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POSSIBILITIES AND LIMITATIONS OF ROD-BEAM THECRIES

D. Petersenl

1. Basic Problems with Rod-Beam Theories i

In rod-beam theory the outstanding quantity of the length
of an actual spatial continuum is used to simplify static and
dynamic analvsis., Thus the description of a three-dimensional
condition is impossible in one dimension without hypotheses such
as Bernouilli's, which suggests flat rod cross-sections during
deformation. Wlassow [12] gives a detailed description of the
basic assumptions in rod theory. Such hypotheses also have
effects on the stress and distortion tensors.

It is unusual to speak of a stress or distortion tensor in
rods, since rod-beam theories are based upon the assumption that
only a few components of these tensors are other than zero. When
dealing with distortions, one confines oneself essentially to the
definition of a strain along the longitudinal axis of the rod.
Because of bending and curving, the strain varies across the cross
section.

Rod-beam theory requires that no normal stresses should arise
transverse to the rod axis. Thus stress-free transverse strains
must be allowed, but they alter the cross-section dimensions only
infinitesimally. Therefore the contour of the cross-section is
maintained in the deformed state.

As a matter of principle, shearing deformation is regarded

1Division of Stress and Stability Problems, Institute of Struc-
tural Mechanics, German Research and Testing Institute for Air
and Space Travel (DFVLR), Braunschweig.

* Numbers in the margin indicate pagination in the foreign text.



as negligible in rods, as required by the hypothesis of flat
cross sections in the deformed state. Shearing stresses per se
are determined from the so-called stress functions, equilibrium
equations with expressions for the distribution of such stresses
over the cross section. If in special cases the displacement

of the rod due to shearing is not negligible, an approximation
is used in which such displacements are superimposed upon the
displacements due to bending. At the same time, however, the
effects of shearing on the distortions are regarded as negligible,.
These approximations and equivalent procedures in considerations
of secondary shearing due to curving force torsion are discussed
elsewhere [4,5,11].

It is obvious that such approximations are valid only under
particular circumstances. This work is thus limited to long rods
in which both shearing distcrtions and displacement due to shearing
remain negligible.

/8

Only for torsional shearing stresses, which are described by
stress functions under Prandtl's soap film analog, does rod beam
theory take equivalent distortions into account. In curved cross
sections the relationship between the stress function and distor-
tion leads to the determination of the curvature function across

the cross section.

As long as construction used rods to provide stable and al-
most distortion-free structures, linear rod-beam theories were
appropriate. But with the construction of aircraft and extremely
light structures the situation changed. 1In the 1930's and 1940's,
therefore, rod-beam theories were remodeled to include further
effects. These particularly invoived stability problems of
torsion buckling and bending torsion buckling, and the tipping
of beams.

The requirements of weight reduction in air- and spacecraft
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construction led to lower rigidities, so that today analyses must
take greater deformations into account. This has often led to
taking terms of higher rank into account in cases of longitudinal
strain. At the same time, however, the assumptions of classic
rod-beam theory are often taken on unexamined. Now, in rod-beam
thecory a whole group of components of the distortion tensor are
equal to zero only because terms of higher order are ignored. But
if one acknowledges terms of higher order in only one component,
one violates the rules of compatibility. Rod-beam theories built
in this way must remain questionable, unless the validity of such
an approximation can be demonstrated, at least for a certain field.

The present paper intends to derive the non-linear distortion
tensor and the non-linear stress tensors in rods and beams. Sub-
sequently, we will discuss possibile simplifications which cut
off after terms of a certain higher order. It will be shown how
far non-linear theories arc possible in deformed rods under the
hypotheses which establish a rod-beam theory as distinct from con-
tinuum theory.

In the case of the curvature of a cross section the hypothesis
of flat cross sections is already modified, since one admits a
deviation of parts of the cross section from the flat plane. Thus
this plane establishes only a calculatory average surface of the
cross section. If the deviations from this average surface re-
main infinitesimal, there are no extensive consequences for rod-—ig—
beam theory. In closed cross sections there is such a strong
resistance to curving that the preconditions are established.
Open cross sections are a different case. But the cross-section
contours remain flat within themselves, even though the plane may
no longer be perpendicular to the rod axis in the deformed state.
In both cases only those expansions of the theory apply which are

provided by curving force torsion theory.

Therefore we must answer the question of what expansions are
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possible in the context of rod-beam theory.

The conclusion contains considerations on the determination
of cutting forces, and shows that in the case of theories of
higher order one must distinguish different stress definitions,
Errors can especially arise when a linearized theory is applied

to account for effects of the second order.

2. Basis Vectors, Distortion and Stress Tensors

The present work is founded in part on Klingbeil [8]) and
Fung [2]: A mass point has a pre-displacement position described
by the position vector r. After displacement, which is designated
by the vector v, the mass point has the position designated by

the position vector R.

(2.1) Rerdy

I[f one refers to the undistorted syvstem as a reference state,
then r is determined by the linearly independent coordinates L
But one can also choose the deformed state as a reference svstem.
In this case R is described by the linearly independent coordinates
yl. As a basic syvstem we choose a cartesian coordinate system
with the unity vectors e;.

i

(2.2) reve,
(2.3) rex'e,=(y'-v')e
(2.4) Re(x"¢v')e,= yle; .

: s /10
Between the coordinates x' and v' there is the following

connection via the components of the vector of displacement:

(2.5) ylex'ev!

* (2.6) x'ey'=v!,



The differentials are:

’ : : /
(2.7 dy'= gfrdx"q' d""(d.ﬂj . gfr) dx'’
(2.8) dx -?ﬁp-dy o, dy 6‘ ‘ay,) dy',

-

By mutual insertion of (2.7) and (2.8) into each other and
with the requirement of linear independence of.tho coordinates,
one gets the relationships which demonstrate aiJ and hiJ as
inverse to each other.

o
(2.7 dl=aq’by=b/ay.

In elasticity theory two distortion tensors are known. The
most used is CGreen's tensor, which refers distortions to the un-
deformed state. The counterpart is a tensor that refers distor-
tions to the deformed state. It is also called the Almansi tensor.

First we will show the derivation by differentiation according
to the coordinates of the undeformed state. The basis vectors
are obtained by differentiation according to the coordinates:

dr _ 9x! A
CAF i RO LR

(2.10)
ar d by J
%50 "o (Ve

The metric coefficients result from scalar products.

9,99 =9
. XK_K
(2 1'") GU"G,' Gl-a’ al 4

From the transformations:

9:".9:#.9'

(2.12)
Gf -GIK G.



one gets the contravariant basis vectors. Here the transformation

is performed with (2.9) in the case of basis vectors of the
deformed state.

g'-e
(2 i3) o o
0"b; & .

With the metric coefficients one can describe the arc ele-
ments dR and dr.

dR=G dx' dr’=0, dx'dx’
(2.14) i
dr =g, dx’' dri=g, dx'dx’.

The components of the distortion tensor result from the
differences.

1 dR*-dr* 1

An equivalent derivation results from differentiation accord-
ing to the coordinates of the deformed state.

__ df' ] =
(2.16) 9_"()' v')e X0

G- y v % dhﬁ €

The metric coefficients:

~
——
[ %]

|

99 96"y
(2.17)

G =G G =d; .

The contravariant basis vectors:



- [}
g=ae
(2.18) £

G'=¢ .

The arc elements referring to the deformed state:

dR=G dy' dR*'- G, dy'ay’
(2.19)

dar=g dy'  di’- gy u'ay’.

The components of this tensor of distortion:

s .1 dRl-gr? 1,.
. 7ir ¥ Srar - 7(6-).

In (2.15) one finds the components of Green's distortion
tensor, and in (2.20) those according to Almansi.

But a tensor
is fully known only when

given in connection with the basis,
Then it must also be irrelevant what method

is used to derive
the components.

Almansi's distortion tensor is referred to the deformed

basis, so that the complete notation looks as follows.
equations (2.13),
both derivations,

With
(2.28) and (2.9) one can show identity for

@20 G z,6'6' 7(6,79,) 6’6’ -5 ("™ d;)6'6’ -

- I (Gt 8 ) ey em

by ]
—
i

- - m 1 [ o f
(2.21) = Fim 5'6'"-}(61111'91,;:)5'5 * 5 (din~b1bm)e €n.

The same applies to Green's distortion tensor, which refers
to the undeformed tensor.



G2y 9'9" 7 (0,79,) 9’9’ 5 (00, -4,) e, ¢, -

» mzn. ! :
wwm om0 '3(%-4..,)9";"-5-(4,,,,-&; bn )79~

!
=7 (a"e"d;)ee.

There are also equivalent definitions for the stress tensors.
First there is Euler's tensor, which refers the stresses to the
deformed state. Then there are Lagrange and Kirchhoff's tensors,.
Both refer the stresses to the undeformed state. However, they
differ from the Euler tensor in their transformation laws. La-
grange's tensor does indeed refer the stresses to the undeformed
state, but they act in the direction of the normal lines of the
deformed system. On the other hand, the Kirchhoff tensor repre-

sents a complete transformation into the undeformed state.

(2.23) EULER:

J=t’6,6-t"6,6
with
ilf-rua"ajl'
(2.24) LAGRANGE:
i Al
§-r” 19T G
with :

o e
r’=-r"o; of.
(2.25) KIRCHHOFF:

Y o wchl
k9GS G
with
T
S3%n & .
/14
It is common practice to mention only the cemponents. Accord-

-~

ingly, 1 i are called Euler stresses, T
s') Kirchhoff stresses.

i
J Lagrange stresses and



Ihe forces acting on the surface elements dli are as

follows for the three tensors:

(2.26) (Car ) =" tm ay'dy™ = 18 t "6 & pg Ox"dx’
(2.27) (t'dF), = T, € ox'ax™

‘ y ax'ax”
(2.28) (t'af) = S7¢ &um

Ciim® Permulaton .

The scalar triple product of the basis vectors reproduces
the change in volume compared to the reference syvstem with the
unity vector. Since the mass remains unchanged, these values
must be inversely proportional to the ratio of the mass density,

6= (0, xG) G, = def/q’l--%—

(2.29) ]
G- (gx8) g = det 18]/~ £~

In the Lagrange equation the forces are set equal to each
other since they have the same directions.

(2.30) (t'ak), = (t'aF ), .

From equations (2.23) to (2.30) one can derive the connec-
tions between the components by mutual substitution.

rut. ﬁ. b; f’. o '/6" trla’l

fll‘. f 0," r:l'

(2.31) or

In the Kirchhoff relationship the force referred to the



deformed system is transformed into the undeformed system. The
differing directinns must then be taken into account, /15

(2.32) b 150, b, " dx®=5"¢ €, g axox",

From this one gets the transformation for the Kirchhoff com-
ponents. They must correspond to the completely transformed
tensor components with the change in volume tasen into account,

571G b} b E™*16 "

(2.33) er
#/- 4 ol ol s™
o

The transforrations in (2.31) to (2.33) are found thus in
Fung [2]. The derivation there is based solely on considerations
of differential geometry, since Fung operates only with the compo-
nents of the stress tensors and thus cannot apply equations (2.23)
through (2.25). As can be seen, the components of the Euler and
Virchhoff tensors are symmetrical. The components of the lLagrange
tensor, on the other hand, are not symmetrical.

The Euler tensor (2.23) will be used here for the further
treatment of the non-linear problem. The stress-strain relation-
ships for the general case in any kind of curved system are
derived by Green and Zerna [3].

: kA il 1k 2V _ij.k
(2.34) r"-/:(o' 6¢"40"6" + 355 6”6 );u.

If one transforms the components 1) and K1 into the com-
ponents referred to the deformed system, one gets the krnown equa-

tions:

10



- r"0"
(2.35) ond
)-'M 7 b; ’l'

- ' 4 )
i 2p (7 * 157 7 9”)
(2.36) ond
F"-"/JZ] "J
g = torsion modulus

v = coefficient of transverse strain,

S
[—y
o

Since the deformed state of the rod is to be described only
as a function of length, the position of the deformed rod axis is
of fundamental importance. The position vector of a rod axis
point has been described in detail by the author elsewhere [10],

so that w . vy dispense with a detailed presentation here.
point of ithe rod axis in an undeformed state,

(2.37) re=xe ,

converts in the deformed state into

(2.38) R_g' (xtu)e*ve* wey .

With the longitudingal element

(2.39) ds= Jl1+u)2 e v w™ ge=(1+ ') ax

The

one gets the tangent to the spatial curve of the deformed rod axis.

(2.40) drs 2 (1rullet vy twe

ds EI‘ ]f”"U‘),'V',’ wl!'



The other two unity vectors ¢, and 63 are given in |10].
They are determined from the theory of curvatures of curves in

space.
A

(2.41) d . ot 2
j wiat=[% ©° 9 €
é % 9 0 &

/17
Here o, is the torsion corresponding to the change in angle
per unit of length with reference to the rotation of the cross

section around the rod axis.

(2.42) [ T-%T :

The curvatures p, and py are bending curvatures determined

mainly by the displacements v and w.

For the displacement of a point in the cross section, first
a general statement will be made, so that the specific limitations

of rod-beam thcory can be made clear.

The cross-section point in the undeformed state,

(2.43) rexe *neties,

converts into the deformed position

(2.44) Re=Rs+(hayle, *(pth)e *(E4h )e, .

The fi functions are at first still unknown. The curvature

of the cross section is proportional to the torsion and a curva-

ture function as a quality of the cross section.

12
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(2.45) T 919

The basis vectors of a deformed cross-soction fiber are

now determined by differentiation.
- ,l'—l a
Gy .gf.— (1+G) {[1-(746)5 #(;06)54 -’—l"g, je'o

. £ 1.
[Fless theaug 7% | & ¢

(2.46) "R
+ [(r+2)g, - theang e ] ‘:}
R _ (3, 3w 3 , ([, )z , O
oy (G Sp)acrmio@e
(2.46) LA
dR

o g (3 580 e Ghee (15

These equations represent equations (2.10) for the deformed
rod as a continuum. The éi basis vectors, however, are not the
basis vectors of the fundamental system ej. But there exists only
a rotation between the éi vectors that form the accompanying tri-
hedral for the deformed rod axis, and the e, vectors. Thus on the

J

basis of e., too, the same connections as above can be derived

1’
for the stress and distortion tensors. For both stresses and
distortions, the same transformations apply as between the basis

systems ¢. and ej, since both bases, as orthonormalized vector

i
systems, are identical to their contravariant bases.

Th. establishes the foundation for a further discussion of
possible rod-beam theories. As can be seen from the basis vec-
tors (2.40), a complete nonlinear treatment in its further expan-
sion would become extraordinarily extensive. It would moreover
be pointless, if it can be shown that only to a certain degree
can non-linearities be taken into account in a rod-beam theory
without contradiction.



3. Lincarized Rod-Beam Theo ry

In a lincarized theory all deformation quantitics are

taken
into account only when they

occur linearly., Since they may be
elements of higher rank are negligibly
in the deformed state are as follows:
. L] ’ M
b= [10'- pg, ‘§p c8"g tfJe s [-26'1; Je, +[p8' 1y ]e,

e
(af. &b g}s)&

assumed to be infinitesimal,

small. 'he basis vectors

fy
ag 8: (" "“"ag ey .
/19

'he linearized metric coetfficients are calculated with(2.1D,

dropping the non-linear elements.

Gy = 142 (0"79,'33'0'{’“6'}

(3.2) 6= 6' (—gg-g)* 5%4;

Since the metric coefficients in the undeformed state are

equal to the components of the unity vector, the distortions in

2.15) result very simply,

’" -g'- ?2,' gj,: + o',%of;'

X3
" e dold) $3ee)
w3 o (o) 7 (5)
14 Z”.:;_ 6_?‘%)



Since only linear elements can be taken into account, one
can replace the contravariant metric coefficients in (2.34) with
the components of the unity vector.

b 7%7» [(1-9)3,* vir * Vi)
T ?% [V):,‘("V))}:"’Zu]
g Tz?”? [vau* vt (1% 0]

(3.4) rl?. :ﬂﬁ'

t"=2p g
TP 2p 0 -

Linearization moreover leads in (2.23 to the fact that the
stress components from (3.4) apply to both the deformed and un-
deformed state. In the linear case, the Euler, Kirchhoff and
Lagrange torsions on the one hand, and the Green and Almansi
torsions, on the other hand, are equal.

Now, with the exception of curvature, rod-beam theor’ re-
quires flatness of the cross sections. But for this and all fur-
ther cases of possible rod-beam theories, this means fl must be
zero. Moreover, no normal stresses transverse to the rod axis
should appear in the rods. Thus transverse contraction must be
unhindered. But the cross section form must also be maintained.
Thus one must require that the distortion Yo3 become zero. Firally
the shearing deformations due to bending should be negligible or

{b) T”'f".o
! (éf’-«a "")-o

() %7 \d¢ " dp
(1.5) afy .
'a-‘*f;"o
) af
.ag.u;uo.
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|

Condition ) in (3.5) leads to the following result:

(3.6) g'e ;‘:—‘,ﬂ—v (1-v-20%) 3, =2p( 1V )Y,y = Egu

s

1,92 6
(3.7) &8 VR"" v(o'-p9,°89° 6g] 7;

The hitherto unknown functions f, and f; can be determined
by integration from (3.7):

6- -y a'?*z,-ylg‘ygg'e.jgd?j’c“;)

(3.8) 6._y[a.g_?£P’4}§'P’+97gd§]‘cl{p) ’

The solutions to (3.8) must satisfy condition (¢) in (3.5).
% 9% de,
3= [rgref5h ] 5
a of9 de
#-'v['is"’/'ag‘dd*#-

The following connection exists between the stress function

(3.9)

for the torsion stresses and the curvature function:

¢ dy, dé
(3.10) %'3{“5 ) 3’?' o 7

With the means of partial integration one then gets from
(3.9) with (3.10):

iz df ity (p)

L %2 apifys Lotte , 20010
(3.11) dz "ap _[’f'gg‘?e(s 7)) al anp

To satisfy condition (c¢) in (3.5) we must have

g8)v [-F85+50'¢ ]

: 1 !
(3.12) G(p)- V[F ?'P,' "8'6'?’j"1'
If it is predicted that the cross-sections will remain 22

16



flat, then fl = 0. If at the same time only torsional shearing
deformations are to be taken into account, then fi and fg must
be of a negligible order of magnitude. Thus one must set down
a few considerations on the order of magnitude of the deformations

and cross-section dimensions.

In theories of higher rank one assumes that the deformacion
quantities are finite but small in comparison to the length of
the rod. They are viewed as small in rank one. The longitudinal
strain in the direction of the deformed rod can result either
when a longitudinal force acts directly on the rod, or when such
a force arises because of bending when the rod ends cannot be
displaced. 1In both cases one must consider it small in rank two,
as can be seen in the description of the longitudinal element (2.39).
The cross-section dimensions in a rod must likewise be small com-
pared to the length. The maximum values of the coorlinates n
and ¢ are thus small in rank onc¢. The curvature function b
ecause of a quantity equation in (3.10), must thus be small in
rank two. Moreover, one can view the coefficient of transverse
strain v as still being small in rank one. Its maximum value of
0.5 for incompressible materials cannot be expected in rods, since
such materials are rubbery and have inadequate resistance to bending.
In general one must anticipate v = 0.3,

One thus gets the following hierarchy of orders of magnitude.

d d
o(g): p,g,ﬁ,ﬁ,.ﬂfnﬂna:a:v
(3.13)
0(5.}" g:a'

Thus the largest terms in f, and f; are small in rank four.

(3.14) o(e*): h, 1y

Therefore a rod-beam theory with requirements (3.5) can f23

be considered free of contradictions only to the third order under

(3.13). If terms of higher rank are taken into account, the normal



preconditions in the context of rod-beam theory are violated.
An improved solution is thus possible only by way of disc, plate

or shell theories, or in extreme cases, continuum theory.

We will include a short discussion for very thin rods in
which the cross-section dimensions can be designated as small in
rank two. The hierarchy of orders of magnitude then appears as

follows: ' at
o(€) .-3,9.,8,8,»

dy, d -
0(.3')" ?' g'# ;3%, g’

o(&'): %

(3.15)

If one wants to include terms up to the fifth order in such
a theoryv, in order to include the curvature force effects from
S":ﬂ, there is still onme term each lef* for the functions f, and fg.

he=-vd'p+q ° o(e*)
(3.16)
h=-va't*c? “o(e’) .

Shear stresses result from this when u' is not constant
throughout the length. The variable transverse contraction causes
torsional distortions if the cross sections are to remain flat at
the same time. But if one allows the cross section points to
deviate from this hypothesis, it would be small in rank seven

for very thin rods,.

(3.17) r;-;’- v 0° (g8 )" prcEve) Sold”) .

Since only terms up to the fifth order are taken into account,
the cross section can be called flat with adequate precision in the

context of these considerations. At the same time the shear

18



/24
distortions can be further neglected, and the characteristic
stress state for rods is maintained.

We have thus established the outer limits within which rod-
beam theories of higher order must be realized.

4. Rod-Beam Theories of Higher Order

In this section we will draw conclusions for rods in which a
finite, known torsion can appear. Such rods appear as rotor
blades in helicopters or extending/retracting rod antennae with
open sections in satellites. The rod theories used in these
cases [1,6,7,9] are either linearized theories with equilibrium
formulations in the deformed state, or non-linear theories that
lack an unobjectionable distinction between stress and strain
tensors. The concluding section will discuss the possible conse-
quences of confusing Luler and Kirchhoff stresses.

4.1. Simple Rod Theory

For a rod with a finite pre-twist, torsion in the deformed
state is

6,+6'
(4.1) Q'W ’

so that for the curvature of the cross section one gets:

= 6,*6'
(a.2) Ge® 8 %" Teg" %

The orders of magnitude for this case are to be assvaed as
follows: dp, dp, % b
(4.3) o(eg) - 7,5,3—,2',732',2.,9,,9.6, »
o(€) - ¢, g’
s, Of df dfy, df /25
°o(€) Gy T T T 1o

(4.3)



3 will be neglected. From

Terms of higher orders than ¢
equations (2.46) one can form the basis vectors G, up to order
¢”. The stress-free original state is merely the pre-twisted rod,
The components of the distortion tensor in this case are:

AT FAR AN N Vs YL
tb%gyaw“g%

(78] ao 3t

w3 (030 -2) a3 (-ngreg) qigg ]
x.-}[e’(‘a’?'v)'q;%? QIRIIRITY,
w oy R ae 3 (5 58) .

"o transform the Yij components into the ;kx components under

(2.35), one needs transformation coefficients only up to rank
2

Since the lowest order of distortion is €, no terms of higher
order are needed for the transformation in the context of this

(4.49)

approximation.

(4.5) (GL‘G@
with , _Ql £ 6;?
la
o/~ [ 8 3? 1
(4.6) a2 /26
g2 o 1
ond §
(a.7) (6'),= & ¢’
aith 'iﬁ‘ , 0
' -Q'dy ‘Q,;ﬁ?
(4.8) Qz 6% ! 0
-§p 0 1
ond

(4.9) (ﬁ;ﬂ- ¥ .



The ;kl components of the Almansi tensor in the accompanying

¢; rod system are:

. é
7,0 005896360 (‘%?'P??)

;'ll-s-% 60'9'935
e b [(52-e)- 0 3 (20 v s0) s
£,-:'r[ (52 % .y)-60 38 (20 1 *58)- agq]

h s (32 ‘) 54'8'(*53?'??%)-

(4.10)

The ;kl and :kl components involve distortions and stresses
referred to the deformed state. The pertinent orthonormalized
basis is the rod's own system, the accompanying trihedral of the
rod axis éi‘ The assumptions of rod-beam theory must thus apply
to these components. These requirements, as raised in (3.5),
are satistied by the following solution
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(4.11)

This yields the ?kl components of the Fuler tensor in the

accompanying system éi.
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As can clearly be seen from equations (4.12), this theory

yields only stresses and distortions which are linearly dependent
on displacements and twisting. Thus only a linearized theory
can be carried out; but it makes it possible to set up the equi -

librium in the deformed state.

4.2. Non-Linear Rod-Beam Theory

The orders of magnitude for very thin rods must be applied
in this case.
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lerms of orders higher than ¢” will be neglected in this
theory. [Irom equations (2,.46), the basis vectors of Gi are formed

up to rank ¢%. The stressless state is again the pre-twisted rod.

The components of the distortion tensors are now:
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2
Since the distortions present rank ¢° as the lowest one, the
transformation coefficients for the transformation into Fuler and
Almansi components must be developed to rank e,
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The :kl coefficients become
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The requirements of (3.5) are satisfied by the following

solution:

6= -v[(a-F o)y ei1-20)(-3 g pg ) 0" g ap -
-e.:e[(f*v)gg-vfp g'?dv]‘cgfé)

f=-v [(u'}" a?)g* (1-20) (- p&g * 78%)e'[q ag -
-6’ [v[e S ot~ (1v) pg ]+ s (7).

(4.21)

In order to be able to ignore the shearing deformations fur-
ther, a negligible function of ranke¢' is assumed for f, as in (3.17).
The ?kl components of the Euler tensor result as follows:
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The stresses in (4.22) make possible a rod-beam theory
that allows nonlinear terms in the curvatures ¢, ando ;. A
theory to rank e as in (4.13) represents the mast cxt}cmc degree
of non-linearity in a general theory for very thin rods. For
special, less general stresses, however, the possibilities for
individual cases are not so limited. But in most cases a general
stress with longitudinal force, bending and torsion cannot be /31
ruled cut.

5. Negligibility of Secondary Shear Deformations

In the previous sections it was shown how a compatible
state of deformation can be brought into accord with rod hypothe-
ses by the defined neglect of terms of higher rank. BRut second-
ary stresses also occur in rods for reasons of equilibrium, when
the longitudinal stresses in the rod are not constant across its
length due to variable bending or curvature.

The resulting shear distortions are not taken into account
in the deformation expression for the rod, 2s a result of the
simplifying hypotheses. These shear deformations thus violate
the compatibility conditions. A significant problem of all rod
theories is therefore to make these additional deformations
"tolerable". For the case of thick rods, approximations have
been developed and show the remaining error to be negligibic in
most cases [4,5,11].



Here we will consider only thin rods. llere again we find
the question of what degree of precision still makes sense in a
non-lincar theory, when the secondary shear deformations are to
be further neglected, as is generally the case. If a rod theory
takes account of terms of higher order, of the same order of
magnitude as the neglected shear deformations, the theory becomes
dubious.

If one turns to linear theories, initial equations of order
of magnitude can be given for the secondary shear deformations.
Since the linear theory does not have to distinguish between the
cifferent definitions of stresses and distortions, thc equilibrium
in the longitudinal direction cen Le written directly with the
components from (3.4). Here additional expressions must be taken
into account for shear stresses due to variable longitudinal
stresses.

s B a(r‘;‘ri"-w) 9 ra) iniit,
t 7 d& "

(2]
(S

Equation (5.1) can be transformed with (3.3),(3.4),(3.8) /
and (3.12).
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In equation (5.2) the f2 and f3 solutions from Section 3
are still taken into account, since their derivations from the
cross-section coordinates are used. The resulting stresses and
distortions remain of the same order of magnitude as fz and f3,
and are thus negligible in the context described above.

From equation (5.2) one can split off an equation for vari-
able longitudinal force.

(5.3) £’ +g*0

26



llere the alteration of the longitudinal force, for instance,
is proportional to the inertial forces, due to the rod's weight,
which are constant across the cross section. Any alterations of
q, across the cross section, whether linear or proportional to
curvature, would contain bending and curvature inertia terms.
They are of the same order of magnitude as the corresponding
terms from the longitudinal stress, so that one can dispense
with an explicit acknowledgement of them.

Also conceivable is an alteration in longitudinal force due
to shear stress on the rod surface in the longitudinal direction.
The resulting force introduction problem, however, cannot be
solved with the tools of rod-beam theory. Strictly speaking,
external transverse loads are also not possible in rods, since
they would entail stresses normal to the rod axis.

If, however, it is possible to represent secondary shear
deformations as negligible in rod-beam theory, then the rod-beam
theory in itself is justified. The equilibrium in a single volume
element of the rod then becomes uninteresting; only the equilibrium
in a rod segment is set up. Here the cutting forces integrated
across the cross section are used.

Taking (5.3) and the negligibility of the transverse deform-
ations into account, one gets the secondary shear stresses as
follows:

r
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With the order of magnitude in (3.13) one gets



(5.5) 6'%%-0&7 and e'%{-ouv-

The other teims in (5.4) seem to be of the third order. But
one must note that the shear stresses can only run parallel to
the outer edges of a cross section. Perpendicular to the edges
they must be zero. The parabola-shaped curve thus caused further
limits the size of the shear deformation.

For a rectangle of height h with -h/2 < n < +h/2 and h = o(¢)
one zets

£ (h' J ;f)
(5.6) 'on ?;;.PJ & '
The maximum for Yy, at 2u ~ FE is then

hl
(5.7) max 3," 9 g =o(g)

Thus in thin rods one can assume that the secondary shear
distortions can be considered to be of the fourth order. The con-
clusions drawn at the end of Section 3 remain the same, even when
one is considering very thin rods.

In the case of theories of higher order one can provide the
same demonstration for each individual case. For the statement /34
of equilibrium (5.1) the Lagrange components referred to the basis
system e. are are most suitable [2]. The equation then takes

i
the same form,

'ar" 3(""‘“):;1 5 a(r”‘ r::w) .
(5.8) 'a_x‘ * 67 a'*g *Qy o

The only tiiesome part here is the many transformations,
where one must z1lso take into account the fact that the'lagrange
tensor is not symmetrical.



If one considers only the secondary shear formations, the
degree of precision can be further increased by suitable approx-
imations. But, as shown in the last Section, one would thus get
into orders of magnitude in which the neglected transverse strains
would again play a role. Thus c¢nly special applications of
theories of higher orders are conceivable., A genera!, non-linear
rod-beam theory, on the other hand, remains valid only to a

limited extent.

6. Cutting Forces

Within theories of higher order one must set up the equili-
brium in the deformed body. For rods this means that the cutting
forces and moments must be determined for the deformed rod. Since
the surface differentials which are necessary in connection with
the Euler tensor ikl under (2.20) are either unknown or hard to
come by, one must detour to the Lagrange components under (2.31).
Under definition (2.30) this does not change the size and directicn
of the cutting forces.

The stress vector in the rod cross section, referred to the
undeformed cross section in the direction of the normal line of
a deformed surface differentiai, is thus formed according to (2.31).

A - 1 a shkA A
(6.1) e =/Gb T e=ICt"a'e .

In linear theory both the volume changes and the transforma-
tion a? and hg are neglected. Thus no distinction is made among
Euler, Lagrange and Kirchhoff stresses. However, it is frequently
the case that one must consider known or partially known stresses
on the rod. Since in this case the deformations by wav of the
stress-strain relationship can be replaced by the corresponding /35
forces, it is possible within a linearized theory to take trans-
formations into account in (6.1) to a certain extent. In the case

of such a "postponed" expansion of the theorv to a higher order



== equilibrium in the detfined rod -- the stresses are often con-
fused. As soon as the classic linear theory is left behind, one

must distinguish buler, Lagrange and Kirchhoff stresses.

With a simple example we will show shat errors can be pro-
duced by a non-observance of the different stress definitions,
We choose the example of a curvature-free cross section (¢ = 0)
under torsion and longitudinal stress. A completely curvature-
free cross section is for instance a closed circular c¢ross section
in which the shearing axis center and the centroidal axis are the
same. A precision of ¢ is to be reached under the simple rod-
heam theory (Sec. 4.1). There will be no pre-twisting of the

Cross section.

Under (4.12) Le Fuler components as a function of the de-

formations u' and 8' are as follows:

a8
r"'fﬁ'

2 ’
(6.2) Tr-pte
a
t"'/lpa'
t""' 0
If one stays with strict linear theorv, then L TIJ.

since the coefficients of transformation, insofar as tunev are a
function of the deformations, are still negligible. But if one
assumes that the stresses can be expressed by known forces, then
despite linear theoryv, the transformations can take into account
those terms that contain the distortions linearly. One develops
a linearized theory with the establishment of equilibrium in the

deformed rod.

From (2.46) the basis vectors to rank £~ are obtained:
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According to (6.1) with (6.4),(0.5) and (06
components in the rod cross section are:
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The longitudinal force acting en the rod in the direction 3
of the tangent to the deformed rod axis results from the surface

integral across the cross section.

(6.9) N‘/f"df-ff"dF-FFG'
F F



lhe torsion moment is formed by the torsion shear stresses.,

(6.10) p-f(:;ﬁ"-;?")dr-[(pr"’-gf')dr

It one confuses the Fuler and Kirchhoff stresses, one gets
a coupling of longitudinal force and torsion.

i 0 'f[(f'u"')(?T"'ér")‘(?"é')a'r"_’[dr.

As can be seen from (06.11), the second term under the inte-

gral vields the common expression with the polar moment of inertia.
(6.12) ,6't"- 1,6 %=i'Ne'
: ( > T % ’

This term from integration (5.11) disappears, however,

FE
. . 12 13
takes into account the fact that the shear stresses 1 and 1

one

cannot even approximately be set equivalent to each other in the
context of the precision required here. Rather, the inverse of

(2.23) as given in (2.33) must apply.

(6.13) v =0 0) T
with
t" =" (1-23')
(6.14) 7 {:"ga';f-"“-a')
t=-t"pa"(1-a) .
If one inserts (6.14) in (6.'1), the result remains as /38

shown in (6.10).

For physically obvious reasons, longitudinal force can not
at all be coupled with torsion in the case of curvature-free cross

sections. Since curvature-free cross sections do not curve, the

e

7



movements of a point in the cross section due to strain in the
direction él and torsion in the plane (e, ésl are exactly per-
pendicular to cach other in the context of a rod theorv., Coupling
is thus ruled out.

However, the case of curvable cross sections is different.
lhe example chosen here is a thin-walled open cross section,
with a contour midline that must be free of shear stresscs because
of the closed shear lines. For the curvature function one then

gets:
dy (JP
._.J - aﬂd —‘- - -
5.18) (a? A €. GE fp Tm
: . 222 _ 233 _ 223 _ 232
Since for a rod it must be that " = "7 = "% = "% = 0,
the Lagrange stresses still result as
- - "’ ”
2. 18) T". f“ and : if .? =

2 )

12

2 2} - . .
But stresses = and 1 in this case already contain the

coupling with strain. If one takes into account in (4.12) that

u' = N/EF, the coupling can be included even in a case without
pre-twisting.

$17) 2 2o, 20 ' N ‘
g0, G O TR

If one now applies the surface integral (6.10) to (6.17),
one gets the sought-for effect of the longitudinal force on torsion.

The considerations here make it clear that rod-beam theories

(7
L7



can include non-linear effects only to a certain degree. If a
still greater degree of precision is to be achieved, it cannot
be in the form of a rod-beam theory. /39

The simpler rod-beam theory, which only takes linear terms
of deformation into account and includes effects of a higher order
if they are given by known load functions, requires the same pre-
cision in its differential geometry assumptions as does a non-
linear theory. |If this is not provided for, one gets varying
results that cannot be brought into accord with each other.
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