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SUMMARY 

A method is presented  for u s i n g  the  results of optimal  control  theory t o  
synthesize a feedback f i l t e r .  The feedback f i l t e r  is used to  force  the  output 
of the f i l tered frequency  response to match that of a desired  optimal  frequency 
response over a f in i t e  frequency  range. This  matching is accomplished by 
employing a nonlinear programing algorithm to  search  for  the  coefficients of 
the feedback f i l t e r   tha t  minimize the  error between the  optimal  frequency 
response and the  filtered frequency  response. The  method is applied  to  the 
synthesis of an active  flutter-suppression  control law for an aeroelastic w i n d -  
t u n n e l  model. I t  is shown that  the  resulting  control law suppresses f lu t te r  
over a wide range of subsonic Mach numbers.  The s tudy  indicates  that t h i s  is 
a promising method for  synthesizing  practical  control laws u s i n g  the  results of 
optimal  control  theory. 

INI'RODUCTION 

I n  modern control  theory, a number  of methods  have  been developed to 
design  control systems which require  multiple  variables  (so-called  state 
variables)  to  describe  the  state or condition of the system. Optimal regu- 
lator theory (ref.  1 ) is the most widely u s e d  method for  determining  optimal 
control laws that feed back a l l  of the state  variables  (full-state feedback) . 
Most applications of optimal  regulator  theory have  been limited  to problems 
w i t h  only a few state  variables. Recently, however, t h i s  theory has been 
applied  to  aeroelastic problems that  are  generally  characterized by a large 
number  of state  variables  (ref. 2 ) .  

Several  researchers have applied  optimal  regulator  theory  to  active f l u t -  
ter  suppression. The two-dimensional f lut ter  problem was investigated by 
Lyons et   a l .   ( ref .  3 )  and  Edwards (ref.  4 ) .  Their work was extended i n  refer- 
ence 5 by considering a more complete mathematical model incorporating  three- 
dimensional  unsteady  aerodyrnmics. It  is shown i n  reference 5 t h a t  optimal 
regulator  theory  provides full-state feedback control laws that  are  very 

I 1 attractive  for  f lutter suppression. 

A major  problem i n  the  application of optimal  regulator  theory is the 
conversion of the  theoretical  (full-state feedback)  control law into a prac- 
t ical   control law ( that  is, one that can be readily implemented). T h i s  problem 
arises because optimal  regulator  theory normally requires  that  all  state  vari- 
ables be available  for feedback. Direct measurement  of a l l  feedback s ta tes  for 
an a i rc raf t  wing, for example, is not possible, and a method is required to  
obtain a practical  control law  from the  limited  sensor measurements available. 
Konar et al .   (ref.  6) developed such  a method by adjusting t h e  optimal ful l -  
s ta te  feedback gains to be compatible w i t h  sensor measurements. T h i s  method 
uses a numerical search  algorithm i n  the time domain that  adjusts feedback 
gains  while  maintaining  the least  amount of increase i n  the  quadratic  objective 



function. This method has been applied  to  studies  involving  load  alleviation 
for  the C-5A (ref. 2) . 

The purpose of t h i s  paper is to describe  a  different approach that uses 
frequency domain techniques  to  obtain  a  practical  control law. This  approach 
employs a  transfer-function matching technique  developed by Coffey (ref. 7 ) .  
T h i s  method uses  a  gradient  optimization  algorithm  to  design  a feedback f i l t e r  
that  forces  the open-loop  frequency  response of the system to match a  desired 
open-loop frequency  response. I n  reference 7, it is assumed that  the  desired 
open-loop  frequency  response is k n o w n .  The present approach defines  the 
desired open-loop frequency  response as  that of the  optimal  full-state feedback 
system. Also given is a  brief  description of the method  employed to develop 
the  equations i n  terms of state  variables. The technique is applied  to  the 
synthesis of a  practical  control law for active  f lutter suppression of an aero- 
e las t ic  wind-tunnel model. 

SYMBOLS 

a i  

b0 

C 

k 

L 

M 

9f 

2 

i t h  denominator coefficient of actuator  transfer  function 

numerator coefficient of actuator  transfer  function 

reference length ,  m 

steamwise local chord, m 

error  function i n  frequency domain 

frequency, Hz 

factor i n  feedback f i l t e r  

gravitational  constant, 9.80 m/sec2 

feedback-filter  transfer  function 

quadratic  optimization  cost  function 

scalar  gain  for feedback f i l t e r  

CW 
reduced frequency, - 

2u 

number  of frequencies 

number of aerodynamic lag terms 

f lu t t e r  dynamic pressure, kPa 
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2 3 J  free-stream dynamic pressure, - pUw2, kPa 

S 

t '  

UW 

U 

h 
U 

- 
U 

Y 

z 

Bm 

6 

W 

Wn 

Lap1 ace variable 

time, sec 

f ree-stream veloc i ty ,  m/sec 

control  input 

practical  control  input 

optimal control  input 

vertical  g u s t  velocity, m/sec 

output  variable 

vertical  displacement, m 

aerodynamic lag terms 

control  surface  position,  positive 

actuator conmand,  deg 

dampi ng ra t io  

circular frequency,  rad/sec 

natural frequency,  rad/sec 

Matrices: 

down, 

total-system dynamics matrix 

actuator dynamics matrix 

real aerodynamic matrix  coefficients 

vehicle dynamics matrix 

generalized aerodynamic-force matrix due 

total-system control  distribution  matrix 

actuator  control  distribution  matrix 

vehicle  control  distribution  matrix 

to w i n g  motion 
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{ G  ( i k )  } 

[ I1 

total-system  state-coefficient  output  matrix 

actuator  state-coefficient  output  matrix 

generalized damping matrix 

vehicle  state-coefficient  output  matrix 

row matrix of mode-shape amplitudes 

vehicle  input-coefficient  output  matrix 

generalized aerodynamic-force matrix due to  control  surface  rotation 

generalized aerodynamic-force vector due to  vertical  gust  velocity 

identity  matrix 

optimal  gain  matrix 

generalized  stiffness  matrix 

generalized mass matrix 

Riccati  matrix 

output  weighting  matrix 

generalized  coordinate  vector 

control weighting  matrix 

total-system  input  vector 

actuator  input  vector 

vehicle  input  vector 

optimal  control  input  vector 

total-system  state  vector 

actuator  state  vector 

vehicle  state  vector 

total-system  output  vector 

actuator  output  vector 

vehicle  output  vector 

. .  
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c 61 control  surface  position  vector 

Subscripts: 

f   f lutter 

I imaginary part of  complex value 

R real  part of  complex value 

rms root-mean-square value 

Dots over  symbols denote derivatives w i t h  respect  to time. 

EQUATIONS OF MOTION 

The equations of motion for  a  flexible  vehicle may be expressed i n  matrix 
form as 

where 

[ Msl generalized mass matrix 

[ csl generalized damping matrix 

[Ks l  generalized stiff ness matrix 

[ A (  i k ) ]  generalized aerodynamic-force matrix due to wing motion 

[D(ik)]  generalized aerodynamic-force matrix due to control  surface  rotation 

{G(ik))  generalized aerodynamic-force  vector due to  vertical  g u s t  velocity 

I n  f lut ter  analyses where unsteady aerodynamics are of  major importance, 
the aerodynamic-force matrices  are normally represented  as  tabular  functions 
of reduced frequency k = c 4 2 U .  With the unsteady aerodynamic forces i n  t h i s  
form, the  equations of motion cannot be written  as  a set of first-order  dif- 
ferential  (state-space)  equations. The equations can be cast  into  state-space 
form, however, by u s e  of aerodynamic approximation functions  (refs. 8 and 9)  . 

Aerodynamic Approximation Functions and State-Space  Equations 

The techniques for developing t h e  aerodynamic approximation equations and 
t h e  state-space  equations  are  similar  to  those  described i n  references 5 and 10.  
The aerodynamic approximation  technique involves f i t t i ng  the curve of a mathe- 
matical  function of i k  to  the aerodynamic forces. Each element of the 
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aerodynamic-force matrix is f i t  wi th  an approximation  function of the form 

The aerodynamic lag terms B m  are somewhat arbitrary but are  usually chosen 
t o   l i e  somewhere within the range of interest  of the reduced frequencies. The 
numerator matrices  are computed to  give  a  least-square  error  for  the  values of 
k a t  which the aerodynamic forces  are known. 

A s  described i n  reference 5, s u b s t i t u t i n g  equation (2) into  equation ( 1 )  
and equating  derivatives  to  the powers  of the  Laplace  operator 
( s  = iw = (2U/c)ik)  yields  the  equations of motion for  the  basic  vehicle. 
Written i n  standard  state-space form, 

fiv 1 = [Av 1 {Xv 1 + [Bvl  fuv}] 

{Yvl = [cvlfxvl + ~Dvl{uvl] 

The elements of the  vehicle  state  vector {X,} are  the  generalized  coordinates 
and their  derivatives. The vehicle  input  vector (u,} consists of the  control 
surface  displacement,  the g u s t  disturbance, and their  derivatives. The order 
of the  derivatives depends on the number  of lag terms used i n  the aerodynamic 
approximation. 

Actuator Models 

To include  the  effect of actuator dynamics during  design of the  optimal 
control law, the  actuator model is described i n  state-space form  and then 
interconnected  to  the  basic  vehicle  equations.  Actuator models are  generally 
represented by transfer  functions. Consider an actuator  transfer  function of 
the  following form: 

By cross  multiplying and equating  derivatives  to  the power 
differential  equation of the  actuator can be written 

d6  d6 

d tn dtn-l 
- + an-l - + .  . . a06 = b06, 

s of s, an n t h  order 

By making the  substitutions  that X i  - - diel &//ati-', a  set  of n first-order 
differential  equations can be written. Thus, 
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6 

dp16/dtn-  1 i [Aa] = 

0 1 0 0 . . .  
0 0 1 0 . . .  

-a0 -a1 . . .  . . .  'an 

The o u t p u t   e q u a t i o n s   o f   t h e   a c t u a t o r  are w r i t t e n   i n   t h e  form 

where 

[tal = 

1 0 0 . . .  
0 1 0 . . .  

. . .  . . .   . . .  . . .  

:Bal = 

0 

0 

bC 

The i n t e r c o n n e c t i o n   o f   t h e   a c t u a t o r  to  t h e  basic v e h i c l e   i n v o l v e s   e q u a t i n g  
t h e   o u t p u t   o f   t h e   a c t u a t o r  to t h e   i n p u t  of t h e   b a s i c   v e h i c l e ,  as i l l u s t r a t e d   i n  
t h e   f o l l o w i n g   s k e t c h :  

Tota l   Sys tem 
"""~"""""""""""""" 

I I 

I I 

1 I 

I ua) { Y v l  I 
I 1 

I 

I 

I 

I 

I 

I 

Actuator  

" " " " " " " " _ " " " " " " " " "  
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By u s i n g   t h e   r e l a t i o n s h i p  {u,) = {YaI, t h e  total-system equa t ions   can  be 
w r i t t e n  as 

or 

SYNTHESIS OF AN ACTIVE  FLUTTER-SUPPRESSION COKTROL LAW 

Regulator  Theory 

Optimal regulator theo ry   p rov ides  for the   min imiza t ion   o f  a q u a d r a t i c  cost 
f u n c t i o n  of t h e   o u t p u t  and c o n t r o l   v e c t o r s   ( r e f .   1 ) .  To f i n d   t h e  optimal f u l l -  
s tate feedback   con t ro l  law, t h e   q u a d r a t i c  cost f u n c t i o n  

is minimized.   This   leads to the  optimal c o n t r o l  law 

For   the  time i n v a r i a n t   ( c o n s t a n t - c o e f f i c i e n t   d i f f e r e n t i a l   e q u a t i o n s )   c o n d i t i o n ,  
[PI is t h e   s t e a d y  s ta te  s o l u t i o n   o f   t h e   m a t r i x  Riccati equat ion .  

The application o f   r e g u l a t o r   t h e o r y  is an  i terat ive process o f   s e l e c t i n g   t h e  
appropriate cost f u n c t i o n   t h r o u g h   c h a n g e s   i n   t h e   w e i g h t i n g  matrices [Ql and 
[R]. The procedure  can be summarized as fol lows:  
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Step 1: 

Step 2: 

Step 3: 

Step 4: 

Define the  output (CY)) and i n p u t  (CUI) vectors  that  relate 
to  the performance goals. (For example, minimum control 
surf ace displacement. ) 

Select   in i t ia l  weight ing matrices [Ql and k1. (For 
example, see  refs. 1 t o  5.) 

Solve equations (1   1 )  and (12) for t h e  optimal  gains ( [K]) , 
t h u s  minimizing the  quadratic  cost  function J. 

Evaluate  the  design, and adjust weighting matrices u n t i l  
performance goals are met. 

The optimal control law requires  the  capability  to feed back a l l  of t h e  
state  variables. Since  the description of the system involves modal or gener- 
alized  coordinates i n  addition  to  physical  coordinates,  direct measurement  of 
all   state  variables is not feasible. Only a linear combination of the s ta te  
variables can  be measured. Therefore, a method is employed which uses the 
available measurements. 

Process for Design of Practical  Control Law 

The process  described  herein  for the  design of a practical  control law is 
performed i n  the frequency domain  and attempts to  match a desired open-loop 
frequency  response. The desired open-loop frequency  response is that of the  
optimal full-state feedback system. The design  process  involves  finding the  
coefficients of a feedback f i l t e r  H ( s )  that minimize t h e  deviation of the 
open-loop frequency  response (^u/u) ( i w )  from the  optimal open-loop frequency 
response (u/u) ( i w )  . (See fig. 1 .  ) Figure 2 is a Nyquist diagram i l lustrat-  
ing  the  results of the  design  process  for a practical  control law. The objec- 
tive is to  make the  deviation from the  optimal system small. I f  t h i s  objective 
is met, the performance of the  practical system w i l l  be similar  to  that of the  
optimal system. 

Error  function.- The error  function is defined  as  the  difference of 

($u) ( io)  and (u/u)  ( i w )  over a set  of frequency  points w i  
( i  = 1,  2, . . 
($u) ( io)  to (u/u)  ( i w )  can be described  mathematically by 

' L  L ) ,  for which a close f i t  is desired. The closeness  of 
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where the  asterisk (*) denotes  the complex conjugate, wi th  

r- 

Feedback-filter  design  variables.- The  form  of the feedback f i l t e r  H ( s )  
to be used is 

The design  variables  are  the  gain K.f, the damping rat ios  5, and the frequen- 
cies wn (of each  second-order factor i n  eq. (15)). The function  f (s)  is 
included to  help  achieve any desired  characteristics of the feedback f i l t e r ,  
such as high-frequency roll-off. The procedure can be described  as  follows: 

Step 1 : Compute the  optimal  frequency  response u/u. 

Step 2: Cmpute  the  frequency  response between the  output y 
and the  control u. 

Step 3: Choose the i n i t i a l  number  of numerator factors m and 
denominator factors n of the f i l t e r .  

Step 4: Choose a f ( s )  to  incorporate any desired  characteristics 
of the f i l t e r ,  such as high-frequency roll-off. 

Step 5: Minimize the  error  function E by using an optimization 
algorithm such as  that of  Davidon (ref. 1 1 )  and Fletcher 
and Powell (ref. 1 2 ) .  

Step 6: Examine the  practical open-loop frequency  response (Nyquist 
diagram) to  establish any possible changes to f (s) . 

Step 7: I f  any changes to  f (s )  are  established,  repeat  step 5. 

Step 8 :  Repeat steps 3 through 7 for  a family of m and n. 

1 0  



Step 9: Select  the  values of m, n, 
smallest  value of E. 

APPLICATION OF 

and f (s) that provide  the 

TECHNIQUE 

The methodology described  previously is applied  to  the  synthesis of an 
active  flutter-suppression  control law for an aeroelastic wind-tunnel model. 
The  model geametry is shown i n  figure 3.  The  model consists of a  cantilever 
w i n g  w i t h  a 20-percent-chord, trailing-edge  control  surface  located between 
the 76-percent and 89-percent semispan stations. The flutter-suppression 
sensor  (accelerometer) is located a t  the 60-percent-chord and 92-percent- 
semispan station. The f i r s t   e igh t   e las t ic  modes1 are used as  generalized 
coordinates  covering  a frequency range from 5.23 Hz to 118.15 Hz. The calcu- 
lations necessary to determine  the  coefficients of the  equations of motion 
(eq. ( 1 ) )  are  described i n  detai l  i n  reference 10. 

Basic Wing Character i s t i c s  

Each  of the aerodynamic terms is approximated i n  the  s-plane through the 
use of equation ( 2 )  w i t h  M = 2. The Bm terms are  varied u n t i l  an acceptable 
curve f i t  is found. T h i s  resulted i n  the Bm terms being selected  as 0 .225  
and 0.500 for   a l l  aerodynamic terms. I n  figure 4,  one  of the  calculated 
oscil latory aerodynamic terms is compared w i t h  the approximation function a t  
Mach = 0.9. I n  general, a l l  of the aerodynamic  terms  have a good curve f i t .  

TO validate  the mathematical model further,  the  flutter boundary  of the 
model without  the  flutter-suppression system (FSS o f f )  is calculated. For a 
specific Mach number, the  characteristic  roots of equation ( 3 )  are found for  a 
Series Of dynamic pressures. The  dynamic pressure  at which the  real  part of 
one  of the  roots becomes zero is the f lu t te r  dynamic pressure. Shown in f ig -  
ure 5 are  the dynamic-pressure root loci a t  Mach = 0.9.  Calculations of the 
dynamic-pressure root  loci were also per  formed a t  Mach = 0.6, 0 . 7 ,  and 0.8 
to  establish  the FSS-off f lu t te r  boundary shown i n  figure 6. A comparison of 
the  experimental results  reported i n  reference 10 w i t h  these  analyses  indicates 
good agreement. 

I n  addition  to  verifying the aerodynamic approximations w i t h  respect  to 
the  basic  flutter  characteristics,  the  transfer  function between acceleration 
and control  surface  deflection (FSS of f )  is compared to  that u s i n g  the origi- 
nal,  oscillatory aerodynamic forces. I n  t h i s  manner, the  approximations  for 
the  control  surf ace aerodynamic terms are ver i f  i ed . The gain and phase curves 
for t h i s  transfer  function u s i n g  the  original  oscillatory aerodynamics (desig- 
nated as k-plane) and us ing  the aerodynamic approximation function  (designated 
as s-plane)  are shown i n  figure 7 for comparison. Good agreement is indicated 
i n  both gain and phase. 

~~~ 

lThe two inplane modes (3  and 8) of reference 10 are  omitted i n  t h i s  
s tudy  . 
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Opt imal   and   Prac t ica l   Cont ro l  Laws 

The des ign   cond i t ion  for t h e  FSS is chosen to be a 44-percent i n c r e a s e   i n  
f l u t t e r  dynamic pressure a t  Mach = 0.9. The FSS is requ i r ed  to i n c r e a s e   t h e  
f l u t t e r  dynamic pressure by a t  least  44 pe rcen t  a t  each  of  four Mach numbers 
(0.6, 0.7, 0.8,  and 0.9) and, a t  the  44-percent  margins,  to e x h i b i t  26 dB g a i n  
margins  and +30° p h a s e   m a r g i n s .   I n   a d d i t i o n ,   t h e   c o n t r o l   s u r f a c e   a c t i v i t y  can 
not  exceed 6O (rms) and  600°/sec (rms). The optimal c o n t r o l  laws are deter- 
mined  by so lv ing   equa t ions  (1 1 ) and (1 2) and   t hus   s a t i s fy ing   equa t ion  (1 0)  . 
Equation (12)  is solved  using  the  computat ional   a lgori thm  developed by  Vaughan 
(ref. 13)  as coded i n   r e f e r e n c e  14. For   the   quadra t ic   op t imiza t ion ,   zero-s ta te  

weight ing ([Ql = 0) is selected s i n c e   t h i s   y i e l d s  a set o f   ga ins   t ha t   a r e  
"cheapes t "   ( r e f .   15 )   i n  terms of   cont ro l   input   ampl i tude .   This   op t imal  f u l l -  
s ta te  feedback   con t ro l  law leaves  a l l  stable eigenvalues  unchanged and relo- 
cates the   uns t ab le   e igenva lues  to t h e i r  mirror image i n   t h e  l e f t  half   p lane.  
Once t h e   f u l l - s t a t e   f e e d b a c k   g a i n   m a t r i x  is de termined ,   the   op t imal   Nyquis t  
d i ag ram  fo r   t he   s ing le   i npu t   sys t em is cons t ruc t ed  by so lv ing  

Equation (16) is s o l v e d   f o r  a series of   f requencies   f rom 1 rad/sec to  
301 rad/sec at   increments   of   3   rad/sec.  The r e su l t i ng   Nyqu i s t   d i ag ram 
( f i g .  8 )  is a counterclockwise circle of   rad ius   un i ty   cen tered   on   the  (-1 , 0) 
poin t .  The f u l l - s t a t e   f e e d b a c k   c o n t r o l  law pFovides  gain  and  phase  margins  of 
-6 dB and  +60°, r e s p e c t i v e l y .  Note tha t   t he   Nyqu i s t   d i ag ram crosses t h e  real 
ax is   on ly   once  (-6 dB) a n d ,   t h e r e f o r e ,   h a s   i n f i n i t e   p o s i t i v e   g a i n   m a r g i n .  

To syn thes i ze  a p r a c t i c a l   c o n t r o l  law f r o m   t h e   f u l l - s t a t e   f e e d b a c k   c o n t r o l  
law, the  f requency  response  between  sensor  o u t p u t  and   con t ro l   su r f ace   i npu t  is 
e s t a b l i s h e d   f i r s t .   U s i n g   t h e  accelerometer l o c a t i o n  shown i n   f i g u r e  3, t h e  
o u t p u t  frequency  response is c a l c u l a t e d  by 

where LC@] is a row matr ix   of  mode-shape amplitudes a t  the   s enso r   l oca t ion .  
The problem is to f i n d   t h e   c o e f f i c i e n t s   o f   t h e   f e e d b a c k   f i l t e r  H ( i w )  t h a t  
s a t i s f y  

o v e r   a   f i n i t e  set of  frequency p i n t s  M i  (i = 1 , . . . , L) . In   the   f requency  
p lane ,   equa t ion  (1 5)  has  the  form 

1 2  
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Employing a . t r ia l  and error approach ,   var ious   va lues  of m and n are t r i e d ,  
and the   combina t ion   t ha t  provides t h e  smallest va lue  of E (m = 2 ,  n = 2)  is 
determined.  The  low-frequency ( 3  rad /sec  to 60 r a d / s e c )   p o r t i o n   o f   t h e  open- 
loop frequency  response  (not  shown) i n d i c a t e d   t h e  need f o r   a n   i n t e g r a t o r .  
The re fo re   t he  f ( i w )  is s e l e c t e d  to be l / ( i W ) .  The error f u n c t i o n  is a g a i n  
minimized  with  the  previously  determined  values  of m and n and t h e  l / (  io) 
i n   t h e  f i l t e r .  F igu re  9 is t h e   N y q u i s t   d i a g r a m   r e s u l t i n g  from the   min imiza t ion  
process. S i n c e   t h e   o p t i m i z a t i o n   a l g o r i t h m   d i d   n o t   r e s u l t   i n  a -6 dB g a i n  mar- 
g i n ,   t h e   g a i n  K f  was i n c r e a s e d   u n t i l  a ga in   margin  of -6 dB was achieved 
w h i c h   r e s u l t e d   i n   t h e   f o l l a w i n g   c o n t r o l  law: 

6 2214 s 2  + 2 ( 0 . 1 2 7 )   ( 1 2 1 . 2 1 ) s  + ( 1 2 1   . 2 1 ) 2  
" - -  
Z s2 + 2 ( 0 . 9 6 2 )   ( 2 9 7 . 6 2 ) s  + (297 .6212  

s2 + 2 ( 0 . 0 8 8 )   ( 2 6 9 . 1 4 ) s  + ( 2 6 9 . 1 4 ) 2  

s2 + 2 ( 0 . 9 6 4 )   ( 2 9 4 . 9 1 ) s  + ( 2 9 4 . 9 1 ) 2  
X 

Figure  10 is a Nyquis t   d iagram  obta ined  by u s i n g   t h e   c o n t r o l  law def ined  by 
equa t ion  (20 )  . 

R e s u l t s  

The performance of t h e   c o n t r o l  law i n  terms o f   i n c r e a s e d   f l u t t e r  dynamic 
pressure, root-mean-square (rms) va lues  of t h e   c o n t r o l   a c t i v i t y   i n   t u r b u l e n c e ,  
and gain/phase margins are examined a t  Mach = 0 . 6 ,  0.7, 0 . 8 ,  and 0 . 9 .  A l l  cal- 
c u l a t i o n s  are performed  using a modi f ied   vers ion  of the  computer program 
d e s c r i b e d   i n   r e f e r e n c e  16.  A sumnary   o f   t hese   r e su l t s  is p r e s e n t e d   i n  table 1 . 

Flu t t e r   cha rac t e r i s t i c s . -   Dynamic -p res su re  root l o c u s   c a l c u l a t i o n s  are 
performed to e s t a b l i s h   t h e  FSS-on f lu t t e r   boundary .  Shown i n   f i g u r e  1 1  are 
t h e  FSS-on root loci a t  Mach = 0 . 9 .  The c o n t r o l  law increases t h e  damping 
of t h e   f l u t t e r  mode while   having  very l i t t l e  effect  on   t he   o the r  modes. The 
inc reased  damping d e l a y s   f l u t t e r   o n s e t   u n t i l  s, = 9 .863  kPa,  which is a 
9 6 - p e r c e n t   i n c r e a s e   i n   f l u t t e r  dynamic p r e s s u r e .   L a r g e   i n c r e a s e s   i n   f l u t t e r  
dynamic  pressure are p r e d i c t e d  a t  t h e   o t h e r  Mach numbers as i l l u s t r a t e d  by t h e  
FSS-on f l u t t e r   b o u n d a r y   p r e s e n t e d   i n   f i g u r e  12.  

C o n t r o l   s u r f a c e   a c t i v i t y . -   C o n t r o l   s u r f a c e   a c t i v i t y   i n   t u r b u l e n c e  is 
determined  using  power-spectral-densi ty  (PSD) ana lyses  similar to t h a t  
d e s c r i b e d   i n   r e f e r e n c e  10 .  A Von Karman gus t   spec t rum  wi th  a c h a r a c t e r i s t i c  
l e n g t h  of 30.48  m is used to s i m u l a t e   t u r b u l e n c e   d i s t r i b u t i o n  and i n t e n s i t y   i n  
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t h e  wind tunne l .  The v a r i a t i o n s   o f  6rms and 6rms with  dynamic  pressure a t  
Mach = 0.6, 0.7, 0.8, and  0.9 are shown i n   f i g u r e  13. The l a r g e s t   v a l u e s  of 
6rms (5.5O) and c?irmS (270°/sec) occur  a t  t h e  maximum dynamic pressure inves- 

t i g a t e d  (9, = 10.773 kPa a t  Mach = 0.6). AS i n d i c a t e d ,  6rms and 6rms are 
on ly   s l i gh t ly   dependen t   on  Mach number but  highly  dependent  on  dynamic  pressure.  

Gain  and  phase  margins.-  Nyquist  diagrams are c o n s t r u c t e d  a t  a l l  four Mach 
numbers to e s t a b l i s h   g a i n  and  phase  margins. The ga in   margins  a t  t h e  Mach 0.9 
d e s i g n   c o n d i t i o n  are -6.27  and  +13.60 dB with  phase  margins of -58.8O and 41.00.  
(See   f i g .  10.) The  Nyquist  diagrams a t  t h e   o t h e r  Mach numbers ( n o t  shown) are 
similar i n   c h a r a c t e r  to t h a t  a t  Mach 0.9. The g a i n  and  phase  margins a t  a l l  
four Mach numbers are p r e s e n t e d   i n  table 1 for a dynamic pressure 44 p e r c e n t  
above  the FSS-off f l u t t e r  boundary.  Gain  margins  of  approximately 26 dB are 
e x h i b i t e d  a t  a l l  f o u r  Mach numbers;  however, t h e   p o s i t i v e   p h a s e   m a r g i n s  a t  t h e  
laver Mach numbers are less than  the +30° requi rement .  

CONCLUDING REMARKS 

A method is p resen ted   fo r   syn thes i z ing   f eedback   con t ro l  laws us ing  optimal 
r egu la to r   t heo ry .  The  method is applied to t h e   s y n t h e s i s  of a n   a c t i v e   f l u t t e r -  
s u p p r e s s i o n   c o n t r o l  law for   an  aeroelastic wind-tunnel model. I m p o r t a n t   r e s u l t s  
of t h e   s t u d y  are: 

1 .  I t  is shown t h a t  a practical  f l u t t e r - s u p p r e s s i o n   c o n t r o l  law can be 
syn thes i zed  by u s e  of a g r a d i e n t   o p t i m i z a t i o n  algorithm to des ign  a feedback 
f i l t e r  which   min imizes   the   d i f fe rence   be tween  the   f i l t e red   f requency   response  
and t h e  optimal frequency  response.  

2. App l i ca t ion   o f   t he  method to a wid- tunnel   model   p rovides  a c o n t r o l  law 
which is shown by a n a l y s i s  to  be   capab le   o f   i nc reas ing   f l u t t e r  dynamic pressure 
by a t  least 44 percent   over  a range  of Mach numbers  from  0.6 to  0.9. 

Langley  Research  Center 
Nat ional   Aeronaut ics   and  Space  Adminis t ra t ion 
Hampton, VA 23665 
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TABLF: 1 .- CONTROL L A W  PERFORMANCE 

I 

* . ~~~ 

Design   po in t  

. .. " ~~~ ." _" 

(FSS on) , 
( p e r c e n t  increase) 

10.773 

9.815 

8.618 

* 7.661 

5.5 

5.1 

4.5 

4.0 

Gain 
timsr margin, 

deg/sec dB 

270 -5.89 

+lo. 75 
-6.24 258 

+9.90 

238 

+13.60 
-6.27 209 

+12.00 
-6.49 

Phase 
margin, 

deg 

-33.0 
+16.8 

-32.4 
+20.2 

-41.0 
+26.6 

-58.8 
+41.2 
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(a) Optimal . 
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(b) Practical. 

Figure 1 .- Block diagrams of optimal and practical  control laws. 
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Figure  2.- Nyqu i s t   d i ag ram  i l l u s t r a t ing   con t ro l - l aw   des ign  method. 
(Arrows indicate increas ing   f requency . )  
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Figure 7.- Bode diagram of transfer  function between acceleration and control  surface  input 
(FSS o f f ) ;  qcx, = 7.661 kPa, Mach = 0.9. (Vertical  axis is i n  decibels.) 
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