules, no module can specify or allocate files for
its input or output data. A1l auxiliary storage allocation is reserved as an executive -

function.

3. Modules operate as independent subprograms, and may not call, or be called by, other

modules. They may be entered only from the executive routine.

4. Modules may interface with the executive routine through a parametér table that is main-
tained by the executive routine. User specified options and parameters are communicated
to modules in this way. The major 1ine of communication is one-way, from user to execu-
tive routine to module. However, in addition, an appreciable two-way communication from

‘ module back to executive routine (and, therefore, to other modules) is permitted via the

parameter table.

No other constraints, except those imposed by the resident compilers and operating systems,

are required for functional modules.
The essential functions of the executive system are:

1. To establish and control the sequence of module executions éccording to options specified

by the user.
2. To establish and communicate values of parameters for each module.

3. To allocate files for all data blocks generated during program execution and perform

input/output to auxiliary files for each module.

4, To maintain a full restart capability for restoring a program execution after either a

scheduled or unscheduled interruption.

Each of these functions is essentially independent of any particular feature of structural
analysis and applies to the operational control of any complex multimodule, multifile application

‘ program. The executive system is open-ended in the sense that it can accommodate an essentially
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unlimited number of functional modules, files, and parameters. Modification of the executive ‘
system necessary for modification or extension of functional modules is restricted to changes in

entries in control tables stored within the executive routine.

A description of the way in which these objectives and functional capabilities are -accom-

plished by the NASTRAN Executive System is included in the following sections.

1.2.2 Executive Operations During the Preface

Program execution is divided into a preface and the program body proper. -During the preface
the NASTRAN Executive System analyzes and processes the data which define user options regarding
the structural problem to be solved and organizes the overall problem solution sequence. The
sequence of operations during the preface is presented in Figure 1 and is described in detail in
succeeding subsections. During the program body proper, the NASTRAN Executive System controls the

step-by-step problem solution sequence.
1.2.2.1 Generation of the Initial File Allocation Tables

Two file allocation tables are maintained by the NASTRAN Executive System. One table defines

the files to which data blocks generated during solution of the problem will be allocated. The
second table includes files to which permanent executive data blocks, such as the New Problem

Tape, the 01d Problem Tape, the Plot Tape, and the User's Master File are assigned.

The New Problem Tape will contain those data blocks generated during the solution that are
necessary for restarting the problem at any point. The O1d Problem Tape contains the data blocks
saved from some previous execution that may serve to bypass steps in the solution of the new
problem. The Plot Tape includes output data and plottiné instructions in a form that will be
accepted by an automatic plotter selected by the user. The User's Master File is a permanent
collection of useful information, such as material properties, that may be used to generate input

data.

The generation of the file allocation tables is an operation that depends on the particular
computer model being used since direct interface with the operating system of the computér must be
made. The routine which accomplishes this function interrogates file tables that are located in
the nucleus of the computer's own resident operating system. Files which are available for use

by the NASTRAN program are reserved and the unit numbers are stored in the NASTRAN file allocation ‘
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tables. An indication of which units are physical tapeé is noted. If the number of files avail-

i
able is insufficient, an error message is generated and the run is aborted.
1.2.2.2 Analysis of the Executive Control Deck

The first purpose of executive control is to provide a level of regulation for the many
options within NASTRAN, At this level- the executive distinguishes between the. broad approaches to
problem solution, e.g., between a matrix abstraction approach py the analyst or a rigid forma;
approach according to problem class, Also at this,leve1,_the execytiye distinguishes, between
several operational modes, e.g., a first attempt, a continuation, or a modification, Certain
other functions of a general nature are convenient tc include with the executiVe control such as

problem identification, selection of a level of diagnostics, and the estimation of solution time:

The executive control deck includes cards which describe the nature and type'of'thé solution
to be performed. These include an identificatioﬁ of the problem, an estimated time for sclution
of the problem, a selection of an approach to the solution of 'the problem, a restart deck from a =
previous run if the solution is to be restarted, an indication of any special diagnostic brihtout
to be made, and a specification of whether execution of the problem is to be completed in a sing]é

run, or whether execution will be stopped (check-pointed) at some intermediate step.>

Each of the cafds comprising the executive control deckAis_read and analyzed, . Depending on
the card, information is either stored in various executive tables maintained in core storage or
written in a Control Table on the New Problem Tape for further processing during a later phase of

the preface.

RS e f

1.2.2.3 Processing of the Case Control Deck h e T

When the rigid format sclution route is selected, further détai]s of control aré p;ovided by
the 'Case Control' portion of the executive. In effect, the ana]yst,can'hanipdlate his problem
by means of entries he inserts in the Case Control. He can make choices ambngst ths' sets of data
representing different physical situations which are allowed to be assembled’in the Bulk Data
portion .of the problem input. Here also the analyst can regulate his output. Fundamental to the
method of control in this section is the notion of sets. Boundary conditions, loading cases, and

output selections are controlled by set selection,

The case control deck includes cards that indicate the following options: selection of

1.2-5 (12-1-69)



PROGRAM ORGANIZATION

specific sets of data from the bulk data deck (i.e., from the data deck that describes the details
of a problem), selection of printed or punched output, definition of subcases, and the definition

of plots to be made.

The case control deck is read and processed. Information defining data set selection, output
format selection and subcase definition is written in the Case Control data block. Information

defining plot requests is written in the Plot Control data block. ri.-

If the problem is a restart, a comparison with the Case Control data block from the previous
run (stored on the 01d Problem Tape) is made. Differences are noted in an executive restart

table.
1.2.2.4 Sorting of the Bulk Data

In NASTRAN the input to the mathematical operations performed in functional modules is pro-
vided in the form of previously organized data blocks. The data blocks derive from two sources :
those that derive from the bulk input data and those that are generated as oﬁtput from previous
functional modules. Those that derive from the bulk data are organized into déta blocks by the
IFP routine, but prior to the execution of IFP, XS@RT sorts the bulk data. Operatién of the XS@RT
routine is influenced by the type of run. If the run is a cold start {that is, an initial sub-
mittal for a given job) the bulk data is read from the system input unit or the User's Master File,
is sorted, and is written on magnetic files in preparation for problem execution. If the analyst
wants to provide for a future restart, the SORT routine‘prepares a file on the New Problem Tape
which contains the sorted bulk data. If the run is a restart, the bulk data is copied from the

01d Problem Tape with the addition of any changes from the system input unit.

An echo of the unsorted bulk data is given if requested. Similarly, the sorted bulk data is

echoed on request.

Since the collating sequence of alphanumeric characters varies from computer to computer, the
sort routine converts all characters to an internal code prior to sorting. Following the sort,

the characters are reconverted. In this way, the collating sequence is made computer independent.

The algorithm used by the sort routine is biased toward the case where the data is in sort or
nearly in sort. Consequently, bulk data decks which are nearly in sort will be processed effi-

ciently by the routine.
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The sorted bulk data is read from the New Problem Tape by the Input File Processor. Each of
the cards is checked for correctness of format. If any data errors are detected, a'message is

written and a switch is set to terminate the run at the conclusion of the preface.

Proceésing of the bulk data cards depends on the fype of infofmation on the card. Each set
of data cards of the same type is hriftéh as one 1dgica1 record in the data block to which the

card has been assigned. oo L
1.2.2.5 General Problem Initialization . : - Co e T

~ The general problem initialization ‘is the héart 6f the pféface. ‘Its 5;incip$1‘funétibﬁiis.to
generate the Operation'Sequence Control Arréy (QSCAR) which defines‘thé sequénée of opé}at%ons'fdr
an entire prob]ém solution. The PSCAR consjsis of a sequence bf entrieé, wféh each enfrylﬁontafﬁ;
ing all of the information required to execute one step of the prob]em éo]ﬁtibn. The ﬂSbAR is

generated from information supplied by the user in the executive control deck.

If the problem is a restart, the restart dictionary (contained in the Control Table) ahd the
executive restart table are analyzed to determine which data blocks are needed to restart the

solution and which operations need to be executed to complete the solution.

To aid in efficient assignment of data blocks to files, two ordinals are computed and includ-
ed with each data block in each entry of the @SCAR. These ordinals are the @SCAR sequence number
indicating when the data block is next used and the @SCAR sequence number indicating when the data

block will be used for the last time.

When generation of the @SCAR is complete, it is written on the P@QL (an e*gcutive data
b1ock). If theﬁprob]em is a restart, data blocks needed for the current solution are copied from

the 01d Problem Tape to the PPPL, augmented by entries to provide for new current requirements.

1.2.3 Executive Operations During Problem Solution

1.2.3.1 Sequence Monitor

When the preface has been completed, solution of .the problem is. initiated. The solution is

controlled by the sequence monitor.

The sequence monitor reads an entry from the @SCAR which defines one step in the problem

solution in terms of the operation to be performed, data blocks required for input, data blocks te
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be output, scratch (i.e., temporary) files required, and parameters. A status table is generated

which relates the names of data blocks required for operation to the position in the file alloca-

tion table where information about the data block is contained. When‘the status table is complete
and the parameters required for the operation have been retrfeved froﬁ the parameter storage

table, the appropriate functional module is called to execute the operation.
: !

'

1.2.3.2 Segment File Allocation

The segment file allocator is the administrative manager of data?blotks for NASTRAN. All
large modern computers have sufficient auxiliary storage to accommodaﬁe the needs of NASTRAN. The
number of separate files into which the storage can be divided is, ho%ever, severeiy Timited on
most computers. In general, the number of data blocks required for s&1ution of a problem far ex-
ceeds the number of files avai1ab]e, so that the assignment of data bfocks to files is a critical

operation for efficient execution of NASTRAN.

I
The segment file allocator is called whenever a data block is required for execution of an
operation but is not currently assigned to a file. When the segment file allocator is called, it
attempts to allocate files for as much of the problem solution as possrb1e. This depends on the

type of problem, the number of files available, and the range of use ok the data blocks.

The segment file allocator reads entries from the @SCAR from the point of current operation
to the end of the problem solution. A table is assembled in which inf?rmation about data blocks,
including their next use and their last use, is stored. Data blocks which are currently assigned
to files but are no longer required for problem solution are deieted. ?In certain cases, when the
range of use of a data block is large, it may not be possible to allocate a file to the data block
throughout its entire range of use. In this case, pooling of the data;block into a single file
with other data blocks is required so that the file to which the data block was assigned may be
freed for another allocation. In general, those data blocks whose next use is furthest from the

1
current point are pooled. -

When fhe segment file allocator has completed its task, a new file allocation table has been
generated. This table is used until the solution again reaches a point where a data block is

required to execute an operation but is not assigned to a file.
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1.2.3.3 Input/Output Operations

A1l input/output operations in NASTRAN (except reading data from the system input file or
writing data on the system output file) are controlled by a collection of executive routines
called GING (General Input Output) which act as a buffer between the NASTRAN functional modules
and the operating system of the computer. This design feature eliminates computer dependent code
from the functional module programs which are, consequently, written exclusively in FORTRAN. The
use of computer dependent code for the selection of the operating system routines to accomplish

the actual input/output functions is isolated to a single routine within GIN@.
1.2.3.4 Other Executive QOperations

Additional operations in support of a problem solution which are performed by the NASTRAN
Executive System include checkpoint, purge, equivalence and save.

The checkpoint routine copies data blocks required for problem restart onto the New Problem

Tape and makes appropriate entries in the restart dictionary.

The purge and equivalence routines change the status of data block entries in the file allo-
cation table. Théy are called whenever the nature of a given problem requires less than the full

‘generality provided within NASTRAN, thereby permitting some computational steps to be bypassed.

The save routine stores the values of parameters in the parameter storage table where they

are retrieved for subsequent use by the sequence monitor.
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- Generate Initial -File Tables

Read and Ana1yie'
Executive Control Deck

Process Case Control Deck

L o @

Sort Bulk Data

Process Bulk Data

Perform General Problem
Initialization

Figure 1. Flow of operations during the preface. ‘
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1.3 USER CONTROL OF PROBLEM EXECUTION

A1l general purpose programs have formal procedures by which the user controls the calcula-
tions that are performed. In NASTRAN several modes of operation and a large number of options
within each mode are provided to the user. A short discussion of these matters is presented here

for completeness. More extensive treatment will be found in the User's Manual.

' During the solution of a problem, the NASTRAN executive system calls a sequence of func-
tional modules that perform the actual calculations, as explained in the preceding section. Two
general types of solution are provided: solution by Rigid Format according to a sequence of module
calls 'built into the program; and solution according to a sequence of module calls generated by
the user. The latter capability is provided in order to make the program's matrix routines
available for general use and also fo provide the sophisticated user with the means for solving
structural problems with features not accounted for in any of the built-in module sequences. It
is intended, however, that the great majority of structural problems will be solved via the rigid

formats.

There are, at present, a total of twelve rigid formats in NASTRAN with provision for adding
an unlimited number in the future. Each corresponds to a particular type of solution or to a
particular method of analysis, such as: Static Analysis, Buckling Analysis, Direct Transient
Response, Modal Transient Response, etc. The five Rigid Formats associated with static analysis
are described in Section 3.2. The seven Rigid Formats associated with dynamic analysis are des-

cribed in Section 9.1.

Each rigid format consists of two parts. The first is a sequence of instructions (including
instructions for Executive operations as well as for Functional Moduiehbperations) éﬁbt is stored
in tables maintained by the Executive System. The second part is a set of restart tables that
automatically modify the sequence of instructions to account for any changes in the input data
when a restart is made after partial or complete execution of a problem. The restart tables can
accommodate a change of rigid format such as occurs, for example, when vibration modes are re-
quested for a structure that was previously analyzed statically. The restart tables are, as can
be imagined, quite extensive and their generation constitutes a significant part of the effort
expended in developing a rigid format. They are, however, one of the more important cost-saving

features of NASTRAN.
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Many options are avéi]ab]e with each rigid format. One such option removes the possibility
of branching back to previously exeéuted functional modules, and it should, of coufse, be exer-
cised on]y.when it is known in advance that looping will not occur. This option permits the
Execut{ve System po-discqrd files that would otherwise be saved. Other options define the sub-

cases to be executed and the desired output formats, see Section 1.2.2.3.

It is also possible, for the user to modify a rigid format via.the ALTER feature described in
Section 2 of thg User's quua]. Typjcg] uses qﬁ the ALTER feature are to schedule an exit at an
intermediate point {n a soJutioé for the purpose of checking intermediate output, to schedule the
printing 6f a tab]e.or a mqtrix for diagnostic purposes, and to add or delete a functional module

from the sequence of operating instructions.

For more extensive modifications the user can write his own seguence of executive instruc-
tions.. The system by which this is done is called DMAP {for Direct Matrix Abstraction Program).
DMAP is a user-oriented programming language of macro instructions which, 1ike FORTRAN, has many
rules which must be followed to be interpretable by NASTRAN. DMAP is also used in the construc-
tion of rigid formats, which differ from user-generated sequences mainly in that restart tables

are provided.

The rules for generating a DMAP sequence are explained in Section 5 of the User's Manual.
The DMAP sequence itself consists of a series of statements consisting of Executive Operation
instructions and Functional Module calls. Each statement contains-the name of the instruction
(or Functional Module), the names of the input data blocks, the names of the output data blocks,
and the names and values of parameters. Typical examples of parameter usage are to indicate
whether an operation is to be performed with single or double precision arithmetic, which mathe-

matical method will be used (when there are options), or the desired format of the output.

The names of some of the executive operations are BEGIN; CHKPNT (used when it is desired to
copy data blocks onto the Problem Tape in case an unscheduled restart is necessary); FILE (used
to . save an intermediate data b]oék); REPT (used to provide looping capability); PURGE (used to

prevent storage of data blocks); and END.

The functional modules belong to one of the following categories: structural modules; matrix
operations; utility modules; and user modules. The Structural Modules are the main subprograms

of NASTRAN. Some examples of structural modules, taken from dynamic analysis, are: READ (Real
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eigenvalue analy$is); GKAM (Modal dynamic matrix assembler); TDR (Transient Dynamic Response); and
DOR (Dynamic Data Recovery). The Matrix,Operations (add, multiply, transpose, etc.) that are
available to the user of NASTRAN are described in Section 2. The Utility Modules are mainly
concerned with the formats of output data. The User Modules are dummy modules that provide the
user with the ability to write new functional capability that will automatically be recognized by

the executive system.

The usual methods of output for NASTRAN are the operating system print or punch files and the
NASTRAN plot tapes. Procedures for normal output selection are described in Section 2.3 of the
User's Manual. The printing of tables or matrices generated by NASTRAN is controlled by a group
of Utility Modules described in Section 5.3.2 of the User's Manual. In many cases, it is desir-
able to save matrices and tables for use in restart operations. When using rigid formats, it is
possible to save preselected tables and matrices by using the Checkpoint option described in
Section 2.2 of the User's Manual. Checkpointed files are written on the New Prob]emlTape. It is
also possible for the user to save selected matrices on tape by inserting one of the User Modules
described in Section 5.3.3 of the User's Manual into the DMAP sequence by means of the ALTER

option.

The usual method of input for NASTRAN is the operating system card reader. When performing
restarts, the New Problem Tape from alprevious run is redesignated as the 01d Problem Tape and
used as an additional source of input. Tapes that have been prepared with User Modules on pre-
vious runs can also be used as additional input sources by inserting one of the input User

Modules into the DMAP sequence by means of the ALTER option.
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MATRIX OPERATIONS
2.1 ELEMENTARY OPERATIONS : . . s e -

2.1.1 Introductioh

v

The operations to,be-considerede(mqtrix add, multiply, transpose, partition and merge) are,
sufficiently elementary that the formal;mathematical procedures.which accomplish.them may safely
be assumed to be well-known to all readers of the Theoretice] Manual. What is not Tlikely. to be - .
known is the corresponding sequence of physical data manipulations that:are performed by thexcom;
puter. Such matters are not usually considered to be required reading foh users or for‘others
with an interest in "the theory"; they are, accordingly, buried in the programmers' manual as ref-
erence material for maintenance and modification of the program. This practice js not followed

here because the success or failure of NASTRAN depends, to a far greater extent than for smaller

programs, on the efficiency of the subroutines that perform the basic matrix operations. A1}l

matrix operations in NASTRAN are performed by specially designed subroutines.

Questions regarding accuracy, which is an equally important aspect of numerical calculation,
fall into two categories: those, that relate to analytical approximations, such-as ogcur.in = ..
iterative solutions, and those that relate-to simple round-off error.accumulation. .Elementary
matrix operations do not involve analytical approximatjons. -Nor. do theﬁtriangyler decomposition-, -
The errors that occur in eigenvalue extraptﬁon and in,nymerica];integretjoprdue;to.ana]ytjea]; s

approximation are.discussed in.the sections dealing with those topics. .., . . .*

Trigonometric and other elementary irrational functions are'evaluated'by library- subroutines -

provided by the manufacturer of the computer, who guarahtees them to be accurate.- =~ = = ¢ -

The effects of round-off error accumulation in structural analysis‘are treated in Section
15.1, where reasons are presented for adopting doubie precision arithmetic (54 or more bits) in
cr1t1ca] ca]cu]at1ons No other measures are emp]oyed in NASTRAN ferdcehbatlng round- off error
accumu]at1on The usual measures of th1s sort (e g , rounding rather than truncat1ng ar1thmet1c B
results, or accumu]at1ng sums by start1ng w1th the sma]]est'numbers) are only m1]d1y effect1ve and
have the disadvantages that they require machine language cod1ng; or that they substant1a11y

increase running time, or both.

From the viewpoint of data processihg,‘the'computer has ‘two main perts: a central broeessoh

that contains an arithmetic unit and a randomly accessible memory device (core storage) with very
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short access time; and a collection of peripheral storage devices (tapes, disks and/or Hrums) with

high capacity but relatively long access times. In general the data contained on the peripheral
storage devices can be accessed effectively by the central processor only in relatively large
blocks, due to the time required to locate the first word in any record. Thus, from the viewpoint
of matrix algebra, data should be sequentially read from and written on peripheral stdrage devices
as one or two-dimensional arfgys, An importént convention employed in NASTRAN is that all matrices
are stored on périphera] devices by.columns. This fact ¥s~important to the discussion of the mat-

rix multiply and transposition subroutines described below.

It is assumed, in the design of NASTRAN, that a typical matrix is so large that it cannot all
be held in (high-speed) core storage at any one time, even if it is a sparse matrix that is ex-
pressed in packed form (i.e., by meaﬁs of its nonzero elements and their row-column indices). In
such situations, the computing time tends to be dominated by the relatively slow rate of data
transfer from peripheral storage to core storage, and optimum computing strategies are designed to

minimize the number of data transfers.

The time to transfer a sparse matrix from peripheral storage to the central processor will be

decreased if only the nonzero terms are stored. The matrices in NASTRAN are packed in nonzero

strings in the following manner. The record for each column begins with a three-word header.
This is followed by an integer (fixed-point number) describing the position (row index) of the
first nonzero term and by a second integer describing the nuhber of consecutive nonzero tefms in
the string. The integers are followed in consecutive locations by the floating point numbers
describing the values of the nonzero terms in the string. The remaining nonzero strings follow
in order until the end of the column is reached. The data record describing a typical column

will appear as follows:
I, I, 1, 2, 2, (X,X), 8, 3, (X,X,X), 17, 1, (X), 27, 1, (X), E.

The three I's are the header for the column. The X's are the numerical values of terms, and E
' indicates the end of the record. The nonzero terms in the column are the 2nd, 3rd, 8th, 9th, 10th,
- 17th, and 27th. Once the record is transferred to core storage, it may, if required, be fully

expanded by addition of the zero terms.

In the case of triangular factors, the integers describing the row position and the number of

consecutive nonzero terms, are placed at the end, as well as the beginning of each nonzero string.
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‘ This manner of storing sparse matrices allows the matrix to be read backward in the same manner as

it is read forward, and thereby allows for improved efficiency in the backward substitution part

of equation solution operations.
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2.1.2 Matrix Multiplication

The multiplication of large matrices can be a time consuming operation. If the matrices are
full, then the time to multiply two matrices of order nxm and mxr is proportional to nmr., If the
matrices are sparse, but no attempt is made to take advantage of the sparsity, the running time

will be the same as if the metrices were full,

Most of the matrices used in structural analysis are initially very sparse. They may, how-
ever, become relatively dense as the result of transformations. Consequently, the NASTRAN pro-
gram requires a matrix multiplication routine that works well for sparse matrices as well as for

full matrices.

The matrix multipiication routine in NASTRAN provfdes fwo alternative methods of matrix mul-
tiplication. Both of the methods take advantage of sparsity in different ways. The second method
might be described as a truly sparse matrix method in that only the nonzero terms in either the
left-hand or the right-hand matrices are processed. The method which results in the minimum exe-

cution time is automatically selected by the routine.

For the discussion which follows, the general multiply-add form, [D] = [A][B]+[C], is assumed.

In Method One, core stcrage is allocated to hold as many columns of [B] and [D] in unpacked
form as possible (éo]umns of [C] being read initially into the storage space for [D]). The [A]
matrix is read interpretively one nonzero element at a time. For each nonzero element in [A], all
combinatorial terms for columns of [B] currently in core are computed and accumulated in the stor-

age for [D]. Let 3;, be a nonzero element of [A] and sz be an element of [B]. The formula for

an element of [D] is

) dij = % aizblj + i s ’ 1)
where j runs across the columns of [B] and [D] currently in core. At the completion of one complete
pass of the [Almatrix through the central processor, the product is completed to the extent of the
columns of [B] currently in core. The process is repeated until the Bl matrix is exhausted. It may
be seen that the number of passes of the [Almatrix equals the total number of columns‘of{B]divided
by the number of columns of [B] that can be held in core at one time. Method One is effective if
the number of columns of [B] is not large, e.g., when [B] is a small number of load vectors.

Method One is also more effective than Method Two when [B] is a dense matrix.
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In Method Two, only a single term of the [B] matrix is required in main memory at any one time.
One full column in unpacked form of the partially formed [D] matrix is also stored in core at the
same time. The remaining storage is allocated to as many columns of [A] in packed form as can be
stored, i.e., only nonzero terms and corresponding row positions are stored. For the columns of
[A] in storage at one time, the [B] matrix is passed through the central processor, column by

column, forming partial answers on each pass.

Each column of [B] forms partial answers which are added to the corresponding column of [D].
As may be seen from Equation 1, only the elements in the rows of sz corresponding to the columns
of ai, currently held in core are‘used. After all columns of [B] have been processed once, new
columns of [A] are placed in core and the [B] matrix is passed through again. The process is

repeated until all the columns of [A] have been used.

In Method Two the [A] matrix is passed through core once and the number of passes of the [B]
matrix equals the téta] number of columns of [A] divided by the number of columns of [A] that can
be held in core in packed form at one time. The number of passes of the [B] matrix is the con-
trolling factor in determining computing time. If the [A] matrix is large and sparse, the number of
passes of the [B] matrix in Method Two will typically be less than five. In Method bne, on the
. other hand, the number of passes of the [A] matrix will be much larger if the number of columns
of [B] is large. The reason is that, in Method One, the columns of the [B] matrix are not stored

in packed form, whereas, in Method Two, the columns of the [A] matrix are stored in packed form.

Both methods one and two include variations for premultiplication of a matrix by the trans-
pose of another matrix, [D] = [A]T[B]+[C], where [A] is stored by columns. This is doné in order
to avoid transposing the [A] matrix, which is by no means trivial (see Section 2.1.4). In fact,
the second matrix multiply method provides an efficient means for matrix transposition of sparse

matrices, by setting [B] = [I] and [C] = O.

A third option is provided for the transpose case in order to efficiently handle the case of
[B] sparse and [A] dense. The operations for method three are similar to those described for the
nontranspose case of method two, excépt the columns of A (rows of [A}T) are held iﬁ unpacked
rather than packed form. In the transpose case for method two the computing time is proportional
to the density of the [A] matrix, whereas in method three the computing time is proportional to
the density of the [B] matrix. A nontranspose option is not needed for method three as the com-

puting time for the nontranspose option in method two is proportional to the product of the
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densities of the [A] and [B] matrices.

2.1.3 Matrix Addition

The addition routine computes the general matrix sum,

[c] = a[A] + b[B] , (2)

where a and b are scalars and [A] and [B] matrices. Special provision is made for the case b = 0,

to allow scalar multiplication. No compatibility of types (such as single or double precision,
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real or complex numbers) between a, b, [A], and [B] is required. The nonzero terms of [A] and [B)
are read interpretively one nonzero element at a time. The appropriate sum is formed into [C] and

jmmediately transferred to peripheral storage. The required amount of core storagé is very small.

2.1.4 Matrix Transposition

The transposition of large matrices is a distressihg]y awkward operation. The optimum strat-
egy depends on the location of the nonzero terms, the density of the matrix, and its size. The
NASTRAN algorithm which is used in the transposition of dense matrices is described below. Sparse

matrices are transposed by the matrix multiply subroutine (see above).

If the matrix order is i x j and if oh]y a fraction of the matrix may be held in core at one
time, the usual technique is to read the whole matrix from a peripheral storage device, saving, in
core, the elements from the first R rows of the matrix; these elements are then written row by row
on a peripheral storage device. The operation is then repeated until all i rows have been rewrit-
ten. The matrix may then be said to be "transposed" because the segments of a sequentially stored
two-dimensional array are treated by NASTRAN as the columns of a matrix. The number of times that
the matrix must be transferred from peripheral storage to high-speed core is T = i/R. The time
for data transfer (I/@ time) will be equivalent to that taken to input the full matrix T times and

to output it once.

1f the matrices are very large, matrix partitioning may be used effectively to reduce the
computer time. The matrix is first partitioned by rows and the partitions are then transposed as

shown below.

[A] - A, - AT A, A3T = a7 . (3)

The technique is as follows. The matrix [A]is read into core one column at a time, and the ele-
ments in the first P rows of each column are extracted and placed in a peripheral storage file.
. The operation is repeated, reading the elements in .the next P rows by columns into a second peri-
pheral storage file, etc. Thus, since the [A]l matrix has i rows, the 1/@ time for partitioning is

equivalent to that for i/P reads and -one write of the complete matrix. Next the[ﬁﬂ matrix is
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transposed by the first-described method which, since [A]] has P rows, requires P/R reads and one ‘

write. Because the columns of[AaT are also columns of[Aﬂ, the transposition is complete when all
of the partitions have been transposed. The I/@ time for transposing the partitions is equival-
ent to P/R reads and one write of the complete [A] matrix. Assuming that reads and writes take

the same time, the total time is proportional to the parameter

- & P = 1.R4P
T =t R+ 1 = T ptrt 2 . (4)

The number of rows in each partition, P, may be freely selected. The minimum value of the time

parameter obtained when 3t/3P = 0, is

Toin = 2(1 +/T) , | (5)

and occurs when , P = R/T’ . (6)
The time for the second method is less than that for the first when
2(1+YT7) < T+ 1 , (7)

which is satisfied when T > 6. The second method is automatically selected by the program when

this condition is satisfied.

2.1.5 Matrix Partitioning and Merging

In structural analysis, vectors describing the system variables are frequently separated into
subsets which are then treated differently. For example, in the displacement method matrix parti-
tioning may'be'ébp1ied to the displacement Vectorv{uf}, resulting in twg subsets: {uo}, degrées of
of freedom removed by partitioning, and {ua}; degrees of freedom not removed (see Section 3.5.3).

A11 of the arrays associated with {uf}, such as the load vector, {Pf}, and the stiffness matrix,

[Kff], must also be partitioned. The partitioning operations are formally indicated as follows:
Pa
‘ (Pl = &= R (8)
' P
.0
I
Kaa ! Kao | - (
K R : 9
[Kee] : )
KaoT Koo
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Later in the analysis it will be necessary to recombine the elements of {uo} and {ua}. This

operation, called the "merge" operation, is formally indicated by

- —— {uf} . (10)

The essential feature of the operation is that the original order of the members of {uf} must be

restored. Order must also be maintained during the partition operation.

The partition and merge operafions are accomplished in the program with the aid of USET, an
array that describes the membership of each degree of freedom in each of the defined vector sets.
There are approximately fifteen such sets (see Section 3.3). One word of USET is assigned to each
degree of freedom. One binary bit in each word of USET corresponds to a different vector set. A
bit is set equal to unity if the degree of freedom is a member of the corresponding vector set.
USET may, consequently, be regarded as a table with marks in appropriate row-column intersections

as shown below.

ug -- Ue U, uy --
v/ 4 v

v/ 4 4

v % 4

v v v
v v W

v v 4
; .

' v v

v/

4 4 /
v

v/ v v/

In partitioning [Kff] (Equation 9) for example, USET is called into core storage along with
the first column of [Kff]. USET is scanned and the ordinals of the nonzero bits in the posifions

corresponding to Ugs Ugs and u, are noted and copied onto separate lists. The lists are then used

)
to separate the elements in the first (and succeeding) column(s) of [Kff] into [Kaa] and [Kao]T’
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which are then read out of core onto separate files. In the merge operation (Equation'lo)v, the .
Tists are scanned to determine whether a number from {ua} or a number from {uo} will be the next

number to be copied into {uf}.
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2.2 TRIANGULAR DECOMPOSITION

The factoring of a matrix into upper and lower triangular forms is a central feature of
structural analysis as performed with the NASTRAN program. For Targe problems a substantial
fraction of the total computing time is associated with triangular decompositions. The NASTRAN
program requires a decomposition routine that works well for both full and sparse matrices.
Matrices encountered in structural analysis, including structural dynamics, may be either real

or complex.

Most of the matrices used in structural analysis are initially very sparse; however, they
tend to fill in various degrees as the problem solution proceeds. Under some conditions, matrix
multiplications will fill a matrix prior to the beginning of the triangular decomposition. Under
other conditions an initially sparse matrix may completely fill during the triangular decomposi-
tion. However, for many matrices used in structural analysis, much of the original sparsity is
maintained in the triangular factors. In order to handle all of these situations effectively,
the decomposition routines treat all matrices as sparse. The procedures efficiently treat the

general sparse case as well as the limiting cases of a full matrix or of a simple band matrix.

2.2.1 Triangular Decomposition of Symmetrical Matrices

It is well known(]) that any square matrix [A], having nonzero leading minors, can be ex-
bressed in the form [A] = [Lj[DJ[U], where [L] and [U] are unit-lower and unit-upper triangular
matrices respectively, and [D] is a diagonal matrix. The matrix [D] can be incorporated entirely
within either [L] or [U] or part with each. The different ways of incorporating [D], combined
with different orders of operations .in determining the terms of [L] and [U], has given rise to

many named procedures for performing triangular decompositions.

The following discussion will be based on the equation
(Al = [L1lv] , (1)

where [L] is a unit lower triangle. The elements of the upper triangle may be computed by the
following recursion formula:
i-1
Ui = 335 - kZ] ik Ui - (2)

(1) George Forsythe and Cleve B. Moler, "Computer Solution of Linear Algebraic Systems,"
Prentice-Hall, Englewood Cliffs, N.J., p. 27.
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For symmetric matrices without pivoting, the upper and Tower triangular elements are related as ‘

follows:
= ki (3)

The substitution of the relation in Equation 3 into Equation 2 gives

i-1 u.
Ups = a,, - ) X

iJ ij k=1 Ykk Ygi (4)

Now, k < 1 < J, so that only previously computed results occur on the right-hand side of Equation

4 if the elements ujy are computed in order starting with the first row. The unit lower triangle
and the associated diagonal elements are saved on secondary storage for later use in equation

solution operations.

Figure 1 shows the triangular factor for a sparse matrix. Initial nonzero terms are indi-
cated by X's with 0's indicating nonzerc terms created as the decomposition proceeds. The: terms

in triangles indicate the relative locations for nonzero contributions to the upper triangular .

factor when the first row of the matrix is the pivotal row. If there is sufficient main storage
to hold all of the nonzero terms associated with each pivotal row, the decomposition may proceed
without the need for writing intermediate results on secondary storage. In general, no nonzero
terms will appear in any column of [U] until a nonzero term appears in [A]. The apperance of
the first nonzero term in [A] defines the beginning of an "active column." Columns 1, 2 and 9
are active when the first row is the pivotal row. The terms in squares indicate the relative
locations for nonzero contributions to the upper triangular factor when the third row of the

matrix is the pivotal row. At this point in the decomposition, rows 3, 7, 9 and 13 are active.

If at some point in the decomposition, the diagonal term of the pivotal row initiates a new
active column, all existing active columns will terminate in the previous row (change status
from active to passive). In row 4 of Figure 1, columns 7, 9 and 13 become passive. Also in row
7, columns 11 and 14 become passive. Prior to using row 4 as a pivotal row, the passive terms in
rows 7, 9 and 13 (in squares on Figure 1) are transferred to secondary storage. These terms
remain on secondary storage until each of the rows 7, 9 and 13 become pivotal rows, at which time

they are transferred to main storage and combined with the original nonzero terms to form each of

the pivotal rows. Columns remain passive until a nonzero term appears in that column for a later
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pivotal row. Nonzero terms which change the status of columns from passive to active may be either
in the original matrix, such as column 11 of row 10, or they may be created prior to the column
becoming passive, such as columns 9 and 13 of row 7. Figure 1 indicates that these later nonzero

terms were created when row 3 was the pivotal row.

If there is sufficient main storage for all of the terms generated by the second term of
Equation 4 for each pivotal row, the triangular decomposition can be completed with a single pass
through the matrix. When the number of active columns exceeds the capacity of the working storage
space, an automatic spill logic is provided. The decomposition proceeds by holding the nonzero
terms for as many rows as possible in main storage. Following the completion of all possible
pivotal row operations, the intermediate results are transferred to temporary storage. All
possible pivotal row operations are then performed on the next group of rows in the matrix, and
the intermediate results are transferred to temporary storage. Next, the temporary file is re-
wound and pivotal operations are continued on the first and second spill groups. This sequence
of operations continues, adding the next group of rows on each pass through the matrix, until

each pivotal row is complete and transferred to permanent secondary storage.

A preliminary pass is made over the original matrix in order to estimate the execution time
and create tables which assist in the efficiency of the decomposition operation. The computing
time to perform any calculation may be estimated by counting the number of elementary operations
that it involves and assigning experimentally determined values of time to the various types of
elementary operations. In the case of triangular decomposition by the method described above,
the estimated time is ‘

PRN

T=Im g 2 + 1(1+n) %‘ CRo+L1Tc2+lp +P)TCE4p g c (5)
Zz 2 1 jop 1 zZ s Z2'Vp g t P&y i

where M = time for multiply-add loop,

1
—
i

time to read and write one term on spill file,

Pp = time to put one term in write buffer,

Pg = time to get one term from read buffer,

N = order of matrix,

C; = number of active columns in the ith row,

Ri = number of I/P transfers for the ith row. Ri may be approximated by the integral part

~5UCIBILITY OF THE
rrpRCDU0T (5 15 POOR

2.2-3 (12/31774)




MATRIX OPERATIONS

of C_i/S, where S = number of core-held rows in the current spill group, ' ‘
C. = number of active columns at beginning of spill operations that are out of range of

first spill group (column numbers greater than last row in spill group) for each time

that spill operations begin,
C, = sum of number of passive columns on secohdary storage and number of active columns

in working space for each time that active column termination occurs, and

n = number of words per term.

The computing time is dominated by the first term in Equation 5, which is associated with the
arithmetic operations in the step-by-step elimination procedure. Since the number of active
'columns is a function of the ordering of the matrix, the user can shorten the computing time by
ordering the matrix in the most favorable manner. A discussion of the sequencing of grid points
to minimize the time required for triangular decomposition is given in Section 1 of the User's

Manual.

The second and third terms of‘Equation 5 are zero, unless spill operations require the
transfer of intermediate results to secondary storage. The fourth term is the modest overhead

associated with passive columns, and the last term is the time required to transfer the final

result of the triangular decomposition to secondary storage.

In order to assist the user in locating singularities, or near singularities in the matrix,
information relative to the magnitude of the diagonal elements of the triangular factor is fur-
nished to the user. The absolute value (e) of the ratio of the diagonal element in the original
matrix to the diagonal element in the triangular factor is determined for each row of the matrix.
The maximum value of € along with the distribution of the values of € is furnished as diagnostic
information. The row numbers for the five largest values of ¢ are also furnished along with the

number of negative values for the diagonal element in the triangular factor.
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Figure 1. Triangular factor for sparse matrix
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2.2.2 Triangular Decomposition of Unsymmetrical Matrices

The procedures for the triangular decomposition of unsymmetrical partially banded matrices
are similar to those used for symmetrical matrices. The lack of symmetry means that the upper
and lower triangular factors are no%yreiéted, aﬁd that the widths of the uppef and lower bands
(which replace the symmetrical semi-bands of the symmetrical matrix) may be different. However,

the band structure of the original matrix will be maintained in the triangular factors.

Although the lack of symmetry means that the pattern of scattered terms outside the upper
band may be different than the pattern outside the lower band, it still remains true that no non-
zero terms will appear in any column of the upper triangular factor until a nonzero term appears
in the same column of the original matrix. Likewise, no nonzero terms will appear in aﬁy row
of the lower triangular factor until a nonzero term appears in the same row of the original
matrix. Hence the partially banded nature of the matrix is maintained after the completion of

the triangular decompositon.

The lack of any assurance that all leading minors are nonsingular requires that pivoting

(i.e., interchange of rows) be used to maintain the numerical stability of the triangular decompo-

sition. Pivoting is restricted to take place within the lower band. This will increase the band-
width of the upper triangular factor by the width of the Tower band, but will not otherwise affect

the partially banded character of the triangular factors.

The general procedure for an unsymmetrical decomposition will be discussed with reference to
Figure 2, which shows an unsymmetrical partially banded matrix of order N, upper bandwidth B,
and lower bandwidth B, with several nonzero terms outside the bands. Initial nonzero terms
are indicated by x's, with 0's indicating nonzero terms created outside the original bands as
the decomposition proceeds. The Q's within the expanded upper band B indicate the maximum number
of nonzero terms that can be created by the pivoting, The existence of initial zero terms inside
the Tower band B and the expanded upﬁer band B + B is ignored as, in general, these terms will

be¢ome nonzero as the decomposition proceeds.

If there is sufficient core storage to hold B + B columns of the lower triangular factor, as
indicated inside the solid parallelogram of Figure 2, aldng with the associated active column
and active row terms, the triangular decomposition can be completed with a single pass through

the matrix. Otherwise secondary storage must be used for intermediate results and provision is
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made in main storage to hold R columns of the lower triangular factor, a single column of the

upper triangular factor, and the current active columns and active rows.

The decomposition begins by reading the original matrix one column at a time, pivoting the
largest term in absolute value within the lower band to the diagonal position, and determining
the inner products for the current column, including the active row terms. The portion of the
column in the lower triangular factor, including active row terms, is retained in working storage.
The portion of the column in the upper triangular factor within the expanded upper band is com-
plete and no longer needed; -hence it can be written on a secondary storage device. This contin-
ues until R columns have been processed. At this point the procedure is changed only to the
extent that the portion -of the current column within the lower band is temporarily stored on a

secondary device.

The decomposition continues until B + B columns have been processed. At this point, the
first column of the lower triangular factor, including the active row terms, is no longer needed
and can be written on a secondary storage device. This releases B spaces in working storage.

This procedure continues until the decompositioh is completed.

The active column terms .are transposed prior to beginning the decomposition, so they are
available by rows and can be read into main storage as needed. If an active column term exists in

h

the it row, it is stored along with the i + B column of the upper triangular factor,

A preliminary pass is made over the original matrix in order to locate the extreme non-
zero terms for each row in the Tower triangle and each column in the upper triangle. The maximum
number of active columns is determined by counting the maxihum number of intersections for any
row wiph columns defined by drawing ]iqesrfrpm the mogt éitreme nonzero term ip the upper tri-
angle to the outside edge of the upper band. The magimum number of active rows is determined by
counting the maximum number of intersections for any column with rows defined by drawing lines
from the most extreme nonzero term in the lower triangle to the outside edge of the upper band.
An examination of the matrix shown in Figure 2 reveals that the maximum number of active columns
is 2 even though the total number of nonzero columns cutside the upper band is 3. The lower

triangle contains 3 active rows and 4 nonzero rows outside the lower band.

As with the symmetrical decomposition, the routine-selects the bandwidths that give the
minimum computing time based on the ordering of the matrix presented. Proper sequencing is

similar to that used for symmetrical matrices.
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The compdting time will-again be a funétion of the working storage available for the
i . _ . N . _
execution of the routine. Working storage consists of space for-R columns of terms inside the

band for the .lower triangular factor, B + B-spaces. for the current column of the upper-triangular

factor, BC spaces for active column terms, (B + B)C spaces for active row terms, CT spaces for.

interaction of active row and active column terms, and B + B spaces for the permutation matrix.
This results in working storage as.follows:

W = BR+ 2B+ 2B+ CB + C(B+B) + T, (14)
where R > 1, R < B+ B, R < N, C is. the maximum number of active columns,.and C is.the maximum

number of active rows.

The computing time to perform an unsymmetrical triangular decomposition is: '

T = Ty +T,+T,+ T4 S (15) ¥
where T] is the time required to process the first N - B - 2B columns of terms inside the upper
and lower bands, T3 is the time required to process the last B columns of terms inside the bands,

and T2 is the time required to process the remaining intermediate B + B columns of terms inside

the bands. T, is the time required to process the active row and active column terms.

Ky[MgBR + 1B(B + B - R) + P(B + 28)] , (16)

where MB is the arithmetic time réquired to process one term inside the bands, I is the time
required to .store and retrieve one term inside the lower band, and P is the time required to

store one term of the final result on a secondary storage device. If N > B + 2B, then

Ky = N-'B- 2B. If N < B + 2B, then Ky = 0.
; o Ky _ ) )
Ty = 5= [BKMg + (Kg = RI(I - Mg)B + 2PB + PK,] . - an)
If N> B + 2B, then K, = Ky = B+ B. IfN<B+ 2B, then K, = N- B and Ky = B+ B,
unless N < B + B, then Ky = N.
- K3
_ B 4
Ty = 5-Mg+ 5= 1 +PBK (18)
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If N>B+2B, then K, = B+B - RandK; =B+ %—E, unless B > R, then K, = B . If
N < B + 28, then Ko =N - Rand K. = N, unless N - R > B, then Ky =
T, = (- B)[M.(Bc + BT + BT + cT) + p(C + C) (19)

where MC is the arithmetic time required to process one active row or active column term.

If N is assumed large compared to both B and B and the final storage terms are neglected,

Equation 15 can be simplified as follows:

T = N[MB§R + Mc(Et + BC + BC + CC) + IB(B + B - R)]. (20)

This simplified equation is used for making timing calculations in selecting the optimum band

widths and active elements.

The sequence of events in selecting the bandwidths and active elements outside the bands

may be summarized as follows:

1. Locate extreme nonzero terms in each column for the upper trlangle and in each row of
the Tower triangle.

2. Prepare a table of unique pairs of upper bands and active columns.

3., For the working storage available, compute R using Equation 14.

4, Assuming B =B and C = T, and using Equation 20 determine the upper bandwidth and the
associated number of active columns that result in minimum computer time to perform the
triangular decomposition,

5. Using the previously determined upper band and active columns, determine the lower
bandwidth and the associated number of active rows that result in minimum computer time
to perform the triangular decomposition according to Equations 14 and 20.

6. Select the values of the bandwidths and active elements that result in minimum time to

-~ perform the trangular decompos1t1on and recalculate the time using Equatior 15. This
more accurate time estimate is needed because decisions are made by modules us1ng the
decomposition routines that are based on the estimated running time.

The complex decomposition routine is the same as the real unsymmetric routine, except that

twice as much storage is needed for complex numbers and the real arithmetic is replaced with

complex arithmetic.
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Symmetrical partially banded matrix.

Figure 1.
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Unsymmetrical partially banded matrix.

Figure 2.
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2.3 SOLUTION OF [A]{x} = fb}
The solution of tHe equation
[AJ{x} = {b} , (1)

is accomplished using the resuits of the decomposition procedure described in Section 2.2.

Replacing [A] by its triangular factors, Equation 1 becomes
[LI[uI{x} = {b} . - (2)
where L] is a lower unit triangle and [U] is an upper triangle.
Define | “

{y} [ul{x}- . ' (3)

Then, substituting into Equation 2,

L1y} b} . (4)

The solution of Equation 4 f?r {y} is called the forward pass, and the subsequent solution of

Equation 3 for {x} is called!the backward pass.

|

' In the solution algorithm, y]»is evaluated from the leading element of [L], and the nonzero
elements in the first qo]umn of [L] are multiplied by Y and transferred to the right hand side
of Equation 4. The procedure is repeated for the second and succeeding. columns of [L] until -
all elements of {y} have been evaluated. The algorithm for obtaining {x} is similar except that
the columns of [U] are required in reverse order. Multiple {b} vectors can be handled simul-
taneously up to the limit of [the working space available in main memory. The same general pro-

cedures are used for both symmetric and unsymmetric matrices.

The forward pass requires the reading of both the right hand vectors and the lower triangular
factor from secondary storagé devices. In the case of symmetric matrices, the processor'time
associated with the location'!of the terms in the lower triangular factor is minimized by working
directly in the I/@ buffers.! Also, in the case of symmetric matrices, successive values of {y}
are tested for zero prior to:the multiplication. In this manner full advantage is taken of the

sparsity of the right hand side on the forward pass.
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For symmetric matrices, a term in the upper triangular factor is easily obtained from the cor-
responding term in the transposed location of the lower triangular factor (see Equation 3 of
Section 2.2.1). Thus, the backward pass utilizes a special packing format which allows for the
backward reading of the Tower triangular factor. For unsymmetric operations, the backward pass
is accomplished in two steps. First, the upper triangular factor is read backward and written
forward on a separate file so that the last column of [U] appears first. This is part of the
triangular decomposition routine and takes place immediately after the completion of the decom-
position. The second step consists of solving Equation 3 for {x}. It is made part of the

equation solution routine.

Following the determination of the solution vectors, a residual vector is determined for

each solution vector as follows:
{sb} = {b} - [Al{x} . (4)

The residual vector is used to calculate the following error ratio which is printed with the

output.

T : )
e = {x} '|'{6b} . (5)
{x} {b}

The magnitude of this error ratio gives an indication of the numerical accuracy of the solution
vectors. The computer time required to calculate this error ratio is only a small fraction of

the time required to determine the solution vector.
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STATIC ANALYSIS BY }HE DISPLACEMENT METHOD

3.1 INTRODUCTION

From a theoretical viewpoint, the formulation of a static structural problem for solution by

the displacement method is completely described by the matrix equation
[Kl{u} = {P}. (1)

As a matter of practical calculation, there is rather more to the problem than this simple
formula would imply, since it is necessary to generate the stiffness matrix [K] and the load vec-
tor {P} from the available information about the structure, and to calculate stresses and other 4
quantities of interest from the independent displacement vector, {u}. In the early days of com-
puter-aided analysis these tasks were left to the analyst and the computer busied itself with
obtaining the solution to Equation 1. It was soon discovered that,bfor most practical problems,
the computer had only partly unburdened the user and that larger savings of time and cost could
‘be achieved if the computer took -over the major share of input data preparation and dutput data
processing. Automatic performance of these additional tasks requires that a particular approach

to structural analysis be selected and-incorporated into the program.

NASTRAN embodies a lumped element approach, i.e., the distributed physical properties of a
‘'structure are represented by a model consisting of a finite number of idealized substructures or
elements that are interconnected at a finite number of points. A1l input and output data per-

tain to the idealized structural model.

The idealized structural model in NASTRAN consists of "grid points " (G) to which "loads"
(P) are applied, and at which degrees of freedom are defined, and "elements" (E) that are connec-
ted between the points, as $hownﬁ{nifigure 1. Two genera] gypegiofﬂgrid points:are emp]gyeqiiniﬁ

static analysis. They are:

1. Geometric grid poiht - a point in three-dimensional space at which three components of
displacement and three components of rotation are defined. The coordinates of each grid
point are specified by the user. Components of displacement and rotation can be elimi-

nated as degrees of freedom by means of "single-point constraints".

2. Scalar point - a point in vector space at which one degree of freedom is defined. A
geometric grid point contains from one to six scalar points. Scalar points may exist
that are not associated with grid points. Such points can be coupled to geometric grid

points by means of scalar structural elements and by constraint relationships.

3.1-1



STATIC ANALYSIS BY THE DISPLACEMENT METHOD

The structural element is a convenient localizing concept for specifying many of the proper-

ties of the structure, including material properties, mass distribution and some types of applied

loads. In static analysis by thé displacement method, stiffness properties are input exclusively

by means of structural elements. Mass properties (used in the generation of gravity and inertia

loads) are input either as properties of structural elements or as properties of grid points. In

dynamic analysis mass, damping, and stiffness properties may be input either as the properties of

structural elements or as the properties of grid points.

Thé structural e1emeﬁts are described in detail in Section 5 of the Theoretical Manual.

There are four general classes of structural elements as follows:

1.

Metric elements which are connected between geometric grid points. Examples include rod,

plate and shell elements.

Scalar (or zero-dimensional) elements which are connected between pairs of scalar points,
or between one scalar point.and "ground". Note that, since each geometric grid point
contains a number of scalar points corresponding to specific components of motion, sca-
lar elements can be connected between se]ected,componehts.of motiqn at geometric grid

points.

General elements, whose properties are defined in terms of deflection influence coeffi-
cients (i.e., compliance matrices), and which may be interconnected between any number of
geometric and scalar grid points. An important application of general elements is the

representation of Targe pieces of structure by means of test data.

Constraint Elements (or Constraints). The existence of a constraint element implies a

linear relationship among the degrees of freedom to whibh it is attached of the form

g chug =Y., 0 {2)

where uy are degrees of freedam and Y. is an enforced displacement. A linear relation-
ship among the forces of constraint is also implied, since it is required that the forces

of constraint do no work.
Constraint elements are ehp]oyed for the following purposes:
a. To introduce enforced displacements.

b. To enforce zero motion in specified directions at points of reaction.
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c. To simulate very stiff {rigid) structural members,

d. To describe part of a structure by experimentally determined vibration medes. (The
matrix of eigenvectors expresses a relationship of constraint between physical and

modal coordinates.)

e. To generate nonstandard structural elements by combining scalar structural elements

and constraints.

The constraint concept is important for the displécement method in order to eliminate
ill-conditioning generated by very stiff members. Two types of constraint elements are
provided: single-point constraints, wherein Equation 2 includes only a single term on
the left hand side; and multi-point constraints wherein Equation 2 includes more than
one term. The main reason for the distinction is that due to the simplicity of single-

point constraints, they are processed separately in the program.

Solution of a linear static structural problem by the displacement method requires a set of
preliminary operations which reduce the input data to the matrix form given in Equation 1. Among
these operations are the elimination of displacement components that are declared to be dependent
by virtue of constraints and the transfer of all applied loads to the independent displacement

cdwomnu.
As input data in static analysis, the loads are specified in a variety of ways including:
1. Concentrated loads at geometric and scalar grid points.
2. Pressure loads on two-dimensional structural elements.
3. . Indirectly, by means of the mass and thermal expansion properties of structural elements.

Enforced deformations are also reduced to'a set of equivalent loads on the independent dis-

placement components., See Section 3.6.1.

Once Equation 1 has been formed it is solved for each specific loading condition. Stresses
in the structural g]ements and other desired results are then obtained from {u} by a set of data

recovery operations.
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Figure 1, Topology of the idealized structural model. -
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STATIC ANALYSIS BY THE DISPLACEMENT METHOD

3.2 GENERAL PROBLEM FLOW

As has been explained in Section 1 (Program Organization), NASTRAN consists of a number of
subprograms, or modules, that are executed according to a sequence of macro-instructions that is
controlled by the Executive System. A number of such sequences, called Rigid Formats, are per-
manently stored in the program and can be selected by means of control cards. Each rigid format
corresponds to a particular type of structural analysis. The user may, in addition, devise hjs
own sequence of module calls (referred to as a DMAP sequence) for problems that do not conform to

one of the available rigid formats.

The following rigid formats are currently available for the solution of static problems by

the displacement method:
1. (Basic) Static Analysis
2. Static Analysis with Inertia Relief
4. Static Analysis with Differential Stiffness
5. Buckling
6. P%ecewise Linear Analysis
14, Static Analysis using Cyclic Symmetry

Figure 1 shows a simplified flow diagram for Basic Static Analysis. Each block in the flow
aiagram represents a number of program modules. The actual number of modﬁ]es called is approxi-
mately gqual tp thirty. The functions indicated in Figure 1 are degcribed in succeeding subsec-
tions of the Theoretical Manual. It suffices at present to indicate the general nature of the

tasks performed.

The Input File. Processor, as the name implies, reorganizes the information on iﬁput data

cards into Data Blocks consisting of lists of similar quantities.

The Geometry Processor generates coordinate system transformation matrices, tables of grid
point locations, a table defining the structural elements connected to each grid point, and other

miscellaneous tables such as those defining static loads and temperatures at grid points.

The Structure Plotter generates tape output for an automatic plotter that will plot the
structure (i.e., the location of grid points and the boundaries of elements) in one of several
available three-dimensional projections. The structure plotter is particularly useful for the-

detection of errors in grid point coordinates and in the connection of elements to grid points.
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Note that the structures plotter may also be used at the end of the program to superimpose images

of the deformed and undeformed structure.

The Structural Matrix Assembler .generates étiffnéss and mass matrices referred to the grid
points from tabular information generéted by_the Input File Processof'and-the Geometry Processor.
The mass matrix is used in static-analysis for .the genération of gravity loads and inertia loads

on uhsupported structures.

In block 5 of Figure 1, the stiffness matrix is reduced to the form in which it is finally
solved through the imposition of single and multi-point constraints, and the use of matrix par-

titioning {optional).

Load vectors are then generated from a variety of sources (concentrated loads at grid points,
pressure loads on surfaces, gravity, temperature, and enforced deformations) and are reduced to

final form by the application of constraints and matrix partitioning.

The solution for independent displacements is accomplished in two steps: Decomposition of
the stiffness matrix [K] into upper and lower triangular factors; and solution for {u} for speci-
fic load vectors, {P}, by means of successive substitution into the equations represented by the ‘
triangular factors of [K] (the so-called forward and backward passes). A1l load vectors are pro-

cessed before proceeding to the next functional block.

In block 8 of Figure 1, dependent displacements are determined from the independent displace-
ments by means of the equations of constraint. The internal forces and stresses in each element
are then computed from knowledge of the displacement components at the corners of the elements
and the intrinsic structural equations of the element. ..Finally the Qutput File Processor pre-

pares the results of the analysis for.printing.

The Loop for Additional ‘Constraint Sets shown in Figure 1, is introduced to facilitate solu-
tions for different boundary conditions, which are applied by means of single point constraints.
In particular, the symmetric and antisymmetric responses of a symmetric structure are treated in

this manner.

The flow diagram for Rigid Format No. 2, Static Analysis with Inertia Relijef, is, to the
level of detail considered here, identical to Figure 1. The inertia relief effect consists of a
modification to the load vector to include inertia loads due to the acceleration of an unre-

strained structure. The manner in which the incremental Toad is calculated is explained in
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Section 3.6.3.

A simplified flow diagram for Rigid Format No. 4, Static Ahajysié with Differential Stiff-
ness, is shown in Figure 2. The differential stiffness matrix is a first order approximation to
large deformation effects, such as those considered in beam-column action. It is directly pro-

-portional to the_]eve1 of the applied loads.

'-_The differential stiffness matrix is calculated, in block 11 of Figure 2, from the deflec-
tions of each structural element that are caused by the primary loading condition. The equations

that are used in the calculation of differential stiffness are derived in Section 7.

The differential stiffness matrix is reduced to final form in block 12 in precisely the same
way théf the ;tructura1 stiffness matrix is reduced to final form in block 5. It is then added
to the structural stiffness matrix and the solution and data’ recovery portions of the program are
reexecuted. Additional solutions may be obtained for conditions in which the différeﬁtia] stiff-
ness matrix and the applied load vector are multiplied by a sequence of constant factors, corres-

ponding to different levels of the same loading condition.

A simplified flow diagram for Rigid Format No. 5, Buckling, is shown in Figure 3. 1In it the
differential stiffness matrix [Kd] corresponding to a particular applied loading condition is

used in conjunction with the structural stiffness matrix [K] to formulate an eigenvalue problem
d _ : o
[K+AK"J{u} = 0. (1)

The eigenvalues, Ai,'are-tﬁe load level factors for various buck1fng modes. They and the corres-
ponding eigenvectors,{¢i}, are extraqted by thé Real Ejgenvaiue Analysis module. Additional data
(constrained displacement components and stress patterns for each buckling mode) are recovered in-
Block 15, which is virtually a duplicate of Block 8, and the buckling mode shapes are plotted, if
desired. -

A simplified flow diagram for Rigid Format No. 6, Piecewise Linéar Analysis, is shown .in
Figure 4. In piecewise linear analysis solutions are obtained for structures with nonlinear,
stress-dependent, material properties. The load level is increased to its full value by small
increments, such that stiffness properties can be assumed to be constant over each increment.
After each increment, the combined strains in nonlinear elements due to all load 1nbfements are
used, in conjunction with stress-strain diagrams, to determine the appropriate stiffnesses for

the next load increment. The procedures, summarized in Figure 4, are described in Section 3.8.

3.2-3




STATIC ANALYSIS BY THE DISPLACEMENT METHOD

1 Input File
Processor

v

2 Geometry
Processor

v

3 Structures’
Plotter

4 Structural Matrix
g Assembler

v

5 Application of Constraints and
—» Partitioning to the Stiffness Matrix

6 Generation and Transformation
of Load Vectors

v

7 Solution for Independent
Displacements

v

8 Recovery of Dependent Displacements
and Stresses

Additional

Constraints
?

9 OQutput File
» Processor

v

10 Deformed Structures
Plotter

Property
Optimization
?

EXIT

Figure 1. Simplified flow diagram for Basic Static Analysis. ‘

3.2-4 (3/1/76)

X HE
REPRODUCIBILITY OF T
I.“_LZ\:TJ\AL PAGE IS PGOR




GENERAL PROBLEM FLOW

1 Input File
Processor

!

2 Geometry
Processor

!

3 Structures
Plotter

y

4 Structural Matrix

Iteration
Limit
?

Assembler
Differential Stiffness ‘
23 Adjustment
5 Application of Constraints and

Partitioning to the Stiffness Matrix

\ | ‘$

6 Generation and Transformation
of Load Vectors

‘ Load Correction — ‘
22

7 Solution for Independent
Displacements
8a  (Same as 8) '8 Recovery of Dependent Displacements
T — and Stresses
7a (same as 7) :
Load
Correction ) 9 Qutput File.
Limit Processor
? v
10 Deformed Structures
Plotter
‘ Figure 2, Simplified flow diagram for Static Analysis with Differential Stiffness.
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‘ 3.3 NOTATION SYSTEM

Many of the operations performed in computerized structural analysis are conveniently
expressed in the notation of matrix algebra. In NASTRAN matrix arrays are represeﬁted by a root
symbol that indicates the type of physical quantity and by one or more subscripts and superscripts
that act as modifiers. The root symbols used in static analysis by the displacement method are
Tisted in Table 1. Square brackets, [ ], indicate two-dimensional arrays anq twisted brackets,

"{ }, indicate column vectors. Row vectors, which are less common, are usually indicated by ap-

_pending the transpose symbol, T, to the twisted brackets.

Subscripts are used exclusively to designate the subsets of displacement components to which

the root symbol applies as for example in the equation,
_ : T T
fag} = 1P} + TKe D' fugh + [KJtu ), , (1)

which is used to recover single point forces of constraint, {qs}, from diﬁp]acements at constrai-

ned points, {ug}, and at unconstrained (free) pointé, {ugl.  Nearly all of‘thé matrix operations

T in static ana]ysis:are'cqnqerned-wifh'partitioning, mefging and transforming matrix arrays from
‘ one subset of displacement cofnpo-r_l_ents to another. A1l the components of,displacement of a given
type {such as all points constrained by single-point constraints) form a vector set that is dis-

tinguished by a_subscript from other sets. A .given component of displacement can belong to se-

veral vector sets. The mutually exclusive vector sets, the sum of whose members are the set of

all physical components of displacement,'{up}, are listed in Table 2a.’

In addition, a number of vector sets are defined as the union of two or more independent

sets. See Table 2b.

In dynamic analysis additional vector sets are obtained by a modal transformation derived

from real eigenvalue analysis of the set‘{ua}; See Table 2c.

The nesting of the vector sets in Table 2 is depicted by the following diagram:
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In static analysis we are concerned only with the grid point set, {ug}, and its subsets.

The application of constraints and partitioning to the stiffness matrix involves, essentially,

the elimination of {um}, {us}, {uo} and {ur} from {ug} to form a stiffness matrix referred to
‘{ul}. A A | |

The physical and computational siqnificance§ of these operations are explained in Section

3.5. For the present it will only be emphasized that the concept of nested vector sets is ex-

tremely important in the theoretical development of NASTRAN. The reader may, in fact,. find it

useful at some point to memorize the relations, defined in Table 2, among .the displacement sets.

| Load vectors are distinguished by the same notation. Rectangular matrices are; whenever
necessary to clarify the meaﬁing of the symbol, disiinguiéhed by double subscripts réferring to
the vector sets associated with the rows and co]umns of the array. Superscripts have no ten-
spria1:characte% and are'uséd to identify arrays of different type or origin that refer to the

same sets such as in the equation,
- 1 2 .
[Mdd] = [Mdd + Mdd] ’ - (2)

where [Mld] is the structural mass matrix and [Mgd] is the direct inpui mass matrix.

Two: types of operations occur repeatedly. These are the partitioning (or sort) operation,

for example,
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and the recombining (or merge) operation
- - 4
- {ug} . (4)

In the sort operation indicated, the elements of {ug} are sorted into two lists. In the
merge operation {un} and {um} are combined into a single list. In all sort and merge operations
the resulting arrays are ordered according to the grid point sequence numbers of the displacement

components.

In addition to the formal symbols used in matrix operations, many other symbols are
required in the reduction of physical properties to matrix form. No special system is used for
the latter class of symbols. An attempt has been made, however, to adhere to established engineer-

ing conventions.
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{u}
{P}
{q}
{r}
[K]
M]
[8]
tRr]
(6]
(o]
(m]
(x]
(L]
[v]

STATIC ANALYSIS BY THE DISPLACEMENT METHOD

Table 1. Root Symbols Used in NASTRAN.

vector of displacement components

vector of applied load compohénts

vector of forces of reaction

vector of enforéed displacements

stiffness matrix

mass matrix

damping matrix

matrix of constraint coefficients, as in [R]{u}
transformation matrix, as in {um} = [Gm]{un}
rigid body transformation matrix

rigid body mass matrix

rigid body stiffness matrix

lower triangular factor of [K]

upper triangular factor of [K]
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. Table 2a. Mutually Independent Vector Sets.

u coordinates eliminated as independent degrees of freedom by multi-point constraints
u. coordinates eliminated by single point constraints

u coordinates omitted by structural matrix partitioning

0
Uy coordinates to which determinate reactions are applied in static analysis
u, the remaining structural coordinates used in static analysis (boints left over)
Ue extra degrees of freedom introduced in dynamic analysis to describe control sys-

tems, etc.

Table 2b. Combined Vector Sets

uy = ULt ul,_the set used in real eigenvalue analysis
Uy = Y, + Ugs the set used in dynamic analysis by the direct method

=4
-+
o

= y_ + Ugps unconstrained (free) structural coordinates

u, = ug*ug, all structural coordinates not constrained by multi-point constraints
ug = ugtugs all structural (grid) points including scalar points
up = ug +ugs all physical coordinates

Note: (+) sign indicates the union of sets

Table 2c. Modal Coordinate Sets

rigid body {zero frequency) modal coordinates

Ee finite frequency modal coordinates

['aad
I

Eo + Ef, the set of all modal coordinates.

B * ugs the set used in dynamic analysis by the modal method.

‘ Note: (+) sign indicates the union of sets.
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3.4 PROBLEM FORMULATION

The explanation of any complex activity must be subdivided into phases or steps in order to
be intelligible. In the case of a computer program for structural analysis it is convenient to
divide the total effort into a Problem Formulation Phase and a Problem Solution Phase. The ter-
mination of the Problem Formulation Phase is arbitrarily chosen to occur at the point where the
properties of the structure have been reduced to matrix form. (In the case of basic static an-

alysis this occurs between blocks 4 and 5 in the flow diagram of Figure 1, Section 3.2.)

3.4.1 Structural Modeling

The beginning of the Problem Formulation Phase occurs in the mind of the analyst. He con-
templates nature (or his navel, or whatever), decides what he needs to know, and constructs a
mathematical problem whose solution, he hopes, will provide relevant answers to his qugstions.

He will, naturally, require computational tools to solve his mathematical problem and, fortunately
6r unfortunately, the available tools have a strong influence on the analyst's choice of a math-
ematical problem. It would, after all, do no good to formulate a problem that could not be

solved.

The range of choice in mathematical problem formulation provided by NASTRAN is, however rich
in detail, limited to one basic approach, namely the use of finite element structural models.
This means that the substitute mathematical problem refers to an idealized model with a finite
number of degrees of freedom, a particular selection of topological objects (grid points and ele-
ments), and a Timited range of structural.behavior. The relevance of the behavior of the ideal-
ized structural model to the analyst's questions-clearly depends on the particular choice of
components for the model. This procedure, referred to as “structural mode]%ng,"rié the moét im;
portant step in the problem formulation phase, since the results of an analysis can be no better

than the initial assumptions.

The User's Manual contains a chapter on structural modeling. Section 14 of the Theoretical
Manual describes some advanced modeling techniques that utilize special features of NASTRAN. For
the present, a small example will serve to indicate the general nature of the modeling process

and some of the features of NASTRAN that relate to it.

Figure la shows a typical aircraft structure, a ring frame with a partial bulkhead acting as

a floor support. Although poor results are obtained when such structures are analyzed without
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considering the shell to which the frame is attached, the analyst may have a special reason for ‘
doing so. The resulting idealized model of the frame can, in any case, serve as part of the model

for the complete shell.
The idealized model selected by the analyst, Figure 1b, contains
.13.gfid points
4 Bar.elements (B)
2 Rod elements {(R)
2 Triangular Plate Elements (m)
3 Quadrilateral Platé Elements (Q)

Each grid point has six degrees of freedom (three translations and three rotations). The
analyst has, however, elected to analyze the response of the frame to a pair of vertical loads so
that it is unnecessary to consider out-of-plane motions of the frame. The out-ot-plane motions
are eliminated by applying single point constraints to three of the degrees of freedom (two rota-

tions and one translation) at each gridpoint (This can be implemented with a single data card).

- One of the necessary tasks in preparing input data is to specify the location of grid points.
In NASTRAN grid point locations can be specified by rectangular, cylindrical or spherical coordi-
nate systems (see Figure 2) and there may be an unlimited number of coordinate systems of each
type in a given problem. A1l that is required is that they be related, directly or indirectly,
to each other and to a "basic" coordinate system, which is rectangular. In the example of Figure
1, the analyst found it convenient to locate grid points on the ring frame (points 1 to 4) with a
cylindrical coordinate system and to locate points on the floor bulkhead (points 5 to 13) with a

rectangular coordinate system.

A separate task is the selection of coordinate systems to express the components of motion
at gkfd points. In the example of Figure 1, the coordinate systems for motion have been selected

to be identical to the coordinate systems for grid point location, although this is not required.

It will be noted in Figure 1b that the grid points for the ring frame are located on the outer
edge of the frame rather than along its centerline. This will not result in poor accuracy if the
provision for offsetting the neutral axis of Bar elements is exercised. Reinforcing Rod elements

(R1 and R2), which have axial stiffness only, are placed between grid points 11, 12, and 13 to
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simulate the stiffener along the centerline.

The Plate elements (T's and Q's) are selected to contain membrane (plane stress) properties
only, since out of plane bending is precluded by the nature of the loading. No restraint on in-
plane rotation (ez) is provided by the plate elements so that the ez component of motion must be
eliminated by more single point constraints at gridpoints 6 to 13. A special problem occurs at
grid poin; 5 because of the requirement to maintain compatibility of inplane rotation between the
adiacent bar element (B4) and the adjacent iriangu]ar plate (T]). The problem is solved by means
of a multipoint constraint between inplane rotation (ez) at grid point 5 and the vertical motions

(uy) at grid points 5 and 6. The equation of constraint is
y6 | (1)

Additional single point constraints are required along the centerline of symmetry to con-
strain motions in the x direction (including the 6 direction at gridpoint 1). A special type of
single point constraint, known as a reaction, is used to constrain vertical motion at grid point
13. Constraints of this type are automatically removed when a static analysis is followed by a
dynamic analysis. In addition, a special check calculation is provided (see Section 3.5.5) to

determine whether the input impedance at reaction points is correct.

It will be noted that the grid points in Figure 1 have been numbered consecutively starting at
the top. More than a sense of orderliness is involved since the sequencing of grid point numbers
affects the bandwidth of the stiffness matrix and the resulting computér so]utfon time (see
Section 2.2). Grid point sequencing strategy is discussed in the User's Manual, The main idea is
that the arithmetic differences between the sequence numbers of grid points that are physically

adjacent should be minimized.

In order to facilitate grid point sequencing for thé preservation of bandwidtﬁ. the user is
permitted to specify grid point numbers in two different ways. The external identification numbers
can be assigned to gkid points in any manner the user desires. Element connection and load infor-
mation prepared by the user refers to the external identification numbers. The internal sequence
numbers are generated by the user in a paired list that relates external and internal numbers.
Since the internal sequence numbers appear nowhere else in the input data, they may easily be

changed, if desired, to reflect an improved banding strategy. Preparation of the paired list is
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optional and the sequence of the external identification numbers will be used if the paired 1ist

is not provided.

Another sequencing feature of NASTRAN is the ability to insert new grid point sequence. numbers

anywhere in an established 1ist. This is done by the use of Dewey decimal notation, similar to '

that found in public Tibraries.

3.4.2 . Input Data Analysis

We have now arrived at the point in problem formulation where the digital.computer appears on
the scene. The user assembles the information discussed above {plus a dreat many details that |
were not mentioned) and enters it on punched cards that are input to the computer. In problems.
that have many grid points arranged in regular patterns he may elect to write a small auxiliary
program that will prepare and punch most of the input data cards (or their card images on magnetic
tape). Such "supermarket" programs (so called because they can produce a shopping cartload of
data cards) are a regular internal feature of some structural analysis progrems but not of
NASTRAN. They were not included because they become quite intricate, and hence, difficult to use,
as_they are given the generality that is needed for diverse applications. It is_easier, on the

average, to write a new supermarket program for each type of application. The user can, by means

of the ALTER feature (see Section 1.2), incorporate such subroutines into NASTRAN;

When assemb]ed the NASTRAN data deck. cons1sts of the fo]10w1ng three parts

’.t. Executive Contro] ‘Deck
2. Case Contrql.Deck

3." Bulk Data Deck

The Execut1ve Control Deck 1dent1f1es the JOb and the type of so]ut1on to be performed ‘it.l

'also dec]ares the genera] conditions under which the JOb 15 to be executed, such as, max1mum t1me

allowed, type of system d1agnost1cs desired, and restart cond1t1ons If the JOb 1s to be executed

with a r1g1d format, the number of the rigid format 1s declared along w1th any a]teratlons to the
rigid format that may be des1red If D1rect Matr1x Abstract10n is used the- complete DMAP

sequence must appear in the Execut1ve Contro1 Deck.

The Case Control Deck defines the subcase structure for the problem, makes selections from the
Bulk Data Deck, and makes output requests for printing, punching, and plotting. The subcase struc-

ture for each of the rigid formats is described in the User's Manual. Loading conditions,
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boundary conditions, and other items are selected from the Bulk Data Deck in order to define the

structural model for each subcase.

The Bulk Data Deck contains all of the details of the structural model. Much of this deck is
associated with the definition of the grid points (grid cards) and the manner of connecting the

grid points with elements (connection cards).

A number of important preliminary operations are performed on the data deck by the Input File
Processor. It sorts the Bulk Data Deck, and stores it on the New Problem Tape. It checks the
data cards for fatal errors. It creates the data blocks used by functional modules. If fatal

errors are detected, suitable error messages are written and the execution is terminated.

3.4.3 Geometry Processor and Structure Plotter

The various parts of the Geometry Processor (see Figure 1 of Section 3.2) perform the follow-

ing general tasks:

1. Generate all required coordinate system transformation matrices and determine the

Tocations of all grid points in the basic coordinate system,
2. Replace external grid point numbers with their internal (sequential) indices.
3. Generate multipoint constraint equations and lists of single-point constraints.

4. Generate flags indicating the displacement components which are members of each displace-

ment vector set (see Section 2.1.5).

Grid points may be defined in terms of the basic coordinate system or in terms of “"local"
coordinate systems (see Section 3.4.1). The Geometry Processor calculates the location and orien-
tation of each ]o¢a1 coordipate system relative to the basic system. This information is saved
for later use by the vafigus modules in making coordinate system transformations. The basic

system is used for plotting (see Section 13).

As explained in Section 3.4.1, coordinate systems for expressing components of motion can be
freely selected so that, for example, each grid point may have a unique displacement coordinate
system associated with it. The collection of all displacement component directions in their own
coordinate systems is known as the "global" coordinate system. A1l matrices are formed and all

displacements are calculated in the global coordinate system.
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The Structure Plotter is run after the second phase of the Geometry Processor. At this stage ‘
of the execution there is sufficient geometrical information in suitable form to prepare a plot of

the undeformed structure.

3.4.4 Assembly of Structural Matrices

The Element Matrix Generator (EMG) and the Element Matrix Assembler (EMA) geheraté the
stif%neés, mass, and damping matrices for the structural model. For efficiency in restart,
partjéﬁ]ar]y when changing from sfatics to dynamics problems, the structural matrices [Kgg], [Kgg],
[Mgg] and [ng], are assembled by four separate executions of EMA., EMG generates the various
types of structural matrices on a selective basis. A third part of the matrix assembly matrix
operation (SMA3) adds the contributions of the general elements (see Section 5.7) to the

stiffness matrix.

The Element Matrix Generator refers to the appropriate "element" routines for calculation
of the stiffness, mass and damping matrices for each element. The elements available for use are
described in Section 5. The matrices for each element are initially generated in an element

coordinate system that is characteristic for each element type. The element matrices are trans-

formed to the global coordinate system prior to transfer to direct access secondary storage.

The Element Matrix Assembler assembles séveral columns of the structural matrices at one
time. . The number of columns assembled in one operation is limited by the space available in
' main storage. The requiré& element matrices are transferred from secondary §torage using the
direct access read operation. Thé completed columns of the structural matrices are written on

e secondafy storaée by:usihg the ‘regular NASTRAN pack routines.

Prior to writing the tdmp]eted_matriceﬁ.for each grid point on secondary‘sforage devices, they
are checked for_singu1arities at the grid point level. angu]arjties remaining at this Tevel, fol-
'1owihg a- check of a list of the single-point constraints and the dependent coordinates of the multi-
point constraint'eqUatibns are treated as warnings to the user. They are treated only as.Warnings
bécause it cannot be detefmineduat the grid point Tevel whether or not the singularities are removed
‘by other means, such as by general elements or by mu}tipoint constraints in which these singularitie

are associated with independent coordinates. - - ..~

Singularities are detected by examining the diagonal term for scalar grid points and the 3 x 3

matrices located along the diagonal of the stiffness matrix and associated with the rotational
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and translational degrees of freedom for geometric grid points. If the diagoﬁal term for a scalar
point is null, this fact is noted in the Grid Point Singularity Table (GPST). If either of the

3 x 3 matrices, associated with a geometric pdint,.is singular, the diagonal terms and the 2 x 2
minors are examined to defermine the order of singularity and the column or columns associated with
“the singularity. The order and locations of any»ﬁingularfties at geometric grid points are added

" to the GPST. '

. Although the matrices generated by>the Structural Matrix Assembler are symmetric, complete
columns are generated and retained for efficiency in succeeding matrix operations. This is nec-
essary because all matrix operations are performed one column at a time (see Section 2) and in
dynamics applications the matrices are not necessarily symmetric. Moreoever, the availability of

symmetric matrices by rows or by columns is advantageous in some of the matrix operations.
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&P

P

a. Ring frame with floor bulkhead .

b. Idealized structural model.

Figure 1. Example of structural modeling. ‘
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Grid Point

(2) Rectangular

——

Local System

uy -z direction

N

Uy - ] direction

uy - r direction
(b) Cylindrical

‘ Local System

Grid Point

uy - p direction

us - ¢ direction

(c) Spherical u, - 6 direction

Local System Grid Point

Figure 2. Disp]acement coordinate systems,
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’ 3.5 CONSTRAINTS AND PARTITIONING

Structural matrices are initially assembled in terms of the set, ug, of all structural grid
points, which excludes only the set, Ugs of extra points used in dynamic analysis. This section
will describe the subsequent reduction of the structural matrices to the set, ug, which is the
set of coordinates that remain after all constraint and partitioning operations have been perfor-

med, and which is, therefore, the first set to be'eva]uath in static analysis.
The structural matrices whose assembly is discussed in the preceding section are:

[K ] the structural stiffness matrix due to elastic structural elements

99
[Kgg] the structural damping matrix of imaginary stiffness coefficients
[ng] the viscous damping matrix due to damper elements

[Mgg] the structural mass matrix

The reduction procedures will be explained in full for the [Kgg] matrix. Procedures for the

other matrices will be shown only when they differ from those for [Kgg].

' Repeated use will be made of the notation system described in Section 3.3, to which the

reader's attention is directed.

3.5.1 Multipoint Constraints

The multipoint constraint equations are initially expressed in the form,
R - o, ‘ 1
[Ryltug} = 0. (1)

where the coefficients are supplied by the user. The user also specifies the degree of freedom

that is made dependent by each equation of constraint, so that the {ug} matrix may immediately be

. u . B . '_ .
{ug} = {—“—} , (2)
u

where the set, Ups is the set of dependent degrees of freedom. The matrix of constraint coeffi-

partitioned into two subsets,

cients is similarly partitioned
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so that Equation 1 becomes

[RpJu } + [R Iy } = 0. (4)
[Rm] is a nonsingular matrix. We can, therefore, form the multipoint constraint matrix,
I
= lrp
(6,1 = -[RI1'(RI, (5)
so that Equation 4 may be stated as
{um} = [Gm]{un} . {6)
Prior to the imposition of constraints, the structural problem may be written as
K = .
[ gg]{ug} Py} (7)

or, partitioning in terms of the coordinate sets, u, and Un

i Dl G e G (8)

t
1
i

Bars over sy@bo1s are used to designate arrays that are replaced in the reduction process.

The addition of constraints to the structure requires that the forces of constraint be added
to the equilibrium equations. It is shown in Section 5.4 that the forces of constraint are pro-
portional to the corresponding coefficients in the constraint equations. Thus, writing the equi-

1librium and constraint equations together in partitioned form,

T -

Knn ] nm : Gm un n \
_g'?f'_l—i" U T

nm :Kmm ! Un( ~ m ’ (9)
-t - __

6, 1-1 | 0lq 0

where {q } is the vector of constraint forces on'{um}; Straightforward elimination of u, and g

gives

(Ron T, kGl = (P 16,1 1PY (10)

T
* Kanm * Gm Knm m mmm
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or
[Knn]{un} = {Pn} s (11)
where
. T, T,oT ,
Knn - Knn * Kanm * Gm Knm * Gm Kmme g (12)
and
. B T .
P, = P +G P . : - (13)

The initial partition of Kgg and the operations indicated by Equations 5, 12 and 13 are per-
formed by appropriate modules of the program. The multipoint constraint matrix, Gm, is used in
structural matrix reduction (Equation 12), load vector reduction, (Eduation 13} and data recovery

(Equation 6). It is saved for these purposes .in an auxiliary storage file.

The other structural matrices, [Kgg]’ [ng] and [Mgg], are transformed by formu1a§ that are

jdentical in form to Equation 12.

3.5.2 Single Point Constraints

Single point constraints are applied to the set, Ugs in the form
fu} = (v}, - (14)

where {YS} is a vector of enforced deformations; any or all of whose elements may be zero. The

set, u» is partitioned into ug and uf(the free or unconstrained set)

u < N :
tu} = s
uS

The stiffness matrix,'Knn, is similarly partitioned
Kee ! e . _

The complete structural equations including the single point forces of constraint, g may be

written in partitioned matrix form as
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! 1 I}
Ser 1 Xes 1O N\
Tt | _

Kes 1 Kss :'I ug> = P (17)

- = |-+ -

o ;1 0](q Y

Straightforward elimination gives

[Kff]{uf} = {Pe)- [Kfs]{Y; = {Pel (18)

The forces of constraint are recovered by means of the middle row of Equation 17, i.e.,
- T (19
{qs} = -{PS} + [Kfs ]{uf} + [KSS]{uS} . (19)

Thus all three of the d1st1nc§ pgrt1t1ons of Knn (i.e., Kff, Kfs and Kss) are needed in subse-
quent calculations, and are placed in auxiliary storage. For the other structural matrices

ﬁn’ Bnn’ and Mnn) only the (ff) partitions are-saved. The assumption is made, implicitly, that

(K
the effects of the other structural matrices on the single point forces of constraint may be ig-

nored.

3.5.3 Partitioning

At user option the set of free coordinates, Ugs may be partitioned into two sets, U, and Ugs

such that the u, set is eliminated first. Thus
u
_ a
{Uf} = {—u—} . (20)
0

The equilibrium equations after the elimination of constraints (Equation 18) may be written

in partitioned form as

- | .
faa LYo 1)l )%
71 1= ) (21)
Kao IKoo Yo Po
Rearrange the bottom half of Equation 21:
- ’ T \
[Koo]{uo} = {Po} - [Kao] {ua} . (22}
and solve for {uo}:
o= Ik TPy -k Tk 1T
0 00 o 00 ao a’ . (23)
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(Note that in practice stiffness matrices are never inverted due to excessive computer running
time. The practical alternative will be explained presently.)

Substitute for Uy into the top half of Equation 21:

- _ -1
[X KaoKoo  Kao ]{ua} = P} - [K K] P} . (24)

aa a0 00

It is convenient to define the matrix
_ -1 T
(6,1 = ~[Kod ' [K1" (25)
so that Equation 24 becomes
2 _ 5 T
[Kaa + KaoGo]{ua} = {Pa} + [Go] {Po} . (26)
where advantage is taken of the symmetry of [Koo].

Following the practice of condensation established in preceding subsections,

(K, Ju} = P} (27)

where
[k,,] = [K,1+ (K, 1060, (28)
P} = P60} (29)

The [Go] matrix defined in Equation 25 is obtained practically from the solution of

(K, J06,] = (K, 17, (30)

ao
where [Kao]T is treated as a set of load vectors. Each such vector bfoduces a column of [Go]:
The [Koo] matrix is first decomposed into lower and upper triangular factors, using a subroutine
based on the techniques described in Section 2.2. The additional steps required in solving the
matrix equation [AJ{x} = {b} are described in Section 2.3.
1
Once {ua} is obtained the set of omitted coordinates, {uo}, is obtained as follows. Define

the set {ug} as the solution of

(Ko Jud} = (P} (31)

Note that the triangular factors of [Koo] obtained in connection with Equation 30 are saved

3.5-5



STATIC ANALYSIS BY THE DISPLACEMENT METHOD

for use in connection with Equation 31 which cannot be solved until the load vector {Po}-is for- ‘

med. Then, using Equations 25 and 31 in Equation 22,
_ 0
fugh = {ugd + [6,3u} . (32)

Partitioning, which is an optional feature of the program, has a number of important uses.
The first is as an aid to improved efficiency in the solution of ordinary static problems where it

functions as an alternative to the Active Column technique (see Section 2.2) in reducing matrix

bandwidth. 1In this application the user puts into the set uy those degrees of freedom that are

excessively coupled to the remainder.

In a related application, members of the set u, are placed along lines or in planes of the
structure such that the remaining Uy grid points in different regions are uncoupled from each other
as shown in the wing structure of Figure 1. The grid points are sequenced so that all grid points
in region (1) precede those in region (2), etc. As a result the decomposition of [KOO] is faster
because the bandwidth is smaller (redu@ed to approximately 1/3 in the example). The Uy set is
small compared to u, so that its solution is not particularly time consuming. Even here proper

grid point sequencing can introduce banding into the [Kaa] matrix. ‘

Matrix partitioning also improves efficiency when solving a number of similar cases with
stiffness changes in local regions of the structure. Thg Uy qnd Uy sets are selected so that the
structural elements that will be changed are ﬁonnected only to grid points in the Uy set. The
[Koo] matrix is then unaffected by the structural changes and only the smaller [Kaa] matrix reed be
decomposed for each case. An application of partitioning that is important for dynamics is the

Guyan Reduction, described in the next subsection.

3.5.4 The Guyan Reduction

(1)

The Guyan Reduction is a means for reducing the number of degrees of freedom used in dyna-
mic analysis with minimum loss of accuracy. Its basis is that many fewer grid points “are needed

to describe the inertia of a structure than are needed to describe its elasticity with comparable
accuracy. If inertia properties are rationally redistributed to a smaller set of grid points, the

remaining grid points can be assigned to the u_ set described in the preceding subsection and eli-

)
minated, leaving only the smaller uy set for dynamic analysis.

(])?gggn, R.J., "Reduction of Stiffness and Mass Matrices”. AIAA Journal, Vol. 3, No. 2, Feb, ‘
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In the Guyan Reduction, the means by which irertia (and damping) are vedistributed is to

consider the [Go] matrix of the preceding subsection as a set of rigid constraints, such that
{uo} = [Go]{ua} . (33)

The [Go] matrix now has the same implications for the Uy coordinates that the multipoint con-
straint matrix, [Gm], has for the Uy coordinates (see Equation 6). The reduced structural-mass

matrix is, by analogy with Equation 12,

T, T T

(Ml = My MaoSo * Go Mao * &g MooGo:| ) (34)

The reduced damping matrices, [Kaa4] and [Baa]’ are formed in the same manner. The structural
stiffness matrix, [Kaa], is given by Equation 28. The reduced dynamic load vector is, by analogy

with Equation 13,
®3) = {(F,+6'p} (35)
a a 0 0 '

The approximation made in the Guyan Reduction is that the term {ug} in Equation 32 is neglec-

ted; i.e. that the deformations of the u_ set relative to the uy set due to inertia and other

o
loads applied to the Uy set are neglected. The error in the approximation is small provided that
the Vg sét is judiciously chosen. ‘The selection should be based, in part, on an estimate of the
relative deformations,'{ug}. Thus the ‘members of Uy should be uniformly dispersed throughout the
structure and should include all 1argé mass items. The basic assumption made in the Guyan

Reduction is identical to that made in forming consistent mass matrices for individual elements,

see Sectjon 5.5,

-.3.5.5 Special Provisions for Free Bodies

A free body is defined as a structure that is capable of motion without internal stress.
The stiffness matrix for .a free body is singular with the defect equal to the number of stress-
free {or free body) modes. A solid three-dimensional body has six or fewer free bady modes.
Linkages and mechanisms can have a greater number. No restriction is placed in the program on.

the number of stress-free modes in order to permit the analysis of mechanisms.

The presence of free body modes alters the details of many of the calculations in structural
analysis. In static analysis by the displacemént method, for example, the free body modes must be

restrained in order to remove the singularity of the stiffness matrix. We aré concerned, in this
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section, with some of the special provisions of the program for the treatment of free bodies in- ‘
cluding the specification of determinate reactions for use in static analysis, the evaluation of

the inertia properties of free body modes for use in dynamic analysis, and a special diagnostic

procedure for the detection of inconsistent constraints. Other special provisions are the calcu-

Tation of inertia relief loads, treated in Section 3.6.3, and the procedures employed in the mode

acceleration method of dynamic data recovery, treated in Section 9.4.

1f a problem concerning a free body includes both static and dynamic solution céses, a sub-
set, Ups of the displacement vector, Ugs must be constrained during static analysis. The subset,
Ups is specified by the user such that the members of the set are- just sufficient to eliminate the
stress-free motions without introducing redundant constraints. The complete static equilibrium

equations are

[Kyadlud = P}, , (36)
or, partitioning Uy into u. and Ups
kKL k T p
28 Vg
_T_—l-_t b e (37)
KQr ! Krr ur Pr

In static analysis the Uy set is rigidly constrained to zero motion so that the final prob-

lem solved in static analysis is
r =
LKM]{UR} {PQ} . (38)

The forces of reaction, {qr}, which are of interest in their own right and which are also

needed in the solution of inertia relief problems, are evaluated from the equation
{a) = -(p.} + [k 1T(u,} (39)
r r r 2 ’

or, substituting for {ug} from the solution to Equation 38,

ta,} = -} + [K, 1K, TP ) (40)
1t is convenient to define the matrix
-1 .
i Gy,
Oﬁ‘ 2 fé’gg&
@ N“a‘h:l
@yt L
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‘ so that, taking advantage of the symmetry of [K,,],
9} = - }-[01¢,} . (42)
r r [

The [D] matrix is also used in the evaluation of the free body inertia properties of the structure.

It is obtained practically by solution of the matrix equation
(K, 00 = [x, 7. (43)

K,,] is decomposed into triangular factors, [L,,] and [U, ], which are saved and used in the
28 g  Lhogd a0 W0

solution of Equation 38 after the load vector'{PQ} has been evaluated.

It may be seen from Equation 37 that, in the absence of forces on the u_ coordinates,

L

g} = Ik 17K, Ju} = (004w} . (44)

Thus the [D] matrix expresses the rigid body motions of-the structure in response to displace-

ments imposed at the reaction points.

The mass matrix, partitioned according to the u, and u. sets, is

L

M, = f-—=—-| (45)

If Equation 44 is taken as an equation of constraint for free body motion, the reduced mass
matrix referred to the U, coordinates is, by analogy with Equation 34,
T T T

[m] = DMy, * My, [0+ D'ty + D'Mge0] (46)

The free body mass matrix, [mr], and the rigid body transformation matrix, [D], complete the spe-

cification of the free body inertia properties that are used in dynamic analysis.

It is desirable to have a check on the compatibility of the single point and multipoint con-
straints previously placed on the structure with the canstraints placed on the reaction points,

u_.. Such a check is obtained by noting that, if the u

r set is eliminated from Equation 37, the

2

matrix is
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X] = [K.-K. 'k "

-re L R SLY‘]

- [Krr4+‘K2rTD] .,;. A' ' (47)

The [X] matrix is computed by the progrém and its largest term is-given to the user so that
he may take appropriate action. No automatic test is built into the program. The [X] matrix may

. be nonzero for any of the following reasons:

| ']. Round-off error acéumu]atfon

’ 2.':{ur} is overdeterminéd (redundant suppoffs)‘-ll
3. '{ur} is underdetefmﬁnea (Kzz fs‘singU]ar) '

.4. The multipoint constraints are incompatib]e;

5. There are too many single point constraints.
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CONSTRAINTS AND PARTITIONING

Grid- Points in the
Interiors of Regions
are Placed in the

Ug Set

Grid Points Along
These Interior Lines
are Placed in the
u, Set

Figure 1. Use of partitioning to decouple regions of the structure,
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3.6 STATIC LOADS

3.6.1 Generation of Loads

In NASTRAN, static loads are applied to geometric and scalar grid points in a variety of

ways, including
1. Loads applied directly to grid points.
2. Pressure on surfaces.
3. Gravity loads, (internally generated).
4. Centrifugal forces due to steady rotation.
5. Equivalent loads resulting from thermal expansion.
6. Equivalent loads resulting from enforced deformations of structural elements.
7. Equivalent loads resulting from enforced disp]aceménts of grid points.

A force or a moment applied directly to a geometric grid point may be specified in terms of
components along the axes of any coordinate system that has been defined. Alternatively, the di-
rection of a force or a moment may be specified by a vector connecting a pair of specified grid
points or as the cross-prodyct of two such vectors. A load on a scalar point is specified by a

single number since only one component of motion exists at a scalar point.

Pressure loads may be applied to triangular and quadrilateral plates and to axisymmetric
shell elements. The positive direction of loading on a triangle is determined by the order of the
icorner grid points, using the right hand rule. The maghitude and direction of the load is auto-
matically computed from the value of the pressure and the coordinates of the grid points. The

load is divided equally to the three grid points.

The direction of pressure load on a quadrilateral plate is determined by the order of its
corner grid points which need not lie in a plane. The grid point loads are calculated by dividing
the quadrilateral into triangles in each of the two possible ways and applying one-half of the
pressure to each of the four resulting triangles. Severely warped quadrilaterals should be sub-

divided into triangles by the user in order to provide better definition of the surface.

The user specifies a gravity load by providing the components of the gravity vector in any

defined coordinate system. The gravitational acceleration of a translational component of motion,

3.6-1 .. spRODUCIBILITY OF THE
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aj» at a geometric grid point is

a; = g - 8. , ) , (1)

<> . . > : . . . N .
where g is the gravity vector and e; is a unit vector in the direction of us. For rotations, a;

is zero. The gravity load is then computed from
pITy = M
P2} [ gg]{a} , (2)

where’[Mgg] is the mass matrix referred to the ug displacement set. It should be notedvthat the
gravitational acceleration is not calculated at scalar points. The direction of motion at scalar
points is established indirectly by constraints and by other forms of coupling with geometric grid

points. The user is required to introduce gravity Toads at scalar points directly.

A centrifugal force Toad is specified by the designation of a grid point that lies on the
axis of rotation and by the components of rotational velocity in a defined coordinate system. The
components of force acting on a rigid body in a centrifugal force field are most simply expressed
in a Cartesian coordinate system that is centered at the center of gravity of the body with axes

directed as shown below.
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The components of load are

Px mro
P 0"
Yy

cf PZ 2 °

'} = = Q , (3)

MX -Iyz
My Ixz
MZ 0

where m is the mass of the body, I fpxzdV), and Iyz = fpyzdV. For use in the program, the com-

Xz
ponents of force and moment are transferred from the center of gravity to the grid point and its
local coordinate system; the elements of the mass matrix, Mgg’ are used in the calculation of the
loads. Note, however, that the mass matrix is regarded as pertaining to a set of distinct rigid
bodies connected to grid points. Deviations from this viewpoint, such as the use of scalar masses

or the use of mass coupling between grid points, can result in errors.

The equivalent loads due to thermal expansion are calculated by separate subrohtines for each
type of structural element, and are then transferred from the internal coordinates of the element
to the coordinates of the surrounding grid poﬁﬁfs. -The equations that define the equivalent forces

and moments are derived for each element in Section 5.

The user may define temperatures by more than one method. For BARS, R@DS, and PLATES the
temperature may be specified for each individual element. The temperature specification for BARS
and RPDS includes the average temperature and, in the case 6f the BAR element, the effective trans-
verse thermal gradient at each end. The temperature of a PLATE element can vary arbitrarily in
the direction of the thickness, but it is assumed to be“independent of position on'the surface.

For all other elements that permit thermal expansion, and for BARS, R@DS, and PLATES if their tem-
peratures are not individually specified, the temperature is obtained by averaging the temperatures
specified at the grid points to which the element is attached. Temperature-dependent thermal
expansion coefficients and elastic moduli” are stored in material properties tables which the use
applies to each structural element by specifying the code number of its material. The average’

temperature of an element is used to determine its temperature-dependent material properties.
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Enforced axial deformations can be applied to the one-dimensional elements (BARS and RODS).
They are useful in the simulation of misfit and misalignment in engineering structures. As in the
case of thermal expansion, the equivalent loads are calculated by separate subroutines for each
type of structural element. In the caée of a bar, for example, the equivalent loads placed at the
ends are equal to EASu/% where E is the modulus, A is the cross-sectional area, éu is the enforced

expansion, and £ is the length of the bar.

Enforced displacements at grid points are discussed in connection with sing1e point con-

straints, Section 3.5.2.

3.6.2 Reduction of Load Vectors to Final Form and Solution for Displacements

The operations by which structural matrices and load vectors are reduced from the ug set to

the uy set have been described in Section 3.5. In the program, the reduction of load vectors to

final form is performed in a single module, (SSG2). The operations are summarized below.

1. Partition the load vector, {Pg}, whose generation is described in the preceding subsection,

according to the set of coordinates, u_, that are restrained by multipoint constraints,

m’
and the set, Ups that are not.

Pn
P = — —
Py} (4)
- Pm
2. Eliminate multipoint constraints.
- (F T
{Pn} = {Pn} + [Gm] {Pm} . (5)

3. Partition {Pn} according to the set of coordinates, Us that are restrained by single

point constraints and the set, uc, of free coordinates.

{r} = SE?E . (6)

n (P

4. Eliminate single point constraints.

S

{r

¢t = {Pe - ;KfS]{vs} : ‘ (7)
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. 5. Partition {Pf} according to the optional partition scheme described in Section 3.5.3.
a

{Pf} = - . (8)
p
)

6. Eliminate the set of omitted coordinates, Uye
Py = .3+ 061} (9)
a a 0 0 :

7. Partition {Pa} according to the set of coordinates, Uy that are restrained by free body

reactions, and the set, Ups that are not.

2
{Pa} = (- .o (10)
P
r
{P,} is the Toad vector in final form,
‘ In the program the displacement vector set, Ugs is obtained from solution of the equation
(Koo Jlud = (P}, (1)

in a separate module, (SSG3). It will be recalled, Section 3.5.5, that the triangular factors of
[ng] were previously computed in order to form the rigid body matrix, [D]. The operations per-

see

formed in SSG3 are the forward and backward passes through the triangular factors of [KQZ] (

Section 2.3) for each loading condition.
"The vector set,"ug, that describes disb]acements of ‘the omitted set refative~to the re-

maining set (see Section 3.5.3) is also obtained in SSG3 from solution of the equation

[k Huol = (P} . (12)

The triangular factcrs of [Koo] were previously computed in order to form [GO].
Double precision arithmetic is used in the formation and triangular decomposition of struc-

tural matrices, so that significant error due to the accumulation of round-off is regarded as un-

1ikely. Such errors can occur, however, in exceptionally ill-conditioned problems (see Section
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15.1). A test is provided in NASTRAN on the solution of Equations (11) and (12) that will indi- .

cate the presence of trouble to the user.

In the test a residual load vector is first obtained from
{GPl} = {Pz} - [Kzzj{ug} (13)

The work done by the residual Toad vector is then compared with the work done by the applied load
vector in the residual energy criterion,

T |
sP.}
lupd (oR} (14)

ee-

=
{ug} {Pz}

Iterative improvement, such as might be obtained by computing second and higher order resi-

dual load vectors,

6Mey = ey - kg™ Dy (15)

is not attempted. The gain in accuracy from iterative improvement is largely illusory because

errors'made in the formation of [K], which are of the same order as those made in the triangular

decomposition of [K], are uncorrected7 This matter is discussed more fully in Section 15.1.
3.6.3 Inertia Relief

When a free body is subjected to loads that are not in equilibrium, the body is accelerated
in its rigid body (or more generally, free body) modes. If\the time rate of thange of the applied
loads is small compared to the frequency of the lowest elastic mode of the system, an approximate
state of equilibrium exists between the applied loads and the inertia forces due to acceleration.
Stresses in the body may be computed, in this case, from an applied load distribution that in-
cludes the inertia forces. The term "inertia relief" is applied to the effect that the inertia
forces have on the stresses. In order for an "effect" to be defined, a condition in which the
- effect does not exist must be imagined. In the case of inertia relief, the "effect-free" condi-
tion is one in which the free body is restrained by determinate supports. The choice of support
points is arbitrary, but usually corresponds to a natural or customary location (e.g. the inter-
section between wing and fuselage of an aircraft). Although the condition including inertia ef-
fects is the correct solution, the analyst may also be interested in the results for the supported

condition.

3.6-6 (7/1/70)




STATIC LOADS

. The general procedure for including inertia relief in static analysis is as follows:

1. Select, from the displacement vector'{ua}, a subset'{ur} of determinate support points as

has been discussed in Section 3.5.5.

2. Find the accelerations {Ur} due to the applied 1oads'{Pa}. This requires evaluation of

the rigid body mass matrix [mr] referred to points‘{ur}.

3. Calculate accelerations at all other points'{uo} and the corresponding inertia forces.

4. Add the inertia force vector to the applied load vector and solve for the displacements
| {uz} while the structure is rigidly restrained at points,'{ur}. The forces of reaction

will be zero.

. The equations of motion for the body, expressed in terms of the displacements, u., can be

written
Lmr]fur} = {P}} = -{qr} . (16)
[mr] is the mass matrix reduced to the u. coordinates. It is evaluated from partitions of the
‘ [Maa] matrix by means of Equation 46 of Section 3.5.5. Wr‘}' is the applied load vector reduced

to the U coordinates. It is numerically equal to -{qr}, the set of determinate reactions, eva-

Tuated in Equation 42 of Section 3.5.5.

Solution of Equation 16 gives
A -1
{ur} = -[mr] {qr} . (17)

The accelerations of the remaining points {”z}’ assuming uniform acceleration as a rigid

body, are obtained from Equation 44‘of Section 3.5.5,
{ui} = [D]{ur} . _ (18)

The inertia forces acting on the u, coordinates are, utilizing the partitions of the [Maa]

2
matrix shown in Equation 45 of Section 3.5.5.

] - .
G I R [0 I ()

M0+ M, Im I 7Mq ) . (19)
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The vector {P;} is added to the applied load vector {Pl} in problems where the inertia relief ef-

fect is included. Since [mr] is usually of small order, its inversion is not troublesome.

The inertia relief effect is also included in the calculation of the displacement set, ug,
that expresses the motions of the omitted coordinates, Ugs relative to the uy coordinates. The

inertia force vector for the omitted coordinates is

iy .. . .
{Po} = Mooty = My Uy! : (20)

Now, if acceleration as a rigid body is assumed,

Gy - et e (e - {mre

r

and
{uo} = [Go]{ua} . (22)
Thus, the inertia force vector for the omitted éoordinates is

{P;} : '[MooGo * MaoT][%][mr]-]{qr} ’ (23)

which should be added to {Po} in Equation 12.
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‘ 3.7 DATA RECOVERY

Data recovery in static analysis by the displacement method is performed in two steps:

STATIC ANALYSIS BY THE DISPLACEMENT METHOD

1. Recovery of displacement sets that were eliminated during the reduction of the stiffness
matrix to final form, resulting in the formation of the complete grid point displacement

vector, ug.

2. Recovery of internal forces and stresses in structural elements, using the grid point
displacement vector, ug, to define the displacements at the corners of each element.
Margins of safety are also calculated. Separate subroutines are used for each type of

element.

The above steps are discussed in separate subsections.

3.7.1 Recovery of Displacements

Solutions for the vector sets, u, and ug, are discussed in Section 3.6.2. The remaining

L
operations required to recover the complete grid point displacement vector, ug, are as follows:

‘ 1. Merge Uy whose elements are all zero j‘n static analysis, with up to form ug-

N
{%} o). (1)

2. Recover the omitted coordinates, Uy
_ 0
{ugd = [6,TMu} + {uj} . (2)

3. Merge Uy and ua'to form the vectors of freé coordinates, Ug-

u .
{u—a} > {ug). (3)
o

4. Evaluate the single point constraint set, u-
{us} = {Ys} . (4)

{Ys} is the vector of enforced displacements.
. 5. Merge u; and u, to form u, . OF,GINAL Py
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Ur
{‘as—} g {Un} f (5)

6. Recover the multipoint constraint set, U

W = 06 lu) (6)

7. Merge u, and Un to form ug.

.“n}
{“m > {ug}- ’ (7)

The matrices [Go] and [Gm}, used in the data recovery process, were generated during the re-

duction of the structural matrices to final form and were placed in auxiliary storage.

A miscellaneous task that is performed in the same module that recovers ug is the recovery of

the single point forces of constraint,
- T
{qS} - -{PS} + [KfS] {uf} + [KSS]{US} . (8)
fhe_mu]tipoint forces of constraint are not recovered.

3.7.2 Recovery of Stress Data

Internal forces and stresses in structural elements are calculated from knowledge of the dis-
placements at the grid points bounding the element and the phyéica] parameters of the element, in-
cluding geometric properties, elastic .properties, and temperature. The equations by which inter-
nal forces and stresses are calculated are contained in a separate subroutine for each type of

element. They are discussed in Section 5.

In the calculation procedure, the stress recovery parameters for as many elements as possible
are piaced in the high speed memory. The stresses are computed from the ug vector for the first
loading condition, and are placed in peripheral storage. The ug vectors for other Toading condi-
tions are then processed sequentially. The procedure is repeated for additional structural ele-
ments (if any) that could not be stored initially. The procedure that has been described makes

minimum use of INPUT/OUTPUT data transfers. For most elements, I/0 transfers are the Timiting

factor on computational speed in stress data recovery.
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‘ A number of different kinds of stress data are available for .each type of eleme;mt. With the
BAR element, for example, the user can request any or all of the following:
- Bending moments at both ends in two planes.
- Transverse shear forces in two planes.
- Axial force.
- Torque.
- The average axial stress.

- The extensional stress due to bending at four points on the cross-section at both ends.
The points are specified by the user.

- The maximum and minimum extensional stresses at both ends.

- Margins of safety in tension and compression for the whole element.

3.7.3 Grid Point Force Balance and Element Strain Energy Distribution_

The new method of element matrix generation introduced in NASTRAN Level 16 includes the
‘ feature that the elastic stiffness matrix for each element is individually saved in peripheral
storage. This feature makes practical é number of capabilities which would otherwise be pro-
hibitively expensive, including the determination of force balances at grid points and the cal-

culation of the strain energy distribution by elements throughout the structure.

The vector of elastic forces exerted by a structural element on its connecting grid points

is related to the displacements at these points by

{Fat = ~IKHu b (9)

where {ue} is the subset of the global degrees of freedom, {ug}, to which the elemént is con-

nected. The matrix [Kee] is computed by module EMG and stored.

The grid point force balances computed by NASTRAN include the force and moment contributions
in the global coordinate system of element elastic fqrces computed by Equation 9, applied loads
and single point forces of constraint. They do not include, at present, forces due to differen-
tial stiffness, multipoint constraints, general elements, or any dynamic effects. NASTRAN prints
the individual contributions of the former effects and their sum at each grid point. If none of

. the latter effects are present, the sum is due to round-off error. The sum is not the same as
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the residual used in the e test (see Section 2.3) because it is calculated at a different time in ‘

a different manner.

The strain energy within an individual element is
1 T ’
We =5 {Fe} {ue} . (10)

The user can request a 1ist of the percentages of the total strain energy stored in each element.
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3.8 PIECEWISE LINEAR ANALYSIS

The Piecewise Linear Analysis option of NASTRAN is used to solve érob]ems in materié1 plas-

ticity. The load is applied in 1ncréments such that the stiffnes§ properties can be assumed to

be constant over each increment.. The stiffness matrix for each increment is dependent on the cur-
rent states of stress in the structural elements. The increments in displacements and stresses are
accumulated to produce the final, nonlinear results. Since the algorithm assumes linearity between
sequential Toads, the results Will depend on the ‘'user's choice 6f load increments. When the user
selects large load increments and the material properfies are changing rapid]y, fhé results may bé.
unacceptably inaccurate. If small load increménﬁs ére used when the structurebis nearly linear the

solution will be very accurate but relatively costly.

3.8.1 Limitations and Available Options

The nonlinearity of a structural element is defined by the material used by the element. Any
isotropic material may be made nonlinear by including a stress-strain table defining its extension

test characteristics.

The stress-strain table must define a%nondebrehsing sequence of both stresses and strains.
Because the stiffness matrix for the first load increment uses the elastic material coefficients,

the initial slope should correspond to the .defined Young's Modulus, E.

The nonlinear effects depend on the element type. The elements which utilize the plastic

material properties are described in Section 3.8.4.

. ' ":ﬁ"
Linear elements and materials may be used in any combination with the nonlinear elements.
Elements with Tow stress states-may be-included in this category- by providing them with "linear"
material properties even though their actual properties are decidedly nonlinear at high stress

levels. Linear elements are used in a more efficient manner than the nonlinear elements.

A11 static load options excépt tempekature and enforced é]émenf”deformétion'ére'a11oWed with
piecewise linear analysis. The reason for the exceptibns is thét the équiva]eht‘grid point loads
depend on the stiffness of the structure and hence on the sequence of their application. For ex-

ample, éhanging tempefatdre after a load is app]ied gives different results than changing tempera-

.ture before the lcad is applied.

A1l statics constraint options are available including enforced displacement at grid points.
The use of enforced deformation in combination with applied loads has the ambiguity discussed
3.8-1
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above. In the program enforced displacements are increased simultaneously with the other loads.

No protective steps are taken to prevent the attempted decomposition of a singular stiffness
matrix. If the structure fails by buckling or yielding, a solution is still attempted and the re-

sults will be obviously erroneous.

3.8.2 OQverall Solution Logic

Although the Piecewise Linear Analysis rigid format uses many of the statics analysis modules,
the path through the various operations is substantially different. - A summary flow diagram is

given in Fighre 1. The various steps are given numbers corresponding to the explanations below:

1. The normal statics analysis "front end" is used to generate the grid point, element, and
loading tables. The stiffness matrix (and the mass matrix for gravity loads) is generated

in the normal manner using the moduli of elasticity given with the materials.

2. The element tables are separated into linear and nonlinear elements. The program recog-
nizes a nonlinear element as one that has a stress-strain table referred to by its mater-
jal. The linear elements are used to generate a linear stiffness matrix, [Kgg]' This

matrix will not change with loading changes.

3. The load vector for the whole structure, {Pg}, is generated by the normal methods except
that loads due to temperatures and enforced element deformations are ignored. The con-

strained points are also identified in this stage.

4. The "current" stiffness matrix is initially the Tinear elastic matrix; for subsequent
load increments the matrix is changed as shown in step 8. The constraints are applied to
the matrix in the normal sequence to produce the [Kzl]’ [Kfs]’ [KSS], and [Go] matrices.
The [Kzl] matrix is decomposed to produce the triangular matrices [Uzmj and [ng].

In a similar manner the applied loads, including enforced displacements at grid points,

are modified by the constraints to produce a load vector for the. independent coordinates,

{PQ}. The current load increment is:

(091} = (o = oy )W) = saylPl 1= T2, -

where a]; Ay, ... N are a set of load level factors provided by the user.

PRODUCIBILITY OF THE
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. 5. The incremental dispiacements are generated using the current stiffness matrix and the
current load vector increment. The dependent disp]acementé are rgcovered in the .normal
manner and merged to produce the increments for all degregs of freedom, {Augi}. The in-
cremental forces of single-point constraint, {Aqsi}, are also recovered. The increments

are added to the previous vectors to produce the current vectors

-~
=
-t
—
1

g - {ug“‘} +‘{Augi} , ’ : (2)

" + tag V) | (3)

~~
0
-
——
1]

6. The total nonlinear element stresses are calculated for output within the loop so that
the user may have some useful information in case of an unscheduled exit before the

end of the calculaticn. The method of calculating stresses is given in Section 3.8.4.

7. The stjffness matrix for éhe non]iﬁear elements, [Kggn], is generated six‘co1umns at a

time for all nonlinear elements connected to a grid point. The table of element connect-
g ions and properties is appended to include the current stress and strain values. The
‘ modulus of eléstici‘t-;y is calculated from the slope of the stress-strain curve as ,

explained below.

8. The nonlinear element stiffness matrix, generated in step 7, is added to the linear

element stiffness matrix, generated in step 2, to Produce a new stiffhess matr{x.

The next pass through the loop will réflect the new stress state of the structure.

9. When %he results for all load increments have been produced, the data are output.
Stresses for the linear elements are calculated directly from the total disp]acément

vector.

3.8.3 Piecewise Linear Stres;-Strain Functions

In order to simplify input to the program, a single type of piastic'materia] table is used. A
stress-strain tabular function is input for each nonlinear material. Only certain types of

elements may use the nonlinear tables..

In calculating the current elastic constants of a plastic element, an approximation to the
slope of the stress-strain function is used. Because the elastic constants are o be used for

‘ the interval between the present load and the next load, an extrabolation of current information is
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required. A linear extrapolation is used to estimate the strain due to the next load increment as ‘

shown in Figure 3. The current strain increment, A;i. is computed from the current displacement

increment Au91 by separate subroutines for each type of element. The next strain increment, Ae,

i+1?
is estimated by linear extrapolation,

By = € & T A(Aai+]) s (4)
where A is obtained by the curve fit through two previotsly computed points, €i» and €1
The linear elastic modulus, Eo’ is used for the first increment. For all succeeding
increments
Oi,q = O, .
Ei‘*‘] = €.{+] _ 51' Iy (5) ’
i+] i :

where oF and Oi47 are obtained from points on-the stress-strain curve, Figure 2, cerresponding to

€., and €5

i 1

The actual strain components used above depend on' the element type. A brief description of

the elements used in piecewise linear analysis is given below.

3.8.4 Element Algorithms for Piecewise Linear Analysis

3.8.4.1 R@D, TUBE, and BAR Elements

The plasticity of these elements is assumed to depend on the state of extensional stress only,
Bending and twisting stresses are ignored in the determination of the effective elastic constants.
If bending stresses are important, the bar may be represerted in NASTRAN as a built-up structure

composed of rods, shear panels and/or plates. The estimated next extensional strain is:
€41 = & * YiAei . (6)
where the coefficient Y4 is the ratio of load increments

S U Ml B )
1 | Aai
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‘ The elastic constants for the new stiffness matrices and the next stress calculations are:
g, - O, G
Eil = ot s Gy 7 By (8)
i+l i o

where Go and E0 are the elastic shear and extensional moduli given with the material. These con-
stants are used in the calculation of extensional, bending, twisting, and transverse shear stiff-

nesses in the next increment.
3.8.4.2 Plate Elements

The in-plane stresses of plate elements are used to calculate the elastic properties for in-
plane deformations. They are also used to calculate the elastic properties for bending and trans-
verse shear, except in the case of those plate elements where the bending and transverse shear

material are different from the membrane material.

Plastic, rather than nonlinear elastic, behavior is assumed. The theoretical basis of two
dimensional plastic deformation as used in NASTRAN is that developed by Swed]ow(1). Only a
L summary of the theory will be presented here. In the development a unique relationship between
. the octahedral stress, Ty and the plastic octahedral strain, sop, is assumed to exist, The total
strain components (ex, eyr €

2 and ny) are composed of the elastic, recoverable deformations and

the plastic portions (sXP, eyP, EZP, and nyp). The rates of plastic flow, (éxp, etc.), are

.independent of a time scale and are simply used for convenience instead of incremental values.

The definitions of the octahedral stress and the octrahedral plastic strain rate are:

1 2 2 2 2 9
T3y 205917 + 25,7 + 55,7 #5357, ®

S S UG . (10)

'(])Swedlow,'d. L., "“The Thickness Effect and Plastic Flow in Cracked Plates", Aerospace Research
‘ 'Laboratomes: Wright Patterson Air Force Base, Ohio: ARL 65-216; October 1965.
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where
1 P _ P
ST H2 - o) e T &
_ P 1. P
512 = Ty €12 2 Yxy
(M
S = 1(20 -0.) € P € P |
22 3y X 22 y
_ 1 P _ P
Sg3 = - 3log + o) €33 7 &
The S1.J array is called the "deviator" of the stress tensor. Ox> Oy and Oyy 2re the Car-
tesian stresses. The basic Prandfl-Reuss flow rule is:
- (12)

where X is a flow rate parameter.
X may be derived by multiplying Equation 12 by itself according to the rules of tensor analy-

The result is:

sis to produce a scalar equation.
p
' (13)

Another basic assumption is that the material yields according to its octahedral stress and

strain. In other words, there exists a function, MT(TO), such that

T
(o] _ .

-7 = Mle) (14)

. €
0
Combining Equations 12, 13, and 14 we.obtain

e.p s 3rfﬁ_§Lly (15)

1 T\ T,
Taking the derivatives of Equation 9 we obtain:
- _ 1 . . . .
T T 3 (Sy9577 * 2592517 * SpSpp * S33d33) - (16)
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and the oij

1 . . .
3T, [S1994 + Spp9, *+ 25957, ]

terms we obtain:

The matrix relationship for the plastic flow is formed from Equations 11, 15, and 17:

. p ' T 2
x | Y SS22 - Bt
. P 1 2
ey = T | Pt Sz 2502512
(35 MT(TO) ' )
~e P
Yy L.ZS]]S]Z 2522512 %2

—

-

(17)
c}X
&y (18)
%Xy

For piecewise linear analysis this matrix, [DP], is assumed constant for a given load incre-

ment. The time derivatives are replaced with incremental values. The total strain increments,

obtained by adding the plastic and linear elastic parts, are:

tae} = ([0P1 + (61 ) {ao} =

[ep]']{Ao} -,

(19)

where [G] is the normal elastic material matrix and [Gp] is the equivalent plastic material matrix.

A further relationship to be derived fs that of the p]astfc modulus, MT(TO), versus the slope

of a normaT stress-strain curve.

ues are:
. o, = ©
o, = ©
€, =
ey =
€, =

Yy = Yyz T Vxz T

a
z © Txy: = Txz T Tyz =0
P,%% .
X _Eo
.
y B
P_ Y%
z Eo

0

If a specimen is under an axial load, its stress and strain val-

N (20)

where E0 and v are the elastic modu1u§ and Poisson's ratio for the elastic part of the stress-

strain curve.

Because of noncompressibility the plastic strains are syp
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The stress-strain relationship given in the table is
= F(eX)A R

o, =
(21)
Ao
X '
[ Fiie,)
The octahedral stresses and strains may be determined from Equations 9, 10, and 11.
T = 44 o
o} -3 7a
(22)
éP
gOP = X
. V2
The tabular relation for octahedral stress is, therefore
V2
T, = —§-F(sx) (23)
The slope relation is from Equations 22 and 23:
VZ -
At 3 F (ex) be, (24)
where from Equations 20 and 22
3AT
_ P+ —2
bey = VZole " E, (25)

The octahedral plastic strain-to-octrahedral stress function obtained by solving Equations 24

and 25, and substituting into Equation 24, is

A P
1 B €o - (3>
oM () E,E (e, ’ (26)
F' is the approximate slope of the stress-strain curve at each increment

where E1 =
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In applying the theory the following steps are taken:

1. The strain increments, {Ael}, are determined from the incremental displacement vector and
the geometry of the element. Using the material plastic matrix from the preceeding step

[Gpi']], the new stresses are:
W} = @My o+ [Gpi']]{Aei} . (27)

2. Using Equations ¢, 11, and 22 the new octahedral stress, 101, and its unidirectionatl
-

equivalent, oa', are calculated. c; is used with the stress-strain table to determine

i . . . i- R i+
1. Using the previous strain €y ], a new strain, €a1 L

linear extrapolation as in the case of extensional elements.

a strain €, , is estimated by

In case ca1 exceeds the maximum tabulated value, theiincremental modulus, E1, is set
equal to zero on the assumption that the element has. ruptured.’

i+1

3. Using the stress-strain table, the next estimated stress, 9,

, is found. The stress-

strain slope is:

i+ _ i
Ei _a a (28)
I 7
€a " fa

4. The new stiffness matrix, [Gpi], is calculated from Equations 9, 11, 26, 18, and 19

. i i i
in o
using o, ', v * Txy

matrix calculation routine,

, and E' as input data. [Gp]]vis then used in the normal stiffness

The quadrilateral _elements use extra logic since-they are composed of four overlapping triangles,
The primary difference is that the stress increments are averaged over the four triangles and the
resulting material matrices must be treated as anisotropic and rotated into each subelement's

coordinate system,
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1 Normal Statics Formulation '

2 Separate Linear and Non-linear
" Elements. Form k% stiffness
Matrix from Linear Elements

!

3 Select Constraints and Generate

Pg Load Vector

4 Partition, Réduce, and Decompose

_fgg > Upo Lo

;
Pg -> APQ l
|

5 Solve for Displacement Increment Auj ’ ‘
Solve for Dependent Displacements !
and Increment Uy = Uy + Aui

!

6 Calculate Non-linear Element
Stresses and Update Stress Tables
Output Non-linear -Stresses

L End of Loo
7 Calculate Non-linear Element '
Stresses and Form Non-linear
Matrix K"
atrix a9
9 Calculate Stresses in Linear Elements
for All Steps and Output Displacements,
Forces, and Total Stresses in All Elements
8 Add Linear and Non-linear Matrices

3 n
K =K’ +
gg ~ Fgg * Kgg

Figure 1, Piecewise Tinear flow diagrani. ‘
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. 4.1 AXISYMMETRIC STRUCTURES

The description of finite element structural analysis presented in Chapter 3 assumes a
structural model in which the degrees of freedom are defined at points in a three-dimensional
space. An entirely different formulation is available in NASTRAN for analyzing axisymmetric

structures. In this formulation, the degrees of freedom are the harmonic coefficients of displace-

ment components defined on the perimeter of circles, called grid circles, which lie in planes
normal to the axis of symmetry. The special features of NASTRAN's axisymmetric structural analysis

capabilities are discussed below.

4,1.1 Axisymmetric Element Library

NASTRAN includes four different axisymmetric structural elements. They are the conical shell
element (Section 5.9), the toroidal shell element (Section 5.10), and the triangular and trape-
zoidal solid ring elements (Section 5.11). ;The reader is referred to the sections cited for
details. No attempt has been made to make these elements compatible with each other, or with
“ordinary" structural elements. The only axisymmetric elements that can be used together in the

‘ same problem are the triangular and trapezoidal solid-ring elements. The conical shell element is
. the only element that accepts nonaxisymmetric loads. The others require that the loading be axi-

symmetric.

4.1.2 Coordinate Systems

The “global" coordinate system for the conical shell element, and for the solid of revolution

elements, is a cylindrical coordinate system as shown below:

A

arbitrary
reference
azimuth
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Force components are input parallel to the global coordinates, and displacements are output ‘
parallel to the global coordinates.
For the toroidal shell element, the "global" system is a spherical coordinate system locally

tangent to the shell.

4.1.3 Harmonic Coefficients and Degrees of Freedom

The following equations are used to define harmonic coefficients:

a. Any vector component representing motions or forces in a plane that includes the z-axis:

vir,6,z) = vo(r,z) + %1 vn(r,z)cos(n¢) + %1 v:(r,z)sin(n¢). (1)
n= n=

b. Any vector component representing motions or forces normal to a plane that includes the

z-axis:
* m m o«
u(ri¢,2z) = u (r,z) + J u (r,z)sin(ng) - } u (r,z)cos(ng). (2)
0 n=t " n=1 "
The motions corresponding to different harmonic orders are uncoupled. Also, the starred and ‘
unstarred parameters are uncoupled. The degrees of freedom are the coefficients (urn’ u¢n, Uyps

e and their "starred" counterpérts) at discrete "grid circles." Note the (-) sign pre-

rn’ e¢n’ ezn
ceding the starred series for u(r,$,z). Because of the (-) sign, the starred parameters describe

motions that are shifted %% in azimuth from the motions described by the unstarred parameters, since

-cos(ng) = sin(ng - 3), - (3)

and
sin(ng) = cos{n¢ - %). (4)
The practical effect of the (-) sign in Equation 2 is that the stiffness matrices for the
starred parameters are identical to the stiffness matrices for the unstarred parameters for n>o.

Note that the unstarred coefficients represent motions that are symmetrical with respect to

¢ = 0, and that the starred coefficients represent antisymmetrical motions.

The harmonic order, n, represents an additional dimension of the vector space that is not

present in "ordinary" structural analysis. The number of degrees of freedom per grid circle is

e o =pRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
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equal to 6(2m+ 1).

The solutions for different unstarred harmonic orders are calculated in the same run. For
statics and inertia relief problems only (Rigid Formats 1 and 2, see Section 3.2), the results
for unstarred harmonic orders may be combined with the results for starred harmonic orders,

thereby providing solutions for general unsymmetric loading.

For vibration mode analysis (Rigid Format 3, see Section 9.1), the user selects the highest
order, m, and all modes of order m and lower are calculated in the same run. There is no pro-

vision for selecting individual harmonic orders.

The presence of harmonic coefficients complicates the selection of the order in which
degrees of freedom are processed. In NASTRAN, the degrees of freedom are sequenced first by
location and then by harmonic order and last by symmetry (starred or unstarred). Thus, all Yo
coefficients precede all Vi coefficients, etc. Since no coupling between different orders is-

permitted, this is a sensible arrangement that minimizes bandwidth.

4.1.4 Application of Loads

The following types of static loads are ayai]ab]e for use with the conical she]] e1ement;
a. Concentrated forces and moments applied at points on grid circles.

b. Uniform line load on a sector of a grid éirc]e.

c. Uniform pressure load on a region bounded by two gird circles and fwo meridjans.

d. Harmonic components of force and moment along grid circ]esi

e. Gravity loads. The gravity vector may be arbitrarily oriented. It operates on the

global mass matrix and generates zero.and first harmonic loads.

f. Thermal loads. The temperature is defined at specified points on grid circles and is
linearly interpolated. The provision "for harmonic components of temperature described
on Page 5.9-28 has not been implemented. The temperature on grid circles is used by

element routines to compute thermal Toads.

g. Enforced displacements at grid circles. Harmonic components are constrained to user-

specified values.

The only static loads that can be applied when the solid-ring elements are used are uniform
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symmetrical Tine forces on grid circles and thermal loads. The toroidal shell element accepts

uniform line forces and 1ine moments on the grid circles. It also accepts thermal loading.

At present, very special procedures are required to generate dynamic loads. The computer
generates internal gridpoint numbers for each harmonic at each grid circle. If the user knows

the algorithm by which gridpoint numbers are assigned, he can reference the internally assigned

numbers and apply a load to them. The procedure is described in Sectioﬁ 4.6 of the Programmer's

Manual.

4.1.5 Differential Stiffness

Differential stiffness (see Chapter 7) is available for the conical shell element only. It
provides a linear buckling capability for symmetrically loaded shells of revolution. If a non-
symmetric loading is applied, NASTRAN extracts the zero harmonic component of the load and then
computes the resylting differential stiffness for all harmonics. It will also compute the buckling

modes for all harmonics.

4.1.6 Hydroelastic Capability

The NASTRAN hydroelastic capability is described in Section 16.1. The properties of the
fluid are assumed to be axisymmetric, and avFourier series expansion is used. At present, the
properties of the structure must be expressed with ordinary.nonaxisymmetric structural elements
in hydroe]éstic problems. '

&
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4.2 STRUCTURAL MATERIAL PROPERTIES

In NASTRAN structural material properties are normally specified with a Material Property
Card. The only exceptions are the scalar damper and the scalar spring whose material properties
are imbedded in their spring and damping constants. The material properties defined on Material
Property cards include density, elastic moduli, thermal expansion coefficients, allowable stresses
used in calculating margins of safety, and structural damping coefficients. :All of the material
properties can be made functions of temperature and elastic moduli can be made functions of

stress for piecewise linear analysis (see Section 3.8).

At present three different types of material property cards are available. Table 1 sum-
marizes the availability of the material property types for each of the NASTRAN structural ele-
ments. The manner in which elastic moduli are treated by each of.the Material Property Cards is

as follows:

MAT1 - specifies values of E, v, and/or G for isotropic miterial§. When two of the three
parameters are specified, the third is computed from G = E/2(1+v). If all three parameters are
specified, the value specified for G is replaced by this formula for surface and surface of revo-

Tution elements. For solid and solid of revolution elements all three parameters are used in the

form:
-
r. 1. v |.wv
©x E|TE[ E-| O 0 | Offo
€ - Y Ty 0 0 0 o
y E E E y
v v 1
82 —E' ‘E' E— 0 07 0 OZ
= : (M
ny 0 0 0 T 0 0 Ty
) ]
sz 0 0 0 0 5 0 Tyz
1
Yz 0 0 0 0 0 T Tyz

Note that the material is not isotropic when G # E/2(1+v). For solid elements the material

. axes to which Equation 1 refers are the axes of the basic coordinate system. The materiail

axes for solid of revolution elements are defined on Page 5.11-22.
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MAT2 - specifies a general anisotropic stress-strain relationship in the form ‘
Ox jﬁl_:_fl_ L“GL— €x
oy Gyp | Gy, l P €y (2)

This format is available for flat surface elements only, as shown in Table 1.

MAT3 - specifies a general orthotropic stress-strain relationship with respect to three per-

pendicular axes of symmetry in the form

B 1 v v
— |- -2 0 0 0
€ o
X Ex Ey Ez X
) v
X 1 zy
€ - EfJL _ - 0 0 0}jo
Y x Ey EZ y
v v
T 2 B 7 1 :
€Z Ex— Ey Ez 0 0 0 OZ \
= ] (3)
Y 0 0 0 — 0 0fir
Xy ny Xy
] .
Y 0 0 0 0 — 0ifr
yz Gyz yz
1
Yoy 0 0 0 0 0 E;; Tox

The matrix is symmetric so that

R S S A T 1 (4)
v E ’v E, v E :
yx oy zy z Xz X

The inverse of the matrix in Equation 3 is of a similar form as that given in Equation 3
on Page 5.11-4. The MAT3 card is available for surface of revolution and solid of revolution

elements only. These elements employ appropriate subsets of the (6x6) matrix.
The coordinate axes for the NASTRAN structural elements are defined as follows:

Linear elements (R@D, CPNRPD, and TUBE) have an element x-axis which points from end A to end B
of the element. Positive extensional forces are tension; and positive torques are defined by

the right-hand rule. The material properties are E (for tension) and G (for torsion).
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The linear bending element (BAR), has an element x-axis which points from end A to end B of
the bar. The ends may be offset from the grid points by rigid connections. The element y-axis
is determined by a user specified vector ¥. The y-axis is in the plane of the vector ¥ and the
x-axis, and it is perpendicular to the x-axis. The z-axis forms a right-hand system. The
material properties are E (for extension and bending) and G (for torsion and transverse shear).
For composite beams, a reference value of E can be chosen, and the user can then evaluate the
effective area and moments of inertia. Similarly for G, the user can evaluate the effecfive
torsional rigidity (J) and transverse shear factors (Ky, KZ) {see Section 5.2.1). Thus, E and

G are sufficient to describe sandwich type beams.

The surface elements have an element. coordinate system internal to each element. The
element lies in itsAx-y plane, with the origin at the first listed grid point, and the second
Tisted grid point on the x-axis. Element forces and stresses are given in this coordinate
system, References can be made to different material propérties for membrane, bending and trans-
verse shear deformations to account for sandwich plates. Either MAT1 or MAT2 type materials may
be used. The material matrix (if it is type'Z) may bé specified in a materié] coordinate system
whose x-axis makes an angle 8 with the x-axis of the element coordinate system, as shown in

Figure 1.

The theoretical development in Section 5.8.2.4 allows for a 2 x 2 transverse shear matrix
= , : (5)

relating transverse shear deflections to shear forcés. At present Jxx =J =1/Gh and ny =0;

yy
where G is the value specified on a MAT1 card (0.0 implies G is'infinite). The entire matrix is

set equal to zero if a MAT2 card is used.

The solid elements use the basic coordinate system and allow only isotropic material pro-

perties, except as noted above in connection with Equation 1.

The surface of revolution elements have s (meridonal), ¢ (azimuthal), z (normal) coordinate
systems in place of x, y and z. The conical shell can specify separate isotropic (MAT1) pro-
perties for membrane, bending and transverse shear. The toroidal shell (zero harmonic only, no

transverse shear) has a single 2 x 2 matrix
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(o E Ev, . i(e
s{ - 1 S s'es |y s - (6)
{c } I'\)q>s\)s<1> E E {e¢}

o o’so o
where s and ¢ replace x and y and where the E's and v's may come from a MAT1 or a MAT3 format.

The solid of revolution elements use a cylindrical r, ¢, z coordinate system, Either MAT]

or'MAT3 formats can be'used.

Thermal expansion coefficients are also specified on the Material Property cards. On a

MAT1 card the thermal expansion is assumed isotropic. On a MAT2 card

Ext A\
epe P T s (7)
) (M2

On a MAT3 card
Ext Ax
Eyt = Ay T . (8)
Elz.t AZ

Note that the material is assumed to be symmetrical with respect to its axes on a MAT3 card.
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Table 1. - Existing NASTRAN material capability.

Element Element Kind of
Type Name Strain MAT type
Linear R@D, CENRAD, TUBE tension, torsion 1
ftension, torsion, 1
BAR {bending, shear
Surface TRMEM, QDMEM membyrane 1, 2
bending 1, 2,
TRPLT, QDPLT, TRBSC {transverse shear |1, (2)
( membrane 1, 2
TRIAT, QUADY i bending 1, 2,
transverse shear |1, (2 )
SHEAR, TWIST shear 1
Solid TETRA, WEDGE, HEXA1-2 | 3-dimensional 1
Surface of membrane 1
Revolution CONEAX { bending 1
shear. 1
TORDRG E¢» €g 1, 3
Solid of TRIARG, TRAPRG €.5 Eos En, Y 1, 3
Revolution rz 9> rz .

*If MAT2 is used, the shear flexibility is 0.0
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% ®

(material x-axis)

;"x_ - ——
(a) Triangle

x_ (material x-axis)

(b) Quadri]ateré]

Figure 1. Material axes for surface elements.
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4.3 MANUAL SINGLE-STAGE SUBSTRUCTURE ANALYSIS

Substructure partitioning, as here defined, is a procedure in which the structural model is
divided into separate parts which are then processed, in separate computer executions, to the
point where the data blocks required to join'each part to the whole are generated. The subse-
quent operations of merging the data for the substructures, and of obtaining solutions for the
combined problem, are performed in one or more subsequent executions, after which detailed ‘

information for each substructure is obtained by additional separate executions.

Substructure partitioning may be required for logistic reasons in problem preparation, for
reasons of computational efficiency, or simply because‘the high-speed or peripheral storage
capacity of the computer is exceeded by the:data generated in the solution of the problem as a
single structure. The logistic reasons refer to the possibility that the task of preparing the
mathematical model of the structure may be assigned to separate groups which: work at different
places and times or at different rates and which require frequent access to the computer in
‘order to check their work. It may, in such situations, be cost effective to combine the results

of the separate computer runs, rather than their separate input data decks.

Séctions 3.5.3 and 3.5.4 describe a matrix partitioning procedure which is available as an
internal part of the rigid formats and which does not, therefore, qualify as substructure parti-
tioning. It divides the degrees of freedom intn two sets: the "a" set, ua,_which isAretained,
and the "o" set, Uy > which is omitted in subsequent processing. The manner in which this pro-
cedure may be used‘to generate true substructure partitioning is illustrated in Figure 1. If
the u, set is selected as shown, the structural matrices for the uo'grid points in different -
regions will be uncoupied from each oﬁher. For example, the nonzero terms inr[Koo]:wili only

occur in diagonal partitions as shown in Equation 1 below.

KD o 0 0

) o kB o o
[Kood = R (1)

00 e

0 0 0 Etc.|
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The generation of the reduced stiffness matrix [Kaa] and the reduced load vector'{Pa} 2y
Equations 28 and 29 of Section 3.5.3 can then proceed independently for each region (i.e., sub-

structure). Specifically,

i

X, ] [KP’J+2[K“)1,- )

aa

P}

P+ Lol . (3)
1

where the reduced stiffness matrix for each substructure

[K(1)] [K(I)] [G(l)] + [‘(1)]

. . . (4)
SR (O I T T U (U
... -and the reduced load vector for each substructure
wliy {P(‘)} + 16l {1y (5)

.. The terms [Kgg)] and'[ng)] in Equations 2 and 3 represent terms added by the-user in a

later stage.

Substructural analysis by the NASTRAN'substructuring technique is 1ogica11y performed in

at least three phases, as follows:

Phase 1: Analysis of each individual substructure by NASTRAN to produce a
description, in matrix terms, of its behavior as seen at the boundary
degrees of freedom, u,.

Phase I1: Combination of appropriate matrices from Phase I and the
inclusion, if desired, of additional terms to form a "pseudo-structure"
which is then analyzed by NASTRAN. '

Phase III: Completion of the analysis of individual substructures using

the {ua} vector produced in Phase II.

The NASTRAN substructuring technique is available for all rigid formats, except piecewise
Tinear static analysis. In the case of static rigid format 1, no additional approximations
are introduced into the calculation by the substructuring operation. In the case of dynamic

rigid formats, the Guyan reduction is employed in Phase I, which restricts the dynamic degrees ‘
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of freedom to the {ua} set (see Section 3.5.4). Thus, it is advisable, when solving a dynamic
problem, to include some degrees of freedom at interior points in {ua}. Also, {ua} must, of course,

include all degrees of freedom that are connected to more than one substructure.

Under certain circumstances, the substructure analysis may use more than three phases. For
example, if differential stiffness is included, five phases are required as follows: (1) initial
static preload analysis of each substructure; (2) combination static preload analysis; (3) recovery
of static preload stress data, and calculation of the differential stiffnes§ matrix for each sub-
structure; (4) combination analysis, including differential stiffness; and (5) completion of the
analysis of individual substructures. Note that rigid format 4, Static Analysis with Differentié1
Stiffness, is not used in the analysis sequeﬁce. A similar procedure is followed in fhe case of a
buckling analysis, except that it is advisable tﬁ include some degrees-of freedom at interior points
in {ua}; otherwise the influence of differential stiffness on the buckling mode shape at interior
points will be ignored. Another example where more phases are used is an analysis where the sub-
structures are first combined into groups, and the groups are then combined into a complete “pseudo-

structure."

As can be seen, a flexible substructuring capability is necessary to accommodate all practical
uses. This is provided by using the ALTER feature (see Section 1.3) to modify existing rigid formats

according to the user's requirements.

Figure 2 shows a typical flow diagram for the operation of substructuring in NASTRAN. It in-
volves the application of three separate phases of NASTRAN execution td two substructyres. In the
NASTRAN Phase I execution, the stiffness matrix [Kaa] and (if needed) the static load vector {Pa}
are computed independently for each substructure. In dynamic analysis, the matrices [Maa]’ [Kga]’
and'[Baa] are also computed. A1l of these data are copied onto a user tape via the user module
QUTPUTT, which is altered into the rigid format. The computation of the dynamic load vector is

delayed until Phase II.

The first step in the NASTRAN Phase II execution is to merge the reduced matrices formed in
Phase 1. This is done by the existing MERGE and ADD modules which are altered int6 the NASTRAN
rigid format selected for Phase II. The MERGE operation requires knowledge of the interconnections
between the degrees of freedom in the subsfructures. This information is contained in a partition-
ing matrix, eéch of whose columns corresponds to a particular substructure. The rules for generating

the partitioning matrix are explained in Section 1.10 of the User's Manual. In Phase II, the degrees
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of freedom in {ua} constitute a set of scalar points, which is redesignated as the'{ug} set of the
"pseudo-structure” and on which all normal NASTRAN operations may be performed. In particular,
direct matrix input (DMI), single and multi-point constraints (SPC's and MPC's), and both static
and dynamic loads may be applied. The partitioning matrix is employed by the user to identify the

degrees of freedom in {ug} .

In Phase III, each NASTRAN substructure execution is restarted with the partition of the
Phase II {ug} vector corresponding to the {ua} vector for each substructure. A1l normal data
reduction procedures may then be applied. In dynamic analysis, Phase III can be omitted if output

requests are restricted to the response quantities in the uy set.

In a dynamic analysis the user may, if he wishes, employ the Guyan reduction in Phase II. The
complete substructure analysis then involves a "double reduction" in which some degrees of freedom
are eliminated in Phase I and some are eliminated in Phase II. This is useful because, as noted
earlier, the {u } vector generated in Phase I contains all of the degrees of freedom on the
boundaries between substructures, as well as a selected set of freedom at interior points. The
density of the boundary freedoms may well be greater than necessary, and these freedoms can be
removed for the sake of economy by the second Guyan reduction. The final set of freedoms retained
for dynamic analysis will be those act{vely selected by the user and no more. The double reduction
technique is recommended for structures with very many static degrees of freedom, where it will be

competitive with component mode synthesis (see Section 14.1) in many cases.

Detailed instructions for the NASTRAN substructuring procedures ave given in Section 1.10 of

the User's Manual.
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Grid Points in the
Interiors of Regions
are Placed in the
u_ Set Grid Points Along
0 (1 (2) (3) These Interior Lines
are Placed in the
uy Set

Figure 1. Use of partitioning to decouple regions of the structure.
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4.4 FULLY STRESSED DESIGN OPTIMIZATION

NASTRAN includes a method of design optimization for linear static analysis (Rigid
Format 1) based on automation of a relatively simple strategy known as "fully stressed
design." According to this concépt, the cross-sectional properties of each structural element
are changed at each design iteration to produce a 1imit stress (zero margin of safety) somewhere
within the element, on the assumption that the loads carried by the element are unaffected by
changes in its cross-sectional properties. The assumption is strictly true only for statically
determinate structures. In indeterminate structures of low redundancy, the assumption is not
badly in error, so that a few repetitions of the algorithm will produce a stress distribution
throughout the structure which has very nearly a‘zero margin of safety'in every element, i.e.,
a "fully stressed" design. In structures of high redundancy, the procedure will converge more
slowly (if at all), and modifications of the basic strategy may be required to achieve convergence.
There is, furthermore, no assurance that the -fully stressed design of a highly redundant structure
will be an optimum design in any meaningful sense. It is relatively easy to construct examples
in which the procedure converges to a "pessimum" design. Consider, for example, the simple case
of two parallel rods which are rigidly connected together at their ends and which differ only
in their allowable stresses. Since in this case the stresses in the two rods are equal regard-
less of their areas, the a]gorithm will increase the area of the weaker rod at the expense of the

stronger, and in the 1imit only the weaker rod will remain.

From this éxamﬁ]e it is seen, at the least, that a fully stressed design algoritﬁm cannot be
used uncritically. It is, nevertheless, very attractive because of its basic simplicity, and it
will producé excellent designs in many practical cases. On the other hand, due to its inherent
limitations, it %s not déémed to Be wqéthy o%ra great deal of refinemenf. Consequently, in the
NASTRAN version, the criteria used to resize elements have been kept simple. User experiences

with the method may lead to improvements in later versions.

The physical quantities involved in the design algorithm are: properties, A; stresses, o;

and stress limits, o The properties may include thicknesses, cross-sectional areas or moments

o
of inertia. Most NASTRAN elements have several independent properties. They also have several
types of stresses and several places where stresses can be evaluated. The stress limits include
those for tension, compression and shear. For the simple case of an element with one property,

the design jteration algorithm is as follows. Let
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) (1) .

where the search for a maximum value is extended over all user-identified stress components and

g
o = Max|—
%

locations, and also over all designated loading cases. The new property for the element is

evaluated from the old property by the formula

- [+
Anew = Aold(m) - @)
where y is a parameter selected by the user. For vy = 1 (the default value), Equation 2 becomes
new ¢ Aold ) (3)

If the product oA were invariant, Equation 3 would give

old 1

o = fo] = =0 y - IR (4)
new Anew old o« old

so that the value of T ew would just be equal to the limit stress in this special case.

For vy = 0, it is seen that Ane = Ao]d’ and for values intermediate between zero and one the ‘

W
property is changed by less than a factor of a. Thus y is a parameter which moderates the pro-
perty changes at each iteration and it may be employed by the NASTRAN user to improve the con-

vergence of the algorithm.

The algorithm is modified by several other practical considerations. For example, the
user may limit the range through which any property may be varied. In addition, a given property
may be applied to several elements simultaneously via standard NASTRAN property cards’. In this
casé the search indicated by Equation 1 will be extended to all elements which reference the
same property card and the property will be changed uniformly for all such elements. Thus, the
user can control the fineness of the property distribution by using a larger or smaller number
of property cards. Finally, the optimization procedures will be applied only to those property

cards which are called out by the user.

The number of iterations is controlled by a user-supplied convergence parameter, €, and a
user-supplied upper 1imit on the number of iterations. The algorithm is continued until either
the 1imiting number of iterations is reached, or until the values of the a's for all properties

which are not at their upper or lower limits are withine of unity. .
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For elements with more than one cross-sectional broperty (such as the BAR element), the
simple expedient has been chosen to change all of the properties according to a fixed rule. Thus,
in the case of the BAR, the moments of inertia'are changed in direct proportioﬁ to the change in
area, This is equivalent to the assumption that each BAR has a thin-walled cross-section whose
thickness is being changed uniférmiy. The details of the rule are given in Tabfe 1 for each of
the elements whose propertiesczan be changed. In the table, the basic property is the one whose
new value is calculated by Equation 2. It is seen that all re]atgd bropeftfes4are changed in
direct proportion to the basic properties except in the case of the homogeﬁeous p]éte elements,

TRIAZ and QUAD2.

The procedures for elements with more than one cross-sectional property are admittedly crude
and they cannot be used for the detailed design of individual e]ements; The incorporation of
more elaborate procedures'has, however, been judgéd to be unwise for the present} due to the

inherent limitations of the fully stressed design algorithm. Indeed, it is not clear that any

‘fully automated general purpose design procedure can successfully cope with the simultaneous

requirements of overall and detailed design.

The calculations are performed in two modules, @PTPR1 and PPTPR2 (Property Optimization

.Proceséor, Phases 1 and 2Y. The first module creates a table of the relevant quantities for

each identified element property card, and the second module calculates the changes in the -

values of the properties.

The output of the analysis includes a revised set of element property cards in addition to

all normal classes of output data.

4.4-3 (12731774)



MISCELLANEOUS GENERAL PROVISIONS FOR STRUCTURAL ANALYSIS

Table 1. Rules for changing the properties of elements.

g, Stress a, Scale Factor for Basic Related sxx
Element Value Inspected Use in Equation 2 Property | Properties
ROD Axial _ o -0 T A* J
TUBE Torsional a=max (Ut : A ’ g ) 0.0.

Maximum axial ten-

sion and axial

compression stresses g o -g -0
a=max( bl a2 b2>

BAR.. . at user-selected
points in the cross
sections at ends A

A** J,I],IZ,I]2

and B,
oy = MAX PRINCIPAL o T
TRMEM - cmad 2l o2 m .
QDMEM °p2 MAX PRINCIPAL |o nwx(it, 5, . os) t
T = MAX SHEAR
" TRPLT, QDPLT | Same as above (o] -G T '
TRBSC cxcept at auter [axmax( 2L, 202, ) I | ¢ (for transverse
TTRIAT, QuADt | Fiber z;, z,. t e s t I

(for both z, and zz)

TRIA2, QUAD2 | Same as above Same as above t 1= t3/12
N l,l.ml T
SHEAR 1 T, = MAX SHEAR o= |5 t --
i S
|

* If A is zero, J will bé used in its place.
** If A is zero, I1 will be used in its place.

*** The related properties are changed in direct proportion to the basic property
unless otherwise indicated.
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‘ 4.5 CYCLIC SYMMETRY

Many structures, including pressure vessels, rotating machines, and antennas for space com-
munications, are made up of virtually identical segments that are symmetrically arranged with
respeét to an axis. There are two types of cyclic symmetry as shown in Figures 1 and 2: simple
rotational symmetry, in which the segments do not have planes of reflective symmetry and the
boundaries between segments may be general doubly-curved surfaces; and dihedral symmetry, in which
each segment has a plane of reflective symmetry and the boundaries between.segments are planar.

In both cases, it is most important for reaéons of economy to be able to calculate the thermal and
structural response by analyzing a subregion containing as few segments as possible.

Principles of reflective symmetry (which are not, in general, satisfied by cyclicly symmetric
bodies) can reduce the analysis region to one-fourth of the whole. Principles of cyclic symmetry,
on the other hand, can reduce the analysis region to the smé]]est repeated secfion of the structure.
Neither accuracy nor generality need be lost in the process, éxcept that the treatment is Tlimited
to linear relationships between degrees of freedom. Special procedures for the treatment of cyclic
symmetry have been added to NASTRAN. The use of cyc]ic symmetry aliows the analyst to model only

‘ one of the identical segments. There will also be a large saving of computer timg for most prob-
lems. Details of the procedures for applying cyclic symmetry are described in Section 1.12 of the
User's Manual.

The term dihedral symmetry is borrowed from Herman Weyl who used it in his mathematical
treatment of symmetry, Reference 1. Note that dihedral symmetry is a special case of rotational
symmetry. In both cases, the body is composed of identical segments, each of which 6beys the’
same physical laws. The distortions (deflections or temperature changes) of the segments are not
independent, but must satisfy compatibility at the boundaries between segments. Cyclic transforms

" can be defined which are linear combinations of the distortions of the segments. The transformed
eqﬁations of compatibility are such that the "transformed segments" are coupled singly or in pairs
which can be solved independently. This feature results in a significant reduction of computa-

tional effort beyond the normal possibilities of substructure analysis.
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4.5.1 Theory for Rotational Symmetry

The total body consists of N identical segments, which are numbered consecutively from 1 to
N. The user supplies a NASTRAN model for one segment. A1l other segments and their coordinate
systems are rotated to equally-spaced positions about the polar axis. The boundaries must be
conformable; i.e., when the segments are put together, the grid points and the displacement
coordinate systems of adjacent segments must coincide; thus no point may be on the axis. This is
easiest to insure if a cylindrical or spherical coordinate system is used, but such is not required.
The user will also supply a paired list of grid points on the two boundaries of the segment where
connections will be made. For static analysis the user may also supply a set of loads and/or en-

forced displacements for each of the N segments.

The two boundaries will be called sides 1 and 2. Side 2 of segment n is connected to side 1

of segment n+l, see Figure 1. Thus, the components of displacement satisfy

ntl _ n 1

up o= Uy n=1...N, (1)

where the superscript refers to the segment index and the subscript refers to the side index.
This applies to all degrees of freedom Which are joined together. Also let u§+1 = u%, Yo}
that Equation 1 will refer to all boundaries. Equation 1 is the equation of constraint between

the physical segments.
The yotationa] transformation is given by

ke

W= G0+ 1 [0 cos(n=T)ka + &5 sin(n-T)ka] + (~1){NV2)-1-N/2 (5
k=1

a = 2n/N, n=1,2,..., N,

where u" can be any component of a displacement, force, stress, temperature, etc., in the nth

segment. The Tast term exists only when N is even. The summation limit kL = (N-1)/2 if N is odd

o -kc -ks

and (N-2)/2 if N is even. The transformed quantities, 4, 0 ~, U , and aV2 i1l be

referred to as symmetrical components. They are given this designation by virtue of their

similarity to the symmetrical components used by electrical engineers in their analysis of poly-
phase networks, Reference 2. Note also the similarity of Equation 2 to a Fourier series decompo-

sition, except that the number of terms is finite. On this account, Equation 2 could be called a
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finite Fourier transformation, Reference 3.

Equation 2, in matrix form, is

luf = LuJlT] (3)
where Lu] = lu1"u2’ u3’.”, UNJ .
and ld) = La°, G1C’ ﬁls’ ﬁZc, st,..,, GN/ZJ

Each element in the first row vector can represent all of the unknowns in one segment.

The expanded form of the transformation matrix is

1 1 1 1
1 cos a cos 2a . . . cos(N-1)a
0 sin a sin 2a . .. sin(N-1)a
1 cos 2a cos 4a cos(N-1)2a
(4)
(1] =
0 sin kLa sin 2kLa . . . sin(N-])kLa
L 1 -1 1 . . . -1 :
. pu
™ :
The last row exists only for even N. The transformation matrix, [T], has the property
— -
N
N/2
N/2
T N/2
(1]’ = [o] = , , (5)

i.e., the rows of T are orthogonal.
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Since D is nonsingular,
raer)’o1t = [ (6)
Thus, [T17 = [717[017 and
i) = Lty = L'y )

In summation form, Equation 7 becomes

N
a=0/m 5",
n=1

N
¢ = (2/N) Z] u" cos(n-1)ka
n:

(8)

=
I

N
kS = (2/N) 7 u" sin(n-1)ka
n=1

GN/Z

N
sy J (-1)"’1 u” (N even only)

n=1 .
It should be noted that Equations 8 apply to applied loads, and to internal forces, as well as to ‘
displacement components. The validity of the symmetrical components Lu] to represent the motions

of the'system follows from the existence of [T]'1. It remains only to show that they are useful.

The equations of motion at points interior to the segments are 1inear in displacements,
“forces, and temperatures; they are identical for all segments; and they are not .coupied between

segments. Thus, the equations of motion (for example, [K1{u}" = {P}" in static analysis) can be
additively combined using one of the sets of coefficients in Equations 8, thereby obtaining the

equations of motion for one of theltransformed variables which will have identically the same

form (e.g. [K]{G}kc = {ﬁ}kc) as the equations of motion for one of the physical segments.

! The equations of motion at points on the boundaries between segments are treated by employing
the notion of a rigid constraint connecting adjacent points. To transform the compatibility equa-

tion of constraint (1), notice that

k

- L - 0 u
u?+]'= u? ) [u$C cos nka + u§5 sin nkal + (-1)" &
=]

+ Ve (9)
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By use of the identities cos nka = cos(n-1)ka-cos ka - sin(n-1)ka sin-ka and

sin nka = sin(n-1)ka-cos ka + cos{n-1)ka-sin ka, Equation 9 may be written

(akc S

kL 1 cos ka + G# sin ka)cos(n-1)ka
AL ) S a2 o)

] = - -
k=11 (-u'](C sin ka + u?s cos ka)sin{n-1)ka

If Equation 10 is compared to Equation 2, evaluated at side 2 as required by,Equation 1, and the

coefficients of terms with the same dependence on n are equated, the following equations are obtained:

=0 _ =0

hy =u

G#c cos ka + G?s sin ka ﬁ;c

k=1,...,k R (11)
~ks L

ks
Uz

-ﬁ%c sin ka + G] cos ka

-N/2 _ -N/2
Uy T

Equatiorns 11 are the equations of constraint for the symmetrical components. The only symmetrical
components coupled by the compatibility constraints are 1c and 1s, 2¢ and 2s, etc. Thus, there
are several uncoupled models: the K=0 model contains the a° degrees of freedom; the K=1 mode?

contains the ﬁ]c and G]S degrees of freedom, etc.

There is a somewhat arbitrary choice regarding where to transform the variables in the
NASTRAN analysis. NASTRAN structural analysis can start with a structure defined with single
and multipoint constraints, applied loads, thermal fields, etc., and reduce the problem to the

"analysis set,"'{ua}, where
[K,aHu} = (P} . . (12)

The vector {u,} contaiﬁs only independent degrees of freedom. The decision was made in develop-
ing the cyclic symmetry capability to first reduce each segment individually to the "analysis"
degrees of freedom, and then to-transform the remaining freedoms to symmetrical components.

This approach has several advantages, including elimination of the requirement to transform
temperature vectors and single-point enforced displacements, because these quantities are first
converted into equivalent loads. More importantly, if the "PMIT" feature is used to remove

internal degrees of freedom, it need only be applied to one segment. The ﬂMIT feature greatly
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reduces the number of degrees of freedom which must be transformed. The user specifies all con-
straints internal to the segments with standard NASTRAN data cards. If constraints (MPC, SPC, ‘
and/or PMIT) are applied to degrees of freedom on the boundaries, they will take precedence over

the intersegment compatibility constraints; i.e., an intersegment compatibility constraint will

not be applied to any dégree of freedom which %s constraiﬁéd in some other way. SUPPRT data

cards are forbidden because they are intended to apply to overall rigid body motions and will

not, therefore, be applied to each segment. In the case of static analysis, the analysis equa-

"tions for the segments are

(k)" = (p}" n=1,2,..., N . (13)

The analysis equations for the symmetrical components, prior to applying the intersegment

constraints, are
[KIGGH = B x =0, 1c, Is, 2¢,ens N2, (18)

where {P}* is calculated using Equations -8. The matrix [K] is the same for Equations 13 and 14,

and is the KAA stiffness matrix of NASTRAN for one segment.. =~~~ . "”f‘ T T T T

Now consider the matter of applying the intersegment compatibility constraints. It is ‘
recognized that not all of the degrees of freedom in any transformed model can be independent,
but it is easy to choose an independent set. In the independent set, {G}K, include all

ke and i<S

points in the interior and on boundary 1 (for both u , if they exist). The values of
displacement components at points on boundary 2 can then be determined from Equations 11. The
transformation to the new set of independent degrees of freedom is indicated by
@ = o 1@,
(15)
@S = e Jar*

where each row of [Gck] or [Gsk] contains only a single nonzero term if it is an interior or side
1 degree of freedom and either one or two nonzero terms if it is a degree of freedom on side 2.
In arranging the order of terms in {G}K, the user can specify either that they be sequenced with
all {i}¢ terms preceding all {ayks terms, or that they be sequenced with {@XC and {(G1%S grid
points alternating., It should be emphasized that the kind of vectors used in transformation of

Equations 3 and 15 are quite different. In Equation 3, there is one component (or column) for
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each segment; in-Equations 15, there is one component (or row) for each degree of freedom in a
segment.

Equations 15 are used to transform Equation 14 to the following set of equations which satisfy

the intersegment compatibility conditions:

@k = ;¢ (16)
where [R]k = [le K GCk + G:k K GSk] ’ (17)
and P = 16l 1P + (6] 3PYRS (18)

Because NASTRAN has efficient sparse matrix routines, the time for the calculations indicated
in Equations 17 and 18 will not be appreciable. After solving Equation 16 by decomposifion and
substitution, the symmetrical component variab]es;{ﬁ}kc and {ﬁ}ks, are found‘from Equations 15.
The physical segment variables, {u}", are found from Equation 2. The {u}" are NASTRAN vectors of
the analysis set. They may be expanded to {ug} size by recovering dependent quantities. Stfesses
in the physical segments are then obtained via the normal stress reduction procedures.

The user may take an alternate route if he knows the transformed vafues;,{ﬁkc} aﬁd'{ﬁks},
for the forcing functions (loads, enforced displacements, and temperatures). This will, for
example, be the caselin a stress analysis which follows a temperature analysis of the same
structural model. These data may be input directly to NASTRAN, which will convert them to the
transformed load vectors, {5}K. Data reduction may also be performed on the transformed quanti-

ties to obtain the symmetrical components of stresses, etc.

A shortened approxime}e method for static analysis is available merely by setting
@f=0 (19)

for all K > KMAX, where KMAX is a parameter which may be set by the user, This is similar to trun-
- cating a Fourier series. The stiffness associated with larger K's (short azimuthal wave Tengths)

tends to be large, so that these components of displacement tend to be small.

The cyclic symmetry method cen also be used in vibration analysis. The equation of

motion in terms of independent degrees of freedom is
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K - wfi@®=0 , " (20) ‘

where [MJK is derived by replacing [M] for [k] in Equation 17. The symmetrical components are
recovered with Equation 15. No provision has been made to recover physiéa] segment data in vibra-

tion analysis, because the physical interpretatfon of Equation 47is straightforward. -(Each row of

[T] is a vector of the factors of the segments for'one Ks or Kc index). The avai]aﬁ]e 6utput data does,

however, include the symmetrical components of dependent displacemctts, internal forces and stresses.

4.5.2 Theory for Dihedral Symmetry

Dihedral symmetry refers to the case when each individual segment has a plane of reflective
symmetry, see Figure 2. The segments are divided about their midplanes to obtain 2N half-segments,
The midplane of a segment is designated as side 2. The other boundary, which must also be planar,
is called side 1. The two.Ha1ves of the segment are called the right "R" and left "L" halves. The
user prepares'model inforﬁétion for one R half segment. He must also supply a list of points on

side 1 and another list of bbihts on side 2.

For the case of dihedral synmefry, the cyclic transformation described earlier is used in

conjunction with reflective symmetry of the segments. The two transformations are commutable, -

so they may be done in either order. The reflective transform for a segment is

n,R n’A

n,S +u ,

u =u

(21)

'n,L n,A B '

u =Uu -u

Here, the superscript n refers to the nth segment, and R, L the right and left halves. The

superscripts S and A refer to the symmetric and antisymmetric reflective components.

In the R half segment, displacement components are referred to a right hand coordinate
system; in the L half segment, displacement components are referred to a left hand coordinate

system. The inverse reflective transform is

un,S - %_(un,R + un,L)
(22)
n,A _ %-(u"’R n,L)

u -u

Reflective symmetry is seen to be very simple. The equations of motion at interior points

of the S and A half segment models are identical in form provided that unsymmetrical effects,
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such as Coriolis forces, are excluded.

The un’s and un’A components may be transformed as follows using rotational principles.
ky
WX = 50X 4 T (KX cos(n-1)ka + GKS2X sin(n-1)kal + (-1)" T V23X (a3)
k=1 ’

where x may be either S (symmetric) or A (antisymmetric). The inverse transformation can be

found by Equations 8 for both the symmetric and antisymmetric parts.

The constraints between the half-segments are summarized in Table 1. The constraints
shown apply between points joined together at the boundary planes. "Even components" include
displacemehts parallel to the radial planes between segment halves, rotations about the axes
normal to the planes, and temperatures in a thermal analysis. "Scalar points" in a structural
analysis have arbitrarily been categorized as even components. "Odd components" include dis-
placements normal to the radial planes and ratations about axes parallel to the planes. In
Table 1 the constraint equations for the S and A half-segment model are obtained by substitut-

ing Equations 21 into the equations for the L and R half-segment model. The constraint equations

n,x n+l,x

for the dihedral transform model are obtained by substituting for u and u from Equation

23 and comparing terms with the same dependence on n. It can be seen in the table that the k = 0
and k = N/2 models are completely uncoupled. There is coupling between the kc,S and ks,A models
and also between kc,A and ks,S models. These two sets of constraint equations are related and

-ks,S -ks ,A _akc,A

one can be found from the other by'substituting ch,s for u and u for in the con-

straint equations. If these substitutions are made and it is noted that the equations of motion
are identical at interior points, then only one coupled pair of symmetric and antisymmetric half
segments need to be analyzed with different-load sets for the (ch,S, ﬁks’A) case and the

(Gks’s, -ERC’A) case.

As in the case of general rotational symmetry, a combined set of independent degrees of
freedom is formed from the half models. The indépendent set {G}k includes all interior points,
the points on side 2 of each half segment which are not constrained to zero, and new degrees of

freedom, {ﬁ]}K, on side 1 such that for even components in the (ch,S’ GkS’A) case:

KCsS = o KL GK |
1 N ™
(28)
-ks,A _ _. km =K |
Ut = sin Sy s
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while for odd components:

-kc,S _ . km =K
u] = -S1n N u1 N
' (25)
~-ks A _ km -K
u.l = CO0s N U] .

Equations 24 and 25 are equivalent to the constraints in the third column of Table 1. The

transformation to the new set of independent freedoms may be expressed as

{qyke.s

[ JaX ‘
(26)

{a}kS ,A

-, K
[GAK]{U} o

where each row of [GSK] or [GAK] contains at most a single nonzero term. The transformation

ks ,S

matrices for the (u -ﬁkc’A) case are identical.

The final equation which is solved in static analysis is
kak@ = ik (27)
where the stiffness matrix
[KI® = [6g K Ggy + Gy K GAKj , (28)

and the load vector is obtained by successive application of the inverse reflective symmetry
transform, Equations 22, the inverse cyclic symmetry transform, Equations 8, and the final reduc-

tion to independent freedoms.

The form of the latter is, for the (i’S:S, a*S+R) case,

¥ = L6, TP1CS + [gy TS A (29)
and for the (ﬁks’s, -ch’A) case,

1K = [og TR A - [gy dTprkeR (30)

The data reduction which follows the solution of Equation 27 in static analysis includes the

n,R

application of the symmetry transformation to obtain u and un’L, followed by the expansion to

{ug} size for each half-segment and the calculation of internal loads and stresses. Similar to
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‘ the case of rotational symmetry, the data reduction for vibration analysis is limited to the
recovery of eigenvectors, internal forces, and stresses for symmetrical component sets ch's
and G<S*A,

4.5.3 Advantages

The NASTRAN cyclic symmetry capability will result in a large saving of user effort and

computer time for most applications. The savings result from the following effects:

1. Grid point geometry and element data are prepared for only one segment in the case of

rotational symmetry or one half-segment in the case of dihedral symmetry.

2. The transformed equations are uncoupled, except within a given harmonic index, K,
which reduces the order of the equations which must be solved simultaneously to 1/N or
2/N (where N is the number of segments or symmetrical half-segments) times the order of

the original system.

3. Solutions may be restricted to a,smaller range of the harmonic index, K, (e.g., limited
‘ " to the lower harmonic orders) which results in a proportionate reduction in solution time.
Some accﬁracy is thereby Tost in the case of static analysis but not in vibration

"analysis.

4. In the case of static analysis, the PMIT feature may be used to remove all degrees of
freedom at internal grid points without any loss of accuracy. Since this reduction is
applied to a single segment prior to the symmetry transformations, it can greatly reduce

the amount of subsequent calculation.

It is instructive to compare the advantages of the NASTRAN cyclic symmetry capability with
those offered by reflective symmetry and by conventional substructuring techniques. The savings
offered by cyclic symmetry will always equal or exceed those pro&ided by reflective symmetry
except for possible differences due to time spent in transforming variables. For example, when
an object has two planes of symmetry and two symmetrical segments (the minimum possible number

l in this case), the minimum model sizes are both equal to one half-segment for the two methods.
They are also equal when the object has four symmetrical segments. The advantages of cyclic
symmetry for these cases are restricted to those offéred by the @MIT feature in static analysis
and by a higher degree of input and output data organization. Any larger number of symmetrical

‘ segments increases the advantage of cyclic symmetry because the size of the fundamental region is
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smaller. ' 4 ‘

A method of conventional substructuring which recognizes identical substructures can also

restrict the amount of grid point geometry and é1ement data preparation to a single substructure
and can use the PMIT feature in the same way as cyclic symmetry. The advantage which cyclic
symmetry retains over conventional substructuring lies in its decomposition of degrees of freedom
into uncoupled harmonic sets. This is an important advantage for eigenvalue extraction, but the
gdvantage for static analysis is relatively small and depends in a complex manner on the number

of segments and on the method of matrix decomposition.

In addition to the analysis of structures made up of a finite number of identical sub-
structures, cyclic symmetry can also be used for purely axisymmetric structures. In this case
the circumferentia1 size of the analysis region is arbitrarily selected to be some small angle,
for example, one degree. Grid points are then placed on the boundary surfaces but not in the
interior of the region, and the region is filled with ordinary three-dimensional elements. The
principal advantage of this procedure is that ordinary three-dimensional elements are used in
place of specialized axisymmetric elements. In NASTRAN the nﬁmber of available types and features
for ordinary three-dimensional elements far exceeds those available for axisymmetric elements, R
so that cyclic symmetry immediately enlarges the analysis possibilities for axisymmetric struc- ‘
tures. In particular, the rotational symmetry option can accommodate axisymmetric structures

with nonorthotropic material properties, which the available axisymmetric procedures cannot.
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Segment 2

Segment 1

Segment N - ‘

Conformable Interface

The user models one segment.
Each segment has its own coordinate system which rotates with the segment.

Segment boundaries may be curved surfaces. The local displacement
coordinate systems must conform at the joining points. The user gives
a paired 1ist of points on Side 1 and Side 2 which are to be joined.

Figure 1. Rotational symmetry
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‘Segment 2L . Segment 2R

Segment 1L

Planar
Interface

Segment NL

The user models one-half segment (an R segment). The L half segments
are mirror images of the R half segments. .

Each ha]% ségment has its own coordinate system which rotates with the
segment. The L half segments use left hand coordinate systems.

Segment boundaries must be planar. Local displacement systems axes,

"associated with inter-segment boundaries, must be in the plane or

normal to the plane. The user lists the points on Side 1 and Side 2
which are to be joined.

" Figure 2. Dihedral symmetry
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' 4.6 AUTOMATED MULTI-STAGE SUBSTRUCTURE ANALYSIS

Thé automated multi-stage substructure analysis capability allows the user to repeatedly
combine and reduce structures, which in themselves may be composed of several component substruc-
tures. fhe resulting composite structure, or pseudostructure, may be used for performing a linear
static and/or a normal modes analysis. Although some of these operations could be performed with
the manual single-stage approach, described in Section 4.3, the tasks of controlling the sequence
of operations has been autométed, using simple Substructure Case Control commands, and the necessary
bulk data has been simplified for the user (See the User's Manual, Section 2.7). Additional capa-
bilities, not available with the manual single-stage approach, are included which allow geometric
and symmetric transformations of entire substructures, automatic identification of connected grid
points based on geometry, manual identification of connectivities by grid point and component, re-
lease of selected components and multipoint constraints for special modeling conditions, independent
grid point numbering of each basic substructure and automatic internal renumbering of retained and

boundary grid point degrees of freedom for the connected substructure configurations.

. ; The basic organization of mathematical steps is similar to the manual single-stage substruc-
‘ turing mgthods described in Section 4.3. The Phase I operation consists of a standard NASTRAN
~ -~formulation of a basic substructure from the finite element model and its applied loads. Phase II’
performs most of the specialized operations to combine and reduce substructures, apply constraints
and loads, obtain solutions, and recover data related to the basic substructures. In Phase III the

solution vectors are used to calculate the final -output for each basic substructure.

The following discussion is involved primarily with the mathematical operations performed by
the automated multi-stage substructuring additions to NASTRAN. The specific user options and pro-

gram operations are described in the User's and Programmer's Manuals, respectively.

4.6.1 Development of Equations for Matrix Reduction

A powerful tool in ‘the analysis of structures with the finite element displacement method is
the matrix reduction procedure. The desired effect of this operation is to reduce the total number
of degrees of freedom required to define a structure and thereby decrease the dimensions of the

associated matrices and vectors.

In substructure analysis, the only necessary degrees of freedom which must be retained are

‘ those associated with the grid points which will be connected to adjacent substructures, those
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which will be constrained and/or those which will have loads applied to them in a subsequent anal-
ysis phase. In order to adequately represent the inertia effects of each substructure in a dynamic .

analysis, it will be necessary to also retain selected degrees of freedom on interior points.

The basic equations for the reduction operation are given in Chapter 3. In substructure analysis
the structural response is defined by a displacement vector {uf}. The reduced structure's response
will be defined by a vector’{ua} which is a subset of {uf}. The following operations are performed

on the structure matrices:

a. Partition the stiffness matrix:

b. Solve for the transformation matrix, [Go], defined by the equation:

_ -1 ‘ .
(65 = - TKool ' [K,] (2)
The resulting relationship between the disp]acement'vectors is:
g} = (6 ]{u}+{-9-} (3)
f oa a 0 :
u
o) .
where
6.1 =|-- (4)
oa G
0 '
i
and
0, _ -1
{uo} = [Koo] {Po} (5)

The vector {PO} represents the applied static loads on the omitted points. The Guyan
Reduction Procedure as used in eigenvalue analysis implies that the {ug} vector is not used (See
Section 3.5.4). The transformation given in Equation (3}, when applied to the stiffness and mass

matrices, results in new system matrices K and M defined by the eduations:

[K) = [K,1+ (6,1 [K,] (6)

(M = [6,,1" (M [6y,] (7)
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The applied load vector {Pf} is transformed to the reduced set of degrees of freedom by the

‘equation:

= [6,,1" P} (8)

4.6.2 Development of Equations for -Substructure Combination

The mathematical operations involved with combining substructures are very similar to the
methods of combining element stiffness matrices in the finite element displacement method. For
each element or substructure the matrices are generated in a local coordinate system, they are
then transformed to a common global coordinate system, expanded to the size of the combination
matrix, and added together. If adjacent elements or substructures are connected at the same grid
point, the combination is effected by simply adding the corresponding contributions from each

matrix.

In substructure analysis the transformations between the displacements in each substructure
{uA}, {uB}, etc., and those in the combination, {uc}, are given by a set of matrices [HAc], [HBC],

etc., where:

{ug} = (Hacl {uc} o
(9)
{ug} = [HBC] {uc}

etc.

The contents of these matrices may be illustrated by the example in Figure 1. Two substructures,
A and B, must be combined using the degrees of freedom along the boundary which are sequenced
differently for each substructure. Note that grid points 2 and 6 of the original structures are
to be connected only in their“x-component of displacement. The fiqa] desired sequénce is shown in
parentheses. For simplicity, only two degrees of freedom are given for each grid point. In

general, however, six-by-six matrix partitions would be used in place of these unit values.

If [KA] and [KB] are the stiffness matrices for substructures A and B, the stiffness matrix

for the combination C is:

(K] = [Hyed' [KyD [Hy D + [Hged' [KgD [Hgel (10)
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Figure 1. [Illustration of substructure combination matrices.
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The mass and damping matrices would be combined with identical transformations. The load

vectors on the combination structure are:
®3 = [H 1T (P} + [Ho 1T (P (1)
C AC A BC B

The contributions to {PC} from each basic_substrdcture are not added gt this time. They are stored
separately with the data for each combined substructure. At so]utionAtime, the user has the

option to specify arbitrary linear combinations of these loadings in order to:define the total
loading to be applied to the model. The solution vectors {uA} and {uB} for the contributing sub-
structures are recovered using £q. (9) once the displacements or mode shapes {uC} have been

cohputed.
This method of performing the substructure combinations offers the following advantages:

1. The [HAC] matrices are extremely sparse, they require a minimum of storage space and the

NASTRAN matrix mu]tip]y operations used are efficient.

2. For each substructure, the same transformation is applied to all its matrices, loads and

solution vectors.

3. If rotations and/or symmetry transformations are specified for the component substructures,
the directions of displacement may be transformed by simply substituting direction cosines

instead of unit values, as discussed below.

In many situations when structures are to be combined, it is necesséry to translate and/or
rotate a component substructure in order to bring its boundaky‘poiqts into alignment wfth the other
substructures. Thg user may define the physical orientafion of each component substructure by
specifying the orientation of the substructure basic coordinate- system-relative to the basic
coordinate éystem of the combined structure, herein defined aé the overall basic coordinate system.
A symmetric mirror image of the substructure may also be obtained by specifying the axis normal
to the plane of reflection desired. This allows the user to prepare only one half of a symmetric

model and automatically obtain the matrices for the other half via this symmetric transformation.

Consider the horizontal stabilizer illustrated below as a component substructure defined in

its own basic x, y, z coordinate system:
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This stabilizer must how be rotated, translated, and attached to another substructure repre- - -..
senting the fuselage. The user defines the location and orientation of the stabilizer coordinate
system in terms of the overall basic coordinate system. This is illustrated in the following

sketch of the overall basic coordinate system xg, yg,,zg.

Substructure”
Basic Coordinate

|
/s

-’
-
-
— .
-
-

g
o
- -
I
o

~ Overall Basic
Coordinate System G e e B

The locations of the substructure points in the overall basic coordinate system are described

by the equation:

R} = [Tpl r} + R (12)

g -
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‘ where [TTR] is a rotétion matrix of unit vectors defined by the user such that:
oy Ky
Ul = 112 32 K (13)
i3 33 k3

and R0 is the offset vector from the overall basic origin to the origin of the stabilizer coordi-

nate system.

The displacement vector'{ug} for a grid point in the overall basic coordinate system is
similarly defined in terms of a vector {us} for the component substructure in its basic coordinate

system by the equation:

{ug} = [Typd {ugl (14)

The symmetrié reflection of a substructure is treated similarly. Note that the mirror image
model has identical stiffness and mass matrices, however, the components of displacement and
rotation are now defined in a left-handed coordinate system. Therefore, a corrésponding transfor-

. mation is required to provide for compatability among combined substructures. The following

sketches illustrate the problem of a structure reflected in the overall basic z-y plane:

Original Substructure

New. Substructure
Reflected in the y-z Plane
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Both the displacement and rotation components, prior to transformation, are now in a left-
handed system. Therefore, in order to connect the reflected structure to the original model with

its right-handed coordinate system, the fo11owing transformation must be applied to every grid

point:
e m ~ - f'u;,ﬁ
Cu
1 r X
u
Y u
y - r Y
- ey, : a .
. _ _ 3 2 Lo Uz o
b =y e 07 Tond ¢ (15)
X X ‘
r 6
6
y J
r z
0 "
L 2
. where,. for the example shown:
-1 0
1
: = 1
[Tsywd = 1 (16)
-1
0 -1

Similar transformations exist for reéflections in the x-z and x-y planes.

Assuming. the primary substructure and its reflected model are to be combined along the plane .

of symmétry, the resulting combined model would show:

Reflected Model = =~ _
(Transformed)

Original Model
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A11 subsequent combinations using this new substructure would proceed as for any other substructure.
On data recovery, however, the user must be careful. The detailed results obtained for the basic
reflected model (Phase 3) will be output in the reflected coordinate system and, therefore, must be
interpretéd with the left-hand rule. These results, of course, include not only displacements and

rotations at grid points, but they also include stresses and element forces and moments.

If a subsequent symmetry transformation is imposed on a model already comprising components
which themselves resulted from symmetry transformations, a left-handed coordimate system of the
earliest component substructure would again be transformed, but now to a right-handed system. For

example, a model with four identical components could be constructed as follows:

y Y. y
A
X X
: 4 4
v I
X
111 I1
o ,
' X X
z z
y y

where the original basic substructﬁre (I) was reflected in the x-z plane to create substructure (II).
Substructures (I) and (II) were combined and subsequently reflected in the y-z plane to create -
substructures (III) and-(IV) to complete the four part model: The fina] model would comprise four
basic substructures, of which substructures II and IV would produce Phase 3 results in the left-

handed coordinate systems as shown.

The transformations and symmetric reflections. of the structural matrices are easily included
in the process of combining several substructures. The combined transformation equations necessary

to define displacements and rotations of each grid point {us}, in basic, right-handed, coordinates

are:

tugh = [H] (ug) (17)
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where

Tro! . -
H1 = [T -4z -- 18
() = [Tgyy] { :TTR] | (18)

and {us} are the displacements in the respective component substructure coordinate systems.

The [Hg] matrix for each grid point is assembled into the overall substructure transformation
matrix [HAC] defined previously. The stiffness matrix, mass matrix, and load vectors can now be
transformed to correspond to displacements and rotations in the overall basic coordinate system of

the combination structure.

Several restrictions and rules must be imposed on these transformations in order to prevent
complications and errors. The transformations given above will be applied only to grid points
having their displacements defined in the original substructure basic coordinate system. Displace-
ments defined in a local system of the component substructure will not be transformed, i.e., their
directions will be fixed on the substructure and will travel with the substructure during its
rotation and/or translation. Provisions are made to allow the user to define new local systems,

or to change local systems to basic during Phase 2 processing..

If constraints have been applied during Phase I or if selected degrees of freedom at a grid
point have been reduced out of the matrices, additional problems may occur. These grid points
might not have all of the original three displacements and three rotational degrees of freedom.
The transformation matrix (Hg) at these grid points could then reintroduce previously eliminated
degrees of freedom which could cause singularities. Consider the example shown in the following

sketch where two co-linear rods are connected.

|
Combined Substructure |
Basic System ROD
l
i

X2

Substructure 2

ROD y Basic System

Substructure 1
Basic System

X
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‘ Assume the component uy2 on the right structure was constrained out to remove a singularity.

After rotation there would again be two components u, and uy and the grid point will again be_

X
singular. The user has two options to avoid this problem. Multipoint constraints may be imposea
during the solve step in Phase 2 if the components are left unconnected until the solution model

has been completed. Alternately, the user may define compatible local coordinate systems at both
grid points and the desired connections can be made since local grid point coordinate systems are

not transformed when the structure is rotated.

4.6.3 Development of Equations for Solution and Recovery

After a]i of the necessary substructures have been assembled and reduced with the operations
described above, the assembled pseudostructure may be analyzed with many of the standard NASTRAN
options. Static and Normal Modes Analysis are processed automatically requiring only a few special
data cards to define thé constraints and load combinations with reference to the original basic

substructures names. The mathematical steps involved with the solution are described in Section 3.

The results of the NASTRAN solution are in the form of vectors related to the pseudostructure

‘ degrees of freedom. They are:

1. . Displacement vectors, {ug}, with one vector per solution load case in static analysis.
In Normal Modes Analysis, one displacement vector is produced for each eigenvector obtained

during solution.

2. Forces of constraint, {q}, with one vector per solution load case or eigenvector. These

are processed exactly like the displacement vectors of a static solution.

3. In Static Analysis, a set of load vectors, {Pg}, are produced.

4. 1In Normal Modes Analysis, an eigenvalue, Ai, the natural frequency, fi’ a modal mass Mi’

and a modal stiffness Ki are produced for each mode shape.

The recovery of displacement vectors for the original basic substructures are obtained by
tracing backwards the same path that created the structural matrices and loads. For instance, if
substructure F were reduced to produce substructure G with the transformation matrix [Goa] as

defined in Section 4.6.1, the displacements of structure F may be obtained by:

{ugd = [6,,] (ug) + {ug) (19)

Note that {ug}, as defined by Equations (3) and (5), is produced only in static analysis.
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Continuing the example, assume that substructure F was créated by combining substructures A

and B. The displacements of these substructures may be obtained by application of Equation (9):
' : N

{ugd = [Hped up) (20)

tugh = THged {up) | ()

where [HAF] and [HBF] were created originally in order to combine these two substructures.

The forces of constraint, {q}, will play a different role in substructure analysis than in
the existing NASTRAN formulation. These forces do not transform to forces on individual substruc-
tures as easily as the displacement vectors are transformed in the equations above. The total set
of forces on an individual substructure may be obtained from the basic equation of static

equilibrium:
(Fa} = [KJ {up} (22)

where the stiffness matrix [KA] and the solution displacement vector, {uA} are defined for all

degrees of freedom in substructure A. The force vector {FA} contains all the terms due to:

1. Applied forces
2. Inertia forces
3. Single point constraint forces

Multipoint constraint forces

[ B -

Forces transferred from other connected substructures

6. Residual forces due to computer round-off.

In place of evaluating each of these contributions separately, the equation to be used to
replace the existing NASTRAN approach for computing the forces of the constraints for a static

analysis simply becomes:

{qA} = [KA] {UA} - {PA} (23)

where {PA} is the applied load vector on substructure A.

In Real Cigenvalue analysis, the corresponding equation becomes:

{qA} = [KA] {¢A}i - Ai [MA] {¢A}i (24)
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‘ where {¢A}1' and >\]. are the ith eigenvector and eigenvalue respectively.

The additional solution quantities such as element forces and stresses are calculated using

the equations existing currently in NASTRAN.
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STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD
5.1 [INTRODUCTION

Much of the individuality of a structures program is exhibited in the structural elements
which it employs. Here, more than e]seWhere, the designers of the program express their concep-
tion of intended app]iéations; whether, for example, the program will be used mainly for air-
frames, for steel frameworks, for massive concrete structures, or for pipe networks. The intended
range of NASTRAN includes all of these types of construction and many more, so that the number of
different structural elements is larger and their properties are less specialized than in most

other structural programs.

In NASTRAN a structural element defines the properties of a physical object that is con-
nected to a (relatively small) number of grid points. In static analysis, stiffness properties
are input ‘exclusively, by means of structural elements, and mass properties (used in the generation
of loads) are input either as properties of structural elements or as properties of Qrid pointé.
In dynamic analysis, mass, damping, and stiffness properties may be ihput either as properties
of structural elements or as properties of grid points (direct input matrices). There are fouf

general classes of structural elements.

1. Metric elements which are connected between geometric grid points. Examples include rod,

plate, and she]] elements.

2. Scalar elements which are connected between pairs of scalar points (i.e. between any two

degrees of freedom) or between one scalar point and ground.

3. General elements whose properties are defined in terms of deflection influence coeffi-

cients and which can be connected between any number of grid points.
4. Constraints
The first class (metric elements) incorporates specific assumptions about the mechanical be-
havior of structural components. It is the most commonly used class of structural elements. The

latter three classes are introduced to expand the generality of the program; they can, for

example, be used to synthesize structural components not included in the 1ist of metric elements.

The description of a structural element contains several different kinds of information that

are used by the program in different ways. The description of a metric element includes
1. Connection and orientation information (e.g. identification of the grid points to which

. ORIGINAL PAGE 18
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it is connected).

2. Geometric properties, such as thickness or cross-sectional area.
3. Material properties, such as density, elastic moduli, and thermal expansion coefficients:
4. Enforced deformations.

5. Data recovery information, such as the location of points where stresses will be com-
puted.

Four different kinds of data cards are regularly used to describe structural elements in

NASTRAN, They are:

1. Material Property Definition Cards that define the material properties for each of the
-materials used in-the structure. The material properties include density, elastic mo-
duli, thermal expansion coefficients, allowable stresses used in calculating margins of

safety,.énd'structUral'dampihg coefficients. Separate card forms are available for iso-

tropic and anisotropic materials. Elastic moduli can be made functions of temperature

or-of stress (for piecewise linear analysis).

2. Element Property Definition Cards that define geométric properties such as thickness

{of plates) and cross-sectional areas and moments of inertia (of beams). Other included

items are the nonstructural mass per unit area (or per unit length in the case of beams)
and the locations of points where stresses will be calculated. Except for the simplest
elements, each .Element Property Definition Card will reference a Material Property De-

finition Card. o .

’3.“ E1emgnt.Conngction Cards_that identify the grid points to which each element is connect-
ed. The order of grid point identification defines the positive direction of ‘the axis of
a one-dimensional element and the positive direction of the surface of a plate element.
The Element Connection Cards also include orientation information, such as the direc-
tions of the principal axes of a beam referred to the coordinate system of one of its
grid points, or a vector defining the offset:of the end points of a beam relative to its
grid points. Except for the simplest elements, each Element Connection Card references
an Element Property Definition Card. If many elements have the same properties, this

system of referencing eliminates a large number of duplicate entries.

4. Constraint Cards that define the degrees of freedom involved in each equation of

.. , 5.1-2




INTRODUCTION

constraint and their coefficients.

Masses aﬁfjgned-directly to grid points by the user are also described by means of Connection
and Element Property Definition Cards. Masses'are also assigned to elements by means of the
structural and nonstructural density parameters, and are transferred to grid points by the pro-
gram. The nohstructura] mass density parameters are used to describe coatings, stored fluids,

sécondary structure, and other distributed items that have negligible stiffness. Two different

‘methods of mass transfer, known as the Lumped Mass and the Coupled Mass methods are available to

the user. They are discussed in Section 5.5.

Each of the structural e]emeﬁts in NASTRAN is discussed in the subsections_that follow. In
the program the equations for each structural element are implemented by four or more subrou-
tines corresponding to different structural modules. Ong subroutine is used for computing the
stiffness matrices, another is used for mass matrices, another is used for the generation of loads,
and a fourth is used for recovering stress data. The discussion of structural elements will, fn
most cases, fall short of presenting the complete set of equations that are implemented by the

program. The reader is referred to the NASTRAN Programmer's Manual for the complete equations.

Two other topics which directly involve structural elements, namely differential stiffness
and piecewise Tinear anélysfs, are reépéctive]y treated in Sections 7 and 3.8 of the Theoretical
Manual. In addition, the relationships involved in transferring the stiffness and mass of

structural elements to grid points are discussed in Section 3.4,

NASTRAN includes a provision for “dummy" structural elements, which allows users to investigate
new structural elements with a minimum of programming effort. The user is only required to write
FORTRAN code for the element routines and to perform a link edit for selected links in order to
include dummy elements in NASTRAN. The element routines are those which compute the stiffness,
mass, and damping matrices for each particular element, generate thermal loads, generate the
differential stiffness matrix, and recover stresses. No provision is made for including dummy
elements in piecewise linear analysis. Dummy elements can be plotted and changes in dummy elements
can be included in modified restarts. Input for the dummy elements is provided on connection and
property cards. The code required to interpret‘the information on these cards is put into the

element routines.
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5.2 RODS AND BEAMS

Although it is one of the simplest of structural elements and one that is well known to
everybody, the beam has been a troublesome element in the development of NASTRAN, due to diffi-
Eu]ty in selecting the properties that it should have. In retrospect it seems clear that the ver-
satility of the beam concept is the cause of the difficulty. It is used by engineers to describe
the structural behavior of everything from a simple round rod to a highly tapered airplane wing.
The large number of parameters required to describe the beam eleément adequately in the latter ap-
plication would impose aé unreasonable burden of data card preparation on the user in the former
application. Thus, if the number of different forms of the beam element is to be kept reasonably

small, compromises must be made.

There are two basic forms of the beam element in NASTRAN at the present time. The BAR which
includes extension, torsion and bending properties; and the ROD which includes only extension and
torsion. A number of important'regtrictive assumptions have been accepted for both forhs. They
are that the elements are straight, unTbadea except at their ends, and that their properties are
uniform from end to end. The first two assumptions are complementary in the analysis of continu-
ously loaded curved beams because, if such a beam is replaced by a set of straight chords, the
loads should be lumped at the intersections in order to obtain accurate results. These two aﬁ—
sumptions were adopted in the interest of reducing the number of beam forms in the initial version

of NASTRAN. Straight elements must be included even if curved elements are not.

The third assumption (uniformity) was adopted because of the large number of parameters re-
quired to specify the several different kinds of taper that are potentially useful (linear depth
variation, linear EI vériation, etc). It was, furthermore, reasoned that the GuyanrreQUgtion,
Section 3.5.4, provides a means for specifying a nonuniform beam by subdividing it into several
uniform segments without increasing the number of degrees of freedom to be used in dynamic ana-

lysis.

The cbmp]ete mathematical equations that describe the beam elements may be found in Section
8 of the NASTRAN Programmer's Manual. The properties that the elements have are described below

in separate subsections.

5.2-1 (3/1/76)
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5.2.1 The BAR Element ‘

The BAR element includes extension, torsion, bending in two perpendicular planes and the

associated shears. The orientation of the principal axes is freely selected by the user. The
shear center is assumed to coincide with the elastic axis, i.e., with the centroid of the struc-
tural material. This assumption is restrictive only when both properties are important in the
same problem. It is permitted to offset the elastic axis from a line joining the grid points

to which the bar is attached. It is also permitted to eliminate the connection between any of
the six motions at either end of the bar and the adjacent grid point, provided that at least one
connection remains. This feature has several uses including, for example, the representation of

beams that are fixed at one end and pinned at the other.

The specified cross-sectional properties of the bar are its area; its moments and product _

of inertia; its torsional stiffness factor, J; the factor K (in KAG) for computing transverse
shear stiffness (see for example, Reference 1); and the nonstructural mass per unit length. The
material properties, obtained by reference to a material properties table, include the elastic

moduli, E and G, density, p, and the thermal expansion coefficient, o, determined at the average

temperature of the element. The temperature data for the bar may be specified by either of two ‘
methods. In the first method, the average temperature‘and the effective transverse gradient of the
temperature is specified at each end; the temperature is assumed to vary linearly along the bar.

In the second method, the temperature is assumed to be uniform throughout the bar and equal to the

average of the temperature assigned to the grid points which it connects. An extensional deforma-

tion (misfit) may also be enforced.

The stiffness matrix of the bar element is a 12X12 matrix of coefficients expressing the
forces and moments acting on the degrees of freedom at its ends. The stiffness matrix is first
calculated with respect to transiations and rotations parallel to an internal coordinate system
with one axis coincident with the axis of the bar (see Figure 1} and is then transformed into the

directions of the degrees of freedom assigned to the adjacent grid points.

(])Roark, R. J., "Formulas for Stress and Strain", McGraw-Hill, 1954, p 120.
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Figure 1. Bar coordinate system, showing degrees of freedom for bending in the xz plane.

For example, the portion of the stiffness matrix that describes bending in the xz plane of

the element, assumed to be a principal plane, is given by

| } | i
F 2 I | 2 u
za Ry R R ™=
| [
.2 &l | 2 E 8
a 2 ) a
L g Re—L RigR-54 )7
= —— - ol R , (1)
F ! £ u
zb I R zb
|__:_ _7_R S
M 3 0
yb | SYMMETRICAL | A e L | AP
where
2 L
R = + : ' (2)
<KZAG 12E1y>

The complete stiffness equation, including extension, torsion, and bending in two planes,

written in the element coordinate system, may be represented in symbolic form as
{fe} = [Kee]{ue} . (3)

The degrees of freedom, Ugs at the ends of the element in its internal coordinate system are

related to the degrees of freedom, ug, of the adjacent grid points by

5.2-3 (12/15/72)
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l gt = [y s (@) '

where [T] is a matrix whose elements are caicutated from direction cosines and offsets.
The stiffness matrix for the element written in the global (grid point) coordinate system is

| .
| [l = [Nk T . (5)

The structural and nonstructural mass of the bar are similarly transferred to the adjacent

arid points by either of two methods as explained in Section 5.5. The center of gravity is assumed
- to 1ie along the elastic axis; cross-sectional rotary inertia effects, including torsional iner-

tia, are neglected.

Equivalent thermal loads on the adjacent grid points are developed as follows. Beam theory
predicts the average strain and curvatures of an unloaded beam, for cases where o does not vary

~with depth, to be:

el L
cy = 3fTan (6)
32""Z. . | .o L e -
2
9 u
_—x = = -l
L t frv o . | (8)

where A = cross sectional area

Q
1}

thermal expansion coefficient

T = temperature above ambient
¥y,Z = coordinates of a point in the cross section (see Figure 2)
Iy,IZ = moments of inertia of the cross section about the y and z axes respectively.

The integration is carried out over the cross section, with y = 0 and z = 0 at the centroid.

Define the temperature resultants:

'f=%deA , (9)

-
1}

1
, UszdA, .“0)
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R
T, - IZny dh . an

. ) )
Note that if the temperature distribution has a Tinear gradient, the resultants TZ and Ty are the

gradients.

Let the temperature (and therefore the temperature resultants) vary linearly between the ends

of the beam. If end b {x = 2) were fixed, the deflections at end a (x = 0) would be:

0 L T 3
u =I dx = - ?+b-Ta dx = -7 +T) (12)
xa av fu a [} x| ax 2 a b '
0
The slopes would be ’
o .
ou B - B [ [
= ¥ = . Zzb_ "za = B
%a 3X f(sza * T X) dx 2 (Tya * Tyb) ’ (13)
2
ou 1 o
= zZ _ _ ol
®%a T " T 7 (Tza * Top) (4)

The displacements obtained by integrating the rotations are

. .
B, - B
[f <Bza + Ll‘—z—a' )-(> d)-(} dx
L

2
al ! ' (15)

(] o]
Cug, - {ez(x) dx = j; ya

'

and, similarly,

o, o
- _ a2 ! ! : v
Y2a. 5 7% (Zsz,fayza) L - R ,.(lﬁ),

The loads which must be applied to the bar to produce equivalent disp]acements will be a

function of the material elastic moduli, E and G; the bending inertias, Iy, I_, and Iyz; the shear

z

factors Ky and KZ; the cross sectional area, A; and the results of applying pin Jjoints which dis-
connect various degrees of freedom of the ends of the bar from the grid points. If no pin joints
are applied and the material properties do not vary through the depth, the equivalent loads are

neatly expressed in terms of the stiffness matrix. In element coordinates the loads are:

5.2-4a (4/1/72)




;STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

' t
Pa Kaa E Kab || Ya t
e G .o P g S (9 [ (17)
- t
Py Kpa 1 Kob | (Y

where {P_} and {P,} are the six components of load on each end of the beam; [Kaa]’ [Kab]’ etc. are
the six by six partitions of the stiffness matrix; {ug} and.’ {ug} are the sets of displacements at
each end resulting from temperatures. The nonzero components of {ug} are given by Equations 12-16.
{uE} is null. The loads are transforied to grid‘point coordinates’ by premultiplying Equation 17 by
[T]T where [T] is defined in Equation 4.

If pin joints are used, the stiffness matrix is partitioned and reduced as follows:

a) The matrix is partitioned:

b, 1
Keg 1 Kpo
K] = | oo , (18)
]
Kzo ' oo
where the subscript "o" refers to degrees of freedom that are disconnected. ‘

b) A transformation matrix [Go] js defined as:
»:[G ]‘~= N AL L ’ - (19)
o 00 207 .

c) The reduced matrix with pin joints is:

)
Keg 10
0 0 ’
1
where ] A - 7 } ) 4
[K,,] = [K,,]+ 061K, 1" - (20)
28 28 LAY _
d) The loads on the reduced set are:
. - - T '
(P} = {Py+[6 1P} (21)
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‘ where’ {52} and {Po} are loads on the unreduced set; see Equation 29, Section 3.5.3.

The temperature field produces loads on the unpinned bar by the equations:

C—

0

—
|

v t t
[KygJupd + [ Much (22)

-~

O

-
]

[Kyod {ul} + (K Hul} , (23)

where'{uz} and'{ug} are the displacements due to thermal effects. Their components are
- equal--to the components of'{u:}'and'{ug}, rearranged. The loads on the reduced coordin-

ates are, from Equations 21, 22, and 23:
: - & t t T T, t T t
{Pz} ' [Kzz]{ul} + [Kzo]{“o} + [Go] [Kzo] {ul} + [Go] [Koo] {uo} . (24)
Using Equation 19, the second and fourth terms cancel and the resulting Toad is:
: _ - T T\, t
= (k0 + 16,17k, 1)ty (25)
‘ _ The matrix in the parentheses is exactly equal to the reduced stiffness matrix for the

- -unpinned coordinates {Equation 20).

The equations used in stress data recovery for the element thermal loads are modifications
of{Equations 12 through 17, and 25. The applied thermal forces and moments,'{Pz}, are subtracted\
from the computed forces and'mdments."StreSSes are calculated from the resulting internal loads.

The following types of stress data output can be requested
- Bending moments at both ends in two planes
- Transverse shear force in two planes
-Aﬁalfmt&u;_~mﬂ;iw¥#—~:}:.zx:* B -
- Torqﬁe
- The average axial stress_ _

- The stresses due to bending at four points on the cross-section at both ends.
The points are specified by the user.

‘ - The maximum and minimum extensional stresses at both ends
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‘ - Margins of safety. in tension and-compression for the whole element.
5.2.2 ROD Elements

The ROD element is a simplified form that includes extensional and torsional properties only.
Extensional and torsional properties are combined in one element in order to reduce the number
of separate types of data cards; it is unlikely that both?propektieE will often be used simul-

tanebusly.

The specified cross-sectional properties of the rod are.its area; its torsional stiffness
factor, J; its nonstructural mass per unit length; and a factor for converting torque into shear

stress. Material properties are obtained by reference to a material properties table.

The RPD, like the BAR, can be subjected to thermal expansion and enforced axial deformation
except that thermal gradients are ignored. The treatment of mass propérties is explained in
Section 5.5.
The TUBE element is a specialized form of the ROD that is assumed to have a circular cross-
‘ section. The outer diameter and the wall thickness of the tube are specified rather than its

area and torsional stiffness constant, J.

Another kind of rod element is the viscous damper, VISC, that has extensional and torsional

! viscous damping properties rather than stiffness properties.
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Plane 1

End b
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a) BAR coordinate system.
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b) Cross section with stress recovery points.

Figure 2 'BAR geometry
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5.3 SHEAR PANELS AND TWIST PANELS

A shear panel is a two-dimensional structural element that resists the action of tangential
forces applied to its edges (plus the action of other forces when necessary to preserve
equilibrium) but does not resist the action of normal forces. Shear panels are created in the
process of obtaining idealized models for elastic sheets. If a sheet has heavy stiffeners, it is
reasonable to Tump the normal stress-resisting properties of the sheet into stiffeners and to
lump the shear-resisting properties of the sheet into shear panels. This idealization can some-
times be justified even if the sheet has light stiffeners or no stiffeners at all. The shape of
a shear panel is determined by the directions of the bounding stiffeners, and, although the rec-
tangle can be considered to be the normal shape for a shear panel, other quadrilateral shapes

must be considered in practice.

The twist panel is the bending analog of the membrane shear panel. It is, in fact, equi-

valent for bending action to a pair of parallel shear panels.

Consider the flat quadrilateral panel shown in Figure 1, (The effects of warping will be
treated later.) The panel is in equilibrium under the action of tangential edge forces, F], F2’
F3 and F4.
points. In Figure 1, the equivalent corner forces, fA’ fB, fc and fD’ are made collinear with the-

In NASTRAN, the forces on elements are applied only at their corners, i.e., at grid

diagonals. Onﬁy one of the edge forces is independent, the others taking values to satisfy equi-
Tibrium. The auxiliary quadrilateral BEFC in Figure 1 is a force polygon that may be used to
evaluate the ratios of the edge forces. BF is drawn parallel to AC and EF is drawn parallel to
AD. Since ;he resultant of F] and F4 must lie along AC in order to balance the resultant of Fz'

and F,, the triangle BEF expresses the relationship among F], F4 and their resultant. It is as-

3 .
sumed (arbitrarily) that one-half of the adjacent edge forces are reacted at each corner. Thus,

if 9 is the average shear flow along edge AB,

o 9 aB-BF
fa = fo = 7 B , (1)
9 AB-CE
fo = o = 7 s . (2)

1f the strain energy can be expressed as a quadratic function of 9>

= 1,4.2
E = ? Zq] s (3)
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then the stiffness matrix referred to motions at the corners is derived from Equations 1, 2 and .

3 as follows.

Let the element stiffness matrix [Kee] be defined by

[Kodut = {f} e

where
P T -
(f} = Lfp fgo foo fpd (5)

and the elements of {ue} are components of corner motions collinear with the elements of‘{fe}.

Equations 1 and 2 may be written in matrix form as
{fe} = {C} a9 - - : . - (6)
The strain energy is related to corner motions by

£ = %{ue}T[Kee]{ue} . (7)

It is convenient to define.a generalized displacement, §, conjugate to > such that

§ = zq , (8)

and
21 _ 1 2 '
E = é-éq] = 77 § . (9)
Still other ways to express the strain energy are
I R '
E o= 5 {u ) {f} (10)
= LT
= 3 {ue} {C}q] s (1)
where Equation 6 has been used in the second form. Comparing Equations 9 and 11
s = walter = Ty (12)

so that, substituting into the second form of Equation 9

Eo= 1t To o Twy : (13)
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?@ngi pAGE 1S POOR




OR1Gy
NAL
SHEAR PANELS AND TWIST PANELS ALITY
Finally the stiffness matrix is obtained by comparing Equations-7 and 13.
- T
[Keed = 7 (C}HCD . (14)

Let {ug} be the degrees of freedom at adjaéent grid points in the global coordinate system,

to ‘which the element coordinates {ue} are related by a geometric transformation
{ue} = [T]{ug} . (15)
The stiffness matrix of the shear panel referred to grid point coordinates is
- T .
[ggd = [T1[Ke LTI : (16)

A final task is to evaluate the constant z in the expression {Equation 3) relating strain
energy to the average shear flow on side 1 of the panel. " For a rectangular panel the shear flow

is constant over the surface and

. A . : (17)
LR T ’ '
where A is the area, t is the thickness and.G is the shear modulus of ‘the bane]. For a parallelo-

gram the shear flow is still constant and it can easily be shown that

2 .
7 = A_<] +2'1:an6> , (18)

where 8 is the skew angle of the parallelogram (i.e., the‘comp]ement of the smaller interior

angles) and v is Poisson's ratio.

In order to analyze more general shapes (the trapezoid and the trapezium) it is first neces-
sary to make an assumption regarding the distribution of shear flow. Garve§{1) has suggested a
distribution of shear flow that satisfies all equilibrium conditions but does not satisfy the
strain compatibility condition except in the 1limiting case of a parallelogram. This distribution
is illustrated in Figure 2. The tangential force per unit length on an infinitesimal parallelo-

gram the extension of whose sides pass through P and Q is assumed to be inversely proportional to

the square of the distance from the baseline PQ.

(])Garvey, S. J., "The Quadrilateral Shear Panel". Aircraft Engineering, p.134, May 1951

‘
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For the assumed distribution of shear flow, the strain energy per unit area is .

2
_ 1 2tan"e. 2
E* = vm(‘ * T )q ’ (19)

where 8 is the skew angle of the infinitesimal parallelogram. Integration of Equation 19 for the
general quadrilateral is straightforward but tedious. The expression derived by Garvey for the
general case will be found in the Programmer's Manual. For the special case of a trapezoid, see

Figure 3, an expression for the quantity z in Equation 3 is

2
4

z = éf- 17 [ﬁ + 3 $+u (tanzé1 + tang,tans, + tanzaz)] . (20)
3
The approximations in Garvey's formulation become ﬁore serious as the disfortion of the
panel from a rectangular shape increases. Most of the difficulty is with the assumption, which is
basic to the concept of a shear panel, that the tangential forces on a quadrilateral element do
not couple elastically with the normal forces. This assumption is simply incorrect for non-

rectangular shapes and it can lead to erroneous results. Garvey's formulation is used in NASTRAN

because it is plausible and easy to apply, and because, given the lack of rigor in the shear

panel concept, more elaborate formulations cannot be justified.

Four points cannot, in general, be restricted to lie in a plane, and so allowance must be-
made for the effects of warpihg in the deve1opmen; of the equations for'a shear panel. Trouble
with static equilibrium is avoided by directing the corner forces along the diagonals even though
they are no'longer coplanar. The important parameters (z and {A}) are evaluated for an equiva-
lent plane quadrilateral that is parallel to both diagonals. The 1ocatiohs of the corners of the

equivalent plane figure are obtained by normal projection of the corners of the actual panel.

The physical properties of a shear panel that are specifieq by the user are its thickness,
its nonstructural mass‘pér unit area and a reference to a material properties table where the
density, shear modulus and Poisson's ratio are stored. Thermal expansion is not apb]ied to
shear panels, even though the generalized displacement, 8, includes some dilatation when the panel
is nonrectangular. The user is, therefore, warned against using severely skewed shear panels in

thermal stress analyses.

The mass of the panel is transferred to adjacent grid points as follows. The panel is
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. divided into two triangles by one of the diagonals and one-third of the mass of each triangle is
assigned to each of its corners. The assignment of mass is then repeated using the other diagonal

to form the triangles. Finally the two assignments are averaged.

The quantities computed in stress data recovery include the average of the shear stresses at
the four corners, the maximum shear stress, thg average shear flows on each of the four sides,
and the components of force at each of the four corners. The three components of corner force
are oriented parallel to the adjacent sides and normal to their plane. The normal component, or -
"kick" force, occurs only when the panel is nonplanar. Explicit formulas for the calculations

are given in Section 8 of the NASTRAN Programmer's Manual.

The twist panel performs the same function for bending action that the shear panel perforhs
for membrane action. Couples are applied by imposing forces at the corners in planes parallel to
the diagonals, see sketch be]ow. The stiffness matrix of a twist panel is equal to that of a shear
panel multiplied by t2/12 where t is the ‘thickness of the panel, which is assumed to bé solid.

For built-up panels, t must be adjusted to give the correct moment of inertia of the cross-section.
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Figure 1. Shear panel and its force polygon,

q -d2 = Constant

Figure‘Z. Garvey's assumption regarding internal stress distribution of a quadrilateral panel.
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Figure 3, Trapezoidal panel.
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5.4 CONSTRAINTS

A mathematical analysis of the manner in which degrees of freedom are eliminated by equa-
tions of constraint is given in Section.3.5. There are two kinds of constraints: single point
constraints in which a degree of freedom is conétrained to zero or to a prescribed value; and
multipoint constraints in which a degree of freedom is constrained to be equal to a linear com-

bination of the values of other degrees of freedom.

A number of different Constraint Definition Cards are provided for the convenience of the
user in specifying constraints. They can be separated into four types: single point constraint
cardsy mu]tipoint constraint cards; cards to define reaction points on free bodies; and cards
to define the omitted coordinates, Ugs in matrix partitioning. The latter typé st;ictly defines

a constraint only in dynamic analysis, see Section 3.5.4.

A single point constraint applies a fixed value to a displacement or rotation component at a
geometric grid point or to a scalar point.. One of the most common uses of single point con- '
straints is to specify the boundary conditions of a structure by fixing displacements and/or
rotations at certain points. The structure may have a 1ine of symmetry at which only symmetric
or antisymmetric motions are allowed. The single point constraints may be used to fix the proper
degrees of freedom on these boundaries. Alternate sets of constraints can be stored in the pro-

gram to facilitate treatment of different symmetry conditions as subcases (see Figure 1 of Sec-

tion 3.2).

The elements connected to a grid point may not provide resistance to motionm in certain-direc-
tions, causing the stiffness matrix to be singular. Single point constraints are used to remove
these degrees of freedom from the stiffness matrix. A typical example is a planar structure com-
posed of membrane and extensional elements. The translations normal to the plane and all three
rotational degreés of freedom must be constrained since the corresponding stiffness matrix terms

are all zero.

If a grid point has a direction of zero stiffness, the single point constraint need not be
exactly in that direction. For example, two collinear rod elements that are connected to a point

may be constrained as shown:
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direction
of
constraint

Uy

direction of free motion
before constraint was
imposed

The direction of constraint allows the point to move only vertically, but, since the rods are
collinear, the force of constraint is zero and the forces in the elements are still valid, The
NASTRAN system detects singularities of individual'grid or scalar points during problem formula-
tion, see Section 3.4. As in the above examp]e; mdre than one valid way exists for constraining
a geometric grid point. The possible constrainfs'are listed in a warning message in their order

of preference.

Multipoint constraints are a feature of NASTRAN that is not commonly found in structural

analysis programs. Each multipoint constraint is described by a single equation of the form
| b chug = 0. _ M

The degree of freedom that occurs in the first term of the equation is the one that is eliminated.
By this means the user, rather than the program, selects the degrees of freedom to be removed from
the equations of motion. As an example, consider the rigid bar segment shown on the next page.

The equation of constraint is

(]
o

Wy - Wy - 28, s (2)

{where w, is as the dependent coordinate.
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Ya.. -vyb.
i R
B ¢ '3

', to each of the dégreés of freedom included

A multipoint constraint also applies forces, ch

in the equation of constraint, Equation 1. A double subscript is used to indicate the force on
the gth degree of freedom due to the cth constraint. The forces are proportional to the coeffi-

cients, ch, in Equation 1, as will be shown. Thus

9q = Reglde (3)

where a. is a constant, called the force of constraint. Since the equation of constraint is
altered so that the coefficient of the lead term is unity, see Section 3.5.1, a. is in fact

equal- to the force of constraint on the degree of freedom that is eliminated.

One of the defining properties of a constraint is that it does no work. Thus

W, = g Acqlq

= 0. (4)
The only way that Equation 4 can be satisfied for all permissible va]ués of the u_'s is if

the ch's satisfy Equation 3, thereby reducing Equation 4 to Equation 1.
Some of the uses of multipoint constraints are

a. To enforce zero motion in directions other than those corresponding with components of
the global coordinate system. The multipoint constraint will, in this case, involve

only the degrees of freedom at a single grid point.

b. To describe rigid elements and mechanisms such as levers, pulleys and gear trains. One
of the criticisms of the displacement method has been that matrix ill-conditioning occurs
in the presence of very stiff members when they are treated as ordinary elastic elements.

" Treatment of such members as rigid constraints eliminates the il1-conditioning.
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c. To ggnerate nonstandard structural elements and other special effects. Consider, for ‘
example, a pressu}ized container such that changes in the enclosed voiume produce signi-
ficant changes in internal pressﬁre. The change in volume may be expressed as a linear
combination of displacements normal to the surface. Regarding the change in volume as a
degree of freedom (scalar point), its effect on the container is simulated by a multi-
point constraint that relates it to the normal displacements at the surface, and by a

scalar spring connected between the new (constrained) degree of freedom and ground.

d. To describe parts of a structure by local vibration modes. This important application
is treated in Section 14.1. The generai idea is that the matrix of local eigenvectors

represents a set of constraints relating physical coordinates to modal coordinates.

At present the user provides the coefficients in the equations of multipoint constraint.
Modifications to the program are contemplated in which some constraints will be generated inter-
nally. For example, in specifying a rigid body, the user will only need to specify the degrees

of freedom to which the body is connected.
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5.5 TREATMENT OF INERTIA PROPERTIES

Inertia properties have two different kinds of application in linearized structural analysis
as generators of applied loads in static analysis and as generators of matrix coefficients in
dynamic analysis. The former application includes gravity loads, centrifugal loads, and inertia
relief effects; these subjects are treated in Section 3.6. The latter application includes the
matrix of ordinary mass coefficients, and also, in problems defined in rotation coordinate system
matrices of (Coriolis) damping coefficients and (centrifugal) stiffness coefficients. Automatic

treatment of dynamic inertia effects in rotating coordinate systems is not implemented in NASTRAN.

5.5.1 Grid Point Mass

The mass matrix associated with a grid point has the following organization with respect to
.

o ]

the displacement degrees of freedom, and stems from the equilibrium of inertia forces.

Inertia forces at a point = External forces at a point,

‘ [mlpy {Wdpy = {Flpy g (s

SOP
where [m] is the matrix of mass properties, {ii} is the vector of translational and rotational aéée];
eration components, and {F} is the vector of external force and moment components. The acce]era;

tion vector at a grid point can have a maximum of six component degrees of freedom: three transla-

tional accelerations and three rotational accelerations.

If the displacement coordinate system at the grid point is rectangular, the corresponding

components of acceleration become

5]
-.y
L 8 J GP

‘ The succeeding development will be given in terms of rectangular displacement coordinate systems .

where the various displacement and force components are as shown in the following sketch.
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The mass associated with a grid point is assumed to be rigidly attached to, and in the vicinity of,
the grid point, regardless of the elastic deformation. In effect then, the mass associated with

grid point behaves as a local rigid body with the properties computed with respect to that grid

point.

5.5.2 Rigid Body Inertia at a Grid Point

Inertial forces and moments develop at the referenced grid point when the mass of a rigid
body accelerates due to a set of external forces and moments. Consider first those accelerations
which contribute to the forces that develop in the x direction. When all of the mass is accelerated

in the positive x direction, the magnitude of the inertia force in the x direction is
' f/fpdxdydz)ii=m3€
( 27y (3)

As a consequence of the rigid body assumptions and of the orthogonality of the coordinate axes,
there are no contributions of y and z accelerations to the inertial forces that develop in the x
direction. The application of these same arguments to inertia forces in the y and z directions

reveals that the sole translational acceleration contributions are my and mz, respectively.
5.5.2.1 Point Masses

Before developing the general inertial properties of a rigid body mass, the basic properties
of a point mass will be defined. Conéider a concentrated point mass, am, rigidly connected to a
grid point as shown in Figure 1. The offset location is>expressed by the vector ?. If the
nonlinear centrifugal and Coriolis effects are ignored, the acceleration vector, 3, at the point

mass is
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‘ >

a =u+BXV¥ (4)
-+ <>

where u and 8 are the accelerations at the grid point as defined in Equation 2, and "X" is the

vector cross product operator.

¥
If f = Amd is the force vector required to produce the acceleration at the point mass, the

-
resultant force F and moment M vectors at the grid point are

-> - -
F = f = Ama s (5)

=4
"

N
rXf = am(r xa) ; (6)

The substitution of Equation 4 into Equations 5 and 6, yields

-> > > >

F = anfu+6Xr) . (7)
> - > -> = - -

M = An(r Xu+rXexr) . (8)

Equations 7 and 8 may be expanded to produce the components of force and moment in terms of

‘ the components of grid point displacement and rotations, resulting in the following matrix equation:
(M ) - ' - - )
Fe 10 0t 0 z -y fux
] .
Fy 0 1 0 i -z 0 X uy
F 6 0 11 'y -x 0 i L
R I e i N P
M 0 -z y  (y™+z°) -Xy -Xz 8
X ] X
[] .
-x ' - 2,,2 -
My z 0 X : Xy (xc+z°) 2yz2 ey
' ..
LML) | -y X 0 boo-xz -yz (x“+y<) ] LeZJ

where x, y, and z are the components of the offset vector’? in the coordinate system at that grid

point.

5.5.2.2 Rigid Body Mass Matrices

The above equations may be easily expanded to account for a finite mass, e.g., a real physical
mass attached to the grid point (see CONM2 bulk data card).  The total concentrated mass may be
considered to be the sum (or integral) of a set of point masses. The net forces and moments would
be the sum of those defined by Equations 7 and 8. The individual matrix terms in Equation 9 may

‘ be integrated over the volume of a body to produce the total mass matrix
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(M 0 0} o M -gM ]
|
M 0| -ZIM - 0 XM
1
3 | - -
) Mij :Nij i M : M -%M 0
M. ..] = [--22--2 = | e . (10)
rigid T [ § -1 -
Nij }Iij : XX Xy Xz
SYM ! -1
(SYM) ' T&y yz
!
i | T2z |
where the total mass is defined as
M o= Iam = J pdV . (1)
i v
The component of the center of gravity of that mass is
c .
X = M pxdV B (]2)
v
The rotational inertias about the grid point are, for example ,
I 2.2
lxx = JV p (y* + z°) av
(13)
and Ixy = JV pxydV .
or, using the parallel axis theorem,
= _ -2, =2
L, = L, +My° +z% , (14)
and Ty = Ly * My . (15)
Here, Ixx’ Ixy’ etc. are the inertias about the center of gravity of the mass. The coeffi-
cients M, X, ¥, Z, Ixx’ Ixy’ }xz’ Iyy’ %yz’ and IZz may be input by the user on the C@NM2 bulk
data card. The program will generate the mass matrix defined by Equation 10 using Equations 11
through 15.
- ooy OF T,
e % pAGE IS POOR
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5.5.2.3 Intrepretation of the Terms

It is now useful to look at the mass matrix in terms of the characteristics of its mass prop-
erties. Notice that in the upper left partition of Equation 10 (the first three rows of the first
three columns), the total mass associated with the grid point, M, appears on the diagonal. ANl
off-diagonal terms in this partition are zero. In the partition of the first three rows for the
last three columns, every nonzero term consists of the total mass multiplied by a distance to the
center of mass. Notice also that in this same upper right partition, all diagonal terms are zero.
On further inspection, it can be seen that the off-diagonal terms of this 3'x 3 partition are anti-
symmetrical, that is, terms in reflected positions about the subdiagonal are the same magnitude but
opposite sign. In the lower right partition (the last three rows of the last three columns) every

term involves moments of inertia. Finally, notiée that the total 6 x 6 matrix is symmetric about

the diagonal.

Each of the partitions of Equation 10 has a unique characteristié in terms of moments: 2£5m
where £ is some distance, e is an exponent, and m is the mass. In the upper Teft partition, the
exponent is zero and the terms reduce to just the scalar mass 2°m =m. In the upper right and
the lower left partitions the exponent is one and the terms are characterized as first moments of
the mass 21m =m. A symbol N is used to represent the first moment with a double subscript
indicate its matrix position, Nij' In the Tower right partition, the exponent is two and the

terms are characterized as second moments of the mass lzm = 1. It is convenient to symbolize

these partitions as follows:

st [ '
Scalar m,. ! N..
Moment 1 E u
(M = o R === (16)
|
Ist 2nd N,_T i
Moment Moment 1 E n

The mass matrix consists of 13 different terms, butithree terms in the first moment partition differ
only in sign from the other three in this set. Therefore, the typical mass matrix actually has

only 10 distinct terms. The format” of the CANM2 card provides for a maximum of 10 entries for the
rigid bady mass matrix and assembles the mass matrix according to the requirements for sign as

shown in Section 8.8 of the Programmer's Manual.:

5.5-5 (3/1/76)




STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

5.5.2.4 Transformation of Coordinates

In NASTRAN, the user may define the connected mass in its own coordinate system, different
from the displacement coordinate system of the grid point. In the previous development the
properties of the rigid body mass and the offset distances were defined in the same coordinate
system as that of the grid point displacement system. If the displacements at the grid point are
given in a different coordinate system (x', y',z'), an of@hogona] transformation matrix [ng] will

exist where [Tng] = [ng'l], as defined by the equation
{u} = [ng]{u'} R (17)

where {u} is the vector of displacements or rotations of the rigid body mass and {u'} is the
corresponding vector of displacements or rotations parallel to the x', y' and z' coordinates of the
grid point to which the mass is attached.

The forces, moments and offsets may be similarly transformed between the two coordinate

systems by the following equations:

(F} = [T, 174 ,
ey = Ton :
_ (18)
% i‘g
and oo = [M19¥
z ) 2')

After applying the above transformations to Equation 9 it is interesting to note that the form of

the mass matrix (Equation 10) is identical with only a change in component notation, i.e., X'

A}

replaces X, y' replaces ¥, z' replaces Z. The lower right partition of Equation 10, transformed to

the grid point displacement coordinate system, becomes

XX Xy Xz

1 - 1 i - T
) = | 5, T = dTIm ] : (19)

(SYM) I!
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The inertias ixx Ixy’ etc. have the same physical definition in the new coordinate system of the
rigid body mass and may be calculated using Equations 12 through 15.
"It can be concluded that for a real physical rigid body mass, the matrix is always in the
" form of Equation 10 reg;fdless of coordinate sysfem rotations and translations; hence, only the
basic 10 terms need be specified as input. The form of the mass matrix may be destroyed, however,

when special directional masses are used to model mechanisms and other special problems where the

mass is not rigidly connected to the grid point.

5.5.2.5 General Mass Matrix Properties
_ In the case where the mass is not rigidly connected to a single grid point, the form of the
mass matrix becomes more complex. Other examples are the use of consistent mass matrices, describeq
in the following section, whereby the mass of an element is distributed to the connected grid points
of the element. Another example is that of a partially disconnected element mass or a mass con-
nected to a grid point via a mechanism. It is possible to conceive of instances (not as a result
of coordinate transformations) wherein special mechanically contrived situations can exist to pro-
’ duce mass terms distinct from the standard 10 rigid body terms. These special mass terms can arise
for examp1e, from such devices as spring restrained pantographs, fly ball governors, and rotating
masses restrained by the helical track as illustrated in Figure 2. If such odd terms are either
presenf in a structuke or exist from hatrix transformations, NASTRAN provides an avenue to supply
this Bulk Data through the C@NM1 card. An alternate method in NASTRAN is to associate an
additionéf gﬁid point with the mass element and using multipofnt constraints to specify the mech-

anism connecting the mass to the structure (seé Section 3.5.1).

In both of these cases; the accelerations at the center of gravity of that mass can be defined
as general linear functions of the grid point accelerations. These may be expressed in matrix

form as
(ur = [6]{u'} . . (20)

" where {p!} represents the six grid point accelerations. The resulting mass matrix may now become

a full 6 x 6 matrix defined by the equation

Myiq) = [61'IMICE] . O (21)
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where {M] is the rigid body mass matrix defined in Equation 10 and [M 1 is the transformed mass

grid
matrix after mechanically connecting it to the grid point. It is this transformed matrix [Mgrid]
which is then input to NASTRAN using the CPNM1 Bulk Data card.

5.5.3 Inertia Properties of Structural Elements

A1l of the metric structural elements (rods, bars, shear panels, twist panels, plates, shells,
and solid elements) may have uniformly distributed structural and nonstructural mass. Structural
mass is calculated from material and geometric properties. The mass is assumed to be concentrated
in the middle surface or along the neutral axis in the case of rods gnd bars, so that in-plane or
in-Tine rotary inertia effects such as the torsional inertia of beams, are absent. Such effects
can, of course, be assigned by the user to grid points. The masses of metric structural elements
are transferred to the adjacent grid points at the option of the'user'by either of two methods,

the Lumped Mass or Coupled ("consistent") Mass methods.

In the Lumped Mass method, tHe mass of an element is simply divided and assigned to surround-
ing grid points. Thus, for uniform rods and bars, one-half of the mass is placed at each end. For ‘
uniform triangles, one-third of the mass is placed at each cornef. Quadrilaterals are treated as
twé pairs of overlapping triang]eé (see Sections 5.3 and 5.8). -It will be noted that second mass
moments are not computed with the Lumped Mass method. The virtues of the method derive from its
simplicity. Off-diagonal terms in the mass matrix are restricted to fhose involving a single
geometric.grid point. That is, inertia cpup]ing betwéen grid points is not provided. Programming
efforts and computer running times are less, often by an insignificant amount, than for mo?e
sophisticated methods of mass assignment. Because the mass matrix is independent of the elastic
properties of elements, the user has a better feel for the character of the matrix. The accuracy

of the results, which is the key question, will be examined later.

In the Coupled Mass method, the mass matrix due to a single structural element includes off-

diagonal coefficients that couple adjacent grid points. The best known of the Coupled Mass

methods is the Consistent Mass Matrix method developed by Archer (Reference 1).

' ‘ TH L
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The procedure for generating a consistent mass matrix is as follows. Consider, for
simplicity, a one-dimensional structural element whose degrees of freedom are represented by
translations and rotations at the two ends of the element. Corresponding to each degree of free-
dom, u., there is a displacement function, wi(x), within the element obtained by giving unit value
to u, and zero value to all other degrees of freedom. The functions w., satisfy the differential

i J
equations of the element. The element Mij of the mass matrix [M] is obtained from the formula

' '3
Foo= Ml o= - (Jom(x)wi(x)wj(x)dx>lji . (22)
Equation 22 is obtained from the principle of virtual work. In essence u; is regarded as a
generalized coordinate for which wi(x) is the "mode shape." The inertia force acting at x due to
i

u; is -m{x)w;(x)i;. Multiplication of the inertia force by Wy gives the generalized force acting

on coordinate uj.

The idea of “consistehcy“ enters because the functions w; are also used to calculate the
stiffness matrix [Kij] from strain energy considerations. It can be shown fhat the vibration
frequencies so obtained are upper bounds. The reason is that the selection of a finite number of
specific functions, w., is equivalent to the imposition of rigid constraints on the structure.

i
As an elementary example, consider a uniform extensional rod with distributed mass, as shown below.

- . R
(o x —
— u, —> Uy

The degrees of freedom are u, and Yp and the displacement functions are.w, = 1 - x/% and Wy = X/ L.

a
The resulting consistent mass matrix is

M1 = B |- : (23)
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whereas the lumped mass matrix is

[

110

L LR S (24)
0 i 1 )

The stiffness matrix is
111
A P
K o= B SIE (25)

- 1 .

Some information on the question of accuracy can be gained by calculating the error in the
natural frequency due to finite element assumptions for simple structures. Analysis of a uniform
rod with any combination of free and fixed ends (Reference 2) shows that the error in the natural

frequency that results from using Equations 24 and 25 (the lumped mass method) is
w 2 4
approx) 1-;-(%) +o<g) , (26)
Yexact 9

where N is the number of finite element cells per wavelength. The corresponding result for

Equations 23 and 25 (the consistent mass method) is

w 2 4
-approx r°x).= 1+1—(E> +0<1> : (27)
Yexact / 6 \N N '
c .
Note that the consistent mass and lumped mass methods give errors that, for large N, are the same

in magnitude but opposite in sign. A much smaller error is achieved if the mass matrices for the
two methods, Equations 23 and 24 could be averaged,
5 !
ay - ome |
[MF] = 12 ] s . (28)
[}

This equation has been adopted for use in NASTRAN to compute the coupled mass matrix for the

extension of rods and bars. The error in this case is given by
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w 4 6
approx _ 1 (n) (n)
= 1 +55({v) *0lg . (29)
(“’exact >a 30 \N N

The mode shapes are exact for all three methods.

Archer's paper includes a derivation of the consistent mass matrix for the lateral bending

of a uniform beam without transverse shear flexibility shown below.

o i Jwib)eb

The consistent mass matrix referred to the coordinate set {u} = {w_, 6,5 Wys eb}T is

]
T B R e Tt (30)

The paper also includes the results of numerical error analysis for free-free and simply support
beams. For simply supported beams the errors in the Tumped mass and consistent mass formulations
are approximately equal and opposite, and are surprisingly small. An equation for the natural

frequency error associated with the lumped mass formulation is (frem Reference 2)

W 4 \é
<waggrox) - - 91_0<_1|\;_> ' 0(%) - : (31)
exact /.

For free-free beams the error in the consistent mass formulation appears to be of the same order
as that given by Equation 31, but the error in the lumped mass formulation is one or two orders of

magnitude larger. Similar results may be expected for cantj]ever beams .
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Archer's consistent mass matrix, Equation 30, has been adopted‘in NASTRAN as the coupled mass
matrix for the lateral deflection of bars. No modification is included for the effect of trans-
verse shear flexibility, which is slight. The consistent mass formulation has also been applied in -
NASTRAN to the lateral deflection of plates. The procedures used are described in Seétion 5.8. In
the cases of the doubly-curved shell element, Section 5.10, the solid of revolution element, Section
5.11, and the isoparametric solid element, Section 5.13, only the consistent mass formulation is

available.

Only the lumped mass method is available in.NASTRAN for shear panels, twist panels, the mem-
brane action of plates, the constant strain solid elements, and the conical shell e]eménts, which
completes the current list of metric elements. Coupled mass methods are not applied to shear panels
and twist panels because of their peculiar status as incomplete physical objects. The membrane
action of plates and the constant strain solid elements were excluded because structural models
built from such e1ement§ generally tend to be too stiff. For these elements, using lumped masses
tends to reduce the error in the natural frequency. The conical shell element, Section 5.9, was

exciuded because its complexity makes the development of a consistent mass matrix unwarranted.

5.5.4 Grid Point Weight Generator

This is a module (GPWG) which determines the rigid body mass properties of an entire structure
with respect to a user-selected grid point and with respect to the center of the mass of the structure
Initially, the mass properties are calculated relative to the basic coordinate system. Subsequently,

the mass properties are referred to the principal mass axes and to the principal inertial axes.

The mass matrix, [Mgg] output from the EMA module, is transformed to a matrix of rigid
body mass properties, [Mo]’ with respect to the user-selected reference point, by use of a rigid

body transformation matrix D

- T '
M1 = [p1'[M, IID] . (32)
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where
[Mgg] is assembled in global coordinates and is of order g x g .
[D] is a rigid body transformation matrix which predicts the motion of points in global
“coordinates given the motion of the reference point in terms of basic coordinates, and

is of order g x 6 s
and [Mo] is assembled in basic coordinates and is of order 6 x 6.

Prior to the formation of the [Mo] matrix, the module calculates the [D] matrix. The [D]
matrix relates the motion at all points of the body relative to the reference point by the

equation
{ﬂg} = [D]{uo} s (33)

. where the acceleration vector, {Ug}, describes accelerations for all points of the body in global
coordinates and is of length g, and the acceleration vector, {ﬁo}, describes accelerations of the

reference point and is of length 6.

The mass matrix [M0] is partitioned according to the contributions from translational (t),
rotational (r), and coupled (tr) accelerations, where [Mt] is the scalar partition, [M "1 is the first

moment partition, and [A"] is the second moment partition.

M1 = |-mmmcbemnee : (34)

A check is made on the consistency of the c&mposition of the mass by simple calculations on
the [A%] (translational or scalar) partition. The quantities & = 1/E(Mijt)2|1'=j and ¢ = Z(Mijt)zli#j
are computed and the’ratio, €/6, is calculated. A diagnostic message is printed out if /6 > 10;3, and

‘ the internal decision is made to rotate the matrix accordingly.
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When the ¢/8 test indicates that a matrix rotation is warranted, the principal mass values and
associated coordinate transformation are found by applying the Jacobi method of eigenvalue extrac-

tion to the 3 x 3 [Mt] partition. The transformation matrix [S] from the basic coordinates to the
orincipal directions, labeled principal mass axes, is assembled from the normalized eigenvectors

{ei} of [Mt].

Define

[S] = [{91},'{62}, {83}]. (35)

The [Mo] matrix is transformed to principal mass axes by the [S] matrix by the separate partitions:

tME] = [SITLAYICS]  (is diagonal) .
[Mtr] = [S]T[ﬁtr][s] {generally exists) , (36)
and M"] = [SI'[A"I[S]  (is generally not diagonal).

By definition, the values of the mass systems that are output are the three diagonal terms of the

[Mt] matrix

_ t _ t _ t
I A L B (37)

Since the moment arms of the first-moment terms of the mass matrix are the
offset distances to the center of mass from the reference point, the positions of the centers of

mass (C.G.) are calculated for each system as

M tr M tr M tr
y - y - a3, o Me (x system)
x Mo X Mo x M X system?,
X X X
tr tr tr
X = ﬂ§§__. y = ﬁZZ__ 7 - i) (y system), (38)
y Moo Ty M, Ty M
Yy Yy Yy
tr tr tr
and X = :@32_ y - M:n 7 - M33 {z system) .
z Mz >z MZ * Tz M,
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Moments of inertia at the center of gravity with respect to the principal mass axes are com-
puted from the'[Mr] partition by using the theorem of parallel axes and the appropriate mass system

The submatrix is labelled [I{S)].

_ oy 2. 2

) = my -z Bowy? o
_ r _ ro_

I{S) = Myy" = MX¥,. 1p(8) = My -MXY,

I33(S) = Myy" - MXZ . 15(5) Mg - MY,

(39)

_ r 2 2

122(5) = My - szz - Mxe :
_ r _ r

Ip3(S) = Myg - MY, Zi, I135(S) = Mgyt - MY T

_ r 2

The final attribute to be obtained is the set of principal moments of inertia with respect to
the center of mass. The Jacobi eigenvalue method is applied to the 3 x 3 [I(S)] matrix. The trans-
formation matrix [Q] from the principal mass axes to the principal directions of the momental

ellipsoid is assembled from the normalized eigenvectors {Ei} of [I{s}].

Define

Q) = '[{g)}, {E,}, {E5}] ) (40)

The [I(S)] submatrix is transformed to principal moments of inertia axes by the triple matrix-

product

P
I]] 0 0
(@] = @I = | o 1,0 o (41)
P
0 0 133

The one attribute that may be of interest which is not calculated is the set of principal
moments of inertia with respect to the reference point instead of the center of gravity. This

could be obtained from the eigenvalues of the [A"] submatrix.
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{a) Accelerations.

Point
Mass
-
f
>
M=
Grid
Point
> >
F=f
(b) Forces.
‘ Figure 1. Accelerations and forces on a rigidly cofmected point mass.
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(a) Spring restrained pantograph.

(b) Flyball governor.

b W S
|
w3 \~ A
\\\\ -\
N\ \ X
N\ 1)
\\\ 4’ /
\‘ ‘:‘
m .-
— M =N6 &
X
{c) Rotating.mass in a helical guide. °
Figure 2. Examples of mechanisms producing coupled mass and inertias ‘
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Yes Ho
: (R = Value of parameter GRDPNT)

Fetch {Rop}, location -
of grid point 6 (R} = 0

|

Fetch {R;} - location vector and
[T;1 - global to basic transform

( Loop on grid points
i = ]’2"-"Ngrids )

Calculate [D] (g x 6)
where {Ug} = [0}{iy}

J

Multiply
Mo] = [D]T[ng][n] ([Mgg) = Structure mass matrix)

‘ Point Mg

Partition:

[Mg] = |-—=-t—--

Extract eigenvectors
of Mt to obtain [S]

Rotate partitions to orthoaonal
mass coordinates [S], Print S

Calculate CG locations, inertia
matrix at CA. Print m, CG, Ig

Rotate [Ig] to principal
axes (01, Print 0, I (:E?IT:>

Figure 3. Flowchart of grid point weight calculations.
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5.6 SCALAR ELEMENTS-

Scalar elements are connected between pairs of degrees of freedom (at either scalar or geo-
metric grid points) or between one degree of freedom and ground. The stiffness matrix for a

scalar spring is given by

f, 14 -1 u
-~ = K|==—— - - s (M
f2 -1 I 1 u,
or by
f1 = Ku, (2)

Other available forms of scalar elements are the scalar mass and the viscous damper.

Scalar spring elements are useful for representing springs that cannot conveniently be mo-

. deled by the metric structural elements. Scalar masses are useful for the selective representa-

tion of inertia properties, such as occurs when a concentrated mass is effectively isolated for
motion in one direction only. The scalar viscous damper is one of two elements with exclusively

damping properties included in NASTRAN. The other is the viscous rod element, see Section 5.2.

It is possible, using only scalar elements and constraints, to construct a model for the
linear behavior of any structure. These elements are, in fact, the basis for the Direct Analog

(1)

Computer method of structural analysis where inductors represent springs, resistors represent
dampers, capacitors represent masses, and transformers represent equations of constraint. They

have also been made the basis of several digital computer programs.

Turning the electrical analogy around, we can say thét fhe scalar elements give NASTRAN the
ability to analyze any passive electrical network, including for example, large electrical dis-
tribution systems. Heat transfer problems can also be solved because of the analogies between

heat capacity and mass, and between a heat conductor and a viscous damper.

Perhaps of greater importance to the structural analyst is the fact that electrical circuits

o .éhd heat transfer can be included as part of an overall structural analysis, as for.example, in a

L,

problem that includes electromechanical devices. This subject is discussed further in Sections

9.3 and 14.2,

(])’MacNeal, R. H., ELECTRIC CIRCUIT ANALOGIES FOR ELASTIC STRUCTURES. John Wiley & Sons, N.Y.
1962.
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. 5.7 THE GENERAL ELEMENT

The general element is a structural stiffness element connected to any number of degrees of
freedom, as specified by the user. In defining the form of the externally generated data on the

stiffnéss of the element, two major options are provided to the user.

(i) Instead of supplying the stiffness matrix for the element directly, the user provides
the deflection influence coefficients for the structure supported in a non-redundant manner. The
associated matrix of the restrained rigid body motions may be input or may:be generated internally

by the program.

(ii) The stiffness matrix of the element may be input directly. This stiffness matrix may

be for the unsupported body, containing all the rigid body modes, or it may be for a subset of

the body's degrees of freedom from which some or all of the rigid body motions are deleted. In

the latter case, the option is given for automatic inflation of the stiffness matrix to reintroduce

the restrained rigid body terms, provided that the original support conditions did not constitute

a redundant set of reactions. An important advantage of this option is that, if the original
‘ support conditions restrain all rigid body motions, the reduced stiffness matrix need not be

specified by the user to high precision in order to preserve the rigid body properties of the

element.

The defining equation for the general element when written in the flexibility form is

, (1)

1
1o
I
|
]

]

1

1T N

1

1

'
o= ———

]

1

1

[,

1

[}

' N

] —h

| -

U

where:
[Z] is the matrix of deflection influence coefficients for coordinates {ui} when coordinates

{ud} are rigidly restrained.

[S] is a rigid body matrix whose terms are the displacements {ui} due to unit motions of the

coordinates {ud}, when all fi = 0.
{fi} are the forces applied to the element at the {ui} coordinates.

{fd} are the forces applied to the element at the {ud} coordinates. They are assumed to be
‘ statically related to the {fi} forces, i.e., they constitute a nonredundant set of

reactions for the element.
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The defining equation for the general element when written in the stiffness form is

, (1a)

where all symbols have the same meaning as in Equation 1 and [k] = [Z]'], when [k] is nonsingular.
Note however that it is permissible for {k] to be singular. Equation la is derivable from

Equation 1 when [k] is nonsingular.

Input data for the element consists of lists of the uj and Uy coordinates, which may occur
at either geometric or scalar grid points; the values of the elements of the [Z] matrix, or

the values of the elements of the [k] matrix; and (optionally) the values of the

elements of the [S] matrix.

The user may request that the program internally generate the [S] matrix. If so, the U and
Ug coordinates can occur only at geometric grid points, and there must be six or fewer Ug coordi-

nates that provide a nonredundant set of reactions for the element as a three-dimensional body.

The [S] matrix is internally generated as follows. Let {ub} be a set of six independent

motions (three translations and three rotations) along coordinate axes at the origin of the basic

coordinate'system. Let the relationship between {ud} and {ub} be
{ud} = [Dd]{ub} . (2)

The elements of [Dd] are easily calculated from the basic (x,y,z) geometric coordinates of
the grid points at which the elements of {ud} occur, and the transformations between basic and

global (local) coordinate systems. Let the relationship between {ui} and (ub} be

{u;} = [0, Ju,} s (3)

_where [Di] is calculated in the same manner as [Dd]. Then, if [Dd] is nonsingular,
[s1=D,Il0,7" . (4)

Note that, if the set {ud} is not a sufficient set of reactions, [Dd] is singular and [S] cannot
be computed in the manner shown. When {ud} contains fewer than six elements, the matrix [Dd] is

not directly invertable but a submatrix [a] of rank r, where r is the number of elements of {ud},

can be extracted and inverted. ‘
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. A method which is available only for the stiffness formulation and not for the flexibility
formulation will be described. The flexibility formulation requires that {ud} have six components.
The method is as follows. Let {ud} be augmented by 6-r displacement components {uj'} which are

restrained to zero value. We may then write

u D -
-_g_l = __(_j_ {ub} = [D]{ub} . (5)
ug' Dy

The matrix [Dd] is examined and a nonsingular subset [a] with r rows and columns is found.

{ub} is then reordered to identify its first r elements with {ud}. The remaining elements of {ub}

are equated to the elements of {ud'}. The complete matrix [D] then has the form

|
|
| |
: . la v b
l [0 = |~---34---- s (6)
' . 0 1
| . .
! with an inverse : L
!
, o bl
D (617 = |- : (7)
‘lll’ : 0 1 I
]
i Since the members of {uJ } are restraihéd‘tb zero value,
tupd = 0 Jugr (8)
where [Dp]is the (6xr)partitioned matrix gfven by
0142 (9)
D] =|----- : 9
r 0
The [Di] matrix is formed as before and the [S] matrix is then
[s1=[,0]1 . (10)

Although this procedure will replace all deleted rigid body motions, it is not necessary to do
this if a stiffness matrix rather than a flexibility matrix is input. It is, however, a highly
recommended procedure because it will eliminate errors due to nonsatisfaction of rigid body pro-

perfies by imprecise input data.

The stiffness matrix of the element written in partitioned.form is

‘ ORIGINAL ppgg |

) OF po
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Kii 1 Kig
[Keed =[-rg=tmem=r] - (1)
Kig 1 Kyd

When the flexibility formulation is used, the program evaluates the partitions of [Kee] from

[Z] and [S] as follows:

(k1 =027, - (12)
-1

[Kg) = -[217'[s1 (13)

(ke = 10237081 . | (19)

If a stiffness matrix, [k], rather than a flexibility matrix is input, the partitions of

[Kee] are
Kl=0a - (19)
[Kid] = -[k][S] ’ (16)
[kl = [S)'TKIS] (17)

No internal forces or other output data are produced for the general element.

tw?‘.”)QQ'E}UCIBHJm OF THE
N i1, PAGE IS POOR

e P A LT
OiGisiiri
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5.8 PLATES

NASTRAN includes two different shapes of plate elements (triangular and quadrilateral)
and two different stress systems (membrane and bending) which are, at present, uncoupled.

There are in all a total of eleven different forms of plate elements as follows:
1. TRMEM - A triangular element with finite inplane stiffness and zero bending stiffness.

2. TRBSC - The basic unit from which the bending properties of the other plate elements

are formed. In stand-alone form, it is used mainly as a research tool.

3. TRPLT - A triangular element with zero inplane stiffness and finite bending stiffness.
It is composed of three basic bending triangles that are coupled to form a Clough

composite triangle; see Section 5.8.3.3.

4, TRIA1 - A triangular element with both inplane and bending stiffness. It is designed
for sandwich plates in which different materials can be referenced for membrane,

bending, and transverse shear properties.

‘ 5. TRIA2 - A triangular element with both inplane and bending stiffness that assumes a

solid homogeneous cross section.
6. QDMEM - A quadrilateral membrane element consisting of four overlapping TRMEM elements.
7. QDMEM1 - An isoparametric quadrilateral membrane element.

8. (QDMEM2 - A quadrilateral membrane element consisting of four nonoverlapping TRMEM

elements.

~ 97 TQDPLT™- A quadrilateral—bending element. -It-is-composed of four basic bending_triangles.

10. QUAD1 - A quadrilateral element with both inplane and bending stiffness, similar to
TRIA1.

11.  QUAD2 - A quadrilateral element similar to TRIA2.

Anisotropic material properties may be employed in all plate elements. TRMEM and TRBSC
are the basic plate elements from which all of the others, except QDMEM1, are formed. Their
stiffness matrices are formed from the rigorous application of energy theory to a polynomial
representation of displacement functions. An important feature in the treatment of bending

‘ is that transverse shear flexibility is included.
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A1l of the properties of plate elements are assumed uniform over their surfaces.

The detailed discussion of plate elements is divided into subsections, according to the
following topics: membrane triangles; the basic bending triangle; composite triangles and
quadrilaterals; the treatment of inertia properties; and the isoparametric quadrilateral
membrane element, QDMEM]. The accuracy of the bending plate elements in various applications
is discussed in Section 15.2, and the accuracy of the quadrilateral membrane elements is

discussed in Section 15.3.
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A11 of the properties of plate elements are assumed uniform over their surfaces.

The detailed discussion of plate elements is divided into subsections, according to the
following topics: membrane triangles; the basic bending triangle; composite triangles and
quadrilaterals; the treatment of inertia properties; and the isoparametric quadrilateral
membrane element, QDMEM1. The accuracy of the bending plate elements in various applications
js discussed in Section 15.2, and the accuracy of the quadrilateral membrane elements is

discussed in Section 15.3.
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5.8.1 The Membrane Triangle

Consider the triangular element shown in Figuré 1 below

Material Orientation Axis

0.0 X
Figure 1. Triangular Membrane Element

u and v are the components of displacements parallel to the x and y axes of the local {ele- -

ment) coordinate system. The inplane displacements at the corners of the element are represented ’
by the vector

{u} = . (M

Let [Kee] be the stiffness matrix referred to the vector {ue}; i.e.,

[Keollu} = {f} (2)

where the elements of {fe} are the inplane forces at the corners of the element. The stiffness
matrix [Kee] is derived by constructing an expression for the strain energy of the element under

the assumption that the inplane displacements, u and v, vary linearly with position on the surface

of the element, ‘
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u = q! + q,X + 93y > (3)
Vo= gyt agx t gy . (4)
The quantities q;, g,, - . . Q. may be regarded as generalized coordinates to which the dis-
1° 92°. 6

placements at the corners of the element are uniquely related,
{ug} = [HMq} . (5)

The elements of [H] are easily evaluated by inspection of Equations 3 and 4. Since the in-
verse of [H] will later be required, the choice of six generalized coordinates to match the six
corner displacements is not accidental. Indeed, it is fortunate that the complete linear repre-
sentation of the displacement functions, Equations 3 and 4, contains six coefficients. A similar-

ly symmetrical relationship cannot bé achieved for the bending.prigngle, as will be seen.
The membrane strains are related to the generalized coordinates by

= du _
€ = X = q2 ’ (6)

Y xtay T 9%t o (8)
or, using matrix notation,
EX .
{e} = ey (" (Hel{a} (9)
Y /

The membrane strain energy of the element is
Es = 5 f[oxgx + Oyey + 1y]dA _ (10)

where t is the thickness of the element.. Since the strains, and therefore the stresses, do not

vary with position, Equation 10 may be written in matrix notation as

-1 T
E, = 3 At{o} {e}. (11)
‘ The stress vector, {o}, is related to the strain vector by the two-dimensional elastic
5.8-3
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modulus matrix [Ge].
{o} = [Ge]{e} . (12)

In NASTRAN materials may be entirely anisotropic so that the only restriction on [Ge] is that

it be symmetrical. The user can also specify isotropic materials, in which case

E vE ]
7 7 0
1-v 1-v
£ E
6.1 =| = 0 ) (13)
€ 1-v2 1—u2
0 0 G

-In the case of anisotropic materials, the user specifies their properties with respect to a
particular orientation, which does not necessarily correspond to the principal axes. The input
data for each triangular element includes an angle, 6, that references the material orientation

axis to the side (:), (:) of the triangle~(see-Figure 1).. The material elastic modulus matrix is

transformed into the element elastic modulus matrix by

_ T
(6] = [ul'le J{ul . (14)
where
cosze sinze €c0s8sind
- . 2 2 . .
fuy] = sin“g cos 8 -cos6sing |, (15)

-2¢0s8sing  2cosBsing cosze - sinze

is the transformation matrix for the rotation of strain components.

Substitute Equation 12 into Equation 11 to obtain an equation for the elastic strain energy
in terms of strains
E. = 4 At{e}'[6_]{e} (16)
s 2 e .

By virtue of Equations 5 and 9 and the nonsingularity of-[H],

ted = DM IMHI Mtugd (17)
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so that, defining [C] = [He][H]_] )

E =

o = 3 AttuTrel e, Jcl ) (18)

The strain energy of any element, expressed in terms of its stiffness matrix, is

B =y (K Mu) (19)

so that, comparing Equations 18 and 19,
_ T
[Kel = At[c1'[e,]0C] . (20)

The only remaining analytical task of any consequence, before turning the job over to the
computer programmer, is to evaluate the elements in the [C] matrix. The result of this exercise

is

1 | o I
L 0 L 0 .0 'o0
__Xb__{____|___xt_>_1___|_l___
X X
[c] = 0 |L<—C- 1)' R (21)
e Y)Y
1_<X_c_1>' L T T Ty
Ye \Xp ; Xp : Yc"b: Xp : yc:

As a last step, the stiffness matrix is transformed from the local element coordinate system

to the global coordinate system of the grid points.

{ue} = [T]{ug} .
Then
[kygl = [T10K, LTI
Thermal expansion of an element produces equivalent loads at the grid points.

sion is represented by a vector of thermal strains

Let the transformation for displacements be

(22)

(23)

Thermal expan-

Ext
Yt
I fwhere'{ae} = [U]']{am} is a vector of thermal expansion coefficients. [U] is given in Equation 15
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and {am} is the vector of thermal exb’ansioh coefficients in the material axis system. When grid .
point temperatures are specified, T is assumed uniform and equal to the average of the temperatures
specified at the corners of the element. T may also be specified priorly with element temperature

field data. The three elements of {am} are independent for anisotropic materials.

An equivalent elastic state of stress that will produce the same thermal strains is
{oy} = [Ge]{st} = [6 e dT . (25)

An equivalent set of loads applied to the corners of the element is

P} = Atfel (o) (26a)

AtT[c]T[Ge]{&e} . (26b)

The validity of the first form, Equation 26a, follows from the general energy requirement

that

Wl P} = rled (o} v . (27)

The equivalent loads are transformed from local element coordinates to grid point co-

_ ordinates by
_ T
{Pg} = [T] {Pe} . (28)

After the grid point displacements have been evaluated, stresses in the element are computed

by combining the relationships

{u}

o = [Tlugd (29)
{e} = [C}{ue} . (30)
o} = [6,]e - e} ' (31)
tolform
(6} = [6,JCITu ) - [6,)ey}T . (32)

The principal stresses and the maximum shear are computed from the elements of {g}. The

direction of the maximum principal stress is referenced to the side (:), (:) of the triangle.
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5.8.2 The Basic Bending Triangle

The coordinate system used'in the analysis of the basic bending triangle is shown in Figure

@ T i \ZES\\\_gb,-o

0,0 v . ' X

Figure 2. Coordinate Geometry for the Basic Bendfng‘Triang]e

The deflection w is normal to the x,y plane, with positive direction outward from the paper.

The rotations of the normal to the plate, a and B8, follow thé right-hand rule.

The stiffness matrix is developed in terms of the translations and rotations at the three

vertices of the triangle. The displacement vecfor.is defined by
- T
{ue} = ‘I_Waa aa’ Ba’ wb’ ab’ Bb’ WC’ aC’ BCJ . (1M

Before proceeding with the details of the derivation, some general relationships will be des-
cribed. O0f the nine degrees of freedom of the triangle, three describe rigid body motions. The
stiffness matrix will be partifioned according toirigid body'and flexible Eody 66t166; inrd}&ér‘fb
reduce computational effort. In general, the vector of forces.applied to the vertices is related

to displacements by
(F) = [KMug) - (2)

Partition this equation as follows

N i e , (3)
where
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— T '
{Ui} LJNba O Bb’ WC’ Ges BC—J ’ (4)

]

() = Lwgs a8 1! (5)

[Kii] is computed from the elastic properties of the triangle. [KTaJ and [Kan are computed

as follows.

The partition [Kiij is nonsingular so that Equation 3 can be rearranged as follows to place

uj and fa on the left hand side

When no forces are placed on the u, coordinates, i.e., when fi = 0, the plate moves as a

rigid body such that

{u}y = [S]{ua} . (7)

where the elements of [S] may be calculated from simple kinematics. Comparing Equation 7 with the

top half of Equation 6, it is seen that
[Kia] = - [Kji][sj . (8)

Furthermore, the forces, fa,.are completely determined by the forces, fi’ so that, from the lower

half of Equation 6
[Kpal - (K 11K 17K D = 0 o - (9)
aa ia ii ia ?
or, using Equation 8,

(K., = 08170k, 2081 . (10)

aa

The main part of the effort is the calculation of [Kii]‘ In the calculation, use is made of

the following transformation between relative motions, {ur}, and generalized coordinates, {qr}.

—_ '{ur}. = [H]{qr} . (11)
where
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) = (w3 - [T} . (12)

The coordinates {qr} are taken to be the coefficients in a power series expansion of normal

deflection, w, over the surface of the plate. The stored elastic energy is expressed as

v, = 7/ (g ) K%g ) A, (13)

where the integration takes place over the surface of the plate and [k9] is the stiffness matrix

per unit area. The elements of the stiffness matrix [Kq], referred to {qr} are then computed from
q . q
Krs J krs dA . (14)
The stiffness matrix [Kii] is then obtained from
(k.1 = [TIKOIHTTD (15)

Note that [H] must be a nonsingular six-by-six matrix. It is this fact that causes all the
controversy in the development of plate elements, since if [H] were a six-by-seven matrix, it

would permit the inclusion of all of the cubic terms in the power series expansion for w.

Details of the analysis follow.
5.8.2.1 Rigid Body Matrix, [S]

We start with an easy task, the calculation of [S). From Figure 2 and elementary kinematics,

in rigid body motion

W, _} | 0 I -x ] a
b | | b
o o | 1| o Wy
| |
0 0 1
B IR
R __|__—-— o, ) (16)
Ye 1 | Ye } “Xe
o 0 |1 | 0 B,
8 0 | 0 | 1
¢ | A

The six-by-three matrix in this equation is [S].
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5.8.2.2 Power Series Expansion
Let displacement normal to the plate, with {ua} = 0, be represented by the following series
2 2 ' 2 3
WO VX R Yy g7+ gpxy +oqyt q4x3 + gy * gy’ . (17)

Note that the x2y term is omitted. The omission of one of the terms in the series is necessary
in order that [H] be nonsingular. The coefficients Yy and Yy are transverse shear strains which
are assumed constant throughout the plate. The q's are the generalized coordinates discussed

above.

The omission of the xzy term destroys the invariance of the properties of the element with
respec£ to rotation of the x, y axes. In fact, since thé x-axis coincides with the edge (:), (:)
of the triangle, the omission of the xzy term is equivalent to the imposition of a constraint
such that the rotation o varies linearly from (:) to (:). An interesting consequence is that, if
another triangle with a similar constraint lies adjacent to the side (:), (:), the deflections and

slopes of the two- triangles will be continuous at all points along their common side.

If an arrangement of elements can be contrived such that continuity of displacements is pre- ‘
served along all element boundaries (as in the Clough triangle, Section 5.8.3.3, for example) then
ceftain theorems can be proved about the resulting structure. For example, if the "consistent"
mass Tumping technique (see Section 5.5) is used, then all of the vibration mode frequencies will
be too high, because all of the approximations used in deriving the finite e]ement‘mode] can be
interpreted as the progressive application of constraints. It does not follow, however, that ele-

ments with displacement continuity give better results than all other elements (see Section 15.2).

The rotations are obtained from the definitions of transverse shear strain, which are, for

our problem,

Yy 5 o3t B, (18)
_ ow
Y_Y = '37-(1 . (19)
Hence, from Equations 17, 18 and 19
A = QX + 2Qqy + 2qpxy + 3q6y2 , (20)
- 2 2
B = 2qyx + qyy + 3q,x" + gy . (21)
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5.8.2.3 General Expression for [H] Matrix

One of the required tasks is to express Yy and Yy in terms of the generalized coordinates,

qp. Let the relationship be

{ } = = | '{
The vector [ur} can be written d‘”ect‘ly as

{”r} [HuY]{Y} + [m{qr} ; (23)

Then, from Equations 11, 22, and 23
[H] = [H,JDH] + [AD . (24)

We can write down [HuY] and [H] from preceding results. From Equations 17, 20, 21, and 23

Wb q.I
*p a
Y
& X 93
. = [H,y] ? + [H] . , (25)
C ly 4
_ y
Gc¢ 5
Bc 3
where - -
e e P T T e T T e
b -7 |
» o I o
|
0. | o | .
fH,] ———= . , (26)
XC : ‘yC
o | o
l
0 | o_j
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and
—i{“:_o ; 0 : x> l o__t_o ]
o _:_xb :‘_0 : o : 0 _: B (Z
. -2x, : 0 : 0 : -3x, 2 : 0 : 0 ”
= | T T T T 27
S A S RS
i _:_xc : 2yc : 0 { 2xcyc_: 3yc2
-:ZXC : -Ye : 0 : -3xc2 : -yc2 : 0 i

5.8.2.4 Elastic Relationships

The following relationships are obtained from the theory of deformation for plates.

The curvatures are defined by, (using our notation)

- _ 98
Xx = X

- oa
Xy = 3y (28)
X, = oo _ 2B

Xy X 3y

Bending and twisting moments are related to curvatures by

My Xx

= Y 2
My [p] Xy (29)
Mxy Xxy

where [D] is in generé] a full symmetric matrix of elastic coefficients. For a solid isotropic

plate,
- | | -
I A S
)[R RN - (30)

120y} 1t

. f I,
0 0 i-v
B | I 7|
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For anisotropic materials, the,or1entat10n between the x, y axes and the axes that the user

specifies for computing [D] must beiaccounted for.

_The, method used is identical to that for the

\ T j i i * el
membrane triangle, see Sectlon 5.8. ﬂ Ui e
The positive sense of bending and. tuisting moments and transyerse,shears,fs 9ivensby them
following diagram.
M xigdet [ ) Yo wofleulsvd ¢.3.8.8
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8] = —
G s (38)
0 1

*
where G is the shear modulus and h 1is an "effective" thickness for transverse shear.
5.8.2.5 Evaluation of [HYq] Matrix

From Equations 31, 32 and 33 we may write

PBMX oM ] am, aMXW
Y = Il ex Ty | 2| Ey t ex ’ (3)
L. - - " —
and
ENE [am, am_ |
MR Tl 7 BN i 0t 3 S (36)
y 121 9dx 3y 22 | sy X i
From Equation 29
aM X X ax
_X . X Y Xy
ax - P11ax YDt Dy ok
M Ty X ax
_Y = X Ty Xy
3y D12 3x * D23y * 033y
, (37)
aM 3x X X
_Xy = X Yo XY
ax D13 3% * P23 5% * 033 ox
aM ax )Y 3x
X = D _i+ D Y + D Xy
3y 133y P33y * P33y

where the symmetry of the [D] matrix has been used.

The curvatures may be related té.the genéra]ized coordfnates by means of Equations 28, 20,

and 21.
Thus
X T T E T 2 e,
Xy = 2—;‘3 = 293 + 2xqg + byqg , (38)
Xy = 3—2-3—5 = 29, + 4yqg
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9x 9x \
. - . _.XX =
6ay3 5;1 = 2q5; X 0
} (39)
X X
. Y - LY
Substituting into Equation 37 and thence into Equations 35 and 36
oM,
% - 6Dy79g * 20,05
M
Ty oo
3y 60,50 *+ 405305
oY = 6040, + 20,.0;
3% 13% 23%
oM
_ﬁl = . 0
3y 6,396 * 403395
‘lll') and
Yy = 911060110y * 2Dy,05 + 6Dy5q, + 4D3aag] - J;,[6D)50¢ + 4Dpya5 + 6Dy5q, + 235051,
' (41)
or
Yy = = 6(943Dqq ¥ 9y03)ay - [9y(2Dy, + 4D55) + 631,0,51ag - 6(3;10p5 + Jy50p5)0; -

(42)

Interchanging .J]2 for J]] and‘J22 for J]Z’ we also get

Yy = - 6031000y + dppDygday - [935(2Dy, + 8D35) + 60,550, 5]a5 - 6(1,0,5 + Jy50p,)04

(43)

The complete [HYq] matrix is, therefore, from Equation 22

P |
0,00 : 8(d410y7 * J350y3) I 17(2Dy5 + 4D33) + 631,055 : 6(J110,3 + Jy,05)
H): -4 _)_ e e e e e e e M e —
L ¥q oo r_- | |
}
. 0 10 10 160dy5Dyq + dppDy3) 133,(2D;5 + 4D33) + 6355Dp5 | 6(0)5Dp5 + J55Dp0)
(44)
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The complete [H] matrix can now be written explicitly using Equations 24, 26, 27 and 44. This
will not be done here. Note that, if the p]ate is assumed to be rigid in transverse shear, [HYq]

is null.
5.8.2.6 Strain Energy and Stiffness Matrix (k9
The strain energy for a b]ate may be written
e

v, o= 2L s Tl (45)

where {M} is the vector of bending and twisting moments, {x} is the vector of curvatures, {V} is
the vector of transverse shears, and {y} is the vector of transverse shear strains. From previous

results, Equations 29 and 33;

-ve = %J’ (o001 + (v} TT61y} IdA (46)
where [G] = [J]'1. The {x} and {y} vectors are related to the generalized coordinates by
o - [qu]{ér} . ) (47) .
and
W= e . (48)

[HYq] is given by Equation 44. [HXq]'is, from Equation 38:

2 1 o | o | ex : 0 : 0
___|____1___:____ — -
m1=o0o 1ol 2 0 2% | 6 . (49
Xq _____|_____|______|______i__’;__|__ {_ )
| | | | I
0 2 | 0 | 0 | Ay | 0
I . . maed
Substituting Equation 47 and Equation 48 into Equation 46,
1 Try T T :
= — + .
Ve 5 | o} [qu DHXq H g GHYq}{qr}]dA (50)
From Equation 13
. . T
k%9 = [H Toy +H_TeH . 51
(K9] = TH o ToH o+ K oT6H, o) (51)
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and from Equation 14 the elements of [Kq] are

q _- Tr, T
Kog' = JUH,J [D(H }dA + AH  }'[6](H .} ; (52)

whefe {er} is the rth column of [qu], etc. Note that, since the elements of [HYq] are indepen-
dent of x and y, the integration of the second term in Equation 50 is trivial and has been perfor-

med in Equation 52. A is the surface area of the triangle.

In Equation 51 explicitly

[ o =
20, | 0,, | o, | exy, I 20, + 4yDy; | 63D,
R U R AR A B
i | o
[D][qu] = | 2012 I 2023 { 2022 | 6xD12 } 2xD22 + 4y023 } 6yD22 . (53)
S e e e T
13 Y33 Pz iz M3 T W03 ) Yz
I | I I a0, , I
0 | ey | A | 20y | 8yD; 5 | 12yDy,
o I I | I |
I I I I 4xD23 I '
40, | 4Dy | 4Dy, | 12x013'| + 8yD,, | 12y0,,
] | | I |
I } I , I 4xD22 ;
4Dy, } 4D,3 | 4Dy, } 12xDy, } + 8yDys | 124D,
T _ —_— e —_— —_—
[ J I T = | ] | I ) | 1250, |
1205, | 12wy, | 120y, | 36x°Dy, |, 2xyD, 5 | 36xyD,,
T | | | "
I | I 2 I. 4x2022 I
By, | Dy | axD,, { 2, |, 1%y, | 12xyD,,
+ 8yD + 8yD + 8yD +_24xyD;- 2
13 | 33 | 23 i3l 16y%0... |+ 20570,
] | | | 3|
I | | I 12xy0,, | )
1201, | 12yDyy | 125Dy | 36xy0;, | © p0? | 36y°p,,
o Y03 |
- | | I | N
(54)
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It is convenient to define the following integrals:

"
><

| dA [x2dA = oA ,

xdA = %A [yPda = pyzA . ' (55)
.5 L2

Jydd = A Jxydh = Ouy A -

x and y locate the center of gravity of the triangle. p_ and Py are the radii of gyration about

X
vertex (:) of the triangle. pxyzA is the cross-product of inertia.

After performing the integration, the completé [Kq] matrix is

(K9 = [KX3+ KT -, . (56)
where ‘
- | | < ]
1 | | Ly, L
D1y Dy3 Dy, B0y I sy L WD
o | | | TP
| I N R |
| . Dy Dys | FD, | a3 | 3yD,,
I | * @03 |
| | P %o [
L | Do s, |, 2D | 3yDyy -
R R R A S
[KX] = 4A - i | % |
SYMMETRICAL 2 Px Y12 2
| %o | 6 2 | 90,y 015
L | xy “13 |
. . -
2
| Px Do2 | 30. 2
| + 40,7055 | W, 2
Xy | + 6p. D
| + 40 2 y 23
Ly 33 |
o
e | 9y, Dy
pu—
(57)
and
Y] = A T 58
(k"] [HYq] [G][HYq] . (58)

Note that [KY] + 0 if [G] ».= because [HYQ] goes to zero in this case.
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‘ - 5.8.2.7 Summary of Calculations for Stiffness
The following operations are required to obtain the stiffness matrix [Kee] referred to
degrees of freedom at the vertices of the triangle.

1. Compute elastic matrices (0], [6], and [J] = [G']] in.the reference coordinate system

for the basic triangle (see Figure 2).

2. Compute‘[KX] from Equation 57 (6x6)
3. Compute [HYq} from Equation 44 | (2x6)
4. Compute (KY] from Equation 58 (6x6)
5. Compute [Kq] from Equation 56 (§x6)
6. Compute [Huy] from Equation 26 (6x2)
7. Compute [H] from Equation 27 (6x6)
8. Compute [H] from Equation 24 (6x6)
‘ ’ 9. Compute [Kﬁ] from Equation 15 (6x6)
10. Compute [S] from Equation 16 _ (6x3)
11. Compute [Kia] from_quation 8 (6x3)
12. Compute [Kaa] from Equat%on 10 (3x3)
13. Assemble [Kee] fromvKuation 3 (9x9)

For triangles that are rigid in transverse shear, steps 3, 4 and 6 are omitted. After [Kee]
“has been formed it.is transferred from the local element coordinate system to the global coordi-

nate system of the surrounding grid points, in the same manner as for all other elements.

5.8.2.8 Equivalent Thermal Bending Loads

The stress-free strains developed in a free plate due to a variation of temperature with depth
are:

Ext

:fet}~-= eyt = ’{ae}T- s (59)

‘ ‘ | ;- ’: Yt
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where T is the temperature above the reference state and'{ae} is the vector of thermé] expansion

coefficients in the element coordinate system.

An applied stress vector which would produce the thermal strains is:
{ot} = [Ge]{et} s : (60)

where [Ge] is ‘the matrix of elastic coefficients at the point on the cross section. The work done

by the applied stress field on a strain field {e} is:
W, = f{e}T{o } dv (61)
t t ’ _
v

where the integration is carried out over the volume.

The work done by equivalent thermal loads {P;} acting on grid points (in the global coordinate

system) is

t. T
W, = {P s 62
¢ { g} {ug} (62)
so that, comparing Equations 61 and 62
t - 3 [T
Py = g f{e} {o,} dv . (63)
v

The strains {ec} are related to the curvatures {x} by

e} = -z{x} . (64)

where z is measured from the neutral surface of the plate. Also, from Equations 59 and 60

logh = [Ge]{ae}T’ : (65)
so that
| PZ =' - BBTQ fz{X}T[Ge]{ae}T dv . (66)
v
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It will be assumed that the temperature varies only in the z direction, i.e., that it is

uniform with respect to x and y. It is convenient to define the equivalent thermal moment vector

My = - [ 16 a7z dz (67)
z

Note that, if the temperature varies linearly over the cross section such that

T = T,* T'z , 4 (68)

then
sz dz = T'fz2 dz = IT' , (69)
z

where 1 is the moment of inertia of the cross section and T' is the thermal gradient. For plates

in which the material moduli and the thermal expansion coefficients of the effective bending

material do not vary with depth, the vector of equivalent thermal moments'{Mt} is related to an 'f ,
"effective" thermal gradient, T', by . ) . ‘

-[6 {3 T (70)

where
T'=—]I-szdz R {71)

and the integration is carried out over the effective bendiné material. In NASTRAN the user has
the option of providing either'{Mt} using Equation 67 or T' using Equation 71. For solid homoge-
neous plates the further»option is provided to specify the temperature as a tabular function of
depth, in which case Equations 70 and 71 are evaluated by the program. Equation 67 should be used
if it is desired to include the éffect of temperature gradient on the material properties, [Ge]

and {qe}. If Equation 71 is used, NASTRAN assumes that [Ge] and'{ae} are constant for the element;

they are computed for the average temperature, f.

Substituting Equation 67 into Equation 66,

O,
' Or Gy

t T e/

5 T Al j; D’ ) ah OQ? 0'046‘ (72) ‘
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where the integration is carried out over the surface of the element. The vector of curvature,

[x], is linearly related to the vector of generalized coordinates'{qr} by Equation 47. Thus

t _ 9 . T
I RGN O NCRRT (73)
A

Note, from Equation 49 that the elements of [qu] are at most linear functions of x and y. Thus,

since’{Mt} is constant over the surface,

P; ) 53;.(A{qr}T [qu(i’y)]'{Mt}) ’ 8

where [qu(i,y)] is [qu] evaluated at the centroid (x,y) of the plate and A is the surface area.

The generalized coordinates'{qr} are related to the relative corner disp]acements'{ur} by the

matrix [H] in Equation 11. Let the relationship between the relative corner displacements and the

global grid point displacements'{ug} be

<
{“r} = [T] {ug} . | ’ (75)
Then, substituting Equations 11 and 75 into Equation 74,
t 3 T 14T s oy
= —— ’ M
s " e (Atug 717 TH'TT (g (3D 1)  (76)
so that, performing the indicated differentiation,
t T ry-14T = -
Pl =
{Pgh = ALY W71 TH((%.5)) M) (77)

Equation 77 is evaluated by the program to obtain the equivalent grid point thermal loads.

5.8.2.9 Recovery of Internal Forces

The internal forces are recovered at a point (xo’yo) which is either the center of gravity

(x,y) or, in the case of a Clough triangle, vertex ¢ (x_.y.)-

The first step after transforming ug into Ug is to obtain the relative motions at vertices

b and ¢ from

lu} = {u} - [S]{ua} . (78)
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T~en the generalized coordinates,'{qr}, are evaluated from

: _ -1
{qr} = [H] {ur} . (79)
The curvatures are evaluated from Equations 47 and 49 with x = Xo and y = Yo'
{xt = [qu]{qr} . (80)
Moments are then obtained from
ROBEN OS5I TR (81)

where [D] is the matrix of elastic bending coefficients (see Equation 29) and {Mt} is the equivalent

thermal moment- vector (see Equation 67).

The transverse shears are evaluated from Equations 31 and 32 and the subsequent numerical

reduction of coefficients.

The details are as follows. Note first that'{Mt} is uniform over the surface. Then

v o= - Eﬂﬁ._ ET!X
- oX ay_
=7 6Dyqqy - 204,95 - 6Dp3q5 - 4D33q5 (82)
M aM
v e ooy Ty
y 3y oy
= - 6Dpp0g - 4Dy3a5 - 6Dy3q, - 209395 : (83)

Equations 82 and 83 may be written.in matrix form as

v
X
W= gy (= K2 : (84)
y .
where
o o "o 'ep,, 20+ 4D, 6D
v : ! Tt R Ra V) 33 1 %93
K1 = - —ﬂ——%—l——ﬂ———uﬂ—— _ (88)
i {
0 , 0 ; 0 lep; | 60,5 16D,
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‘ The bending and twisting moments can be reduced to outer fiber stresses and combined with membrane
stresses in the composite plate elements. If, in addition, the temperature is specified by the
user at a point where outer fiber stresses are calculated, the thermal expansion due to the differ-
ence between the specified temperature and the temperature that would be produced by a uniform
gradient, 7', is assumed to be completely restrained. Stated differently, the second and higher
order moments of the thermal expansion are assumed to be completely restrained by elastic stiff-

ness. The resulting stress increment is
(Ao} = -[Ge]{ae}(T - To - T'z) . (86)

where [Ge] and {o } are evaluated for the average temperature of the element, T.
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. 5.8.3 Composite Plate Elements

5.8.3.1 The Overlapping Composite Quadrilateral Membrane Element, TRMEM

The quadrilateral membrane element, TRMEM, is composed of four overlappinu triangular
elements. Since four points, in general, do not lie in a plane, care must be taken to ensure
equilibrium and compatibility. Rather than try to define a warped surface, an averaging process
is used with noncoplanar triangles. If a highly warped or curved surface is being analyzed, it
is suggested that the user employ four triangular membrane elements and specify the location of
the center point. The only penalty will be three extra degrees of freedom. The matrix formula-

tion time will be somewhat less.

The quadrilateral is divided into four triangles as shown in the figure below:

. 1 2 1 2

If the corners do not lie in a plane, the composite element forms a tetrahedral shell.

The thickness used for each triangle is one-half that given for the quadrilateral. Since no
special calculation time is saved by generating a unique element coordinate system, the locations

of the corner points are used to calculate individual coordinate systems for the triangles.

The stiffness matrix of the composite element is simply equal to the sum of the stiffness
matrices for the component triangles, each .transformed into the global coordinate system. Equi-
valent temperature loads are computed for each triangle separately and summed. During stress
data recovery, the state of stress in the composite element is assumed to be the average of the

states of stress in the component triangles.

The TRMEM1 element described in Section 5.8.5 and the TRMEM2 element described in Section
5.8.3.4 are more accurate elements. The TRMEM element was developed earlier and it is included in
the present version of NASTRAN primarily to provide a rerun capability for previous analyses. A

comparison of the accuracy of the three elements is made in Section 15.3.

‘ 5.8-21 (12/15/72)
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5.8.3.2 The Quadrilateral Bending Element

The quadrilateral bending element uses two sets of overlapping basic bending triangles as

shown below

For each triangle the x-axis lies along a diagonal so that internal consistency of displacements
and rotations of adjacent triangles is assured. Each triangle has one-half of the bending stiff-

ness assigned to the quadrilateral.

In a preliminary operation the corners of the quadrilateral are adjusted to lie in a median
plane. The median plane is selected to be parallel to, and midway between, the diagonals. The
adjusted quadrilateral is the normal projection of the given quadrilateral on the median plane.
The short line segments joining the grid points to the corners of the adjusted quadrilateral

element are assumed to be rigid in bending and extension.

The logical arguments supporting the chosen arrangement for the quadrilateral bending

element are
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‘ 1. For the special case of a square element, its properties are invariant with respect to
90° rotations, thereby compensating an important defect of the basic bending triangle.
Since the purpose of a quadrilateral element is to model (nearly) rectangular fields of
grid points, the property of rotational invariance should provide improved accuracy

over the simple basic triangle for such applications.

2. It is simple to program because the stiffness matrices of the component triangles are

directly additive. -

The accuracy of the quadrilateral plate element for the solution of problems is compared
with that for other composite elements in Section 15.2, "Modeling Errors in the Bending of Plate

Structures."

In stress data recovery, the stresses in the subtriangles are calculated at the point of

intersection of the diagonals and averaged.

Since coupling between membrane stiffness and bending stiffness is ﬁot, at present, included
in NASTRAN, quadrilateral elements with both membrane and bending properties are treated by
simple superposition of their ﬁembrane and bending stiffness matrices. Specifically, the over-

. lapping quadrilateral membrane element, QDMEM, is combined with the bending quadri]atéra],
described above (QDPLT), to form QUAD] and QUAD2,
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5.8.3.3 The Clough Bending Triangle

The Clough bending triang]e(1) is formed by subdividing the given triangle into three basic

bending triangles as shown below.

The x-axis of each subtriangle corresponds with an exterior edge, so that continuity of
s]ope‘ahd déf]ectibh with Surrbdnding Clough triang]és is assured. The added grid pbint'in the
center is like the other grid points in that equi]ibridh of forces and compatibi]ityiof displace-
ments are required at the center point. In addition;;the fotéfibns para]]ei to the iﬁterhal
boundaries at their midpoints, points (:), (:) and (:) , are constrained to be continuous across
the boundaries. The equations for slopes in the basic triangles contain quadratic and lower or-
der terms, and since the normal slopes along interior boundaries are constrained to be equal at
three points (both ends and the middle), it follows that slope continuity is satisfied along the
whole boundary. Displacement continuity on all boundaries is automatically satisfied when the

displacement function contains only cubic and Tower order terms. Thus complete continuity of

slope and displacement on all interior and exterior boundaries is assured for the Clough triangle.

The imposition of the internal slope constraints causes the only additional complications
in the analysis of the Clough triangle. In each of the component triangles, expressions for the
rotations w] and wz (see figure on fo]lowing'page) are obtained in terms of the displacements at

its vertices.

(])C1ough, R. W. and J. L. Tocher, "Finite Element Stiffness Matrices for Analysis of Plate
Bending”. Proc. of Conference on Matrix Methods in Structural Mechanics, Air Force Flight
Dynamics Laboratory Report AFFDL-TR-66-80. December, 1965.
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C
Yy
. Xy,
" g 272
] _l___. v
T WTTe 2
Sa 5b b
a X
t~
12 4
[Hwt]{ut} t=1, II, Of 111 s (1)
vyt
where
{Ut} = LW3» G5 Sas W Q4 Bb’ Wes O BC_JT , (2)

is the vector of corner displacements, expressed in a local coordinate system for the component
triangle. {ut} is a rotated subset of the displacements at the corners of the composite tri-
angle, {u.,}, and the displacements at the center, {uc}, expressed in a Cartesian coordinate

system for the element as a whole,
{u} = [Tte]{”e} + [th]{uc} . (3)

The equations of constraint are

byt =0 .
w]II + wzl =0 ’ (4)
PRI ,

which, by virtue of Equations 1 and 3, result in a set of three constraints relating displace-

ments' at the center point to the displacements at the corners,
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{uc} = [GC]{ue} . (5)

The equilibrium equations, including the forces of constraint, q., are

| | T ue

7 1 I
Kee 1 Kec | Ge fe
e B e EU : (6)
K The b A

ec | "cc 17 0

A | !

ac :

. . s = T . . .
The stiffness matrix, whose partitions are Kee, Kec, Kec and ch’.1$ obtained by simple super-

position of the stiffness matrices of the component triangles. Straightforward elimination of

u. and 9 from Equations 5 and 6 results in the final stiffness matrix
[Keellud = (f} -, (7)
where
- v T, T T
[Kee] - [Kee * Kech * G'c Kec * Gc chGc] : (8)

The details of the relationship expressed by Equation 1 are as follows. The rotations ¢1
and wz are related to their component rotations about the x and y axes of the local coordinate

system by

12 6, coss_ + ey sing, s (9)

1 1

12 6, coss, - ey sinéb . (10)

2 2

Referring to Equations 20 and 21 of Section 5.8.2,

D>
1]

_ 2
x, T Gt T %t 20y * 2y *3aey ()

D
I

) ) 2
By ¥ By = By - 209Xy - 205y - 304Xy - Ggyy . (12)

and similarly for ex and ey . Combine Equations 9 to 12 to form the matrix equation
2 2
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¥, 0 cos6a sinaa ’
= [qu]{qr} + : a, , (13)
¥y ) 0 coséy -sinéb
.Ba

where

vq | | t 2 | 2
2xp5), : "% * ¥2% | 2y,¢y, ! 2% | Yo(2xpe, + yp5p) | 3¥,7¢y,
. ]

in which Sa = sinda, c. = cosda, Sp = s1n6b and ¢, = coséb,

a

From Equationsvll and 12 of Section 5.8.2
(o) = [I7Mtuy - (N7'ESHu) )

where {ui} is the union of the displacements at vertices b and c. Equations 13 and 15 are com-

bined to form

4!
= [H, My} + [H, Hupd + [H Hu ) , (16)
w2 : :
where
0 c0ss sing
_ a a 1 1)
Ml = | I L L0 IO B (
0- cosé‘»b -s1n<Sb
and

: B -1
[y | Hed = [HgICH] : (18)

In stress data recovery the displacement vector at the center point is computed by means of
Equation 5. Internal forces and stresses are then computed at vertex c for each component tri-
angle by the procedure described in Section 5.8.2.9, and are averaged to provide representative

values for the composite triangle as a whole.
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The Clough triangle is superimposed with a membrane triangle to form triangular elements with .

both membrane and bending stiffriess.
5.8.3.4 The Nonoverlapping :Composite Quadrilateral Membrane Element, QDMEM2

The QDMEM2 quadrilateral membrane element is subdivided into four triangles connected to a

center point as shown in the sketch below: 3
4

|
|
!

Figure 1. ~
Point ¢ is located at the intersection of straight lines connecting the midpoints of the
sides. Note that these lines intersect even if the four corner points do not lie in a plane.
Stiffness matrices, and thermal loads, are generated for each of the four triangles and are added,
treating the center point like a normal grid point. The matrices and load vectors are then

reduced from order'S to order 4, i.e., to the four exterior grid points.

Two methods are available for removing the degrees of freedom at the center point. The
first will be called elastic reduction and the second will be called rigid reduction. The forces
applied to grid points, after combining the triangular sections but prior to eliminating the

center point, may be expressed in partitioned form as follows:

K. oK ) {»

fo i+ pe |\ Yp. P

L QR [ o S SRSY G LK G (1)
T 1

fe Koc ; Kee |{ Ye Pe

where subscript (p) refers to corner points and subscript (c) refers to the center point. {Pp}

and {PC} are the thermal load vectors.

In the method of elastic reduction, the vector of resultant forces on the center point, {fc},

is set equal to zero and {uc} js eliminated by direct solution of Equation 1 with the result

- 1yt e
{fp}— [Kpp]{up} + {Pp} s (2)

Sl AT
[Kopd = [KoedTK T IR , (3) .
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"lll’ "
e, _ -1
{Pp} = {Pp} - thc][ch] {Pc} ) (4)

In the method of rigid reduction, {uc} is set equal to the average of the corner displace-

ments, i.e., in terms of Cartesian components,

Uc u]+u2+u3+u4
B
. Vepr TT AVt Yt V3t . (5)

Since the coordinates of the center point (Xc’ Yoo zc) are equal to the averages of the
coordinates of the corner points (see Figure 1), Equation 5 does not violate the element's rigid

body property. Expressed in general matrix form Equation 5 is
{uc} = [GC]{up} . (6)

Application of Equation 6 to Equation 1 as a rigid constraint then produces the result

I r

where
roq._ T.7T T
[Kpp] = [Kpp + |<|DC G. + G, Kpc + G, Koo GC] , (8)
ry _ T
{Pp} = {Pp + GC Pc} . (9)

Similarity with the method for eliminating multipoint constraints, Section 3.5.1, is evident.

The method- of elastic reduction can-be expected to give more accurate results and it would be
preferred in the present case were it not for the singularity that occurs in [ch] when the
element is flat. A combination of the two methods is actually used as follows: the lines joining
the midpoints of opposite sides are used to define a mean plane. The inplane components of dis-
placement at the center point (uc, Vc) are removed by elastic reduction and the out-of-plane
component of displacement, Wes is eliminated by rigid reduction except that, when the quadrilateral

is severely warped, elastic reduction is also used for We- The criterion used to define severe

warping is

. 5.8-28a (12/15/72)
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> 0.2 R (10) .

where h is the distance from the mean plane to each grid point and A is the area of the quadri-

2h

lateral projected onto the mean plane.

The mass properties of the QDMEM2 element are treated in exactly the same manner as the QDMEM

element, see Section 5.8.4.

In stress recovery, the stresses are computed in each of‘the four triangles and averaged.
Internal force output includes the components of the corner forces colinear with the sides, as
shown below, and the "kick loads" at each corner normal to the plane of the colinear corner forces.

The “"kick loads" are required for equilibrium when the element is warped.

f12=

/ . *X"‘> a1

f
14 fa3
In addition, a "shear flow" is calculated for each side, e.g.,

fi, - f

12 2]

Q]Z = 3 (]2)

Y12
where 212 is the length of side (:) - <:). The "shear flow" as calculated by Equation 12 derives
from a conceptual model of the panel consisting of four edge rods and a central shear panel. It

is not a measure of the shear stress on the edge of the element.
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5.8.4 Inertia Properties of Plate Elements

The mass of a plate element, 1ike its other physical properties, is assumed to be uniformly
distributed over the surface of the element. The mass consists of two parts: the mass due to the
density of the structural material; and nonstructural mass, the surface density of which is speci-
fied separately by the user. The mass is‘assumed to 1ie in the middle surface of the plate so

that rotary inertia due to finite thickness is ijgnored.

In the Lumped Mass method of mass transfer, one-third of the mass of a triangular element
is placed at each of its vertices, an arrangement that preserves the location of the center of
gravity of the element. A quadrilateral is treated as a set of four overlapping triangles
(see Sections 5.8.3.1 and 5.8.3.2) whose masses are calculated and transferred separately to
the surrounding grid points. This procedure is also used for the jsoparametric quadrilateral

membrane element, QDMEMI.

A Coupled Mass method of mass transfer is available for motions normal to the surface of
a plate element. As discussed in Section 5.5, a satisfactory coupled mass method for inpiane
motions has not been devised. fhus, when the Coupled Mass method is specified by the user,
the terms in the element mass matrices corresponding to inplane motions will be the same as
in the Lumped Mass method. The use of the Coupled Mass method introduces a complication, in
that it is no Tonger possible to assign masses directly to grid points before calculating the
global mass matrix. Instead, the.mass matrix for each element is first calculated in its own
coordinate system and is then transferred to the global coordinate system by the same trans-
formations that are used in the assembly of the global stiffness matrix from element stiffness

matrices.

The Archer consistent mass technique (2) is used in formulating the Coupled Mass matrix
for motion normal to the surface of a plate element. Thus, the bending properties of the
plate element affect its mass matrix. The Coupled Mass method cannot be used for elements

with membrane stiffness only.

The procedure employed with the basic bending triangle is described below in detail.

(2) Archer, J.S., "Consistent Mass Matrix for Distributed Mass Systems, " Journal of the
Structural Division, ASCE, August 1963,
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Quadrilaterals are treated as four separate overlapping bending triangles. The Clough bending

triangle requires additional procedures that will be explained.

The consistent mass matrix for any element is obtained from the kinetic energy under the
assumption that the inertia loading does not alter the displacements at interior points. Thus
the kinetic energy may be expressed as a quadratic function of the displacements at the corners
of the element, using the geometric and elastic properties of the element to compute the func-

tional relationship.

Consider a flat plate that is inertia loaded normal to its plane. The kinetic energy for

sinusoidal transverse motion, w, at radian frequency w, is

12
Vo= o3 oWt fmldA M)

The translational displacement function, w, is related to corner displacements, Ups by
w = E ck Uk ’ (2)

so that

Vo= 1L [E ] CCquuy [dA (3)

Elements of the consistent mass matrix are given by

M = JmCcC, dA . (4)

In the case of the basic bending triangle described in Section 5.8.2, a modified procedure
will be used due to the complexity of the expressions for the coefficients, Ck. Repeated re-
ferences to Section 5.8.2 will be made. Equations in Section 5.8.2 will be referred to as Equa-

tion 2-x.

It is convenient to relate w to a modified set of displacements, U consisting of the three

displacements of grid point (a) and the six generalized coordinates, Gy defined in Equation

2-17. Thus
wo= ; Caug * ; Cpap ’ (5)
or, using matrix notation
wo= fCWub = [c,Mu} +7c g} (6)
5.8-29
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where the symbol [ T indicates a row matrix. The mass matrix referred to the modified coordi- ‘

nates, [Mmm], is partitioned according to uy and q, “as follows

The elements of [Mmm] are, by analogy with Equation 4, and employing matrix notation,

. |

M) = [mlc VT len (®)

1 = [mcrcld (9)
T

M d = J ol 1'Te 1 eh : | (10)

The mass matrix [Mmm] is transferred to the corner displacements {ue} by means of the

transformation
i o= [THuy) - ()

Thus

S
Mgl = [TTDMI0TD (12)

The transformation matrix [T] is obtained by noting that, from Equation 2-11,

ta, ) = 7wy = Ny - [SMW (13)
where
fu} = {w, o, 8.3
a a* "a’ "a QY]
{u.} = {w., o, B W,a, B T s
i b> %> Bp> Wer %er B
.Consequently

a :
== § ¢ = My . (s

~~—
| =
32
—
]
"

i

which defines [T] in terms of quantities that have already been computed.
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The ‘row matrix [Caﬂ, evaluated from a consideration of rigid body motion about grid point
(a), shown below, is
rca-‘ = ”, Y "X] . (]6)
y
C
8

a
b

a
0y X

Equation 2-17 gives the relationship of W to {qr}:
‘ 2 2 3
L MR T A AL P q3y2 + q4x3 tagxy” tqgy” . (17)

The shear strains Yy and Yy’ assumed to be constant over the surface of the plate, are related to

. {q,} by the [qu] matrix, defined in Equation 2-22, and evaluated in Equation 2-44. Thus, separa-
ting the two rows of [HYQ]’
= H s
Yy ] qu]{qr}
(18)
‘= [H g}
vy r v,a " q,

The first three terms of FHY q'I_and fHY q1 are zero (see Equation 2-44). Substitute Equation -
X .

18 into Equation_17 and obtain the elements of tbef[cr] matrix

. 2. 3 2 ‘ 3 e
C = 5 XYs ; x7+H x + H ; + + H Ys + H + H .
61 = sy vag® " ryag?t YT iy agt Ty gl YTy qg Y 0’

The remaining steps in the evaluation of the consistent mass matrix are:

1. Substitute for FCa] from Equation 16 and FCr1 from Equation 19 into Equations 8, 9 and
10 and evaluate the integrals, giving the elements of the mass matrix in modified

coordinates.

@
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2. Calculate the-[T] matrix, defined in Equation 15, from the[H]'] and [S] matrices that .

are used in calculation of the stiffness matrix.
3. Compute the mass matrix referred to element coordinates by means of Equation 12.

4. Transform the mass matrix from element coordinates to grid point coordinates in the usual
‘manner. . Note that the portions of the mass matrix corresponding to motions in the plane
of the element are treated in the usual manner, i.e., 1/3 of the mass of the plate ele-

ment is placed at each corner.

Step 1 above invalves the evaluation of integrals of the form

I = mf x'ydda | (20)

where it is assumed that the mass density is constant over the surface of the triangle.

For example,

Ioo It Lo
Maad = | I Iop  -Ip . (21)
Lo -In I20 -

The other partitions, [Mar] and [Mrr]’ are-less simple due to the shear strain coefficients

in Equation 19.

The above results for the basic bending friangie-can be used directly with the composite
quadrilateral plate element. The Clough triangle, on the other hand, requires the imposition of
constfaints. The most straightforward procedure; is first to calculate the mass matrices of the
three componeht triangles séparate1y, and then to eliminate the  displacement at the center point

by means of the constraint relationship, Equation 5 of Section 5.8.3.3,
{u} = [Gc]{ue} . ' (22)
The resulting mass matrix referred to exteriér vertices is, by analogy with Equation 8 of

Section 5.8.3.3,

- W Ty T,cT :
[Mee] = [M et Mech + G, Moc + G, Mcch] . (23)

e
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. 5.8.5 The Isoparametric Quadrilateral Membrane Element, QDMEM]
5.8.5.1 Introduction

This element, shown in Figure 1, was first formulated by I. C. Taig and is described in
*
References 1, 2 and 3 . The present development is based on the derivation in Reference 3 and

the important characteristics of the element are that:
1. the stresses and strains vary within the element in an essentiglly Tinear manner,
2. the element may have a warped shape, i.e., the four vertices need not be coplanar,
3. Gaussian Quadrature with a 4x4 grid is used to evaluate the stiffness matrix,
4. the temperature is assumed constant over the element,

5. differential stiffness and piecewise linear analysis capability are not implemented at

present.

The element is compared for accuracy with the other NASTRAN gquadrilateral membrane elements,
QDMEM and QDMEM2, in Section 15,3, The calculation of its mass properties is discussed in

Section 5.8.4.

‘ 5.8.5.2 Geometry and Displacement Field

As indicated in Figure 1, two coordinate systems are used to define the shape and kinematic
behavior of the element. The first is a set of element parametric coordinates (£,n) which vary
linearly between zero and one with the extreme values occurring on the sides of the quadrilateral.
Lines of constant £ and lines of constant n are straight as indicated on the figure. Second, a
set of element rectangular coordinates (x,y,z) is defined as follows: the x-axis is along the
line connecting the first two grid points; the y-axis is perpendicular to the x-axis and lies in
the "plane" of the element (if the element is nonplanar, the "plane" of the element is defined by
a mean plane as described later in this section); finally, the z-axis is normal to the plane of

the element and forms a right-handed coordinate system with the x- and y-axes.

. )
1. Irons, B.M., "Engineering Applications of Numerical Integration in.Stiffness Methods," AIAA J.,

Vol. 4, No. 11, November 1966, pp. 2035-2037.

2. Zienkiewicz, 0.C., and Chedng, Y.K., The Finite Element Method in Structural and Continuum
Mechanics. McGraw-Hill Publishing Company, Ltd., 1967.

3. Przemieniecki, J.S., TLeory of Matrix Structural Analysis. McGraw-Hill Book Co., Inc., 1968.
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The two coordinate systems are related as follows:

x
u

(]‘E)(]'N) X] + 5(1—n) X2 + an3 + (]’E)n X4
, (1)

<
n

(1-£)(1-n) y; + £(1-n) y, + Enyg + (1-E)n y,

where the subscripts refer to grid point numbers. The displacement components along the x- and
y-directions are denoted by u and v, respectively, and are assumed to vary with £ and n in the

fellowing manner:

it

U(Em) (]'E)(]'n)u] + g“'ﬂ)uz + Enu3 + (]'E)T\ U4

(2)

v(g,n) = (1-£)(1-n)vq + £(1-n)v, + gnvy + (1-E)n v,

Properties of the assumed displacement field are that on lines of constant £, u and v vary linearly
with n, and on lines of constant n, u and v vary linearly with £. In particular u and v.vary
Tinearly on the edges between grid points and as a result, displacements of adjacent elements are
matched all along their common edges. Thus, thé element is a “"conforming" element as defined in
Reference 2. It is noted from a comparison of Equations 1 and 2 that the equations which relate
the displacements at any point in the g]ement to its grid point.values are

jdentical in forﬁ to the corresponding equations for the x dﬁaﬂy coordinates. ' Thus, the term

"jsoparametric" is used to characterize the element.

As mentioned previously, the four grid points which define the quadrilateral need not be
ébp]anar. If they are not, a mean plane is defined as shown iﬁ Figure 2. The mean plane is
located such that it is alternately H units above or below each grid point. The §rid points are
then projected normally onto this p1ang~resﬁlting in a modified but planar quadrilateral (as

dendted by thé primed grid point numbers). The element matrices are derived for the modified
quadri]ateral; These matrices are then transforﬁed'§o that they are expressed in terms of
displacements at the original (non-coplanar). grid points. As a result of the latter transforma-
tion, the matrices.have sfiffness contributions at each grid point against traﬁslations in three

directions instead of two.
5.8.5.3 Strain and Stress Fields, Potential Energy

Membrane strains are related to the displacement components by the familiar relations
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€ = Uy ey = v,.y &y = u,y V. (3)

where a comma indicates partial differentiation. Use of Equation 2 permits the strains in

Equation 3 to be expressed in terms of £ and n. Thus,

Ex = U,E; E’X + uan nsx
= +
e, = Vag Buy ¥ ¥y My s (4)
+ + 7
ey " Yig «E,y Usp Moy + Vi Esy * Vo Moy
where
E,x"jy,n ngz’jx,n
: , (5)
T],X='J.y:£ nsy :]"x9g
and
X’E x,n
J = > (6)
y’E .Yan

is the Jacobian of the transformation between the two element coordinate systems. For a rectangular
shaped element, the x and £ directions are identical, as are the y and n directions. For this
case e, is linear with respect to y and constant with respect to x, and ey is linear with respect

to x and constant with respect to y. The shear strain ey varies linearly with respect to both

Y
x and y. For nonrectangular-shaped elements the strain behavior is not linear with position.

The strain-displacement relations may be written in a convenient matrix form by combining

Equations 1 to 5 as follows:

where

T _ T
{ue} = {u] V] Uy V, Uz V3 Uy v4}
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The non-zero elements of the 3x8 matrix [A] are as follows:
Ay = (-yg *+ y3n - ¥348)/9

Az = (yg - ygn + y34€)/d

Aig = yan/d

Ayz = -ya/d

Rag = (=Xpq * Xp3n + X34£)/J

Rog = (Xqq = Xqqn - X38)/9

A26 = (X-l4rl - X]Zg)/\]

Aag = (-xqp = Xpan + Xq,E)/9

A3y = A
A2 = A
A33 = Ay
A3q = M3
Ays = Agg
A3 = M5
Ay = Rog
Asg = Ay7
where J = =YaXyp = YgaXq0E - (y4g23 - YXyen (8)

and the components of side lengths are'expressed as follows in terms of grid point coordinates:
X1j=xi 'xj ’ y‘ij=yi-yj . (9)

The constitutive stress-strain relationships are written as
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Ox €y Gy
oyt = [61]e b - 6,200 (T (10)
Oxy Cxy %xy

where o, and cy are stresses in the x and y directions, respectively, o ., is the shear stress;

_ xy
and [Ge] is a symmetric 3x3 matrix with properties referred to the element

coordinate system (see p. 5.8-4). The quantities Gy Ay and Oy are thermal expansion coeffi-
cients and T is the temperature of the element above the stress-free temperature To. If the
element temperature is not specified directly, it is computed in terms of grid point temperatures.

as
F.] ; b ;
T (T] T2 T3 T,) -T . (1)

The potential energy for an element of thickness h including the temperature effect may be
written as

=\T
1 1{e, - axT g

i X X
h =
v I - A .
7 f f ey d.yT Oy Jdegdn (12)

00 exy “xyT °xy

Substituting Equation 10 into Equation 12 and making use of Equation 7 gives

1 1 1 1
[s3
EEYRY [ATT[G.I[A] Jdedn {u.} - h{u}" (17067 ) o,  Taded (13)’
2 Ye e gdn {ug Ye el { %y gdn .
0 0 00 XY,

The first integral represents the usual elastic strain energy of the element, and the second
integral represents the thermal strain energy. An irrelevant additive constant in the above

equation involving the square of known element temperature has been omitted.
5.8.5.4 Stiffness Matrix and Thermal Load Vector for the Element

The form of the potential energy written in terms of the displacement vector, {ue}, the

stiffness matrix, [Kee], and the thermal load vector, {Pe}, is as follows:

Vg i K Hugd - (gt (P ()
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Comparing Equations 13 and 14 yijelds 'the following formula for the required matrix and vector:

1L
[Keel = f JIAT 6 I0ALdgen | (15)
¢ o - ' : : ,
L L (o -
o Tr *( z o : :
{Pe} = h/ﬁA] [Ge] o, Tdd&dn . (16)
.00 Cyy S

The reader will recall that the elements of matrix [A] as well as the quantity J are functions of
g and n. As a result, the integration indicated in Equation 15 is best performed numerically, and
it will be carried out by use of Gaussian quadrature using a 4x4 grid (see Reference 3 for a
discussion 6f the méthod of Gaussian quadfature). It is noted that the grid size‘is finer than
the minimum size (2x2) required to guarantee convergence. However, preliminary studies indicated
that the refined grid resulted in improved accuracy over the 2x2 grid for nonrectangular elements.
The integration in Equation 16 can easily be carried ouf in c]osedlfbrm since, if the temperature,

f, is taken to be constant over the element, ‘the integrand is linear in g and n.

The stiffness matrix and thermal load vector given in Equations 15 and 16 have. been. derived.
for an element which is assumed to be planar. If the grid boints are not coplanar, then the
derived element is the projection of the actual element onto the mean plane. In the latter case
a transformation of the stiffness matrix and the thermal load vector is required, which relates
displacements and forcés at the projected grid points in the mean plane to displacements and
forces at the actual grid points. It is highly desirable that the transformation produce only
forces and not moments at the grid points because it is quite probable that there may be no other
elements present (such as beams and bending plates) which can resist moments. Thus, the trans-

formation can be expressed in the form
{f,} = [BUFY (17)

where:
. T _
fab = fo1’ fy]’ fa0 fxo fy?’ f20 fyao fy3’ 230 fyar fy4’ fz4J
is the vector of grid point forces, and

- .
{fe} = fo], fy1, f2s fyos fas Fygs f

y3* x4’ fy4_|
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is the vector of forces on the projected plane element.

The magnitudes of the inplane forces (fxl’ fy], etc.) are the same in both vectors. A
method for selecting the out-of-plane forces (fz1’ sz’ fz3' fz4) which satisfies the three
required out-of-plane conditions of equilibrium and which exhibits symmetry with respect to per-
mutation of grid point numbers is as follows: Let the forces on the corners of the plane quadri-
lateral be resolved into components colinear with the sides as shown in Figure 3a. In the edge-
wise view of side (a) shown in Figure 3b, the vertical force couple, fza’ is applied to grid
points 1 and 2 so that equilibrium will be preserved when the forces fio and f,, are transferred

from the mean plane to the grid points. Thus,

_H
fa =z (Fiz*f) (18)

and in like manner, for the other three sides,

f

H .
b =" I;‘(fzs + f35)

_H - . :

fze = g (Faa * fa3) : , €19)
S H e

faa = - 25 Far * Fra)

The combined vertical force components at the grid points are

fz] = fza - fzd

f2°fm -~ faa
(20)

. fz3 = fzc - fzb

f24 = fzd - fzc

Generation of the elements in the rows of the [B] matrix corresponding to the vertical forces
is accomplished by expressing the colinear force components, f]2’ f21, etc., in terms of the
Cartesian components, fx]’ fy], etc., and substituting the result into Equation 20. The nonzero

elements of [B] are as follows:

11~

22 = 1
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Byy = -H/L,
By, = - H . H cot 8,
32 L4 sin 8y T
B33 = WL,
B, - ot %
34 I
B, = Hsiny
37 = 248,
Byg = S Y
8" 2 4,
Byz = 1
Bgg = 1
BG1=-B3]
- Hcot 8y
B 1
62 i
%3 = B
B = - H cot 92.+ 4
64 ma L sin 8,
B = - LSINY
65 T o
By = - LCOS Y
66 h
Bys = 1
Bgg = !
Byt = - Tt
9 %, sin g,

i " sin @
B = H[SINY 4 %)
95 <;b A]’ e

cos 8,
s - gt )
B = H sin 8,
97 = L,
* OF THE
T pRODUCIBILITY
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"lll’ H cos e]
88=_—.
9 lc A2

Big,7 = !
B]1,8 =}
B = _H—
12,2 zd sin e1
; _ H sin 62
12,5 zc A]
H cos 62
B = e — &
12,6 Lc A]
B = H -sin Y, sin e]
12,7 zd A2 QC A2
; - uf-cos x cos e]
12,8 zd A2 zc Az

where : ' :
‘ b, = sin(e2 - ¥y
b, = sin(e] +vy)

The transformation of displacements from the mean plane to the actual grid points uses the same

[B] matrix and is written
fu) = [B1(u} . (21)
e a
where .- - -
{u }T = [Ugs Vs Wos Ugs Vs Wos Uns Vay Woy Upyy Vo W
a L 1* "1 71 Y2 e T2 U3 T3 T3 4 "4 4J
and w is the displacement component normal to the mean plane. In addition to the above trans-
formation, two standard NASTRAN transformations are required. These are the element-to-basic
system transformation utilizing matrix [E] and the basic-to-global system transformation utilizing

the matrix [T]. Combining all three transformations results in the required global forms of the

stiffness matrix [Kgg] and thermal vector {Pg},

‘ : 5.8-41 (12/15/72)
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[Kyg] = [TITLENBIOK,IB)'(ET'IT] (22)
(P} = [TI'CENBIPY . (23)

The 12x12 stiffness matrix [Kgg] is singular with defect equal to seven. The seven defects
correspond to the six rigid body motions and an unrestrained out-of-plane warping. Out-of-plane
warping would also be unrestrained if the nonplanar quadrilateral were represented by a pair of
triangles but not if it were represented by two pairs of overlapping triangles, as in the case of

the QDMEM element.

5.8.5.5 Stress Recovery

The stresses at any point (£,n) in the element in terms of the displacements in the element

coordinate system are obtained by combining Equations 7 and 10

O’x e’ _
oy ¢ = [6JIAMug) - [6, 00, 1T (24)
Oy 12

where it will be recalled that [A] is a function of £ and n. The stresses are evaluated at the
intersection of the diagonals of the mean plane, in order to be compatible with stress calculation
in the NASTRAN plate bending elements. For a parallelogram, the diagonals intersect at £ = n = 1/2
"but for more general shapes the values of £ and n at the intersection point depend on the element
dimensions. The required form of the stress recovery equation in terms of the global displace-
ments is obtained by utilizing the three transformations described previously along with Equation

24, Thus,

[+ 3
X
= [6 JAIBTEY M0} - (6 a, b T (25)

Ixy Oxy
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Figure 1. Coordinate systems for quadrilateral membrane element.

Figure 2. Mean plane for quadrilateral membrane element.
(Actual grid points are indicated by unprimed numbers and projection
of grid points onto mean plane are indicated by primed numbers. )
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(a) Plan view

(b) Side view

Figure 3. Method of transferring forces from a
plane quadrilateral element to adjacent nonplanar grid points.
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5.9 THE CONICAL SHELL ELEMENT

The properties of the conical shell element are assumed to be symmetrical with respect to
the axis of the shell. The loads and deflections, on the other hand, need not be axisymmetric;
they are expanded in Fourier series with respect to the azimuth coordinate. Due to symmetry, the
resulting load and deformation systems for different harmonic orders are independent, a fact that
results in Targe time saving when the use of the conical shell element is compared with an equi-

valent model constructed from plate elements.

Equations for the element are developed in terms of Fourier coefficients with respect to
azimuth and in terms of polynomial coefficients with respect to meridional distance. An important
and unusual feature of the NASTRAN conical shell é]ement is that it includes transverse shear
flexibility. At present the conical shell element cannot be combined with other types of struc-

tural elements in the solution of problems.

5.9.1 Coordinate Notation -

The coordinate geometry for the conical shell element is shown in Figure 1. The internal
coordinate system for the element is oriented in and normal to the surface of the shell. The
coordinate system for grid points at the ends of the element will usually be parallel and per-

pendicular to the axis of the shell.

Stiffness matrices will be derived in terms of element coordinates evaluated at the ends of
the element. The stiffness matrices must then be transformed into the global coordinate system,

which matter is not treated here.

Although the general case of a conical shell is treated, the results obtained are valid for

the 1imiting cases of a cylinder, ¥ = 0, and of a flat circular plate, ¢ = u/2.

5.9.2 Harmonic Dependence on Azimuth Position

Since the conical shell element is assumed to be axisymmetric, the motions of the shell at
meridional position, s, can be expanded in a trigonometric series with respect to azimuth position,

¢:

5.9-1




STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

m

u(s,¢) = nz] u (s) sin(ne) + g:(S) - ng] u:(S) cos(ng)
m mo

v(s,e) = v ls) + T v, (s) cos(np) + ] v (s) sin(ne)
n=1 n=1
m mo o,

wis,9) = w(s)+ X] W, (s) cos(ng) + Z} w(s) sin(ng) (1)
n= n= .
m mo o,

als,¢) = ay(s)+ Z] a,(s) cos(ne) + 21 a (s) sin(ne)
n= n=

m * m *
B(s,0) = nZ] B,(s) sin{ny) + B (s) - nZ] B,(s) cos(ns)

The rotations o and g are independent motions because of the transverse shear flexibility.
Rotation about the normal to the surface is not included, such rotation being adequately repre-

sented by the gradients of u and v.

5.9.3 Cases to be Treated

The motions corresponding to different harmonic orders (different values of n) are elas-
tically uncoupled. Fdrthermore, motions represented by stérred parameters are not coupled to mo-
tions represented by unstarred parameters. For n > 0 the stiffness matrices for the starred and
unstarred motions are identical. The reason is that the starred\parameters describe motions

i

that are all shifted > in azimuth from the motions described by the unstarred parameters.

Thus, -cos{n¢) = sin{n¢ - %J and sin(n¢) = cos(n¢ - %&. The unstarred motions will be used to

develop the stiffness matrices for n > 0,

The set of parameters, vo(s), wo(s) and ao(s) describes axisymmetric motion of the shell,
* *
The set of parameters, uo(s) and Bo(s), describes rotation and twisting of the shell about its

axis. The stiffness matrix for n = 0 will include both starred and unstarred motions.

The degrees of freedom for the shell element are taken to be the values of the Fourier
coefficients appearing in Equation 1, evaluated at the ends of the shell e]ement; Separate

stiffness matrices will be evaluated for the following parameter sets,

{ }T -— * . * . * * !
Yoo! = Dao® Vao® Yao' %ao’ Pao’ Ybo® Vbo® Who® %o’ Bod > ()
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. - | o
' Qugtd = Luaps Vays Wapr %1 8315 Yy Voo Wops %ps By (3)

and in general

T _ .
Wand' = D30 Van® Yan® %an Ban® Y5n® Ybn® Yon® %n® fond o (4)
where subscripts a and b refer to the ends of the segment, see Figure 1. Note that, as previously
shown, the stiffness matrices for the starred components are identical to those for the unstarred
components, for n > 0, and need not be separately calculated. The general starred parameter set is
* T R * * * * * . * * * * *
{uen} - Lyan’ Van® Yan® %an’ Ban’ Ysn® Vbn? Ybn® %n 6bn—l : (5)
If transverse shear flexibility is negligible, the rotations, Ba and Bb’ are not independent
degrees of freedom, Special procedures are required for the case of zero transverse shear flexi-
bility. Stiffness matrices will be separately derived for the following cases, in the following

order. Note that the stiffness matrices for n > 0 can be derived with n as a parameter,

a. Finite shear flexibility, n > 0.

b. Finite shear flexibility, n = 0.
‘ ¢. Zero shear flexibility, n > 0.
= 0.

d. Zero shear flexibility, n

5.9.4 General Plan for‘Deriving the Stiffness. Matrices

For each harmonic index the displacements of the shell are approkimated by poﬁer series with
respect to distance along the shell. The power series include a number of independent constants
equal to the number of degrees of freedom. For_examp]é, the general case of finite shear flexi-

-bility and n > 0 requires ten independent constants, i.e. one for each element of {uen}. The
relationship between degrees of freedom and the independent constants, {qn}, can be explicitly

stated as
lugt = [Huq]{qn} ) (6)

The next step is to express strains in terms of the independent constants. The strains, of

course, have harmonic dependence on azimuth similar to Equation 1, so that the required relation-

ships are between harmonic coefficients of strain and the independent constants for the same
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harmonic, Three kinds are involved.

e} = [e, €4 €S¢]T, membrane strains (7)
{y} = [Ys’ Y¢]T, transverse shear strains, and (8)
It = Ixg» Xgp? xs¢]T, bending curvatures. (9)

The required relationships are:

le,} = [ng]n{qn} , (10)
by} = [qu]n{qn} , (1)
x,} = [qu]n{qn} . (12)

The matrix coefficients are evaluated by combining the relationship between strains and dis-

placements with the relationship between displacements and the independent constants.
The total strain ene