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SUMMARY

A method is presented for using the results of optimal control theory to
synthesize a feedback filter. The feedback filter is used to force the output
of the filtered frequency response to match that of a desired optimal frequency
response over a finite frequency range. This matching is accomplished by
employing a nonlinear programing algorithm to search for the coefficients of
the feedback filter that minimize the error between the optimal frequency
response and the filtered frequency response. The method is applied to the
synthesis of an active flutter-suppression control law for an aeroelastic wind-
tunnel model. It is shown that the resulting control law suppresses flutter
over a wide range of subsonic Mach numbers. The study indicates that this is
a promising method for synthesizing practical control laws using the results of
optimal control theory.

INTRODUCTION

In modern control theory, a number of methods have been developed to
design control systems which require multiple variables (so-called state
variables) to describe the state or condition of the system. Optimal regu-
lator theory (ref. 1) is the most widely used method for determining optimal
control laws that feed back all of the state variables (full-state feedback).
Most applications of optimal regulator theory have been limited to problems
with only a few state variables. Recently, however, this theory has been
applied to aeroelastic problems that are generally characterized by a large
number of state variables (ref. 2).

Several researchers have applied optimal regulator theory to active flut-
ter suppression. The two-dimensional flutter problem was investigated by
Lyons et al. (ref. 3) and Edwards (ref. 4). Their work was extended in refer-
ence 5 by considering a more complete mathematical model incorporating three-
dimensional unsteady aerodynamics. It is shown in reference 5 that optimal
regulator theory provides full-state feedback control laws that are very
attractive for flutter suppression.

A major problem in the application of optimal regqulator theory is the
conversion of the theoretical (full-state feedback) control law into a prac-
tical control law (that is, one that can be readily implemented). This problem
ar ises because optimal regulator theory normally requires that all state vari-
ables be available for feedback. Direct measurement of all feedback states for
an aircraft wing, for example, is not possible, and a method is required to
obtain a practical control law from the limited sensor measurements available.
Konar et al. (ref. 6) developed such a method by adjusting the optimal full-
state feedback gains to be compatible with sensor measurements. This method
uses a numerical search algorithm in the time domain that adjusts feedback
gains while maintaining the least amount of increase in the quadratic objective



function. This method has been applied to studies involving load alleviation
for the C-5A (ref. 2).

The purpose of this paper is to describe a different approach that uses
frequency domain techniques to obtain a practical control law. This approach
employs a transfer-function matching technique developed by Coffey (ref. 7).
This method uses a gradient optimization algorithm to design a feedback filter
that forces the open-loop frequency response of the system to match a desired
open-loop frequency response. In reference 7, it is assumed that the desired
open-loop frequency response is known. The present approach defines the
desired open~loop frequency response as that of the optimal full-state feedback
system. Also given is a brief description of the method employed to develop
the equations in terms of state variables. The technique is applied to the
synthesis of a practical control law for active flutter suppression of an aero-
elastic wind~tunnel model.

SYMBOLS

aj ith denominator coefficient of actuator transfer function
be numerator coefficient of actuator transfer function
c reference length, m
Cc steamwise local chord, m
E error function in frequency domain
£ frequency, Hz
£(s) factor in feedback filter
g gravitational constant, 9.80 m/sec2
H(s) feedback-filter transfer function
i -\
J quadratic optimization cost function
K¢ scalar gain for feedback filter

cw
k reduced frequency, ——

20
L number of frequencies
M number of aerodynamic lag terms
df flutter dynamic pressure, kPa
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Matrices:
(al

(a,]

[a;]

(2!
[a(ik) ]
[B]

[B,]

[B,!

1
free-stream dynamic pressure, ; prz, kPa

Laplace variable

time, sec

free-stream velocity, m/sec
control input

practical control input
optimal control input
vertical gust velocity, m/sec
output variable

vertical displacement, m
aerodynamic lag terms
control surface position, positive down, deg
actuator command, deg

damping ratio

circular frequency, rad/sec

natural frequency, rad/sec

total-system dynamics matrix

actuator dynamics matrix

real aerodynamic matrix coefficients

vehicle dynamics matrix

generalized aerodynamic-force matrix due to wing motion
total-system control distribution matrix

actuator control distribution matrix

vehicle control distribution matrix



Xl total-system state-coefficient output matrix

[cal actuator state-coefficient output matrix

[cgl generalized damping matrix

(cyl vehicle state-coefficient output matrix

LGy row matrix of mode-shape amplitudes

oM vehicle input-coefficient output matrix

[D(ik)] generalized aerodynamic-force matrix due to control surface rotation

{G(ik)} generalized aerodynamic-force vector due to vertical gust velocity

(1] identity matrix

[K] optimal gain matrix

(Kl generalized stiffness matrix
(Mgl generalized mass matrix

[Pl Riccati matrix

(o] output weighting matrix

{q} generalized coordinate vector
{r] control weighting matrix

{u} total-system input vector
{uyl} actuator input vector

{uyl} vehicle input vector

{u} optimal control input vector
{x} total-system state vector
{x5} actuator state vector

{xy} vehicle state vector

{¥} total-system output vector
{¥,} actuator output vector

{yy} vehicle output vector



{8} control surface position vector

Subscripts:

f flutter

I imaginary part of complex value
R real part of complex value

rms root-mean—-square value

Dots over symbols denote derivatives with respect to time.

EQUATIONS OF MOTION

The equations of motion for a flexible vehicle may be expressed in matrix
form as

W

(Mgl {a} + [cgliar + [Rgl{at + q [a(ik]}{qt + g ID(ik)] {8} = qm{G(ik)}U—g (1)
where

[Mg] generalized mass matrix

[cgl generalized damping matrix

§: generalized stiffness matrix

[A(ik)] generalized aerodynamic-force matrix due to wing motion

(D(ik)] generalized aerodynamic-force matrix due to control surface rotation

{G(ik)} generalized aerodynamic-force vector due to vertical gust velocity

In flutter analyses where unsteady aerodynamics are of major importance,
the aerodynamic-force matrices are normally represented as tabular functions
of reduced frequency k = cuy/2U. With the unsteady aerodynamic forces in this
form, the equations of motion cannot be written as a set of first-order 4if-
ferential (state~space) equations. The equations can be cast into state-space
form, however, by use of aerodynamic approximation functions (refs. 8 and 9).

Aerodynamic Approximation Functions and State-Space Equations

The techniques for developing the aerodynamic approximation equations and
the state-space equations are similar to those described in references 5 and 10.
The aerodynamic approximation technique involves fitting the curve of a mathe-
matical function of ik to the aerodynamic forces. Each element of the



aerodynamic-force matrix is fit with an approximation function of the form

M [ago) (ik)

[A(ik)] = [Aag) + [&y] (ik) + [AJ) (ik)2 + > ——-—— (2)
m=1 Bm + (ik)

The aerodynamic lag terms B, are somewhat arbitrary but are usually chosen
to lie somewhere within the range of interest of the reduced frequencies. The
numerator matrices are computed to give a least-square error for the values of
k at which the aerodynamic forces are known.

As described in reference 5, substituting equation (2) into equation (1)

and equating derivatives to the powers of the Laplace operator
(s = iw = (2U/c)ik) yields the equations of motion for the basic vehicle.

Written in standard state-space form,

{x,}

[a,1{x,} + [B,1{uy}
(3)

{v,} = [cyl{xe} + [Dyl{uy}

The elements of the vehicle state vector {X,} are the generalized coordinates
and their derivatives. The vehicle input vector {u,} consists of the control
surface displacement, the gust disturbance, and their derivatives., The order
of the derivatives depends on the number of lag terms used in the aerodynamic
approximation.

Actuator Models

To include the effect of actuator dynamics during design of the optimal
control law, the actuator model is described in state-space form and then
interconnected to the basic vehicle equations. Actuator models are generally
represented by transfer functions. Consider an actuator transfer function of

the following form:

S (s) by
- (4)

Sc(8) s 4+ ap 1™l + . .. 3

By cross multiplying and equating derivatives to the powers of s, an nth order
differential equation of the actuator can be written

as ds
datn den-1

+ ... a06 = bgSe (5)

By making the substitutions that X; = di'16/dti'1, a set of n first-order
differential equations can be written. Thus,

{X,} = [a1{x,} + [By1{u,} (6)



where

- D - - q

) 0 1 0 0 ... 0

§ 0 0 1 0 ... 0

{x,} = < g[Aa] - | ) Cos = |
Ldn_-'s/dtn- 1_} | —agp -aj « o e o s -ap | __bo_

The output equations of the actuator are written in the form

{va} = lcalix,} (7)
where
[ 1 0 0 R
0 1 0 .o
[ca] = . . . .

The interconnection of the actuator to the basic vehicle involves equating
the output of the actuator to the input of the basic vehicle, as illustrated in
the following sketch:

Total System

{ug} {y,} = {uy} {y,}

1
)
1
)
]
! Actuator ==l Basic vehicle
1
]
]
1
]
)



By using the relationship {uy} = {y,}, the total-system equations can be
written as

"\

Xa A, 07 %, B,
. = + {u,}?
Xy ByCa Ayl | Xy 0
Xa
{vy} = Ipgcp oy
XV

[A1{x} + [B]{u}
[cl{x}

$ (8)

or

{x}
{x}

(9)

SYNTHESIS OF AN ACTIVE FLUTTER-SUPPRESSION CONTROL LAW
Regulator Theory
Optimal regulator theory provides for the minimization of a quadratic cost

function of the output and control vectors (ref. 1). To find the optimal full-
state feedback control law, the quadratic cost function

J = f <{Y}T[Q]{Y} + {u}T[R]{ubdt (10)
0

is minimized. This leads to the optimal control law

{u} = [k1{x}

~RI7 BT [p]

{u}
k]

(1)

For the time invariant (constant-coefficient differential equations) condition,
[p] is the steady state solution of the matrix Riccati equation.
T -1 T
[p1[al + [a]l" [P} - [Pl[BI[R] '[BI [P] + [Q] =0 (12)
The application of regulator theory is an iterative process of selecting the

appropriate cost function through changes in the weighting matrices [Q] and
[R]. The procedure can be summarized as follows:
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Step 1: Define the output ({¥}) and input ({u}) vectors that relate
to the performance goals. (For example, minimum control
surface displacement.)

Step 2: Select initial weighting matrices [Q] and [R]. (For
example, see refs. 1 to 5.)

Step 3: Solve equations (11) and (12) for the optimal gains (I[k]),
thus minimizing the quadratic cost function J.

Step 4: Evaluate the design, and adjust weighting matrices until
per formance goals are met.

The optimal control law requires the capability to feed back all of the
state variables. Since the description of the system involves modal or gener-
alized coordinates in addition to physical coordinates, direct measurement of
all state variables is not feasible. Only a linear combination of the state
variables can be measured. Therefore, a method is employed which uses the
available measurements.

Process for Design of Practical Control Law

The process described herein for the design of a practical control law is
performed in the frequency domain and attempts to match a desired open-loop
frequency response. The desired open-loop frequency response is that of the
optimal full-state feedback system. The design process involves finding the
coefficients of a feedback filter H(s) that minimize the deviation of the
open-loop frequency response (3/u) (iw) from the optimal open-loop frequency
response (u/u) (iw). (See fig. 1.) Figure 2 is a Nyquist diagram illustrat-
ing the results of the design process for a practical control law. The objec-
tive is to make the deviation from the optimal system small. If this objective
is met, the performance of the practical system will be similar to that of the
optimal system.

Error function.~ The error function is defined as the difference of

(Q/u) (iw) and (G/u)(iw) over a set of frequency points wj
(i=1,2, .. . L), for which a close fit is desired. The closeness of

(G/u) (iw) to (G/u)(im) can be described mathematically by

- A - A

u . * u . * u . u .
E = |[—(iw)* - —(iw) —(iw) - —(iw) (13)
u u u u



where the asterisk (*) denotes the complex conjugate, with

R
- T a o
—(iw) = —(iwy), —(iW3), « « «, —(iyp)
u u u u n

} (14)

LI PR L a
—(iw) =| —(im), —(iwy), « . ., —(iwg)
u u u u |

W,

Feedback-filter design variables.- The form of the feedback filter H(s)
to be used is

m
T (s? + 20;Wwpis + w%i)
i=1
H(s) = K¢ f(s) (15)
n
I (s2 + 205wp3s + WE4)
i=1

The design variables are the gain Kg, the damping ratios &, and the frequen-

cies wp (of each second-order factor in eq. (15)). The function f£(s) is

included to help achieve any desired characteristics of the feedback filter,

such as high-frequency roll-off. The procedure can be described as follows:
Step 1: Compute the optimal frequency response G/u.

Step 2: Compute the frequency response between the output vy
and the control u.

Step 3: Choose the initial number of numerator factors m and
denominator factors n of the filter.

Step 4: Choose a f(s) to incorporate any desired characteristics
of the filter, such as high-frequency roll~off.

Step 5: Minimize the error function E by using an optimization
algorithm such as that of Davidon (ref. 11) and Fletcher
and Powell (ref. 12).

Step 6: Examine the practical open-loop frequency response (Nyquist
diagram) to establish any possible changes to f(s).

Step 7: If any changes to £(s) are established, repeat step 5.

Step 8: Repeat steps 3 through 7 for a family of m and n.
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Step 9: Select the values of m, n, and £(s) that provide the
smallest value of BE. :

APPLICATION OF TECHNIQUE

The methodology described previously is applied to the synthesis of an
active flutter-suppression control law for an aeroelastic wind-tunnel model.
The model geometry is shown in figure 3. The model consists of a cantilever
wing with a 20-percent-chord, trailing-edge control surface located between
the 76-percent and 89-percent semispan stations. The flutter-suppression
sensor (accelerometer) is located at the 60-percent-chord and 92-percent-
semispan station. The first eight elastic modes! are used as generalized
coordinates covering a frequency range from 5.23 Hz to 118.15 Hz. The calcu-
lations necessary to determine the coefficients of the equations of motion
(eq. (1)) are described in detail in reference 10.

Basic Wing Characteristics

Each of the aerodynamic terms is approximated in the s-plane through the
use of equation (2) with M = 2. The Bm terms are varied until an acceptable
curve fit is found. This resulted in the B terms being selected as 0.225
and 0.500 for all aerodynamic terms. 1In figure 4, one of the calculated
oscillatory aerodynamic terms is compared with the approximation function at
Mach = 0.9. In general, all of the aerodynamic terms have a good curve fit.

To validate the mathematical model further, the flutter boundary of the
model without the flutter-suppression system (FSS off) is calculated. For a
specific Mach number, the characteristic roots of equation (3) are found for a
series of dynamic pressures. The dynamic pressure at which the real part of
one of the roots becomes zero is the flutter dynamic pressure. Shown in fig-
ure 5 are the dynamic-pressure root loci at Mach = 0.9. Calculations of the
dynamic-pressure root loci were also performed at Mach = 0.6, 0.7, and 0.8
to establish the FSS-off flutter boundary shown in figure 6. A comparison of

the experimental results reported in reference 10 with these analyses indicates
good agreement.

In addition to verifying the aerodynamic approximations with respect to
the basic flutter characteristics, the transfer function between acceleration
and control surface deflection (FSS off) is compared to that using the origi-
nal, oscillatory aerodynamic forces. 1In this manner, the approximations for
the control surface aerodynamic terms are verified. The gain and phase curves
for this transfer function using the original oscillatory aerodynamics (desig-
nated as k-plane) and using the aerodynamic approximation function (designated
as s-plane) are shown in figure 7 for comparison. Good agreement is indicated
in both gain and phase.

TThe two inplane modes (3 and 8) of reference 10 are omitted in this
study.

n



Optimal and Practical Control Laws

The design condition for the FSS is chosen to be a 44-percent increase in
flutter dynamic pressure at Mach = 0.9. The FSS is required to increase the
flutter dynamic pressure by at least 44 percent at each of four Mach numbers
(0.6, 0.7, 0.8, and 0.9) and, at the 44-percent margins, to exhibit *6 dB gain
margins and *30° phase margins. In addition, the control surface activity can
not exceed 6° (rms) and 600°/sec (rms). The optimal control laws are deter-
mined by solving equations (11) and (12) and thus satisfying equation (10).
Equation (12) is solved using the computational algorithm developed by Vaughan
(ref. 13) as coded in reference 14, For the quadratic optimization, zero-state
weighting (Ig] = 0) is selected since this yields a set of gains that are
"cheapest" (ref. 15) in terms of control input amplitude. This optimal full-
state feedback control law leaves all stable eigenvalues unchanged and relo-
cates the unstable eigenvalues to their mirror image in the left half plane.
Once the full-state feedback gain matrix is determined, the optimal Nyquist
diagram for the single input system is constructed by solving

a(iw)

u (iw)

= Ix) [iw1 - al "B} (16)

Equation (16) is solved for a series of frequencies from 1 rad/sec to

301 rad/sec at increments of 3 rad/sec. The resulting Nyquist diagram

(fig. 8) is a counterclockwise circle of radius unity centered on the (-1, 0)
point. The full-state feedback control law provides gain and phase margins of
-6 dB and *60°, respectively. Note that the Nyquist diagram crosses the real
axis only once (-6 dB) and, therefore, has infinite positive gain margin.

To synthesize a practical control law from the full-state feedbagck control
law, the frequency response between sensor output and control surface input is
established first. Using the accelerometer location shown in figure 3, the
output frequency response is calculated by

zZ (iw)

= lc¢J liwr - al ~'{8} (17)

u (iw)

where lC¢J is a row matrix of mode-shape amplitudes at the sensor location.
The problem is to find the coefficients of the feedback filter H(iw) that

satisfy

Z(iw) TCEY (18)

u {iw) u(1iw)

over a finite set of frequency points W (i =1, . . ., L). 1In the frequency
plane, equation (15) has the form

12
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m

I I:(iw)2 + 2C;30p; (iw) +(u%i]

=1

H(i) = Kg — £ (iw) (19)

n
I [(ﬂn)z + ZCjwnj(iw) + ng
3=1

Employing a trial and error approach, various values of m and n are tried,
and the combination that provides the smallest value of E {(m =2, n = 2) is
determined. The low-frequency (3 rad/sec to 60 rad/sec) portion of the open-
loop frequency response (not shown) indicated the need for an integrator.
Therefore the f(iw) is selected to be 1/(iw). The error function is again
minimized with the previously determined values of m and n and the 1/(iw)
in the filter. Figure 9 is the Nyquist diagram resulting from the minimization
process. Since the optimization algorithm did not result in a -6 dB gain mar-
gin, the gain Kg¢ was increased until a gain margin of -6 dB was achieved
which resulted in the following control law:

§ 2214 s2 + 2(0.127)(121.21)s + (121.21)2
S

S g2 4+ 2(0.962)(297.62)s + (297.62)2

s2 + 2(0.088) (269.14)s + (269.14)2 [deg
X (20)

s2 + 2(0.964) (294.91)s + (294.91)2\ 9

Figure 10 is a Nyquist diagram obtained by using the control law defined by
equation (20).

Results

The performance of the control law in terms of increased flutter dynamic
Pressure, root-mean-square (rms) values of the control activity in turbulence,
and gain/phase margins are examined at Mach = 0.6, 0.7, 0.8, and 0.9. All cal-
culations are performed using a modified version of the computer program
described in reference 16. A summary of these results is presented in table 1.

Flutter characteristics.- Dynamic-pressure root locus calculations are
performed to establish the FSS-on flutter boundary. Shown in figure 11 are
the FSS-on root loci at Mach = 0.9. The control law increases the damping
of the flutter mode while having very little effect on the other modes. The
increased damping delays flutter onset until q_ = 9.863 kPa, which is a
96-percent increase in flutter dynamic pressure. Large increases in flutter
dynamic pressure are predicted at the other Mach numbers as illustrated by the
FSS-on flutter boundary presented in figure 12,

Control surface activity.- Control surface activity in turbulence is
determined using power-spectral-density (PSD) analyses similar to that
described in reference 10. A Von Karman gust spectrum with a characteristic
length of 30.48 m is used to simulate turbulence distribution and intensity in

13



the wind tunnel. The variations of &, and érms with dynamic pressure at
Mach = 0.6, 0.7, 0.8, and 0.9 are shown in figure 13. The largest values of

Sems  (5.5°) and érms (270%/sec) occur at the maximum dynamic pressure inves-

tigated (g, = 10.773 kPa at Mach = 0.6). As indicated, &pg and érms are
only slightly dependent on Mach number but highly dependent on dynamic pressure.

Gain and phase margins.- Nyquist diagrams are constructed at all four Mach
numbers to establish gain and phase margins. The gain margins at the Mach 0.9
design condition are -6.27 and +13.60 dB with phase margins of -58.89 and 41.0°.
(See fig. 10.) The Nyquist diagrams at the other Mach numbers (not shown) are
similar in character to that at Mach 0.9. The gain and phase margins at all
four Mach numbers are presented in table 1 for a dynamic pressure 44 percent
above the FSS-off flutter boundary. Gain margins of approximately *6 dB are
exhibited at all four Mach numbers; however, the positive phase margins at the
lower Mach numbers are less than the +30° requirement.

CONCLUDING REMARKS

A method is presented for synthesizing feedback control laws using optimal
regulator theory. The method is applied to the synthesis of an active flutter-
suppression control law for an aeroelastic wind-tunnel model. 1Important results

of the study are:

1. It is shown that a practical flutter-suppression control law can be
synthesized by use of a gradient optimization algorithm to design a feedback
filter which minimizes the difference between the filtered frequency response

and the optimal frequency response.

2. Application of the method to a wind-tunnel model provides a control law
which is shown by analysis to be capable of increasing flutter dynamic pressure
by at least 44 percent over a range of Mach numbers from 0.6 to 0.9.

Langley Research Center
National Aeronautics and Space Administration

Hampton, VA 23665
June 4, 1979
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TABLE 1.- CONTROL LAW PERFORMANCE

qf

as . Gain Phase
Mach | (FSS off), (FSS on), 1.44qw, Srmsr| Srmsr |Margin,|margin,
number kPa kPa kPa deg |deg/sec dB deg
(percent increase)
0.60 7.305 12.832 10.773 5.5 270 -5.89 -33.0
(75) +9.90 | +16.8
0.70 6.655 11.730 9.815 5.1 258 -6.24 -32.4
(78) +10.75 +20.2
_ R .
0.80 5.906 10.294 8.618 4.5 238 -6.49 -41.0
(76) +12.00 +26.6
0.90 5.027 9.863 *7.661 4.0 209 -6.27 -58.8
(96) +13.60 +41,2
*Design point.
17
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Figure 1.- Block diagrams of optimal and practical control laws.
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Figure 2.- Nyquist diagram illustrating control-law design method.
(Arrows indicate increasing frequency.)
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