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ABSTRACT

Two simple microwave radar techniques have been advanced that are potentially capable of pro-
viding routine satellite measurements of the directional spectrum of ocean waves. One technique, the
short=pulse™ technique, makes use of very short pulses to resolve ocean surface wave contrast fea-
tures in the range direction; the other technique, the “two=frequency correlation” technique makes
use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as
a beat or mixing frequency in the power backscattered at two closely separated microwave frequen-
cies. A frequency=domain analysis of the short=pulse and two-frequency systems shows that the two
measurement systems are essentially “duals™; they each operate on the generalized (three-frequency)
fourth=order statistical moment of the surface transfer function in different, but symmetrical ways,
and they both measure the same directional contrast modulation spectrum. A three=dimensional
physical optics solution for the fourth-order moment is obtained for backscatter in the near vertical,
specular regime, assuming Gaussian sucface stanstics. The modulation spectrum is found to be given
by the two=dimensional Fourier transform of the product of the joint surface height charactenistic
function and joint specular surface slope probability density function. Linearization in terms of ihe
surface height and slope covanance functions yields a modulation spectrum that is directly propor-
tional to the large wave directional slope spectrum evaluated in the direction of radar azimuth., A
sample caleulation with a model one=dimensional surface spectrum is carried out to indicate the ex-
tent of harmonic distortion of the slope spectrum due to second-order nonlinear terms. For incidence
angles 0 = 10-157, the distortion is less than 30 percent over ihe range of roughness conditions of

practical interest. In principle, this distortion can be removed by iterative deconvolution.
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DIRECTIONAL SPECTRA OF OCEAN WAVES FROM MICROWAVE
BACKSCATTER: A PHYSICAL OPTICS SOLUTION WITH
APPLICATION TO THE SHORT-PULSE AND TWO-FREQUENCY
MEASUREMENT TECHNIQUES

INTRODUCTION

Two simple microwave radar techniques have been advanced that are potentially capeble of
providing satellite measurements of the directional spectrum of ocean wind waves on a routine,
global basis. These two techniques, the “short-pulse” technique and the “‘two-frequency correla-
tion” technique are very similar in nature. Both approaches involve the detection of the modu-
lation of backscattered power at oblique incidence angles caused by the modulation of “small

scale scatterers” by the large underlying gravity waves.

The small-scale scatterers—depending on the radar beam incidence angle=may be specularly
reflecting wave tacets, or Bragg-resonant diffraction elements; the modulation mechanism may be
purely geometrical, as in the tilting of the small-scale scattered power pattern by the slopes of the
large waves, or the modulation mechanism may be hydrodynamic in nature, involving the modr
fication of the small-scale waves by the atmospheric and large ocean wave flow fields (Alpers and
Hasselmann, 1978). In the short-pulse technique, very short, wide-band pulses are used to resolve
the contrast modulation in range; the modulation spectrum is obtained simply by analog spectrum
analysis of the envelope-detected backscattered signal. The two-frequency technique makes use
ol coherency in the transmitted waveform; the large-wave contrast modulation is detected in the
beat, or mixing frequency, of backscattered power at two closely separated microwave frequen-
cies.  The short-pulse approach to a possible satellite ocean wave sensor was first suggested in a
note by Tomiyasu (1971) The two-trequency approach, first proposed by Ruck, et al., (1972),
has been extensively analvzed by Alpers and Hasselmann (1978) who found it to be a feasible
technique for aircraft and satellite implementation.  Unfortunately no such similar analysis of the
short=pulse technique exists in the literature, and as yet no “trade-off™ analysis of the two tech-

niques has been made, although a beginning was made by Jackson (1974b).




As shown by Jackson (1974b), and as will be shown in the present work, the two techniques
measure the same thing. namely, the directional contrast modulation spectrum of the large-scale
ocean waves in the direction of radar azimuth.  High directional resolution is achieved through the
lateral averaging of wave contrast features across the antenna beam spot on the surface, a distance
which might be on the order of 10km for a satellite radar system. The effect of this lateral aver-
aging, when combined with spectrum analysis of the returned signal, is casily seen to be that of a
two=dimensional spectral analysis for contrast waves propagating in (or contrary to) the direction
of radar look. In a nutshell, only those plane Fourier contrast waves that are travelling in the

direction of radar look can survive the lateral averaging (Fig. 1b).

Two important developments have enhanced the potential for space application of the two
“directional wave spectrometers.” The first development (Jackson, 1974) was the realization that
the modulation signal spectrum to the residual background, random clutter® noise ratio (SNR, for
short) could be greatly improved in the two-frequency system by using wide=-band coherent wave-
forms as opposed to the quas-monochromatic wavetorms originally figured in this technique. The
second important development (Alpers and Hasselmann, 1978) was to show how Doppler filtering

could be used on fast-moving platforms, also, to substantially increase the measurement SNR.

In the present work, we will teuch only briefly on general system considerations (e.g., a rough
analysis of the measurement SNR for the two techniques is carried out in the last section of the
paper). The primary aim of this paper is to present a solvtion for the directional modulation spec
trum in the restricted case of near=vertical incidence (0 < 10-207), i.e., in the case of quasi-
specular backscatter. Apart from the important limitation inherent in an assumption of Gaussian
surface statistics, the physical optics solution presented is felt to be a rather realistic solution to

the problem. The reason for putting faith in the solution is that in the specular sea backscatter

*The expression *Rayleigh clutter™ is used for the random, fluctuating part of the backscattered signal that arises
solely as a consequence of waveform coherency. The superposition of monochromatic waves scattered from a
larger number of independent scattering elements randomly distributed in range results in Gaussian statistics for
the field (Central Limit Theorem) and classical Rayleigh statistics for the envelope. In analogy with the conven-
tional use of the word “clutter” for sea-echo interference with hard target detection, we use the word for the
random fluctuations that interfere with the measurement of the modulation on the sea echo signal itsell.
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regime, the sensitivity of the return to very small scale waves (e.g., capillary waves for 2-=3cm
radars) is small compared to the sensitivity to these waves in the Lragg resonant diffraction regime
at larger incidence angles (6> 30%), where the sensitivity is essentially 100% (Wright, 1968). In
the quasi=specular backscatter regime (Barrick, 1974), the entire sea spectrum up to the small
diffraction=limited wavelets is contributing to the population of specularly reflecting facets, and
there is, therefore, some reason to suppose that the small scale waves—whose statistics via-a-vis the
large wave profile are presently virtually unknown—=will not enter into the problem in a too-critical
way. The successful prediction of the average radar impulse response of the sea at vertical in-
cidence by Jackson (1979) supports this supposition: in that work, assuming a geome rical optics
model of scattering it was found that the (3cm) data could be explained by the non=Gaussian
stati‘tics of the entire free gravity-wave ensemble without special consideration of the small waves.
Thus, in the solutior we present here (a physical optics solution in the high=frequency limit), it is

probably the Gaussian assumption for the large wave field that is the weak ;oint.

The above is not to say that larger incidence angles are to be avoided; the point is that theory
for the hydrodynamic interactions that are the primary agents of the modulation at large angles is
on very weak foundations (Wright, et al., 1978). A reliable model for large-angle backscatter
would have to be constructed on the basis of empirical modulation functions: presently there are

insufficient data to define these functions (or functionals) over a range of sea states.

In the following section we present a straightforward frequency domain analysis of the short-
pulse and two-frequency systems that allows tor arbitrary transmitted waveforms. The two sys
tems can be viewed as alternative systems for detecting a modulation on noisy backscattered sig-
nals, a viewpoint inspired by the work of Parzen and Shiren (1956). It is shown that eacn system
operates on the generalized three-frequency fourth-order statistical moment of the surface scatter-
ing transfer function, M(k, k, Ak), in different but symmertical ways. M(k, k, Ak) is calcul: ted
aecording to physical optics in three=dimensions, in the plane wave approximation, assumiag a
Gaussian sca. 1 is shown that Mk, &, AK) = Mk, k) + Mk, Ak and that the short=pulse
system modulation spectrum is the non=DC part of M, (k, k), and similarly for the two-frequency

system with k = Ak. In the limit k=920, M(k) has the form ot the two-dimensional Fourier




transform of the product of the joint surface height characteristic function and the joint specular
surface slope probability density function. Linearization of the integral M; in terms of the height
and slope covariance functions results in direct proportionality of M, to the directional large wave
slope spectrum (a result anticipated). Harmonic distortion or smearing of the slope spectrum due
to nonlinearity in M, can be accounted for accurately, and in principle rectified by an iterative
deconvolution procedure, using the second-order expansion of M;. A sample (two-dimensional)
calculation with a model wave spectrum is given to indicate the possible extent of harmonic dis
tortion. For angles 10° <0 < 15°, the distortion is < 30% provided a reasonably sufficient amount
of roughness (i.e., total radar-effective rms surface slope). A brief analysis of the measurement
signal-to-noise is carried out in the last section of the paper, an analysis which includes the
Doppler filtering concept of Alpers and Hasselmann (1978). The analysis indicates the feasibility
of satellite measurements of directional wave spectra by either short-pu'se or two-frequency

techmques.

SHORT-PULSE AND TWO-FREQUENCY TECHNIQUES: THE GENERALIZED FOURTH
ORDER MOMENT Mk, x, Ak)

We consider the backscatter of an arbitrary (finite-energy) incident electric field waveform
k(1) whose Fourier transform is E (k) where k = »/c is the propagation constant, v and ¢ being
the radian frequency and speed of light respectively. E,(k) is understood to be evaluated at the
beam spot center x =(x, y)=(0,0) on the mean surface z=0. The surface transfer function for
backscatter, S(k), is the ratio ol the backscattered field harmonic component Eg(k) to the incident

field harmonic component, viz.

S(k) = (1)

where the same holds in terms of frequency, v = ke, In principle, S(k) is obtained as the solution
to the complex boundary value problem for a unit amplitude incident monochromatic wave. If
the scattering surface z = £(x) is assumed to be homogeneous random process in the horizontal
coordinate x, then S(k) is a complex random variable (approximately Gaussian, if the illuminated

area is large compared to the scale of the spatial surface correlation, namely, the dominant ocean



wavelength) that obtains for any realization of {(x). tIn this work, we will not model the “slow-
time,” Doppler evolution of S(k); but we wiil consider this aspect of the problem when we discuss

the measurement SNR problem.)

The short pulse detection system, diagrammed in Figure 2a, consists of a square-law envelope
detector and a spectrum analyzer. The ensemble average output of the spectrum analyzer can be

written as:
(Qwy) = 2m)? flll,(c...ﬂl2 (IP(w)1?) dw

i
r where H; is the i=th bandpass filter function and where

AP =fﬁ SW)S* (v = WIS*W IS = W)+ E (E* (v = WIES* (0 )E (v = w)drdy'.

The two-frequency detection system, diagrammed in Figure 2b, is a wide=band version of

the original narrow=band (monochromatic) system first proposed by Ruck et al., (1972) and con-
sidered by Alpers and Hasselmann (1978). It consists of a two channel receiver and a cross-
correlator. H, and H, are bandpass filters with center frequencies »y and v, separated by the

modulation frequency Avyy = v, = vy, The K-filters are high=-pass, DC=blocking filters. The en-

semble average output of the correlator can be written as
Q) = {.‘rrl“/h'.i K, *(P, P, ") dw
(P, P,*) = tlnl4fﬁ51v)5*(l'— WISUEHSW = w)) + H @ e = )H, * ) H, (0 = w) (3)
¢ Eu(Eg* (v = )E * ) (¢ - w)dedy'.

The generalized tourth=order moment of the transter function that both svstems operate

upon will be denoted by
M(k. x, AK) = (S(KIS*(Kk - K)S*(KS(K" = k) h

where again we are using wavenumber k and trequency v ointerchangeably.  The difference or

miximg wave number s detimed by

g e
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Ak = k - k'

It the scattering process (Le., the surface impulse response) is described by a simple, phys
ically plausible mathematical model, to wit, a weakly modulated white Gaussian noise process, the
functioning of the two systems for different transmitted waveform characteristics in detecting the
modulation spectrum is easily analyzed (Parzen and Shiren, 1956). We will hold off on this analy-

sis until we have obtained a more meaningtul physical scattering solution for M(k, x, AK).

A THREE=DIMENSIONAL PHYSICAL OPTICS SOLUTION FOR Mk, k, Ak)

A good solution®* for S(K) in the near-vertical, specular backscatter regime can be had with
scalar physical optics using the so=called Kirchhoff or tangent plane boundary values of the field
in the physical optics integral.  The approach that we take in computing the fourth-order moment
parallels the approach of Beckmann and Spizzichino (1963) to computing the second-order mo-
ment (IS(K)2»  That is, we will go to the g frequency limit koo after interchanging expecta-
tion and mtegral operations. The alternative approach is to make the stationary phase approxi-

mation to the physical optics ntegral before ensemble averaging (see, e.g., Weissman, 1974).

We work under the simplifying assumptions of:  (a) Far zone, plane wave scattering. This
assumption is good if we stay away from vertical incidence and keep to high altitudes: The phase
front should be flat over the height extent of the surface and over the azimuthal large=wave cor-
relation distance. (b) Perfect conductivity.  This is a trivial simplifying assumption (a Fresnel re-
flectivity at normal incidence can be applied at the end). (¢) Deep phase modulation, ke>>|
where o is the rms surface heitht. This is entirely valid for microwaves of 2-=3c¢m wavelength in
any sea state.  (d) Moderate bandwidths. A high bandwidth in the short pulse system would be

% (Le., 2em/2m). (¢) Gaussiwn surface statistics. This is probably a poor assumption. The work
of Jackson (1978) demonstrates the importance of the non=lincar wave statistics in the average

impulse response in the near-vertical,

*Exactly how good is this solution? A concrete, quantitative answer should be possible by working on the work of
Axline and Fung (1978) (numerical, Monte-Carlo solutions of integral equations); Brown (1978) (composite,
large and small scale surface method): and Jackson (1974a) (high-frequency, parabolic correction to the
Kirchhoff tangent plane boundary values in the Stratton-Chu integral).

-



L

Let 2= 8 x) describe the random surface. Following Weissman (1974), we write the physical

optics integral, as

S(k) = (‘k./(ilalc“"‘“"fu)e"z"“"‘d; (5)

where x, z form the plane of incidence
# is the angle of incidence
X = (x,y)and dx = dxdy
Cy = tik(2rReosO) 'exp(ik R) where R is the range to the beam spot center, X = 0

G(x) = antenna power pattern, one way, G(0) = 1.

Assuming interchangeabihty of expectation and integration operations, the fourth order mo-

ment (4) can be written as the four=fold integral.

M - .(*kl‘fj].[(;, 2 Gy (eltcodkef) glaanOkex g, gy, (6)

In this, we use the short hand notation

]
"

(Xi' (Kl.‘z. ll.l‘)

(k,~k+k, - k% K - «x)

n

“\'i}
(€)= B, ) 8x,) $ix ), $(x )

Ll B o B |
]

The approximation to the product of the Cy's, | Cy1* follows from the moderate bandwidth as-

sumption, (d). The dot notatior is the conventional vector inner product.
The expectation

ol lcosé‘t) = (en“"ak'?)

- -
is the characteristic function of the random four-vector of surface heights §. If { normally dis-

tributed with zero mean, then (Fisz, 1963) ¢ has the form

B(2cosiR) = exp(-2c0820 Y Rykikj) )




where the covaniance matrix
Rjj = (§i§)) = Rl:s,"&,) (%)
is & symmetric matrix and a symmetric function in cach of the lag vectors x; - Xj At zero lag
Rj(0) = (}?) = o2 )
where o is the rms height of the surface. Let

b = iu\.tl)l ol PR T

= (v

£

xYy) F X3 - X, (10)

1=
i

= Awy, Wy ) = X=X,
and

du = dx,, dy = dx;, dw = dx,

Then transforming (6) from space varables to the lag variables, u, v, and w we have

M= l(‘kl“'/].fj‘(;(;,)(;(gt\_a,l(;lg*'! X)) Glu+tw+x,)

X ¢(2cosOK) exp {-rma [k (ug +vg) = Akvy + Kwy Il dudydwdx

(rn

Expanding the quadratic form Z Rijl-.,- k, in ¢ and expressing the various lags in terms of
u, v, and w, we have
o = exp(--acos-’o {Lll.‘u! - Riu) = Rv) = Rlu+y+w) + Rlut+w)
+ R(v +w) - Riw)] = kAK[20? - 2R(v)

- Ru+yv+w) + Rlu+w) + Riv +w - R(w)] -
(12

kkl20? = R) = R(v) + Riu+w) + Riv+w) - 2R(w)|

kAklo® = Riv) + Riv+w) - R(w)]

+

+

(Ak) [o? - Riv)] + xk?lo? - R(\!I[}).




On account of the moderate bandwidth assumption the leading term in the carrier wave-
number k dominates the behavior of the integral. Because of the deep phase modulation, ke>> 1,
¢ is concentrated along two hyperlines in u, v, w hyperspace where the factor of k2 is identically

zero. From (12) it is seen that these lines are

€. u = v = 0(waxis)

(13)

L]

2. u

L w=20
The thickness of the line masses, the e-folding coherency distance, is (e.g., on £1)
lugl = Iv.| ~ (2kcosBay)!

where o, is the rms surface slope. Because ¢ is concentrated about the two lines, we can de-
compose M into two separate integrals, M, and M,, about the small volumes surrounding €1 and
€2. In each integral, the neighborhood of the vrigin, where the two line masses merge, will have
to be ex luded. Consider the integration about €1, the w axis. Because of the dominance of the
k? term, the cross-terms in k, etc., and the (AK)? term are negligible in the u, v integration: only
the k2 term that depends only on w wil! be important. Now, we can treat the problem in two
ways at this point: we can allow for diffraction by the small-wave structure by assuming a com-
posite surface consisting of two independent sets of smaller (diffracting) waves a:d larger (reflect-
ing) waves. Analysis <1 then proceed by expanding ¢ to first order in the small wave covarnce
function in the manner of Jackson (1974). The analysis, similar to that employed by Ruck, et al.,
(1972) 1s complicated enough in two dimensions and it will be worse in three. To keep the three-
dimensional analysis simple enough we will sacrifice what physical optics has to tell about the
diffracted fields; accordingly we will stay strictly in the specular backscatter regime where specular
retro-reflection is the dominant mode of backscatter. (cf. Barrick, 1974; Brown, 1978) Thus, we
will ignore the small structure and assume that the covariance function is well-behaved near the
origin, i.e., that the surfuce is smooth on the order of a few wavelengths. Then the usual high
frequency approximation can be made by representing the height covariance function R by its

second-order Taylor series expansion about the origin (or about any lag w).

11
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Referring to (12), consuder the U1 mtegration over u and v. On expanding the k7 term in y

and v about a fixed w # 0 to second order, there results the quadratic form,

|
- —‘-z:m-“hyltitj (14
where the characteristic vector
T = (1) = 2keosOiug, uy, vy, vy) (15)

and the covariance matrix my of the surface slopes,

-

ui (]E.\ l -R\h(‘—\-) - Rx)(\_v‘
"i)‘ "C‘ "R\y(w‘ - R)vtw’
[nu(\_b,l = — e —— — — — ———:-———_— ‘Il)'
u,-‘ Oy
symmetric | )
s e ol UI.
" T

where subscripts stand for partial differentiation, and

=R w) = (GO (wy (17

is the x=slope component covariance function, and similarly for xy and yy. The slope variances
(understood to be the radar=effective, diffraction limited slope variances, i.e., having values less

than the true high=frequency, optical values),
14 Y
ox -Ryx (O) = (§3) (18)

With the &7 term in w that survives in the u, v integration about €1 we then have for ¢
1
-= Myt A
é= e 3 i i [ c-.;.;.,y-.-[h.‘]u*-l{(_\!!] (19)
Now, sincetthe coherency distances in u and v are small compared to the extent of illumi-
. “ " e, .
nation we canset u = v = 0 in the g pattern: thus, Gy oL Gy =~ GOy G (x +w) Also, in

the phasor in (1) we can set Ak = 0 since by the moderate bandwidth assumption the phase dit-

ference Aklvgl. << 1. Thus, it we detine the joint specular slope vector

T, 01, m (20)




. N ‘ = = .
we can write the phasor as exp(=1t * slexp(=i2sin@xwy ). From the above, if we now integrate over
the remaining space vanable x; (which only appears in the gain function, and if we change from u,

Rl . . " 3
v vastables to the t variables we have for the integration over €1

Ac e
.\h“‘) = 1 v ‘f a{wh.-ilcoswxllo:-l (w)]
(4R cos*0) J o
: 2N
- = Zmy it -
: {llﬂl‘W‘ e ‘e'r'"d!, ooty poetisintewy g,
where
o) l s «) b
Ae Jooo

and A, / (i"(hld_g‘

Note that the k=dependence of M has disappeared in the high frequency k = o0 approximation.
The sipn fnw.ms that a region about the orgin must be exciuded in the integration (i.e., where
, 1 . 55 . !
1 and €2 come together). We recognize that exp(- - Z mijl.lj) is characteristic function of the
. . v = .
jointly, normally distributed slope vector £ = (§y T ;Yl o $xqs ;yz);n two points | and 2 separated
by the lag w.o The term an braces, the Fourier transtorm of the characteristic function evaluated at
- i~
the joint specular slope condition £ = ¥ is the joint probability density function (pdf) of § evaluated

al'.:."l viz. (Fisz, 1963, p. 160)

= 1 imy s
pidw) = —————e " (23)
(2m)*V/detny

where m; ! is the inverse to the covariance matrix m;; given by (16).
1 1

Fauation (21) 15 wnitten in the radar system coordinates with the x-axis lying in the plane

of maidence, Define a new set of x, v coordinates such that the radar can assume any azimuth



P relative to the new reference x=axis (Fue. 1) In this coordinate system, the surface modulation

wavenumber 2ksind becomes the vector modulation wavenumber,

K = 2ksinf(cosd, sind); K = IK! 24

-
and the specular slope vector s becomes
T = tanficosd, sind, cosd, sind) (25)
Since the pdf (23) is invariant with respect to the orientation of the reference coordinate

axes (21) becomes in terms of K

Agsecdo
M (K) = \: R f r(wlc"‘ w0 [o2-R(w)HI. Pl R Wy (26)
6

where now w = (wy, wy ) is the lag vector in the fixed surface x, v coordinates.

Thus far, we have obtained, in the high frequency limit, the contribution M, to the moment
M from 1. Since MK, x, AK) is symmetric with respect to a k and Ak interchange, and since M,
is independent of Ak, and since M, (AK) #M, (k) for arbitrary Ak # x it follows th:* *ae contribu-
tion My from €2, M, = M, (k, AK). Thus, the total moment M s given by (in the high frequency

Lt ).

MOk, K, AK) = M, (k) + M, (AK) (27

SECOND-ORDER EXPANSION OF M,
If kocotd) is not too large, the joint surface height characteristic function can be expanded in
its argument, accurately, to second=order in the heght covariance function Riw). The relevant

parameter in this expansion is the significant wave slope,

8, = Hy/ly = 2/mK,y0 (28)

where Hg = 4o is the significant wave heght and L is the wavelength of the dominant wave cor-
responding to the wavenumber K, of the peak of the wave spectrum. In equiiibiinm seu condr
tions, 8, ~ 1/20 = 57, in strongly wind=driven developing scas the wave steconess may be as high

-~
as 1070 (Kinsman, 1965). It we define the non=dimensional wavenumber K = K/K . then

o
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5 = Kocotd = (n/2)8,Kcotd (29)

With values, 8, = 0.05, @ = 15 and K< 3, then § < 0.88 and the error in the second-order ex-

pansion will be less than 3 percent.

It the large-wave steepness 6, is small compared to the total radar-effective rms slops og,
then the off=dugonal blocks of the slope covariance matrix mi(w) for lags waway from the
origin will be small compared to the diagonal blocks of m;;. Then provided we are not too far
into the wings of the slope distribution, 1.e., provided that tan8/og is not too large, we can ex-
pand p(S:w) about its value at infinite lag, where the slope correlations vanish, i.e., we can ex-

pand about the value
p(sie0) = pi(s,) (30)

where the specular slnpc‘s?; = tand(cosd, sin) and p, is the (Gaussian) slope pdf (Cox and Munk,
1954). The relevant parameter in the expansion of p is
tand

€ = 5, @31
"S

A crude fitting of the geometrical optics backscatter cross-section,
oV = mwsectlp, (5)) (32)
to the 2em data of Jones, et al., (1977) gives the following estimate of the radar-effective rms
slope at 2cem as a function of wind speed, W:
né ~ 0.0025WIms!] + 0.01 (33)
This 2em radar-effective slope variance is approximately 60% of the total, or optical, slope var-
ance of Cox and Munk (1954) over the wind speed range 10-25ms™!. This is in perfect agree-

ment with slope variances imferred from passive radiometric data (Wilheit, 1979). With values,

8, = 0.05,0= 15", and W= Sms™ ! then e <0, 16

For typical nadir angles and sea conditions the parameters & and € are small enough that a

linear approximation to M, should be fairly accurate, and that a second-order approximation to

15
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M, should be very accurate. To facilitate the expansion of M; we will assume that the x and y

reference axes coincide with the symmetry axes of p,(%)). Then, if

tant
a = cosd = ag cosd
Oy
(34)
tang
B = sind = g sind
0
¥
- .
Py (8) becomes simply
| o 1020‘32)
= Pl(u.ﬁ) - T ¢ 2 (35)
-lo‘(ly
Denote the waveheight directional spectrum F(K) = F(K,®),
F(K) = ll:rl"fk(\_yic’i-’i'!—‘dg (36)

The surface height variance ¢? is the area under F(K),

n oo
0? =/ f FIK,®)KdKd (37)
0 0

- ~ £ e : F 2 .
I'he directional slope spectrum K< F(K) is the contribution to the total slope variance u: from

component waves travelling in various directions.

on oo
= / [ K2F(K. ®)KdKd P (38)
0 0

K?F(K) is simply the Fourier Transform of the slope covariance function in the direction of

g

Lol

analysis, i.e., in the direction of the component wave. Thus if the x-axis is again the radar x-

axis lying at an azimuth relative to the fixed x-axis, we have
K?F(K. @) = 2n)! f Ryx (wy)e *¥x dw (39)

In the expansion of M, to second order in the covariance functions and the consequent
|

Fourier transtormation in the surface reference coordinates we encounter such as

ijxt"|§-!lI\i = - (2 cos’ PK2F(K)

16
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which follows from the definition (36); the second order terms will result in various convolutions

of the directional spectrum such as

fnk“c-ﬂs-a dw = - QM F(K) » KIF(K) (39)

where ® denotes the two=-dimensional convolution and the overbar notation will be used to denote

groups of vanables involved in the convolution operation.

One last simplification will be made in the expansion of M, : we let the antenna beam in
both range and azimuth dimensions be broad compared to the decorrelation distances of the sea
in etther direction. This allows us to set (".(m o (Ai(Ql in the Fourier transformation over the
modulation wave number range, and to set the rest of the integrand at its DC value, pfm in the
Fourier transformation near K = 0. Further we will assume a separable pattern function G =

Gy ()G ty), then we have the definitions
Lx = f(;i(xldx and f.x = fu:lx)dx (x=y) (40)

A
From the definition (22) of the effective area Ay we have: A, = LxLy. For Gaussian antenna
o = “ . . . . *
beams, we have Lx = LA/ 2(x =+ y). For simplicity we represent the Foruier transform of the an-

tenna pattern simply as a DC spike, i.e.,

fﬁ(n.yle“"" dxdy - 2my/2 Ly 8(K) (41)

From the above definitions, with the ni_" clements set to zero in mj; (Eq. (16)) on expanding the

mtegrand of (26) 1o second order and Fourner transforming we have the result

VI Lx Ly‘- .
M(K) = [—— ———/ pyla ) ¢ 8(K)

16RY cos®o
3!

+ e cot20(1 = 82) | [1 + (1 +4) (@ +52) 1K?F(K)
Ly

(42)

-8yt -
+ cm!u{ [—----—-— K'F + (@?KiF + 208K K F + 33K3F:| * FK?

b ]

1+A O _ e L
+ ( : )(a;‘,u o )KIF ® KIF + [4ala? B KIF +a2B2(1 - @-p)?)

© Ry K F + 4320207 KIF ] # K K F +63(1 -uh@nxﬁ)}]

)7
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In this we have let A = 5%/2(1 - 8%). As mentioned earlier, the convolution (%) only involves

those groups of variables carrying the overbar.

Some features of the solution should be noted. The most important is the reciprocal Ly

dependence of the signal part (non=DC part) of M;. The decrease in modulation signal power

with increasing Ly is the price paid for high directional resolution: of all the Fourier contrast

waves contributing to the total modulation power the spectrometer is isolating a small subset that

are travelling in the direction of radar look; consequently only a small fraction of the total spec-

tral modulation power is being detected. The Ly dependence of the solution can also be inter-

preted as follows: In a real, short-crested sea, waves are running out of step with each other

across the extent Ly so that modulation power will add incoherently asy/Ly. Thus the modula-

tion power relative to the total average power decreases as Ly /2, and the relative spectrum of

modulation power as Ly-!.

The directional resolution of the radar spectrometer is determined by che larger of the two

effects (a) wave=front curvature on the surface and (b) the finite width of the data window

Ly. The spectral window that results as the combined effect of (a) and (b) can be determined

~
by redoing the foregoing analysis in the Fresnel approximation.  The lag vindow G(w) becomes

in the Fresnel approximation (assuming a Gaussian gain pattern),

Lx?wl + Ly?wl
Giw) < Giw) + exp |:— K2 ( > 211,

2nR?
The corresponding spectral window has a half power width,

2/ 2ninl K2Lx4csc20 | 12
AKy = 1+ x-y)

- (27R)?

The directional resolution is given by

L\Ky
Ab = '—'-\—-' (6|\'y << K)

For example, if R = 700km, K = 22/200m, 0 = 15% and Ly = 10km, then

AP = 0.76(1 + 7.6) = 6.5 degrees.

(43)

(44)




We note that the second order part consists essentially of four convolutions involving the
two=dimensional, directional wave spectrum F(K). In principle, since the second-order terms are
small, we ought to be able to retrieve I from M, by a process of iterative deconvolution, start-

ing with a first guess F(K) = M, (K).

To indicate, in rough terms. the amount of harmonic distortion resulting from the second-

order terms in (42), we carry out a sample calculation in two-dimensions, using as a model spec-

trum a one-dimensional Phillips’ equilibrium spectrum,
FK) = BHR - NR"? (45)

where i: = K/K, is the scaled wavenumber, and H is the Heavyside step function. We use a value
of the spectral constant B = 0.01 as this gives a realistic value of the significant wave slope 8,
and hence, of the expansion parameters & and €. From the definition (28) of 8, and from (45)

we have 6, = m1y/2B = 0.045.

Figure 3 shows the results of the calculations for @ = 10° and @ = 15° for a range of rough-
ness conditions, e, for a range of the parameter a, = tané /ug where o is given by Equatior: (33).
For ¢ = 10-15", the harmonic distortion is quite tolerable, less than 307, over the range of wind-

speeds of practical importance.
MEASUREMENT SIGNAL-TO-NOISE RATIO
The result for My, Equation (42), may be expressed as
M (K) = M (O)8(K) + Py,4(K)I (46)

where Py, o4 is the modulation spectrum.

M, (0) is proportional to the square of the average backscattered power; we can express it
das

Vin

M, (0) = LSk ? (47)

Lx

The modulation index, defined for any azimuth & is

u(d) = fp,,,od(x, ®)dK (48)
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By (27), the total moment is
MOK,AK) = My (O)B(K) + BAK) + Ppog(K) + Py 0d(AK)) (49)

Again, we have K = 2isint (cos®, sind), & = w/c, and similarly for AK.

Analysis of Short Pulse System

The pulse bandwidth is assumed to be large compared to the dominant-wave modulation fre-
quencies. Applving (49) to Equation (2), we find for the “per-pulse” (individual pulse) ensemble

average output of the spectrum analyzer,

& 11+ we)
<Q’lw|” = 13;; el R Pmod(w-¢) (50)
T B

where the filter constant is set equal to 1.y, is the noise bandwidth of the H; filter; & is the

average energy of the backscatter pulse,
& = 2n (IS(kllz)ﬁEo{v)lzdv; (51)
I is the effective backscattered pulse duration,

T

(1]

V2 sinf Lx/c (52)

B¢ is the effective pulse bandwidth,
ﬁl:.u(lr)lz Ey (v = w)Pdv

[fl Eotwlzdv] .

Let 7. = 2a/¢f.(0) be the effective spatial pulse width. Then we can express the measurement

g = Bt (w) (53)

signal=to-noise ratio, the ratio of the modulation spectrum to the broadband “*Rayleigh clutter”
spectrum, as

4nsind

SNR = Prod (K) (54)

e
where we have assumed g << 1. Let the directional wave height spectrum by given by the

Phillips™ form

F(K) = 5x 1077 (8/3m) cos*® K4 (55)



Let ¢ = 15%; assume a nominal wind speed of 15ms™ and a corresponding dominant wavelength
of 200 meters. With af given by (33), and assuming an upwind look, and using the linear part of
(42) for Py g we have Py g = . 78m/Lylkm] and

2.6
SNR ~

(56)
r.lm] Lylkm]

Reasonable SNR's thus are possible on a per-pulse spectrum analysis basis (i.e., without Doppler
filtering) with 7. on the order of a few meters and Ly on the order of 5-10km. SNR's as low
as =10dB may be tolerable, if the measured spectrum is statistically stable, that is, if enough in-
dependent pulses are averaged so as to produce a stable clutter noise spectrum BE' relative to the
modulation signal spectrum. The time=bandwidth product (TBP) of the measurement is given by
the analysis bandwidth 8, times the total integration time NpT where Np is a number of independ-
ent pulses. At the 9207% confidence level, assuming large TBP, the length of the confidence inter-
val is, relative to the signal level,

1.64(SNRY'

t ——————— = 90% confidence interval

VE, TNp/2x

If we set the analysis bandwidth at 25%, then, for our 200m wave example we have g, T/2r =
(0.25%Lx/200m). If SNR = 0.1, Lx = 25km, and Np = 1000, then Py, ,q is measurable to 9%

at the 90% confidence level.

As Alpers and Hasselman (1978) have shown for the narrow=band two-frequency measure-
ment, Doppler filtering can be employed to increase the measurement SNR. One way to go aboui
Doppler filtering in the short pulse spectrometer implementation is, in the time-domain, simply
to keep track of or stare at the advected, frozen modulation pattern (e.g., as in image motion
compensation). The maximum integration time is determined by tiie lesser of the wave period or
the time it takes 0 move an appreciable fraction of the beam=spot in the along-satellite-track
dimension. Both of these [actors will restrict stare times to something on the order of 1 second.
If we allow a 50% movement of the beam spot on the surface (in the along-track direction), then

the maximum integration time available will be approximately, for looks to the side (4> 30°):

ra
L)



RAD cosd
v

(57)

Tine ~

where Vs the spacecraft velocity.  The Doppler spectrum width of backscatter from any fixed
(stared=at) resolution cell on the surface is determined by the fastest interfering scattered waves
from the extremities of the resolution cel! (ie., at the 3dB azimuth gain points):

2. /Y

Myop ~ sinf lsin®| Ad (58)

I'he fast=time clutter spectrum 321 will be reduced by slow-time Doppler filtering by the factor
\/Z'dup Mot Putting Ly = RA®, we get for the measurement SNR after Doppler filtering, (again
with @ = 15° &> 30°)

2.5
SNR 2 (59)

rc\/R[kmlh[mi

a result which is independent of the azimuth beamwidth. With R = 700km, A = 0.02m

SNR 2

(60)

7elm]

For a Skm Ly, this is a 15dB improvement over the per-pulse SNR.

Analysis of Two=irequency System

The transmitted waveform may be a short, wideband puise or some tailored two-frequency
wavetorm.  Assume that the transmitted waveform Fourier transform Ey(v) is constant over the
bandpass g, and g, of the two filters H; and H,; then on applying (49) to Equation (3) we get

for ensemble average output of the correlator,

y ]

-

By

he analysis bandwidth 3, is the combined noise bandwidti of the two channels. If the H, and
Hy titier bondwidths 6, = B, then B, =+/2B, . & is the received energy in each channel; and T,

agan, s the elffective backscattered pulse duration.




o
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In (61), we note taat there is no background, Rayleigh “clutter” noise spectrum as there is

in the short pulse system. This is because the expected value (or infinite ensemble average) of the

cross-correlation of the basic Rayleigh clutter noise at two frequencies v, and v, is zero (provided
Aviy T>21). This follows from the definition of the basic unmodulated “clutter” process as a

sample (of length T) of a stationary, Gaussian random process.

The measurement noise in the two-frequency system is the residual clutter noise that sur-

vives the cross-correlation over a finite integration time T. If w (1) is the (unmodulated) noise

process going into the integrator (Fig. 2), then we have

-T
(Q.) =/ (w_(pdt = 0
0
to the variance of w.(1) and g. the bandwidth of w.(1). en for large time=bandwidt
Lcébeh [ W, d g, the bandwidth of w, Then for | ndwidth

products, §.T>> 2w, the standard deviation of the output of the integrator will be 0 ~

\/.‘l?BcT *o.T.

A rigorous calculation of o, is beyond the scope of the present work: unfortunately.
Parzen and Shiren (1956), in their analysis, stop short of calculating g for the two-frequency
system. To get on with the analysis we will simply assume that o, = &2/T? and that B = By

Then, the per-pulse SNR for the two=lrequency system will be on the order of
SNR ~ (2ay!/2 332 W2 P 4 (B0y,,®) (62)

The analysis bundwidth g, is set at some fraction of the modulation frequency Avy, in accord
with desired spectral resolution. Let ry = §,/Av,,. Then, using the same sample condition:

used in the short=pulse analysi:, i.e., wherein Py, 4(K.0) = 0.78 m/Ly(km|, we have

SNR ~ 0.055032Lx"2[km] Ly’ [km™!| (63)

Letting, Lx = 25km, Ly = 5km, r, = 0.25, then SNR = 0.007. This figure is not as good as the

per pulse SNR for the short pulse system. E.g., for 7. = 2moand Ly = Skm, the short-pulse




SNR = 0.26, a factor of 32 greater. If the analysis bandwidth r is opened wide, r, = 1, the two-
frequency SNR becomes 0.06, and is comparable to the short-pulse SNR. The two-frequency
SNR can also be improved by coherent Doppler integration. This would necessarily involve some
kind of phase detection. If we assume an improvement factor of m (again with R =
700km, X = 2¢m), then the measuremen: SNR will be 0.1 (ry = 0.25) and 0.85 for r, = 1. (The
reader is cautioned that we have been loose with certain numbers, i.e., with the effective integra-

tion time, Tj;,¢ and Algqp, and og.)

CONCLUSION
We have presented a three-dimensional physical optics solutior for the generalized fourth-

order moment of the surface transfer function in the case of near-vertical, specular backscatter
from a Gaussian sea, and we have applied this solution to the analysis of the short-pulse and
two-frequency techniques for the remote measurement of ocean wave directional spectra. The
predicted modulation spectri'm is found to bear a fairly good fidelity to the directional slope
spectrum; harmonic distc  wn, or spectral smearing, is on the order of 20-30% or less. The
solution’s only serious defec, it is felt, is the Gaussian assumption for the ocean wave statistics.
The measurement signal-to-noise problem for both short=pulse and two-frequency spectrometer
implementations was examined briefly, and it was found that satellite measurement of the di
sctional wave spectrum with either of these spectrometer systems appears to be feasible; it remains
for future work to model diffraction and non-Gaussian wave statistics, and to perform a more
thorough measurement signal-to-noise analysis; for example, trade-offs involving transmitter power,

antenna gain and thermal noise must be considered.
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