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In Rosen's "bimetric" theory of gravity the (local) speed of gravl-

tational radiation vg is determined by the combined effects of cosmolog-

ical boundary values and nearby concentrations of matter. It is possible

for vg to be less than the speed of light. I. show here that emission or

gravitational radiation prevents particles of nonzero rest mass from

exceeding the speed of gravitational radiation. Observations of relativ-

istic particles place limits on v
K 

and the cosmological boundary values

today , and observations of synchrotron radiation from compact radio

sources place limits on the cosmological boundary values in the past.
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1. INTRODUCTION

cveral years ago Nathan Rosen [ L ] proposed a new theory of gravity,

the "bimetric" theory -- the two metrics being the physical metric gtry 
and

a flat, "background" wetric nuv . l 'il ►e theory is perhaps better described

as a two-tensor, :netric theory (see [2] for discussion). It is a metric

theory in the sense that the physical m, > tric obey: the Einstein Equivalen_e

Principle: in the local, freely falling; frames of g^Iv the nongravitattonel.

law-, of physics reduce to those of Rpectal relativity. One ieonediate con-

sequence is local conservation of nongravttatlocal stress,-energy T liv -- the

natter-response. equation:

'rile	 = 0	 (l 1)
;v

'rile auxiliary, syuunet ric cwo-tensor tl l ►v can he thought of as a second metric; it

is cotes trained to be flit and is used in constructing the field equations for

the Physical metric (see Section 21,). In a series of papers Rosen and otr,vrs

li.ive analvzed various consequences of the theory, including the maximum mas»

of neutron stars [3], cosmological models [41, equations of motion f5],

gravitational radiation [ ti], and other topics [7].

'rile tt'aclttional testing ground for such it theory is the solar syster.!,

where observation-: at today's accuracies probe tho theory'- predictions to

post-Newtoni;ui order (see [81 for a roview). Lee et al. [ 4 1 have calculated

the post--Newtonian limit of Rosen's theon , and shown t hat it Is the same as

that of general. relativit y , except for tilt , preferred-frame PPN parameter ^.

a discussion of the NordtvedL-Will P<lramot rued Post- Npu-t c niatt (I'PN)

I , , imalism and a description of OIL' mea ► iin^ .If the PPN parameters, see chayter

39 of [10]; in particular, i,ox 39.5. 1 Th,. values of (x2 and the Newtonian

L_



gravitational "constant" C are determined by the distant matter in the

Universe, which reaches into the solar system through boundar y conditions

applied far outside it. An appropriate adjustment of the cosmological

boundary values brings the theory into agreement with present limits on

t1,., and on the time rate of change of G. Put the other way around, these

limits place constraints on the possible boundary values. One way to test

the viability of the theory is to construct cor►mological models and ask

whether the models can be made consistent with these constraints. In thi -

paper I point out a new set of observations which yield pe ► rticularly

tringent constraints on the cosmoLog'cal models in Rosen's theory.

'Che two metrics in Rosen i s theory play different roles. Gravitational

radiatiom propagates along; "light" cones of the flat metric, while light

propagates along; "light" cones of the physical metric. The two "light"

cones need not coincide, so the speed of gravitational radiation is, in

general, different from the speed of light. Lee et al. (9] slowed that tae

speed of gravitational radiation, as measured by an observer at rest in tite

universal rest frame far iron any local concentration of matter, is deter -

mined solely by the cosmological boundary valurn{. This speed v	 is
gc

related to a2 by

v r-
^	 1
gc

n tic, vicinity of a local source of gravity ,with (diwen g ionless) Newtonizn

potential U	 1 (U ? 0), the speed of gravitational radiation increases

to

•

vg	 vg,e (1.	 .'U)	 (1.:'b)

(see Section :11). It is possible for v g to be less than the speed of ligznt.



,.how here (Section 3B) that as a particle of nonzero rest mass Is

accelerated through the gravitational "light" cone, it emits an infinite

amount of energy lu gravitational radiation. It follows that, if v <
K	

1,

the speed of gravitational radiation Is the ultimate speed for such par-

ticles; they cannot escape the gravitational "light" cone. fks a result,

observation of a relativistic particle with Lorentz factor Y provides a

lower bound for v at the point of observation:
Y,

1 - vK < I Y -2	 (1. 1a)

if the Newtonian potential at the point of observation is known, one also

, btains a lower bound for vg c ' This lower bound can be re-expressed as a:,

Lipper bound on the value of (x 2 = 20 - vgc).

_1)
a2 < Y ` + 4U	 (1.1b)

Equations (i.j) are the basis for obtaining observational constraints on NY

fi

and a2 (see Section 4).

In this paper 1 analyze the gravitational radiation emitted by par-

titles moving at speeds near the speed of gravitational. radiation. This

analysis leads to the conclusion that, in Rosen's theory, particles of

nonzero rest mass cannot exceed the spend of gravitational radiation. '110:1

conclusion is Likely to have far wider applicability than just to Rosen's

theory. The detailed analysis pre:;ented here does not depend critically on

any special feature of Rosen's theory; one can make a strong case that a

similar anulr>;is holds in any theory of gravity which permits the speed of

grav,tatio.ial radiation to differ from the speed of light !see [11J for it

brlof review of such theories). Lndeed, It seems likely that the "gravita-

tional speed limit" Is a feature of all such theories.

Another crucial test of Rosen's theory comes from observations of Vie



ch.'utge in orbital period of the binary pulsar (12]. Unless the two compon-

ents of the binary system have identical ratios of gravitational binding

energy to inertial mass, Rosen's theory predicts that the s ystem will emit

dipole gravitational radiation and that the radiation will carry away

negative energy (13]. Observations of thc binary pulsar are now good

enough that Rosen's theory can bo ruled out -- unless the two ratios are

the same to within less than a percent (11+).

Section 2 develops the formalism for analyzing gravitational radia-

Lion emission from weak-field s ystems in Rosen's theory. Section f huil,.s

upon this foundation to ,justify tho claim that a Particle of finite rest

mass cannot ex , _A the speed of gravitational radiation. Section 3A calcu-

lates the energy spectrum of gravitational (.herenkov radiation emitted by

a particle moving with uniform► voloe ty v ` v R , and Section 3B analyzes the

energy emitted as a particle is accelerated through the gravitational "light"

cone. The result of these considerations is Eqs. (1.3), which Section 4

uses to obtain observational limits on v g and a,, (v sc ). Section 5 nrgue:

that these constraints apply to any theory of gravity with a variable speed

of gravitational radiation.

2. FOUNDATION FOR ANALYZING: EMISSION OF GRAVITATIONAT. RADIATION

This section lays they foundation for analyzing emission of gra.,ita

tional radiation from weak-field, linearized s y stems in Rosen's theory. The

toundatior will be laid In two pieces: the first piece is construction cf

coordinates which take into account matching to boundary values provided by

an external. gravitational field; the second piece is construction of equil-

tions governing generation of gravitational radiation and specifying the

amount of energy the radiation carrl

•
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A. Isolated Sources and Preferred Courdinatey

Below I shall deal with "Isolated" sources of gravity, such as the

solar system or one of the ult rare lativistic particles of Section 3. Since

such sources are not actually alone in the Universe, it is necessary to

describe briefly what is meant by an "isolated" source.

The key feature of an isolated source is that the gravitational field

can be split into two pieces: the field of the isolated source (the local

field), which applies near the source; and the field of the rest of the nit-

ter in the Universe (the external field), which applies far from the sourt:e.

To understand the conditions necessary for such a split, consider the

length scales characteristic of the source and the external field. The 9(. irce

is characterized by two lengths: its physical size R and the length Cm c.)r-

responding to its mass in. The external field is also characterized by tu,)

lengths: a typical radius of curvature a and the length 1. over which the

external field varies appreciably. Let r  be the distance from the sours- at

which the curvature produced by the source becowes comparable to the extt-nal

curvature:

r	 (Gma 1./3
	 (x.11

O

To get a clean split betweon the local and external fields, the ;ourc:e must

be burled deep inside r  (R 	 ro), and r  must be much smaller than the ,x-

terual scales (r o << min{a,L)). These two conditions translate into

Gm/It3 >> a-2	 ,	 (2.2a)

Gm << min{a , 1,(i,/a) 2 1 	(2. 2b)

file curvature produced by the isolated source is a large, but small-scale

"bump" in the large-scale external curvature.

r
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When Eqs. (2.2) are satisfied, the region around the source can be

broken up into three parts, which provide a natural split of the gravita-

tional fiel'i:

(i) the local-field region, in which the curvature of the tsolated

source dominates:

r < r	 ,..	 u

where r is distance from tite source;

(2.'3a)

(ii) the transition region, in which the external curvature dominates,

but which is small enough that the external field is nearly homogeneous:

F_	 mi.111

where e is a suitably chosen factor .less than one;

(iii) the external- fi eld region:

r ? r 	 (2.. c)

The nearly flat transition region splits the gravitational field into local

and external fields. Tile only connection between the two fields is the re-

quirement that they match smoothly in the transition region; from the point

of view of the local field, the external field establishes boundary condi-

tions in the transition region.

The boundary conditions are made explicit by choosing a specific

coordinate system. A particularly convenient set of coordinates can be

constructed as follows. Consider the external gravitational field in the

absence of the isolated source. Let an observer falling freely in this

field construct Fermi normal coordinates {x"'} - {t,xi } in the vicinity of

his world lint [151. In those coordinates the two metrics can he expanded

about the observer's world l i nk :

6



R	 g B ) + [ terms of order Raj^kxjxk '^ ( r /a) 2 1 + ••• ,	 (2.4a)

nas(t'Xj) 
s n

.:,R (t.xi .0) + 11(%0 k(t'Xi.0)xk + ...
	 9	 (2.41))

where g (B) is Minkowskian, i.e., 11g(B)J1 - diag( - 1,+1,+1,+1)	 and R
110 xRy6

is the Riemann tensor derived from the physical metric. Now introduce the

isolated source in the vicinity of the fiducial world line and use these

coordinates to solve for its local fleld. The flat metric retains the form

(2.4b), and the physical metric retains the form (2.4a) in the transition

region outside the source.

Equations (2.4) display explicitly the boundary conditions to be applied

in the transition region. In general relativity, which has only a physical

metric, the external. field influences the isolated sourer onl y through tho

Riemann and higher-order terms in Eq. (2.4a), which represent tidal and

higher-order multipole forces on the isolated source. The situation is d-,f-

ferent In Rosen's theory because of the presence of the flit metric. A1th(,ugh

the region around the source has been split cleanly into local and extern al

parts, Tlua cannot be adjusted independently in the two regions; rather, ttie

external field determines the form of 
tlw3 

in the transition region, and a

particular choice of coordinates together with its flatness then deterTrin('s

t i 	in the local-field regicr 	 (The above choice of coordinates insurer that

tl
uu

 is nearly constant in the local field region.) In general, the external

field prohibits finding coordinates such that both g ulf and T) an, are nearly

Minkowskian in the transition region. This lack of "meshing" allows the ox-

ternal field to reach into the vicinity of the isolated Source and affect

local gravitation physics. (Will (2, Section 5.31 k l vc s a general discitssion

of the mauner in which auxiliary tonsor fields in metric theories of gravity

N



couple local gravitation physics to an exte nnal field.)

Gravitation a l radiation emitted by the source is analyzed in the tran-

;ition region. In order to separate the radiation from the external curvi-

tune, the wavelength X of the radiation must be much smaller than external

ten:

X <c m1n{a,L1	 9	 (2.5)

.1 requirement which also guarantees that the wave zone of the radiation ex-

tends into the transition region. In Section 3 I will be interested in

calculating gravitational radiation emission in the linear .approximation. in

this limit another consequence of (2.5) is that, in Eqs. (2.4), one can

ignore both the tidal terms in gcr^ and the spatial and temporal derivatives

of n4 ; these termq cannot affect radiation at wavelengths much smaller

than their Lwn characteristic lengths.

As a result, in calculating; the gravitational radiation emitted b y an

isolated source in the linear approximation, one can always use coordinates

with the following two properties:

Property 1. The physical metric g to is asymptotically `iinkowskian in

the transition region far from the source.

Property 2. The flat metric rlCW is a nearly constant matrix in the

the local-field and transition regions; its slowly changing values

are de t ermined by the external field, and its temporal derivatives

can be ignored.

i shall ref i to a coordinate system which satisfies these two properties ac

a preferred coordinate system. Such coordinates are particularly useful for

analyzing gravitational radiation emission: Property 1 insures that the

coordinates provide a good reference frame for an observer in the transition

t4



region monitoring the emitted radiatton; and Property 2 insures that the

field equations and gravitational str ass-energy assume a Particularly simple

form (see Section 2B). Properties 1 and 2 do not uniquely specify the coor-

,linates; instead, they specify a family of preferred coordinate systems,

the members of which are related by arbitrary Lorentz transformations and

translations. Throughout the following I shall use preferred coordinates.

Now restrict attention to the sources eon y ldered lit 	 3 and S --

ultrarelr:ivistic particles moving in a typical astroph ysical environment.

For such sources, the external field must tnclude both the smoothed-out

cosmological solution and the fields of nearby, large-scale density enhance-

Inents. A typical source might be a cosmic-ray proton near the Earth; then

the nearby density enhancements Include the Virgo cluster, the Local Group,

the Galaxy, the solar system, and the Earth. To sufficient accuracy the

gravitational fields of the large-scale density enhancements can be treated in

the weak-field, slow-motion approximation. if the Universe is homogeneous and

isotropic (assumed henceforth), the solution for the full external field 	 in-

cluding the cosmological boundary valued and nearby density enhancements 	 is

that given in reference (9]. In the universal rest same --- thr frame in which

the cosmological fluid is at rest 	 the two metrics are given by

900
	 -1 + 2U	 ,	 (2.6a)

901 = 0	 (2.6b)

gjk	 6 jk (1 + 21J)	 (2.6c)

i^n,gll - diag(-C-0 9c l l 9c l l , c 1 l )	 9	 (2.6d)

where c0 and c  are determined by the cosmological solution, and U is the

'Newtonian potential due to those nearby density enhancements which produce a

significant deviation from the cosmological solution. The R 11j components have

been ieglected, since they are much smaller than U for slow-motion sources.

9
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The external field (2.6) Is used to construct preferred coordinates

appropriate for analyzing an isolated source. For many purposes the most

convenient set of preferred coordinates is obtained by using a (freely falling)

fiducial observer who is initially at rest in the universal rest frame. In the

resulting preferred coordinates g(XP is asymptotically Minkowskian in tht traris

tion region (Property 1), and T U is given by

900 - - 
C- 1 1 + 2U) 	 (2. 7a)

n0j - U	 (2.7b)

njk = el
l 6 jk (1 - 2U)	 (2. 70

where U (= constant) is evaluated in the vicinity of the isolated source.

These preferred coordinates will be called the local universal rest (LUke);

they will be used for all the calculations in Section 3.

{. Linea r17. ; lield Equations r,nd gravitational Stress-Energy

It is not necessary to give the full, nonlinear Rosen field equations

`sere; only the linearized version will be needed. For the full equation,

the reader is referred to the original papers of Rosen fl] and to [9].

For a weak-field source, the physica l metric in a preferred coordinate

>ystem is nearly Minkowaskian in both the local-field and transition regicns.

In the usual way, define the metric perturbation hPV to be the deviation of

g
uv 

from Minkowskian:

g;,v = 9(B) + huv ,	
9(B)	 dial;(-1,+1,+1,+1) 	 (7_.8)

.111d let 
huv 

be the trace-reversed metric perturbation:

1 (B)
h 11v - huv - 2 g u N ) 1i	 (2. ))

where h E g(B)uVhuV. The indices of hPV 
and huvare raised and lowered

10
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To linear order in the metric perturbstion, the field equations in 	 !

any preferred coordinate system are given by

rta&	
1/2

huv,cYB - -16n (-g/-.1) 
	

oTUv
(2. 10a)

Here 100 is the inverse of %,,; g and 7 are the determinants of 
gl,v 

and 740

respectively; and G o is a coupling constant with dimensions of the Newtonian

gravitational constant (see [91). In LU,:F coordinates, Eq. (2.10x) becomes

	

V 2 IOV - (1/vg) hlsv,00 	
-lbn GT11v	 (2.10b)

Here G =
1/2

(cOc l )	 Go is the gravitational "constant" at the epoch of

interest (as ;measured, e.g., by a Cavendish experiment performed far awav

from any locol densiti , enhancements) , and v g --- the speed of gravitational
radiation in the LURF -- is given by Eq-. (1.2). Equation (1.2a) uses she

results of [91 to relate 
vgc 

to oZ [vgc = c l/co w (1 + of ) - 11,

The linearized matter-response equations are obtained from Eq. (1.1):

T 
11	 0	 (2.11)

Just as In general relativity or any other metric theory, gravitational ef-

fects disappear from the shatter-response equations at linear order; the

linear approximation is valid only so long as the motion of the source is

governed by nongravitational forces.

To analyze gravitational, radiation emitted by a source, one must 1,a

able to cal:ulate the energy and momentum carried b y the radiation. Rosen	 I

[11 has d.:monstrated the existence of a stress-energy complex 0 Vv which is
conserved with respect to the flat metric:

1.1



v • 0. 11 I V

Olty ' (-b/- ► 1) 1	 (T
v ♦ tug)

(2.12x)

(2.I?b)

mo tensor t iv is interpreted as the gravitat lonw. stress-energy; it is it

quadratic exp :cssItm Lit first derivat Ivry of gl:\) with respect to 
nit\) 

(gPV1'1).

To lowest order in tile• metric perturbation, it is given In an y preferred

coordinate system by

	

tuv	
T, TIT 	 ( - ll /-K) 1/2 

`t^lltrll\)iA- 
1 dl)\'tlti'^) ^1iycS ^cx

hYlS,lj -	 h ,^^tll ,f^ I
u	 `

('2.13)

whe re h	
uv

Equat1ons (2.12) c all be i tit egrated to till tittn conse rvat. i oo IitW9 for t. o

tot al 4-I11t)llh • 1it11m.	 Ill it preterred	 system' the 4-moment um P	 of t he
(Y

,ouree is defined by

	

lt	 ( -
g) 112 ('j'`\0+ t ) 0 ) .l } x 	 (2. 1r)kl.	 f

P transform:; like a 4-vector un,lrr Lorentz tram format lon g among the pre-
tY

ferred coorditlatos, and its Indices are raise.{ anti lowt • red usilig Kjj\1	 Now

surround the sotirke with a closed .'-stirfa ct • \ which lies In the tratisition

^ Il)
region. .tnd lot n lit , the unit outward normal (with respect to glt\) ) to

i1 ► e colnserv:ltioII I.iw (2. 1.'1 reIa , t , s the change of 4-momentum insl,l y S to a

,x of 4-momentum 011ou911 S :

,t

ac	
_ f (T,l1 + t"t^)11^ dA	 (:'•15)

Ilcre tale first index of E 11 has liven {.lined using 
gwkw .

The important quantity for ca.lt• ulat inK energy loss time to gravitational

O,1
radi:ltiotl Is t	 . tilt • energy I Iti- In the radiation.	 Its; form (to lowest



order in the metric perturbation) is particularly simple in LURF coordinates:

a

0 j _	 1	 ( Ybt	
32nG 

h 
,0 Y6 ,.1 -	 0 h1

(2.1.6)

Note that the field equations (2.10a) and the gravitational stress-energy

(2.13) are not invariant under infinitesimal coordinate (gauge) transforma-

tons. This lack of invariance reflects the fact that a gauge transformation

destroys P roperty 2 of the preferred coordinates, i.e., nnR does not remain

constant on local scales. Ire such coordinates, g (B)	 # 0 and terms con-

tainird g (B)
C6l} and g Ri 	 appear in the linearized Veld equations and in

the gravitational stress-energy.

3. GRAVITATIONAL. RADUTION AND THE GRAVITATIONAL SPEED LIMIT

In Rosen's theory the speed of gravitational radiation is determined by

the combined effects of the cosmological gravitational field and the gravita-

tional fields of nearby, local concentrations of matter (F.qs. (1.2)).

Although the latter always tend to increase v 8 , the cosmological field cau

force vg to be less than the speed of light. It is this case -- v g < 1 --

that I consider in this; section; in particular, I investigate the gravita-

tional radiation emitted by particles moving at speeds near v .
g

The motivar.ion for doing so is provided by an analogy with electroma!4-

net m. A charged particle, moving through a material medium at a speed

fa:,ter than the speed of light in the medium, emits electromagnetic Cherenkov

[161 radiati. L. In any real medium dispersion restricts the radiation to a

finite range of frequencies; however, for an idealized, dispersi.onless me(lium,

the energy emitted diverges. Similarly, in Rosen's theory, a particle which

exceeds the speed of gravitational radiation ought to emit gr avitational

13
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Cherenkov radiation. Moreover, the gravitational "medium" is dispersion-

leers (at least at high frequencies), so the Electromagnetic analogy suggests

that the energy emitted ought to diverge. If so, this result would sugg:5t

that particles cannot exceed the speed of gravitational radiation.

These ideas were first considered in a different context by Aichelburg,

t:-.ker, Lid Sexl (1 7) . They considered a particle whose equation of motion

,apparently allows it to ex ^eed the speed of light, but which is coupled .o

11 field that propagates at the speed of light. They argued that radiation

reaction prohibits accelerating the particle to speeds greater than the

speed of light. They showed, for example, that if such a particle is

charged, the electromagnetic radiation it emits diverges as it is acceler-

ated through the light cone. The situation considered here is similar, ..nd

the analysis is patterned after their work. 1 shall first consider the

gravitational Cherenkov problem and then analyze the power radiated in

gravitational radiation as a particle is accelerated through the gr :ta

tional "light" cone.

A. gravitational Cherenkov Radiation

Consider a particle with rest mass in  moving with uniform velocity v

relative to the LURF; let v ` vg . In the case of interest, vg is very

close to the speed of light. Adopt LURF coordinates and solve for the grav!-

tational field in the linear approximation. The solution of the fiel.d equa-

tions (2.10b) proceeds exactly as in the analogous electromagnetic problem

e.g., (18], Section 14.9). nie metric perturbation 
ht1v 

forms a shock

front along a cone which extends back from the instantaneous position of the

particle (see Fig. 1); the angle 
0  

between the velocity v and the normal to

14



the cone is given by cos d C 0 ( v Ml 	 Outside ttie cone It
	
vanishes;

inside the cone,

dG) m

u tl0 ( X' t) -^	
0	

2 2 1/2	
(3.1a)

1x -vtj[1 - ( V /%r g ) sin

It O j
	

-it 
00 

vj	
(3. 1 b)

it 	 h00 v j vk	 (3. 1c)

where ct is the angle between the observation point x and the velocity v, and

Y _ (1- 
v2)-1/2 

is tilt: particle':: Lorentz factor. The field (3.1) repreuents

gravitational Cherenkov radiation propagating in the direction normal to the

Cherenkov cone. By evaluating the energy flux using (2.16) and then iol:cowing

the procedure used for electromagnetic Cherenkov radiation, one obtains the

energy d 
2 
E radiated into an angeelar frequency interval dw as the particle

moves a distance dQ:

	

d`l:	 2	 -^
G. lip( v	 - 1)	 for	 v " v

	

dWd Q 	 o	 g ( - -2)

l

L

11iis expression is similar to the Frank-Tatum [19] result for electromagnetic

Cherenkov radiation.

Equation (3.2) does not, of course, hold for all frequencies, and it

is important to determine its region of validity. Tn using the formalisr:

of Section 2, the above analysis neglects variations in the external grat•i-

taticnal field. However, since the particle is assumed to radiate for at!

infinite amount of time, these variations cannot be ignored; their effect is

to modif y Eq. (3.2) at low frequencies. To estimate the frequency at which

such modification becomes Lmportant, consider a particle which, radiates for

15



only a finite time T 'y (r I /v) [ Kee Eq. (2.3b)). 'rhea the particle ' s motion

And the radiation it emits can be analyzed within the transition region,

where the formalism develo ped in Section 2 is applicable. The emitted radia-

tion is a pulse which lies just inside the Cherenkov cone (see Fig. 1). It

is easy to show that, when the radiation is analyzed at a distance ti r  from

the particle's trajectory , the pulse has a duration At '- [ (v/v g ) - 1] ('r/8) .

Thus the energy spectrum will be given by Eq. (3.2) for frequencies

W > WC = (1/At). The wavelength corresponding to the critical frequency ,-.c

is

xc ^^ e (v 1 - v-1 )	 minta 0	 1	 -2
g	

^ F ( Yg -Y `)	 rnin(a,L}	 (3.3)

where yg = (l - vg) -1/2 . I have confirmed this result by a detailed analysis

Of the radiation emitted by a particle which moves faster than v g for onl y a

t. ► .iLe time.

Variations in the external gravitational field can be regarded as preduc-

iug "dispersion" in the propagation of gravitational radiation. This disper-

sion modifies the Cherenkov spectrum at frequencies below (j) c . Note that, as

v approaches vg,  ^ W increases and dispersion affects more of the spectrum.

Even when y is not close to y 9 , the critical wavelength X
c 

is typically rather

small. For example, for a particle near the earth, the relevant external

scale is of order the radius of the earth: L v 10 9 cm. Using the smallest

value of v
g 

allowed by the limits obtained in Section 4 [see Eq. (4.211))

and choosing E. = 10 -2 , one finds Ja c 1 (10-ll cm)[1 - (y g /y) 2 ).

The importance of the preceding analysis lies not so much in estimating

the size of X c , but rather in demonstrating that, as long as v > v g , therr is

a finite critical frequency above which the gravitational "medium" is

16



dispersionless and Eq. (3.2) applies. In the purely classical analysis

given above, the validity of Eq. (3.2) extends to arbitrarily high frequen-

cies, and the spectrum diverges as w -+ -. However, quantum m_chanics often

eliminates classical divergences, and one might expect a proper quantum-

mechanical treatment to modify the classical spectrum at very high frequen-

cies. In particular, conbervation of energy might seem to require that the

spectrum be cut off at a frequency tone a (ymo fi'S) corresponding to emission

of a graviton whose energy is equal to the particle's energy. Applying, tills

cutoff to Eq. (3.2) (and assuming 
(`'max >? (

' ' c ) , one finds an energy loss rate

Cm 
dG	

- , o	 ti 10-1i, ev - cm-1	for protons	 '3.4)

This energy loss rate is so small that, if there is a cutoff at 
wmax' 

the

effects of gravitational Cherenkov radiation are negligible even on galactic

distance scales.

11OWever, the existence of the cutoff is by no means certain. 	 The

uncertainty arises because it is not clear that Rosen's theor y , even in its

linearized version, can Lie quantized; the linearized field equations (2.10a)

are not those of a canonical field theory. The difficulties that therebv

arise are perhaps most apparent in an examination of plane gravitational

waves in Rosen's theory:

(i.)	 The Riemann tensor derived from an arhltrar y plane wave has six

independent polarizations -- the most general polarization structure all.-wed

in a metric theory. Even in the case v g = 1, where the theory is Lorentz-

invariant, these six polarizations form .s nonunitary representation of the

inhomogeneous Lorentz group; they cannot be associated with massless quarta

of definite, Lorentz-invariant helicity (see [201 for a general discussion

of these issues).

17
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(ii) The time-averaged energy density in an arbitrary plane wave

(vg 0 1), evaluated using (2.13), can be regarded as a quadratic form in

the amplitudes of the ten independent potentials h ug . (None of these ten

potentials call be removed from the energy density by a gauge tiansformat'on;

see Section 28.)	 When this quadratic form is diagonalized, one finds

that four of the eigenvalues are negative. In other words, four of the ten

degrees of freedom in the wave carry negative energy. The presence of

negative-energy radiation has been noted previously in analyses of radiation

emitted by binary systems in Rosen's theory [13]. in a theory with such

negative-energy radiation, the stabil[ty of the vacuum is uncertpin.

Any attempt to quantize Rosen's theory must confront these two proh-

	

Iems. Even if they call 	 overcome, the presence of negative-energy radia-

tion removers the rais on d'etre for a cutoff at max ' Tlse classical Cher-.nkov

radiation (3.1) is made up of both positive- and negative-energy parts, the

total energy emitted being; a balance between the two. QuH;1Lum-mechani Cal ly,

this Cherenkov emission might well be represented by multi-graviton prod

esses in which both positive- and negative-energy gravitons are emitted. In

such processes, conservation of energy imposes no restrictions on the fr.-

quency of the emitted gravitons.

Another potential quantum-mechanical cutoff is the Planck frequency

-1/2
p - (O!5)	 If the Cherenkov spectrum (3.2) is cut off at w p , the

energy loss rate becomes

dE	 Ym	 Ym

dli -	 3 
0	

^V
3 	 014	

for proton~	 (3.5)
/mo )	 Y (5 x 10	 cm)

Just as for the cutoff at wmax' 
it is not clear that this cutoff should t•e

imposed. However, even if it is, the loss rate (3.5) is large enough that

15

E _ .. 



the limits obtained in Section 4 are not affected.

The classical analysis of gravitational Cherenkov radiation hints

at a serious probLem in Rosen's theory. The divergence of the spectrum as

w - - means that the energy emitted is infinite (and positive). This result

strongly suggests that particles cannot exceed the spend of gravitational radi-

ation. It is not clear that a quantum-mechanical. treatment will eliminate

the divergence, nor indeed that such a treatment can be given. rven as a

purely classical analysis, the above calculation has serious difficulties:

it is clearly inconsistent and, dust as clearly, the ':near approximation

is not valid. However, there is little point in trying to patch up these

difficulties. If particles cannot exceed the speed of gravitational raoia-

tion, a consistent calculation of gravitational Cherenkov radiation is not

possible. More realistic and more relevant would be an examination of what

happens as a particle is accelerated up to the speed of gravitational radia-

n .	 tion.

Before turning to this problem, It is interesting to ask about the

Cherenkov radiation emitted by photons and other zero rest-mass particles.

The best that can be done using the above calculation is to model a free

photon as the .1 imit v ^ 1, y ---, ymo . constant. Applying this limit to Eq.

(3.2), one finds that free photons apparently do not produce any gravita-

tional Cherenkov radiation.

B. Acceleration through the Gra vi tational "Ligh t" Cone

Now consider a particle with rest mass ni which has velocity v(t)

in LURF coordinates. The particle is being accelerated h,. interactions

with other matter and nongravitattonal fields. The objective is to

evaluate, in the linear approximation, the energy emitted In gravitational

19



radiation as v approaches v	 In doing so, one must remember that the total
6

stress-energy i^j conserved ( Eq. (2.11)]. This means that one cannot, in

general, neglect the radiation emitted by the matter and nongravitational

fields as they "recoil" from the interaction. However, I shall argue that

in the case of interest here, this "recoil" radiation can be neglected.

Imagine the following scenario for accelerating the particle - a

scenario similar to those often envisioned for accelerating cosmic_ rays [21].

i
The particle is accelerated by a series of "collisions" with local concen-

trations of stress-energy. These "blobs" of Stress-energv have masses much

larger than in0 , and their velocities -- both center-of-mass and internal --

relative to the LURE are small. In each collision, the momentum exchanged

is small compared to the particle's momentum. The subsequent motion of

the "blob" occurs on time scales much longer than the collision time;

clearly, the radiation emitted by the "blob" does not diverge. Now consider

the final stage of the acceleration process, when after many collisions

the particle has attained a velocity so close to v
8 

that one more collision

can Push its velocity above v g . From the point of view of the particulaz-

"blob" involved, this collision is no different from the preceding ones.

However, the radiation produced by the particle in this collision is heamed

in the direction of its velocity, and the radiation diverges in that direc-

tion as v approaches v9 . Therefore, in analyzing the final stage of the

acceleration process, one can neglect the "recoil" motion and calculate

the radiation emitted by considering only the particle's motion. The

results obtained will be valid when v is very close to v .
K

The field equations (2.10h) for a single-particle source can be

solved in the same way as in electromagnetism (see, e.g., [18], Sec. 14.1).

I
The ii 11%)have the same form as the Lienard-Wiechert potentials. The energy
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flux is evaluated urg ing Eq. (2.16), and an integral over a sphere in the

transition region gives the power radiated:

2 3
dE	 1 Gm

ovg 	 6	 2	 2	 4	 4.2	 2	 2 1
IIY ( v• v) (-11 + 26u - 9u ) + Y v	 u ) (-11+ 121jdo	 3 (1- u`)4	

..	 .. (1-

---- o Gm2v 3 2Y 6 (v.Z) 2 (1- ll`^) - ^ 
+ _I 	 1	 11 2 )- 3]

where li 2 Y/Yg , and where the last expression contains the leading-order

terms in the limit v + v g. As anticipated, the Power radiated diverges.

In a real situation, of course, the power radiated cannot diverge; instead,

radiation reaction diverges and prevents the particle from exceeding the

speed of gravitational radiation.

This calculation suffers from some of the same difficulties as th,-

Cherenkov calculation. The particle radiates substantial amounts of energy

only at very high frequencies where quantum corrections m1pht well he iw-

portant. For the reasons given earlier, the effect of these corrections

is uncertain, and I shall ignore them. A perhaps more serious objection

is that the linear approximation is not valid; however, it seems unlikeiy

that the nonlinear terns in the field equations can eliminate the diver-

gences that have cropped up in both the preceding problems.

Despite its uncertainties, the analysis of Rosen's theory in this

section leads one to the following tentative conclusion: if v g	1, the

speed of gravitational radiation is the ultimate speed for Particles of

nonzero rest mass -- a "speed limit" enforced by the emission of gravita-

tional radiation. Hence, observations of relativistic particles can be

used to place limits on the speed of gravitational radiation [Eq. (1.3a)]

and on the cosmological boundary values [Eq. (1.3b)].
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4. OBSERVATIONAL CONSTRAINTS

The highest-energy particles in the vicinity of tie ear t h are ultra-

high-energy caemic rays, which have been detected at energies exceeding

10 20 eV (see (22] for a review of the observations). At these very high

energies, cosmic rays are not observed directl y ; rather, they are detected

by the air shower they produce as they enter the atmosphere. The energy

assigncd to the primary particle in a given event 15 somewhat uncertain,

since it is derived from a model for the shower. However, an energy of

3 > 10 19 eV seems reasonably f i nn.

This energy estimate, even if correct, is not a measurement of veloc-

ity. One obtains a velocity by using the familiar relation F. - Ym 0 . How-

ever, one might expect this relation to fail in Rosen's theory, because a

particle's gravitational binding energy might diverge as v approaches v .
g

Indeed, an analysis using the linear approximation suggests that the energy

of a particle, as measured by an observer at rest in the LURE, diverges
.M

logarithmically:

E - ymo + yq X2 0 log{2v
9

(1 - (Y/Yg)2F1 21	 (4.^j

where S2  is the gravitational binding energy when the particle is at rest

in the LURE, and q is a dim,nsionless quantity which depends on the structure

of the particle. This divergence is one more reason why particles cannot

exceed the speed of gravitational radiation.

The logarithmic divergence (4.1) is slow enough that it does not

interfere with interpretation of the cosmic-ray observations. f  a particle's

speed is so close to vg that the binding-energy to na In (4.1) dominates,

then Eq. (3.6) predicts that the particle will radiate: away almost all its

22
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energy as gravitational radiation. It will not produce the observed shower

of particles.

A more Rrrious uncertainty results from the inability to identify the

primary particle. The most likely candidates are protons or, perhaps, alpha

particles; however, the possibility of heavier nuclei -- perhaps nuclei near

iron -- has not been ruled out. For a proton at 3 x 1019 eV, the limit (1.3a)

on the speed of gravitational radiation near the earth today is

1 - vg	5  to-Z2	 (4.2a)

For an iron nucleus at the same energy, the limit is a bit weaker:

1 - vg	1 x 10-18	 (4.2b)

Since v g increases toward the galactic center, these limits -also apply at

any point closer to the galactic center than the earth.

Equations (4.2) actually hold not only at the earth but also in those

regions traversed by the cosmic- ra ys after their initial acceleration.

Unfortunately, the point of origin of ultra--high-energy cosmic: rays is un-

certain. Their Larmor radii !n the galactic magnetic field are much larger

than the th;ckness of the galactic di.-ik. This, together with the lack of

anisotropy in the observed eVentti [231, means that,	 they are galactic in

origin, they must come from a distance less than the thickness of the disk

('L 200 pc). It seems more likely that they are extragalactic, in which

case Eqs. (. 4.2) probably apply out to a distance of at least 100 Mpc.

Earth-based observations of relativistic particles also provide an

f
	

tipper bound on the value of a 2 (vgc ) today [Eq. (1.3b)]. This limit is

!I	 considerably less stringent than the limit on v g becau ►e it is determined

by the Newtonian potential at the earth, which is dominated by the galactic

23
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potential Ugal' A r particle with y > 10 3 -- it medium-energy cosmic-rav

proton or electron, a positron or electron produced in a high-energy colli-

sion at Fermi Lab or CFRN or circulatin g in a storage ring at SLAC or DESY --

yields the same limit:

a2I < 4U 
galti 

3 x 10-6	 (4.3)

today

Here I have used a galactic mass of 1.4 
x1011Mo 

at a distance of 10 kpc.

For positive values of C1 
2' 

this limit (valid only in Rosen's theory) is

almost three orders of magnitude better than the best previoue limit, ob-

tained by s,-a-ching for anomalous earth tides (24].

There is a possibility that the Newtonian potential of the Virgo clas-

ter at the earth is as large as the galactic potential. however, there ig

considerable ul.'ertainty in estimating 1110 mass of the Virgo cluster, and

the two potentials are comparable only for the largest estimates. In any

case, including the potential of the Virgo cluster is not likely to deRrcde

the limit (4.3) by more than a factor of two.

Compact radio sources at suhstantial red shift y provide information

about the speed of gravitational radiation in the past. Thev . emit a power-

law radio s pectrum which is thOUght to be incoherent electron-synchrotron

radiation; the spectrum has a low-frequency turnover attributed to synchro-

tron self-absorption. The Lorentz factor of the electrons can be estimated

from the brightness temperature T 11 at the turnover frequency: y `L (kTb/mc)

where in is the rest mass of an electron. Jones, O'Dell, and Stein 1251
e

have developed a detailed model for compact, nonthermal sources, including

the effects of svnchrotron self-absorption an(' synchrotron self-Campton

radiation. Burbidge, Jones, and O'Dell [26] have applied the model to

1
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several compact sources, some of which have more than one component (see

their 'fables 1-3). For nine of the ten sources in their sample, they pro-

vide (for one or more of the components) a red shift, an angular diameter

determined by VLtit, a size determined from the angular diameter by placing

the source at its red-shift distance, and a Lorentz faLtor determined by

the model. To estimate a Newtonian potential for each component, I have

assumed Amass of 10 9M - a mass larger than or of order those usually thought

to be associated with active galactic nuclei; and 1 have Assumed a constant

(nonevolvinb) gravitational constant G. As an example, consider the source

with the largest red shift in their sample - PKS 1 1,4 +00.1i at z= 1.936. The

estimates for one of its twa components are y - 590 and U 	 1 x 10 J
J. 
which

implies C12 <4 x10	 (Eq. (1.3b)]. Similar considerations for the other

sources provide upper bounds on C -4? at a variety of red shifts; considerilg

all these limits together, one can conclude that

Q2 . 5 x 1t1 '4 	for	 O N z Z 2
	

(4.4)

No other observation provides information about the value of cx, (vgc ) in the

past.

There are considerable uncertainties in estimating the Newtonian poten-

tials which go into the limit ( ) ; . 4). The masses and radii of the sources are

uncertain; in addition, the gravitational "constant" does evolve in Rosen's

theory,, so that its value in the past depends on the cosmological model.

Because of these uncertainties ., the limit (h.h) has been chosen conservatively;

with the above assumptions, all but one of the six sources at z > 0.1 provide

a limit at least an order of magnitude stronger than (4.4).

5. CONCLUSION

Rosen [27] has recently modified his "bimetric" theory. In the modi-

fied version, the "background" metric T IV is no longer required to be flat;
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instead, it is requi red to Ur a s pit ee of const. tit I curvature. CC) ymologtCal

mode Is are it  fected by this mod i f t cut It on, but local gravitation lil ► v y ire

is not, except insofar as it is influenced by cosmological bouncIAry values.

file analysis in Sections : and 1 rem;tins the same, and the limits obtained

in Section 4 apply to [ate nc •w version of the theory.

The aulalysls in this paper has been restricted to Rost-ti's theory, hilt

the result:: obtained are likely to have far oiler applicabi 1 itv. There ate

numerous metric theories of gravity which predict differ ent speeds for

gravitational radiation auld light. Typically in such theories, the differ-

ence in speed is produced just .I:: to Rosen's theory : light propagates

along "light" , • ones of the physical metric, while gravitational radiat-Ion

propagates along "light" canes of it flat, "background" metric. In all such

theories, one expOCts the speed of gravi t aL ional radtation to have a fol m

similar  to tltat Ili Rosen's theory: v = v 0 + 2fl t ) , where v	 Is detc r-
K	 tat'	

91.

wined by cosmological boundary values and f, is a cc ► 11titant of order unit.

The iml,wrtanit question is whc•tllc • r Omission of gravitational radiation rc -

stricts p.srtictos to speed:: loss than
h;
 although detalled calculattous

are necessary in each theory, once can give a general argument, based on

the analysis ill Rost -II , ti t hooly, for l hc existence of Ole "gravi tat ionai

speed limit."

WI ► c • never a particle exceeds the speed of propagation of a "rAdtatt on"

field to Which it Is coup lod, one expects a shock wave to form. c lrlo ,,al,

think of nuntOrous examples, such is the shuck wave produced b y superon l c

motion in alt acoustic medium and ofectrom.tgnette Cherenkov radtatton. In

tho.,v famil1. ► r ex.lmple	 the• radtation dor y not diverge hecausc the shoe,

front is not absolutel y ::h.lrp; it is :spread out over same length d chara+c-

teristic of the medium throttyl ► which the radiation is propagating. 11tis

2G
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"blurring" of the shock front cuts off the radiation at frequencies > vwave/d•

In the gravitational case, the "medium" ig spacetime itself. or more ac-

curately, the "background" structure oc spacetime which determines the

speed of gravitational radiation. The gravitational "medit ►m" has no small-

scale Structure to blur the shock front. Thus, there is no high-frequen-v

cutoff ( ► inlcss quantum mechanics introduces one), and the radiation does

diverge.

This argument makes it seem quite likely that any theory wiO a

variable speed of gravitational radiation must confront the limits obtained

in Section 4. If so, Eqs. (4.3) and (4.4) can he used to constr uetin the

cosmological boundary values in any such theory. (In general, the aL of

these limits is not a PPN parameter; it is simply a parameter related to v
8c

by Eq. (1.2a).] In additi,n, Eqs. (4.2) provide a general, theory-indep ndent

lower botrc ►d on the speed of gravitational radiation near the earth.
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FOOTNOTLS

IThroughout I use the summation convention, (reek indices runn.ng from 0

to 3 and Latin indices from 1 to 3. The signatures of the metrics are +2.

A semicolon (;) denotes a covariant derivative with respect to g uv , a

vertical bar	 a covariant derivative with respect to n WVP and a comna

an ordinary partial derivative. Units are chosen so that the speed of

light c - I

,M
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FIGURI: CAPTION

Figure 1. A "snapshot", taken at time t, of the Cherenkov cone produced by

a particle moving with uniform velocity v - 2v g along the z-axis. TW

particle is at the apex of the cone. The angle 0C between the normal

to the cone and the z-axis Is given by cos 8 C 0 (vg /v). The shaded

region is the pulse of Cherenkov radiation produced by a particle which

radiates from t - 0 to t = T .
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