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POSSIBILITIES AND LIMITATIONS OF ROD-BEAM T11I:CRIFS

D. Peterson 

1.	 Basic Problems %.:ith Rod-Bear Theories	 /7*

In rod-beam theory the out:;taiWing quantity of the length

of an actual spatial continuum is used to simplify static and

dynamic an.ilysis.	 "thus the description of a three-dimensional

condition is impossible in one dimension without hypotheses such

as Bernouilli's, which suggests flat rod cross-sections during

deformation. Wlassow (121 gives a detailed description of the

basic assumptions in rod theory. Such hypotheses also have

effects on the stress and distortion tensors.

It is unusual to speak of a stress or distortion tensor in

rods, since rod-beam theories are based upon the assumption that

only a few components of these tensors are other than zero. When

dealing with distortions, one confines oneself essentially to the

definition of a strain along the longitudinal axis of the rod.

Because of bending and curving, the strain varies across the cross

section.

Rod-beam theory requires that no normal stresses should arise

transverse to the rod axis. 'Thus stress-free transverse strains

must he allowed, but they alter the cross-section dimensions only

infinitesimally. Therefore the contour of the cross-section is

maintained in the deformed state.

As a matter of principle, shearing deformation is regarded

Division of `Stress and Stability Problems, Institute of Struc-
tural Mechanics, merman Research and Testing Institute for Air
and. Space Travel (DFVLR) , Braunschweig.
Y Numhers in the margin indicate pagination in the foreign text.
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,, n , gligihlc in rods, as required by the hypothesis of flat

cross sections in the deformed state. Shearing stresses per se

are determined from the so-called stress functions, equilibrium

equations with expressions for the distribution of such stresses

over the cross section.	 If in special cases the displacement

of the rod due to shearing is not negligible, an approximation

is used in which such displacements are superimposed upon the

displacements clue to bending. At the sane time, however, the

effects of shearing on the distortions are regarded as negligible.

These approximations and equivalent proceJures in considerations

of secondary shearing due to curving force torsion are discussed

elsewhere [4,S,11).

It is obvious that such approximations are valid on]N- under

particular circumstances. This work is thus limited to long rods

in which hoth shearing distortions and displacement due to shearing

remain negligible.
/S

Only for torsional shearing stresses, which are descrihed by

=tress functions under Prandtl's soap film analog, does rod beam

theory take equivalent distortions into account. In curved cross

sections the relationship beta%^oon the stress function and distor-

tion leads to the determination of the curvature function across

the cross section.

As long as construction used rods to provide stable and al-

most distortion-free structures, linear rod-heam theories were

appropriate. But with the construction of aircraft and extremely

light structures the situation changed. 	 In the 1930's and 1940's,

therefore, rod-beam theories were remodeled to include further

effects. "These particularly involved stability problems of

torsion buckling and bending torsion hackling, and the tipping

of beams.

The requirements of weight reduction in air- and spacecraft
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construction led to lower rigidities, so that today an: ► lysC c, must

take greater deformations into account. This has often led to

taking terms of higher rank into ac4: 0111a in cases of longitudinal

strain. At the same time, however, the assumptions of classic

rod-heam theory are often taken on unexamined. Now, in rod-beam

thcory a 1%hole group of components of the distortion tensor are

equal to zero onl y because terms of higher order ;+re ignored. 	 But

if one acknowledges terms of higher order in only one component,

one violates the rules of compatibility. Rod-beam theories huilt

in this way must remain questionable, unless the validity of such

,in approximation can he demonstrated, at lease for a certain field.

'Tile present paper intends to derive the non-linear distortion

tensor and the non- linear stress tensors in rods and beams. Suh -

sequently, we will discuss possibile simplifications which cut

off after terms of a certain higher order.	 It will he shown how

far non-linear theories are possible in deformed rods under the

h y potheses which establish a ro ,1-beam theory as distinct from con-

tinuum theory.

In the case of the curvature of a cross section the hypothesis

of flat cross sections is alread y modified, since one admits a

deviation of parts of the cross section from the flat 1)1,110.	 Thus

this plane establishes onl y a calculatory average surface of the

cross section.	 If the deviations from this average surface re-

main infinitesimal, there are no extensive consequences for rod-

beam theory.	 In closed cross sections there is such a strong

resistance to curving that the preconditions are established.

Open cross section. are a different case. But the cross -section

contours remain flat within themselves, even though the plane may

no longer he perpendicular to the rod axis in the deformed state.

In both cases onl y those expansions of the theor y apply which are

provided b y curving force torsion theory.

Therefore we must answer the question of what expansions are

0



possible ill the context of rod-beam theory.

the conclusion contains considerations on the determination
of c ► lt t ing force.,, and shows that ill the case of theories of

Ili 14hel' Ordel' One 11111st d1St iliguish ,11 (fermi .,t 1'ess def lnit loll.,.
Errors can espcci:III y arise when a linearized theory is applied
to account for effcctS of the second order.

Basis V ect ors, distortion and Stress Te nsors

The present work is founded ill part on hl i nglici l 1 R 1 .111,1

Muni; 121:	 A mass point has .1 pre - displacement position described
I'v the position Vector r.	 After displacement	 11ich iS designated
by the Vector	 the mass po i Ti t has the pos i t i oil ,les i g11:1t e,1 by
the pos i t i on Vector it.

(2 1)	 R-r +v

1f one refers to the undistorted s y stem as a reference state,
t ) len r is determined by the 1 i Ilea I , Iv independent coordinate: x l .
PUt One 0,111 JISO ChOOSC the dC1O1'Illed St:ItC :1., ;1 I'elel'e11eC systelll.
In t11iS case R is described b y the Iin'.11 . 1' ilidepell,lent coordlliat .;

I
	 V	 1: a basic SN'stem we choose a cal'te.,i'lil Coordinate ., V .,tL.Ill

I
	 with the unit y vectors ei.

(2.2)	 v - v'e,

(2.3)	 r - x iej -( y , v')e,

(2.4)	 R- (x' • v')e, - y'e.

/IO
Ile tweell the coordinate ., x' and v ' there is the fol lowin

conn.`ction via the component s of the vector of displacement

(2.5)	 yi- x  #6'i

(2.6)
	 x'-y'-v'.

P.
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Hie differentials arc:

(2.7)	 dy' ax ; dx ' - o,' dx' - 
(j,' + 

a V ^) 
dx'

(t.e)	 dx^- dy, dy'- b,'dy'- (d,'- ay , ) dye.

mut1 ► ctl ► rltit. • rtioil o(' ('.7) and	 into cash other and

with the requirement of linear independence of the coordinates,

one gets the relationshilr ►Ihich demonstrate a i d and 1) j as
inverse to each other.

(z.',	 dK"q^bK"b,ja,.

In elasticity theory two distortion tensors are );Mown.	 'I lie

most used is Green's tensor, l,hich refers distortions to the un-

deformed state. The counterpart is a tensor that refers distor-

tions to the deformed state. 	 It is also called the Almansi tensor.

First we will show the derivation by differentiation according,

to the coordinates of the undeformed state. The basis vector:

arc obtained by differentiation according to the coordinates:

Or - d x' e' - d, ^e^ - e,C
	 ax

(t.to)

OR d

/11

The metric coefficients result from scalar priducts.

911
" 9,'gj -d,j

(2. ►► }

G;1	
6	

K x
- G, 	 ^ - o, a^ M.

From the transformations:

.9,"9,K9
(2.12)

G, - t,K G'

9^
 ,.
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0110 ;;tts the contr• avariant basis vectors. Here the tra
is performed with (2.9) in the case of basis vectors of
deformed state.

9'- e
(? i3)

G'- b; e)

With the metric coefficients one can describe the

ments dIl and dr.

d R - G, dx'	 dRJ-G,^ dx'dxl

(2.14)
dr -g, dx'	 dr.,- g,, dx'dx

The components of the distortion tensor result from the

differences.

dR?-drl

An equivalent derivation results from differentiation accord-

ing to the coordinates of the deformed state.

(z.16)	 9^" Oro "dy; ( Y' - `J)ei-bile)

The metric coefficients:

A	 A

yy - g, - QI - b, bl
(2.17)

G,j - G,

The contravariant basis vectors:

6
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(1.18)	 ^,• 
q,'
' e!

G	 e, .

The arc elements referring; to the deformed state:

dR • G, dy'	 d k ` - ^^ dy'dy'
(2.t9)

di - 9' dy [ 	 di 1 - y dy'dy^.

The components of this tensor of distortion:

(2.20)	 dk`''di1	 1

111	 Lille f Ind,; till' CompolicUts of (irC'CII's distortion
tensor, and In (_'.20) those according to AlC;ansi. 	 But a ten.-'Or
is fully known only when given in connection with the basis.

Then it must also he irrelevant what method is used to derive

the components.

Almansi's distortion tensor is referred to the defoi•rled

basis, so that the complete notation looks as follows. With

equations (2.13), (2.28) and (2.9) one can show identit y for

both derivations.

(2.21)	 A - ^'^^ G'G ^ - 1 (G,^-g;i)G`G!-1 (nkoi R- Cry) G'Gj-

"1 ^d^m -d[ bml el Pm"

/13

(2.21)	 .&G G "? 01m -91m)G G M. ? ^JIM -b I P' I e! Pm

The same applies to Green's distortion tensor, which refers

to the undeformed tensor.

7

t^



_	 1

(1.12)	
9"'9n- p mn'y,nn^,9^ n -2-

 (dmn - bni 6n^9^'^"-

- 1 (0, 4 01 *_d/ 
/ P, e,

There are also equivalent definitions for the stress tensors.

'St there is l:uler's teilSol', which refers the stresses to the
deformed state. Then there are Lagrange and Kirchhoff's tensors.

Loth refer the stresses to the undeformed state. However, then

differ from the Euler tensor in their transformation la g s.	 La-

,,ran .ve's tensor does indeed refer the stresses to the undeformed

-tats, but they act in the direction of the normal lines of the

,ieformed system. On the other hand, the Kirchhoff tensor rehre-

on ,; a complete transformation into the undeformed state.

(2.23)	 EULER:

r'J C', Gj - 
r Art

Se -	 k Gr

aitn

t "r- 2 r^o^ar

'.	 (2.24) LAr,RANGE:

S^ .v 
r']9^ 9 ' r Ar9k 9i

with

r %i_ rArb,
k bj!

(2.25) KIRCHHOFF:

Sk"S v9,9^-SAr9k9r
with

'r" 
Stir 

bt^ bi

/14

	

It is common 1)racticc to ment ion onl y the cc,:•,.;)oncnts.	 ACcorcd-

ingly, 
TK1 

are called Fuler stresses, T IC Lagrange stresses and

S 1 Kirchhoff stresses.
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The forces :acting on the surface elcmtnt, dF i :ire as
:olloti:s for the three tensors:

	

(2.26)	 (('dr,, )t - ;,Ai,A e t,,, dyIdy" - Yfi t `$05 ,,pq dx'dx9

	

(2.27)	 ( r ids )t - r'lei F I, dx'dx "

	

12.28)	 WdF)x - S "er fcam dx'dx

f, j", - Permu'otvn .

The scalar trifle product of the basis vectors reproduces

the change in VOlume compared to the reference system with the

	

unity vector.	 Since the mass remains unchanged, these values

must be inversely proportio7 l -il to the ratio of the mass density.

r - (01 x 0-, Gr - del /a,'/ - 9

(2.29;

^g - ( l̂ x g,) Or - der /t+'/' 9

In the Lagrange equation the forces are set equal to each

other since they have the g ame directions.

	

(2.30)	 (f'dF)f - Wdf, )^ .

From equations ('. 2 3) to (2.301 one can derive the connec -

tions between the components by mutual ,.:bst1tution.

	

Tex- l^ t" t ,* _	 r,ror.

11.31) or

f1'`. ' T i`a,	 .
e

In the Kirchhoff relationship the force referred to the

9
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deformed system is transformed into the undeformed system. 'I'll e

differing directions must then be taken into account. 	 /15

	

(2.32)	 0& Fr it GR 11rq dr o d, v• S ,1ej E, PO dx°dx°

From this one gets the transfor:iatlon for the Kirchhoff com-

ponents. They must correspond to the completel y transformed

tensor components with the chansze in volume ta.;cn into account.

S "- ff b', b, f 14- YG 0

	

(2.33)	 er

f	 pr ok 
SrR

0

The ti-an: • for•cat ions 111 (2.31) to (2. ,3) are found thus in

Fung (21.	 The derivation there is based solely oil

of differential geometr y , since Fung operates only with the compo-
nents of the stress tensors and thus cannot apply equations (2.23)

through (2.25). As can be seen, the components of the F.uler and

':irchhoff tensors are symmetrical. The components of the Lagrange

tensor, on the other hand, are not symmetrical.

The F.ulor tensor (2.23) will be used here for the further

treatment of the non-linear problem. The stress-strain relation-

ships for the general case in any kind of curved system are

derived by Green and :crna (3].

714 / r	 ^f )4	 ?y	 ►f R!

	

(2.341	 T	 ^G G + 0 G' _1 v G G	 ^'Rr

If one transforms the components r ij and kl into the com-
^onents refcrrckl to the deformed s y stem one	 >1	 y.	 acts the kr.o<<n c'qua-
tions:

1O
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is

r41- r,
/a.OI

(2. 35) and

^-r - 1,1 bw br

r

(7.36) dnd

u • torsion modulus	 /1()

V M coefficient of transverse strain.

Since the deformed state of the rod is to be described only

as a function of length, the position of the deformed rod axis is

of fundamental importance. The position vector of a rod axis

point has been described in detail by the author elsewhere [101,

so that w ,	 . N, dispense with a detailed presentation liere. 	 I'll e
point of he rod axis in an undeformed state,

(2.37)	 rs " xe t ,

converts in the deformed state into

(2.38)	 RS-(x#u)e,-0ve2--We3

Wl th the longitudingal element

(2.39)	 ds-(1•v'J1•v't`W" dx- (1*u')ar

one gets the tangent to the spatial curve of the deformed rod axis.

dRs - • (1+u9e,+v 'ei +w'ej
(2.10)	

ds e
! - ri#
	 V, w7V

I- .



The other two unity vectors (^•, and c_) are given in 1101.
They are determined from the theor y• of curvatures of curves in

space.
/	 .

F o A

t2.4,)	
d

A

0 9, of

9, o P,

/17

Here p l is the torsion ccrresponding to the change in angle

per unit of length with reference to the rotation of the cross

section around the rod axis.

©-T .;7f 	 f - u

The curvatures p 2 and o- are bending curvatures determined

mainly by the displacements v and w.

For the displacement of a point in the cross section, first

a general statement %%ill be made, so that the specific limitations

of rod-bear► th ,ry can be made clear.

The cross-section point in the unde'Lormed state,

(2.43)	 r - xe, - ncr"^e,

converts into the deformed position

A

(2.44)	
R-RS+ (ft '(7

" "rr ^(l^^ 12)ej 	 j)ej

The f  functions are at. first still unknown. The curvature

of the cross section is proportional to the torsion and a curva-

ture function as a quality of the cross section.

12
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(2.45)
	

uw P f 'Pj	 -

The has is vectors of a deformed cress-section fiber are

now determined by differentiation.

•(2.46)

d R d 1, + d uw ^; ^, d 11 
e

+ d 1,

/1s
(2.46) -

d f ^^ a^ ,

These equations represent equations (2.10) for the deformed

rod as a continuum. The 
e  

basis vectors, however, are not the

basis vectors of the f ,.indamental system e j . But there exists onlN,

a rotation between the e  vectors that form the accompanying tri-

hedral for the deformed rod axis, and the e  vectors. Thus oil

r	 basis of e i , too, the same connections as above can he derived

for the stress and distortion tensors. For both stresses and

distortions, the same transformations apply as between the basis

systems e i and e
j
, since both bases, as orthonormalized vector

s y stems, are identical to their contravariant bases.

Tll.	 establishes the foundation for a further discussion of

possible rod-beam theories. As can be seen from the basis vec-

tors (2.40), a complete nonlinear treatment in its further expan-

sion would become extraordinarily extensive. 1t Would moreover

Ibe pointless, if it can be shown that only to a certain degree

can non-lincarities be taken into account in a rod-heam theory

without contradiction.

13



L	 ed Rod-fleam Theory

111 .1 linearized theol . N , .111 deformation quantities are taken

into account onl y Own they occur 1 inearIv.	 Since the y llmv he

assurned to he infinite-inial, elements of higher rant. are negligibly

sinall.	 'I'll l' bads Vectors in the clefornled state` :ire is fol lows:

c^ (
eff	 , d q )^ . ( f ,

c;	 ej

/19

7'llc IillCaI.ized III ctric co - f ficicnts arc, calculated wittl(?.11),
dro1)pinL the non-1incaI- cic III cnts.

Gig- 1'1 (-'-'IS'3'Sl' B"T+^i^

C,

dfj

(3.2)	 G,1- f;' ^'^)^ ^^

cla

a/3-ag flG13- d
	

♦ -a'q- .

nce the met rir L0e1'ficicllts in the un,lefornlcd `Mate arc

c(luaI to the components of ,he unit y vector, the distortions in

(_'.15) res111t X - Cry -^iri1)1y.

	

7j)
	 ^t B ^0 of

dil "
dot

df

13.31	
,	 + l	 dry . , 11

	

df7 1	 ` (37 ^^ 1 d7 ^1l

	

1	 (dlns	^ f ^fi .
d13 1 6 I d^ 1/ 1 ! r^^ ^^/

1 c?l1 a

F

I

LOf



Since drily linear elements can be taken into account, one

can replace the cont rav ► riant metric coefficients in (2.39) with
the components of the unit y vector.

rr - 1/G r^^_ Y ^^, ♦ y^ l̂ + ic y 1

-z Y

(3.a) t	 I /u ^"i1

It 0 - Wf3

t
dl - 

2'v ^13 -

Linearization moreover leads in(2.2_^ to the fact that the

stress components (corn (3.4) apply to both the deformed anal un-

deformed state.	 ]n the l'Lnear case, the Fuler, Kirchhoff and

Lagrange torsions on the one hand, and the Grecn and Alm, ► nsi
torsions, on the other hand, are equal.

Now, ►p ith the exception of curvature, rod-beam theor , • re-

c{uires flatness of the cross sec': ions.	 But for this and all fur-
ther cases of possible rod-beam theories, this means f l must be

zero. Moreovor, no normal stresses transverse to the rod axis

should appear in the rods. 'Thus transverse contraction must be

unhindered. But the cross section form must also be maintained.

Thus o ►le mint re(luire tlint the distortion y, ; become zero.	 Finally

the shearing deformations due to bending should be negligible of

zero.	 (0) /f - 0
(b^ 7 rr, t 17 -0

raft, a!! -0
(C) 	 k d4	 a7

(3.5)	 a ►̂ +f1	 09

d(l. +/3 0 .

15
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Condition (1)) in (3.51 leads to the following result
_2	 _	 _

(3.6)	
T^^ 

j ►2Y ^l Y-I Y f1^'tr^IN^ l ^ y^^rr £^rr

_ __	 _ r	 r	 Of., c3
(3.7)	 211 ^!!	 r'^rr^ l^I U - ^^i^ S ^J • © 90	 a^f d

I11e hitherto unknown functions f, and f^ can he determined
b y integration from (3. 7) :

(3.8)	 l

Cho solutions to (3.8) must -satisfy condition (c) in (3.5).

^^_ _y`r^QtfeJ d^ dnI ^

(3.9)

dry vQ' A^7 d^J^ P7

The following connection exists between the stress function

for the torsion stresses and the C111-j'atnre function:

at	 alp,	 a _
(3.10)	 dq - d^ ' ^ , d^ d^ 9

r

With the tneans of partial integration one then gets from

(3.9) with (3. 1o) .
r	 ;	 3C,(rJ

(3.11!	 d^ ^^ •-	 j r ` ^,	 J	 7

To satisfy condition (c) in (3.5) We rilllst h,1ve

C, (,r	
r-1 e, + I 0„5,Cl

i	 [	
J

If it is predicted that the cross-section- will remain	 122
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flat, then f l = 0.	 II' ;rt the sane time or,I y torsional ;hearing
deformation!, are to he 'aken into accoulrt, then f; and f! mint
be of a negIig;ihle order of magnitude. Thus one must set dowil

a fey. considerations on the order of magnitude of the deformations

and cross-sect ion dimensions.

In theories of higher rank one assumes that the deforma%.ioil

(luantities :ire finite but small in coripari soil to the length of

the rod. They are viewed as small in rank one. The lonngit Lid inaI

strain in the direction of the deformed rod can result either

v. hen a longitudinal force acts directly on the rod, or when such

a force arises because of bending when the rod ends cannot he

displaced.	 In both cases one mint consider it small in rank two,

as tali be seen in the description of the longitudinal element (2.39).

The cross-section dimensions in a rod must likewise he small LofTl-

pared to the length. The maximum values of the coon linates n
anal i arc thus small in rank one. T110 curvature function (p so

ccause of a quantity equation in (3.10), Tnust thus be small in

rank two. Moreover, one can view the coefficient of transverse

strain v as still being; sniall in rank one.	 Its maximum value of

0.5 for incompressible materials cannot he expected in rods, since

such materials are rubber y and have inadequate resistance to bending.

in general one must anticipate v = 0.3.

One thus gets the following hierarchy of orders of magnitude.

(3.13)

o W) S^ ^

Thus the largest terms in f, and f^ are small in rank four.

(3.14)	 a (6 4) ft I f!

Therefore a rod-beam heor y kith requirements (3.5) can	 /23

he considered free of contradictions onl y to the third order under

( 3 . 13) .	 I f terms o f h i gher rant: are taken i nto account , the nornia 1

,-
r ► ,

17



preconditions ill the context of rod-bean, theory are violated.

All improved so lilt ion Iti thus possible oil IV by Way O( disc, plate
or sit, , II thc`O1 - ics, or 111 extreme cases, Continuum theory.

IV e 1%i II i tic l tit] e a short discussion for 1ery thin rod , In

I' ll ic:h the cross - section dimensions can he .iesignated as small in

rank two.	 The hierarchy of orders of magnit ude then appears as
follows:

p (E^	 s7f ,^j,B BAY

(3.15)

p (f ^^	 (Ps

I f one pants to inc ludo terms up to the fi f th order in such

,i theory, ill order to inclu,'; the curvature forte effects from
there 1s stli l One tern, each Icf * for t he Imi tions, 1, and t_.

fl ` - Y U^^ + CI	 C7(FfJ

(3.16)

fj' - Y U , 'C3 O(fs)

Shell . st resses restll t from t 11 l s v.-hell 11' I s not coils tint
I ^	 throl101oUt the length.	 The tari11)10 transverse Cont ractiOil causes

t0E - Si01131 diStOl- t1011s it ' t110 C1'OSS sClt1Oils 11 . 0 to I - CCl:Iin t ' I at at

the same tithe.	 But if one allo y s the cross sect ioll poi Tits to

deviate from this It\• pot11esis, it would be small in rank sel•oil

fo 1' veI, \ • thin reds.

(3.17) Y U ^f .	 `j°;, j.l 
^ Co	 O(f'J

Si1ICC 0111\ • terms It 	 to the 1*ift11 order :1 re tACII into account,

the cross section Can he C:lI10d flat p ith IdedllItC PT'0Cision in the

'	 Context of these Collsideratloils.	 :fit t110 sa ill 0 tililt , the` 6110;11.
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distortions can be further net , loctcd, and the characteristic

stress state for rods is maintained.

he have thus established the outer limits %.ithin ►,hick rod-
beam theories of higher order must he real izzed.

4.	 Rod -Ream I'heories of llii!her Order

In this section we will draw conclusions for rods in which a

finite, known torsion can appear. Such rods appear as rotor

blades in helicopters or extending/retracting rod antennae ti%ith

open sections in satellites. The root theories used in these

cases [1,0,7,91 are either lineari-ed theories with equilibrium

formulations in the deformed state, or non-linear theories that

lack an Unobjectionable distinction between stress and strain

tensors. The concluding section will discuss the possible conse-

quences of confusing l:uler and Kirchhoff stresses.

4.1. Simple Rod Theory

For a rod with a finite pre-twist, torsion in the deformed

state is
r

er+ei
0

Qf'

so that for the curvature of the cross section one bets:

_	 ' * e'o
Uw 9I Ŝ 1

e
^V^

The orders of magnitude for this case are to he assv,led as
fo l 1 caws :	 0(Ps dg

•	 (4.3)	 o(E)	 ^,^, d^ , 	, X1, 9, ,

o (E 1J	 ^ , u
(4.3)

df, d/, df	 /25

1.

r_	 ..

(4.1)

(4.2)



Terms of higher orders than c.3  c. i 11 he neglected.	 F.
equations (22 .46) one can form the basis vectors 

G  up to order

I'hc stress free original :state is rnercly the pre -twisted rod.
The zomponents of the distortion tensor in this case are:

©o 0,

	

( d^ ) j 	 ^
`/ ^ e ` on

I^ 6° B
 d^

d	 _

(4.4)	
Y, IT[ 	

_ 

/tai 1 ^Q) L90, 3 P,

d,^ d
e

,+

o transform the y id components " .'to the 'rki components under

i.'.35), one needs transformation coefficient:: only up to rank C

Since the lowest order of distort ion is r`, no terms of higher

order are needed for the transformation in the context of this

approximation.

(4.5)	 6, N̂

With

o,' -	 9'	 1	 0
(4.6)	 126

0	 1	 -

and

(4.7)	 ^0	 - bj e`

with

	

1	 B°	 _ 6,, dg

(4.a)	 bj' -	 60 ^	 1	 0

	

- 60	0	 1

I	 end

(4.9)
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'Ihe ^^ I components of thr
	

in the accompanying;

rod system are:

W(p #0'	
d	 ^A )

d! 
4 L90, , 04

y^-	 j°'(	
ao ^^ (1^--^^,-Q^^°^p^^

yy
^
	rrnnA

Il!-
[,9, r 3 •,^- ©e 	 (2U ^^j'SJp)-°QJ^]

S	 J dff O 
SSSSd f, •, J , ,	 d	

d'

The 
)'kl 

and T 	 involve distortions and stresses

referred to the deformed state. The pertinent orthonormalized

basis is the rod's own system, the accompanying trilledral of the

rod axis c i .	 'I'lie assumptions of rod-beam theory must thus apply

to these components. These requirements, as raised in (3.5),

are satisfied by the follow ing solution
/:-

1
	 ol9,A

d

(4.11)

-°o°'jvf d9 d^- ( 1 '0)^ pJ"C3('I^

This yields the il`1 components of the I:uler tensor in the
accompanying system ci.

,1

rr

1r

(4.10)

Of



	

C[Cj'-	 ON ^os

r T0 cu

J
r	 a _	 , ^

1R.121	 T,T"^lQ/^^ S) 0̂.a^
a 

^?u	 ^^•tfe•^!
r /	 a	 •n

t ry - `^
I 

B ( ^ J• ^^'Pp j^ (1U^'^^^TI/-^oT)^J•r(e•r)

L4 )1 /

O	 111	 /	 v

r
'r)	 Art

r (B .w) r (8 • w)	 bellding and curving shear
Stl'CtiaCS ltil:ll ncgllQlhlc
di;tortions .

Is can clearl y he seen from equations (4.12), this theory

yields only stresses and distortions which arc linearly dependent

on displacements and twist inc. Thus only a linearized  theory
can he Carr^Od out; lout it makes it horsih1e to setup the e(lui-

librium in the deformed State.

:.	 Non-Lincar Rod-Bcam Thcor

The orders of magnit„de for very thin rods must he applied

in this case.

/is

a^ d `Ps

ar) a )̂ ar, ar,

o fE'I

afraftI„	
0 

(E s^ ,I f1 f,I 
r1. 

a7 ' 
dg .



f •

Terms of orders higher than r 	 hill he nel;lected in this

theory	 I'1• om equations (2.46), the basis vectors of G 1 are formed

up to rank c 5 .	 The stressless state is again the pre-t%,isted rod.

The components of the distortion tensors are nog::

(10JU,) ( 7J! ` ^)j )• ^^ s	
r
/ Ao B'

^ dyl '	 ,^ drr

. ( d 0 '690 e	 d''y,	 of 	 d^

1	 d Ig )

	

tgo,

d tr 	 d13

o(-^ P`^1^^ a `^a^^

d f̂ des	 ,	 1 / df?	 d 1̂  I

Since the distortions present rank e 2 as the lowest one, the

transformation coefficients for the transformation into F.uler and

Almansi components must be developed to rank E'.

/29

n

With

(4.16) 	 _	 (e," 0)
dq

(e0	 d g

end

( 4. 17)	
(G')r, . h e!

, 0 e')^	 (6, , ©') 7

	

dl,	 dl^

	

f• d^	 dry

d6

	

04"	 d^

f



with

(^o • 9'J 6

(1.19)	 - 
e
d^

d	 dodi?

and	

,,^^--	 I

	

(4.19)	 (Cc,	 ^•0, - 7Qj • S^r^ ^^

111c , kI coefficients become

yw d ^l ^ . a^
O!)'dq ^Po

	

(4.20)	 ^°^J -110' l dq ^)(1	 'v'od (2ti'-7p,•fp!)•
df

16,Id^ .^/(1-u'I-?6'u'^ -^,' d (?u'-^p^+;pl). 	 /30

(4.10)

ate -	
/ d't dr,	 qj, ,

The requirements of (3.5) are satisfied by the following

solution:	
l

• -v^( r;'-1 u'1)r/fi1-?u')( _1

_ Pa 6 f(1•v^^-1I^ 
d4 d^1J•^t(^^

AO
(x.21)

In order to be able to ignore the shearing deformations fur-

ther, a negligible function of rcrnkE Y is assumed for f l as in (3.17).

The T kI components of the hiler tensor result is follows:

24
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{I.tt)	 ^tV

	

es,	
e0l

.^ rl

	

=11  _!_tl^	 8•`0.
The stresses in (4.22) make possible a rod-beam theory

at al loti%s nonlinear terms in the curvature:.	 , and,	 A

theory to rank F 5 as in (4.13) represents the most extreme degree

of non-linearity in a general theory for very thin rods. 	 For

special, less general stresses, however, the possibilities for

individual cares are not so limited. 	 But in most cases a general

stress with 1011gitudinal force, bending and torsion cannot be /3 

ruled out.

Ncgligihilit1• of Secondary Shear Deformations

In the previous sections it was shown how a compatible

state of deformation can he brought into accord ^^ith rod hypot}he-

•	 ses by the defined neglect of terms of higher rank. But second-

ary stresses also occur in rods for reasons of equilibrium, when

the longitudinal stresses in the rod are not constant across its

length due to variable bending or curvature.

The resulting shear distortions are not taken into account

in :he deformation expression for the rod, as a result of the

simplifying hypotheses. These shear deformations thus violate

the compatibility conditions. A significant problem of all rod

I^	 theories is therefore to make these additional deformations
l

"tolerable". For the case of thick rods, ,approximations have

boon developed and show the romaining error to be negligihi(- ill
most cases

?5
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Ilene we ai i I consider onl y thin rods.	 Ile re main ►:e find

the question of what degree of precision still makes sense in a

non- 1 inear theory, when the secondar y shear deformations are to

be further neglected, as is generally the case. 	 If a rod theory

takes account of terms of higher order, of the same order of

magnitude as the neglected shear deformations, the theory hecomes

dubious.

If cane turns to linear theories, initial equations of order

of magnitude can be given for the secondary shear deformations.

Since the linear theor; • does not have to distinguish between the

"ifferent definitions of stresses and distortions, the equilibrium

in the longitudinal direction can ;,,.• written directl y with the

components from (3.4). here additional expressions must he taken

into account for shear stresses due to variable longitudinal

stresses.
31.	 it

(5. ► )	 a	 qXdq	 d^

Equation (5.1) can he transformed with (3.?l, i i. l),(;.8)	 /32

and (3.12).
if

(5.2;	 (E-?^v)^v'-^IA3•fp7''8'°cod' 
dae.w+ da

°'"-•QX-0.

In equation (5.2) the f2	
.1

and f.. solutions from Section 3
V 

are still taken into account, since their derivations from the

cross-section coordinates are used. The resulting stresses and

distortions remain of the same order of magnitude as f 2 and f3,

and are thus negligible in the context described above.

From equation (S.2) one can split off an equation for vari-

able longi tud inal force.

(5.3I	 Ev" + 9X .0
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Iicre tl ► e aItcl'at ion of thc Iont;itudinaI force, for iristancc,

is proportional to the inertial forces, clue to the red's weight

which are constant across the cross section. Any alterations of

d x across the cross section, whether linear or proportional to

curvature, would contain bending and curvature inertia terms.

They are of the sane order of magnitude as the corresponding

terms from the longitudinal stress, so that onc • can dispense
with an explicit acknowledgement of them.

Also conceivable is an alteration in longitudinal force clue
to shear stress on the rod surface in the longitudinal direction.

The resulting force introduction problem, however, cannot he

solved i,ith the tools of rod-heam theory.	 Strictly speaking,

external transverse loads are also not possible in rods, since

they would entail stresses normal to the rod axis.

If, how^.,vcr, it is possible to represent secondary shear

deformations as negligible in rod-beam theor y , then the rod-beam

the or y In itself is justified. 	 The eduilihrium in a single volume

element of the rod then becomes uninteresting; only the equilibrium

in a rod segment is set t ► p.	 Here the cutting forces integrated
across the cross section are used.

r

Taking (5.3) and the negligibility of the transverse deform-

ations into account, one gets the secondary shear stresses as

follows:	 If
d wIf	 1	 ;

	

TeM - F 3̂ f r^d 7 £ e d^ ,	 /^^
9R

(5.4)	 r"	 E	
d { F_ 

0 til aw
L1. w	 ^,	 d

^R

r	 With

S

I,iith the order of 1113('11it1111e in (.,.13) one gets

7

LL 
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f

(5.5)	 eM a4^` O(F4) O/)d ©" d^ `

the other terr:s in (5.4) seem to be of the third, order. 	 But

one mint note that the shear stresses can only run parallel to

the outer edges of a cross section.	 Perpendicular t;; the edges-

they must be zero. The parabola-shaped curve thin Caused further

limits the si-c of the shear deformation.

For a rectangle of height h with -11/2 < n < +1112 and h = o(e)

one -acts

(5.6)
_E_

^•7 ^Z^ P,^B 1/

111C maXim ►► m for Y 1 , at 2u ti F is then

r
^' - = (5.7)	 mox yl	 6	 O E

Thus in thin rods 0110 Carl assume that the secondary shear

distortions can be considered to be of the fourth order. The con-

clusions drawn at the end of Section ; remain the same, even when

one is considering very thin rods.

In the case of theories of higher order one can provide the

same demonstration for each individual case. For the state?gent /34

of equilibrium (5.1) the Lagrange components referred to the basis

system e i are are most suitable (21. The equation then takes

the same form.

e w	 e• w
(s.$)	 dX	 a^	 d^

49 x o

The only tiresome part here is the many transformations,

wherc one must -Iso take into account the fact that the'Lagrange

tensor is not symmetrical.

n r
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I f 011V Coils illel's on1Y t I I C SCC Oil d.Ir%' Shear fOI - 111:1t i MIS , t110

llev,reC of precision can he further increased by Suitable allhrox-
i Ina ti oils . Rut, as shown in till' last Section, olW t111t, get

into orders 0f magnitude in which the neglected transverse strains

wOUld again Flay a role.	 Thus	 special appl icat ions of

theories of 11idier orders are Conceivable. 	 ;1 genera!, non-linear

roll-heanl t11COrN • . On the other 11;111.1, remains valid	 to a
limited extent.

0.	 Cut tinc Forces

liit11ill thOOriCS of 11ighCl' order OIlL' must set till the elluili -
hrilun in the deformed hodv.	 I s ar rods this means that the Butt illi
forces sill.. 111o ►netlts 11111St he 11CtCrnlirlCLl for the .deformed roll, 	 Since
the surfaCl' .lit_fCrenti:11S which ;Ire 110CCSSa1-V in C01111CCtion IN

the 1:11101 . tcnsol' I 	 (2.20 arc either unknown or hard to

Come by, one must detour to the Lagralli,e ComponCntS 11nd0r (-'. . 31l ) .

Under definition (2.310 this floes not chance the size and direct << n

of the Clit t l llg forces .

The strOSs vector i n tIl0 I-Oki cross: SL'Ct i0ll, 1.01 C!'red t 0 the

lIlldCtOI'lill'd C I 	 SS Set.	 iOil	 111 tIle d1I'CCt1Oil 0 f t11C 1101'111:1 1 	 1 llle Of

I,	 a deformed surface differential, iS thus 1* 01 - 111CLI ICCOrding to (^. X11 .

Ill 1in(,,Ir theorN • hoth *_Ile vo1111110 Changes and the tl';111Sf0t'ma-

tion al and hi are neglected. Thus no distinction is made among
1:111C1', Lagr;Inge and Kil-ChllofC StrOSSCS. 	 Ilowevol', it is Crequelitly

the case that one must Consider known or partially known strOsses
011 the I'Od.	 Si11CC ill this CASC the de101'lllat i011ti bV w;1V Of the

StrOSS- ::train relationship Call he replaced I'v the correspond ink /35
forces, it is possible within a linearized theor y to take trans-

r
fOITIJtiOils liltO :ICCk)Llllt	 in (0.11 to ;1 k'et'talll .'\tent.	 Iit till' Case

of such a "postpolle,l" expansion of the theor y to a higher Order



egtii Ii1, riuITi 111 the Clef ille.l roil	 t 11 st1 , vSs y s ar .. ol1( . 11 coil

l Us e#1.	 As 60011 .11 t 11 C c l ass l: l iIlear t heo ry is l e f t bell lna, one

must distinguish IHer, I.Inrangc and Kirchhoff stresses.

hl th a simple example he Dill show shot error's can he pro-
d u: eel h% I ilon oh`ervan: e of the ill l f Brent tit less de  Init Ions.

h e choose  the example of a : "rvaturv- f rvv cross section i y - 0)

under torsion and longitudinal stress.	 A completel y curvatore-

f ree cross se: t ion is for instance a closed circular cross se: t lull

I n hh1:h thv sh ear ing axis ie n tcr and t h e cvntioid al axis a re t h e

WMC.	 1 precision of ` is to he reached under the simple rod-

hvam theor y (tie:. 1. 1).	 There 
w ill he no Ire thi t i nL of t L'

cross •e: t ion.

Under 01.1 _ 1 ;,e ruler :oit1ponents as a function of the do

ormations 6' an d 0 ;Ir y as f o llohs:

t^^•Ev'

T:t' t "- U

^u	 ,
(6.71	 r ' -^ 9

:^- O

If one sta y's with strict linear theor%, then 	 ii _ tiii = l.ii^

Ill:e t ill' :oef i l: l tints of t rai s f,:illat toil, insofar as tney are :1

full:tion of the .leformations, are still negligible.	 But if one

Assumc; that the st resses :all he expressed by known forcc , , then

despite linear theor y , t^o transformations cAn tale into account

those terms g hat ioiltain the distortions linearl y . Mile develops

a i ineari:e.l theory with the establishment of equi t ihrium in the

deformed rod.

From (_'.•)hl the basis ve:tois to fink , 2 ;ire e"t:iiood:

1
ill

/L -



I')

o, ej

^^th

0,^-	 U	 1	 0
el

0	 0	 1	 ^

and

0 
-t, 

e^
i

111 I t 11

0

)	 D^ 0

Ond

/3o

1) r-j C^ - !.a,

\cc Ord ilig to (t 1 .11 with (b	 ,to.5) :in,l (h.^l, thc Lastr;lnt,,c

^,^:al^^1n,'llt^ 111 the 1 . Od Cl - OSS SOCt1O1l JT-L':

Ihr lotlV.itlldin;rl	 t0I'CC	 tctiily rn t11e 1-,),l	 in t11L' ,lirrctiOil	 I3'
cat tllc' t:1	 11t t 	 thr J0t - Orn.0d rod ;lxis I . e-<I11t	 Crom tht' sur • t • acc -'
int01"r;lI acres..; thy' cross section.

	

(6.9)	 N -I f "dr- lT"dF - £F u'

	

r	 r

1 •
	 .^ 1



	

111 L' tOrSit'll 111c1111k'Ilt	 1;	 fOl-I!!ed b y 	 thy' tort ,it , 11 shoal' stl . L . k;S C S

(6.t0)	 n	 /^
' l ^^ru_ 7

rr)dF- ^T „ g  IdF
r

It one coil fllses thc' Vulvr and Kirchhoff stresses, one guts
a r oil pIi11. of IongitII ' l ill al Force ;Ind torsion.

r

call he seen from (0. I I ) , till` second term under the lilte-

ral	 ic• 1,1; the k-0111111011 exl)rc'ssion 1. it11 the polar nlonlclit of iliert ia.

	

(6.12)	 l0 4, t H- ^ L N - /p' N9'

'1'h i s term t rom i ii eg rat ion 0. 1 1 1 d i salll3ea rs, h0%%L, ver, i f onr

tales into ac comit t he fact that tIlk , shear stresses r 1 `
 

;l Ilk] ,1'
cannot evell :1pproxirulteIy he set cquivaIent to each other i11 the
Context c)f the l) re: isiOil rekluired hc'rk'. 	 R;Ith Of- , the i11Verse ()f
('.2'.i) Is ;,i1 • oil in ('. ;;1 must a131)1y

	

(6.13)	 t 	 b„ b, T ^^

With

(6.14)	 r,J- t-^t r^^+ri1(^^V'^

!	 "

`

	

	 if one inserts (h.Il) in (0. 1 11, the rk'sult remains as	 ,•';8

;11ow11 In (0.10),

1 : 01' 1311Y;iC.1IIV 01Wi01 Is rc;lsc1IS. lOnL'lttldinal farce CJ11 not

at :II 1 he coul)lOd h 1t11 torsion in the case of curl • at11re-free : ross

section;.	 `lnk'e Clll'VAII]ro-frce cross sect ioils do not cl:t'v , tllk`

r

t^	 — - -



movements of a point in the Cross section .1110 to strain in the

diI. eCtioil r l ;Irid torsion in the Maine (e ` , cal are exactly rer-
pendicul: ► r to each other in the Context of ; ► rod theor y .	 Coup  ing

is thus ruled out .

However , the else of Curvahle Cross sections is d"llere11t.

the example chosen here is a thin-w.'l led olle ► l Cross sc:tioti,

With a Contour midline tli:lt must be free of shell . stresscs because

of the Closed shear 1 ines,	 1:0 1. the curVaturc 1'unCtiOil one then

gets.

(d7 	
`3c l 

	^s^ -
	 and	

-J ^m - 7.m m

since for a rod it mint be that t - ` _ ► ^'' = T 	 = 	 _ 0,

the Lagrange stresses still result as

" r1	 rl	 ^ rl	 ^ rl
tF ^ 	 T - t	 and	 T - r

lZt streses 7	 andu	 s	 T ' in this Case alread y Coll t; ► irl the

could int; with strain.	 1 f one talcs into account in (4.11 that

•	 lit = \/1:F, the could 1110 C:In he included even in ;1 case Without
i	 hrc-tl^istin^.

i2	 r1	 " rl	 r N r
r - to + t^ - ^f/^ EF Sm

171	 _	 N n
t	 10 ^ rw .111 g EF ,

1 f c^nc now app 1 i es the surface intec;r:l l (0 . 10 )  to

Ione gets the sought - for effect of the longitudinal force can torsion.

The coils iderat ions here illahe it clear that I-Od - hcaln theories

I.



can inc ludo non- I incar effect s oil IV to a certain degree.	 I f a

st i l l treater del! rcv of" precision is to I -, c acii i vved, it cannot
he ill 	 form of a rod-hcam theory.	 1;9

the simpler rod-hcam theor y , ►,hich onl y take I incar terms

Of .Information into account and includes of - fects of a higher order

i f they arc Lix • cn h%• k flow 11 load fUnct ions, rcclui res the same pre

i S ion i n i t. d i f fel'ent i a 1 ;CLIVICt I'V a^sumpt ions as does a non-

1 ill Ca 	 theory.	 If this is not hrox- ided for, one gets varying

results that cannot INC hrou .Qht into accord ►p ith cash ot fie r.

n r
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