NATIONWIDE FORESTRY APPLICATIONS PROGRAM்

"liads available under HASA sponsorship in the interest of early and wite dis-

 somination of Earth Resources Survey Program information and without liability for any use made thereot."

EVALUATION PROCESS FOR THE
TEN-ECOSYSTEM STUDY
(E79-10226) NATIONWIDE FORESTRY
N79-28640
APRIICATIONS: PROGRAM. EVALUATION• PROCESS
FOR THE TEN-ECOSYSTEM STUDY (Lockheed Electronics Co.) 62 p EC A04/MF A01

Unclas
R. H. Almond

Lockheed Electronics Company, Inc.
Systems and Services Division
Houston, Texas 77058

NAS 9.15800
JSC-14872
LEC-12727
April 1979

Prepared for
EARTH OBSERVATIONS DIVISION
SPACE AND LIFE SCIENCES DIRECTORATE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS 77058

runsi

Natıonal Aeronautics and Space Admınistratıon

Lyndon B. Johnson Space Center Houston Texas 77058

FOREST SERVICE
U.S. Department of Agriculture

NOTE: In 1976, the Nationwide Forestry Applications Program was expanded from a Regional project by cooperative agreement between the Forest Service, U. S. Department of Agriculture, and the National Aeronautics and Space Administration (NASA). The Program is designed to sponsor research and development on the application of remote sensing analysis techniques to problems arising from the need to inventory, monitor and manage forests and rangelands, including the assessment of impacts on forest stands from insect and disease damage.

Section1. INTRODUCTION1-1
2. REGISTRATION OF LANDSAT IMAGES TO AERIAL PHOTOGRAPHS 2-1
3. INTERPRETATION OF SSU'S 3-1
4. MEAN AND STANDARD DEVIATION 4-1
5. CLASS PROPORTIONS 5-1
6. REFERENCES 6-1
Appendix
A. A PROCEDURE FOR TRANSFERRING PSU LOCATIONS FROM DAS TRANSPARENCY TO AERIAL PHOTOGRAPH A-1
B. PROCEDURE FOR COMPARISON OF CLASSIFICATION PRODUCT WITH AERIAL PHOTOGRAPHS. B-I
C. SUMMARY EV̇ALUATION TABLES FOR TES SITES EXTRACTED FROM OTHER TES DOCUMENTS. $\mathrm{C}-1$

TABLES

Table		Page
2-1	REGISTRATION COMPUTATION WORKSHEET	2-2
3-1	THE WORKSHEET. FOR PHOTOINTERPRETATION AND CLASSIFICATION MAP READINGS.	
4-1	SUMMARY OF PCC CALCULATIONS	4-2
5-1	SUMMARY OF CLASS PROPORTIONS WORKSHEET	5-2
5-2	SUMMARY OF CLASS PROPORTION ERRORS WORKSHEET	5-3
	FIGURES	
Figure		Page
1-1	The flow diagram of the evaluation process	1-2
3-1	The nine possible locations on or around the SSU with a classification assignment to class 1 or 2	3-3

```
DAS data analysis station
PCC percent of correct classification
pixel picture element
PSU primary sampling unit
SSU secondary sampling unit
TES Ten-Ecosystem Study
ZTS Zoom Transfer Scope
```


PREFACE

The Nationwide Forestry Applications Program was established in 1971 at the Lyndon B. Johnson Space Center of the National Aeronautics and Space Administration to develop and demonstrate remote sensing technology in performing forest resources inventories. Several localized feasibility studies of small areas were conducted, and the technology was developed for automatic data processing of satellite and aircraft multispectral scanner data. With the recent passage of the Forest and Rangeland Renewable Resources Planning Act, Public Law 93-378, there was a need to extend the technology to larger and more widely scattered areas. The Ten-Ecosystem Study was initiated in response to some of the research requirements of these acts.

The Ten-Ecosystem Study is an automatic data processing feasibility study, using Landsat data, supporting aircraft imagery, and ancillary information for inventorying forest, grassland, and water by administrative boundaries in 10 categorized ecosystems of the United States. Successes and failures were identified and recommendations were made regarding future large area studies in each specific ecosys.tem.

The primary objectives of the Ten-Ecosystem Study were as follows:
a. To investigate the feasibility of using data processing of remotely sensed data to inventory forest, grassland, and inland water areas within designated boundaries for specified ecosystems of the United States
b. To identify automatic data classification problems related to each site and recommend solutions
c. To define the requirements for an automatic data processing system to perform a nationwide forest and grassland inventory

These objectives are addressed in the Ten-Ecosystem Study final report.

In this report, the evaluation process is discussed and the results of all the sites under investigation are presented. This document was prepared by Lockheed Electronics Company, Inc., under Contract NAS 9-15800, Job Order 75-325, Action Document 63-1737-5325-53. Distribution of this report has been approved by the supervisor of the Forestry Applications Section.

1. INTRODUCTION

The Ten-Ecosystem Study (TES) is an automatic data processing feasibility study using Landsat data, supporting aircraft imagery, and ancillary information for inventorying forest, grassland, and water by administrative boundaries in lo categorized ecosystems of the United States. The evaluation process (fig. l-l) used for the TES is described in, this report. Procedures for transferring primary sampling unit (PSU) locations from data analysis station (DAS) transparencies to aerial photographs and for comparison of classification products with aerial photographs are included in appendixes A and B, respectively. Summaries of percent of correct classification (PCC), class proportions, and class proportion errors are included in appendix C.

To evaluate a classification process, certain basic rules need to be established and followed. Two rules established for TES were: (1) aerial photography would be regarded as ground truth, and (2) the distribution and size of the sample areas which were to be used as classification areas were delineated.

Aerial photographs at a scale of $1: 120000$ with color-infrared film were used to differentiate the features of softwood, hardwood, grassland, water, and "other" into a classification system. The category "other" included everything not included in the softwood, hardwood, grassland, or water groups. For reliability of the photointerpretation of the TES sites, field trips to each TES site were made where a comparison of actual vegetation on the ground with data of the photographs was completed. In this manner, the criteria for ground truth of the TES were established.

At least 10 sample areas, 50 by 50 picture elements (pixels) in size and randomly selected throughout a site, were chosen as the PSU's. Within each of these PSU!s, 10 secondary sampling units

Figure l-l.- The flow diagram of the evaluation process.
(SSU's), 2 by 2 pixels in size, were randomly located. The SSU represents the actual areas of comparison between the classification data and the photographic ground truth (ref. l).

$$
1-3
$$

2. REGISTRATION OF LANDSAT IMAGES TO AERIAL PHOTOGRAPHS

Ensuring that an accurate correlation between the aerial photographs and the DAS Landsat color composite image was an important aspect of the evaluation process. The registration of Landsat images to aerial photographs was done using a Dell Foster digitizer and a Texas Instruments' SR5l calculator. The PSU's were located on alphameric printouts of the classification data. Using the random number selector of the SR51 calculator, the first number generated indicated the line and the second number defined the column of the upper left corner of a 50-pixel by 50-pixel PSU. The Dell Foster digitizer was used to plot these points on the DAS transparency. The transparency was squared on the Dell Foster light table, the scale adjusted to fit the pixel count, and the line and column locations were made.

The aerial photograph which covered the area represented by the DAS transparency was then placed on the Dell Foster light table and aligned: The method of registering the photograph to the DAS transparency involved selecting and determining the coordinates of at least six points readily identifiable such as road intersections, confluence of rivers, or other natural or man-made features on both the DAS transparency and the aerial photograph. A least-squares program in the SR51 calculator was used to determine the linear registration coefficients. The linear registration polynomials are:

$$
\begin{aligned}
& X P=a(S I)+b(L I)+c \\
& Y P=d(S I)+e(L I)+f
\end{aligned}
$$

See table 2-1 for the registration computation worksheet and refer to appendix A for detailed procedures on registering Landsat images to aerial photographs.

TABLE 2-1.- REGISTRATION COMPUTATION WORKSHEET

3. INTERPRETATION OF SSU's

When all the PSU locations had been placed on the aerial photographs, the actual evaluation of the classification data began. In the evaluation process, the Zoom Transfer Scope (ZTS) was used as the major instrument to accomplish photointerpretation of the classification data. All the aerial photographs and the alphameric printouts of the classification data were taken to the ZTS. Using the coordinates for the location of a PSU, a 50-pixel by 50-pixel area was marked on its corresponding alphameric printout. Through the use of overlays, the 2 -pixel by 2 -pixel SSU's of the alphameric printout were compared with the interpretation of the same area of the aerial photograph which was mounted on the ZTS viewing screen. The two readings were then recorded. Refer to appendix B for details of this procedure.

The worksheet (table 3-1), containing the readings from the photointerpretations and the classification maps, was completed for each SSU in every PSU. The photointerpretation readings were represented by $P: P_{1}=$ softwood, $P_{2}=$ hardwood, $P_{3}=$ grassland, $P_{4}=$ water, and $P_{5}=$ other. The classification map readings were recorded under $\hat{P}: \hat{P}_{1}=$ softwood, $\hat{P}_{2}=$ hardwood, $\hat{\mathrm{P}}_{3}=$ grassland, $\hat{\mathrm{P}}_{4}=$ water, and $\hat{\mathrm{P}}_{5}=$ other.

When restricting a residual registration error to not more than I pixel between the DAS transparency and the aerial photograph, there were nine possible locations on or around each SSU on the DAS transparency that could represent the corresponding area on the photograph (fig. 3-1). These nine possible locations were examinẹ to determine which one most nearly duplicated the photointerpretation (ref. 2).

TABLE 3-1.- WORKSHEET FOR PHOTOINTERPRETATION AND CLASSIFICATION MAP READINGS
Site \qquad PSU \qquad SSU \qquad
\qquad
Photointerpretation: \qquad , . ${ }^{\mathrm{P}}{ }_{2}$ \qquad , F_{3} \qquad - P_{4} \qquad , P_{5} \qquad
Classification map readings:

						A	B	C	D	E	
Location	$\hat{\mathrm{P}}_{1}$	$\hat{\mathrm{P}}_{2}$	$\hat{\mathrm{P}}_{3}$	\hat{P}_{4}	\hat{P}_{5}	$\left(P_{1}-\hat{R}_{1}\right)^{2}$	$\left(\mathrm{P}_{2}-\hat{\mathrm{P}}_{2}\right)^{2}$	$\left(\mathrm{P}_{3}-\hat{P}_{3}\right)^{2}$	$\left(\mathrm{P}_{4}-\hat{P}_{4}\right)^{\prime}$..	$\left(P_{5}-\hat{P}_{5}\right)^{2}$	$F=A+B+C+D+E$
a											
b											
c											
d				.							
e				*							-
f											
g							,				
h											
1								,			

Site \qquad PSU
SSU
ANALYST \qquad
Photointerpretation: \qquad . P_{2} \qquad , P_{3} \qquad , P_{4} \qquad ,${ }^{-p_{5}}$ \qquad
Classification map readings:

						A	B	c	D	E	
Location	\hat{p}_{1}	$\hat{\mathrm{P}}_{2}$	\hat{s}_{3}	$\hat{\mathrm{P}}_{4}$	\hat{R}_{5}	$\left(\mathrm{P}_{1}-\hat{\mathrm{F}}_{1}\right)^{2}$	$\left(\mathrm{P}_{2}-\hat{\mathrm{P}}_{2}\right)^{2}$	$\left(\mathrm{P}_{3}-\hat{\mathrm{P}}_{3}\right)^{2}$	$\left(\mathrm{P}_{4}-\hat{\mathrm{P}}_{4}\right)^{2}$	$\left(\mathrm{P}_{5}-\hat{\mathrm{F}}_{5}\right)^{2}$	$\mathrm{F}=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}$
a											
b											
c											
a											
e											
£											
g											
h											
i											

Total correct ssu's Total SSU's PCC \qquad

Figure 3-1.- The nine possible locations on or around the SSU with a classification assignment to class 1 or 2.

$$
3-3
$$

The formula for determining the difference between the photointerpretation and the DAS transparency readings is:

$$
\begin{aligned}
E= & \left(P_{1}-\hat{P}_{1}\right)^{2}+\left(P_{2}-\hat{P}_{2}\right)^{2}+\left(P_{3}-\hat{P}_{3}\right)^{2}+\left(P_{4}-\hat{P}_{4}\right)^{2} \\
& +\left(P_{5}-\hat{P}_{5}\right)^{2}
\end{aligned}
$$

When applying this formula, if the difference between photointerpretation and the DAS transparency were 0.15 or less, the classification was accepted as correct (ref. l). After all 10 SSU's were checked to determine which were' correctly classified, the PCC was determined by dividing the total number of SSU's into the total correctly classified SSU's.

4. MEAN AND STANDARD DEVIATION

After all 10 PSU's were interpreted and the difference between the aerial photograph and the DAS transparency calculated, the average PCC for the TES site was computed using the SR51A handheld calculator. The formulas used for the mean and the standard deviation of the mean are presented in table 4-1, Summary of PCC Calculations. When calculating these statistical parameters, each datum was treated separately or as ungrouped data.

The formula for deriving the standard deviation of the mean is:

$$
S_{P C C}^{2}=(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{m}\left(P C C_{i}-P C C\right)^{2}
$$

The f varies with the number of PSU's and is the function of:

$$
\sqrt{1-£ / m}
$$

where $m=$ number of PSU's and

$$
f=m \times\left(50^{2} /(970)^{2}\right.
$$

(Note: $50=$ pixel size of PSU and $970=$ number of pixels in a frame)

The next phase calculated was the half-confidence interval or Δ. This number was the result of multiplying the standard deviation of the mean by the number taken from the statistical tables; i.e., the critical t-value from the cumulative t-distribution list. This constant varied with the number of PSU's being evaluated and the level of confidence desired.

The confidence interval of PCC was obtained by merely subtracting \triangle from PCC for the lower range and adding \triangle to PCC for the upper range.

TABLE 4-1.- SUMMARY OF PCC CALCULATIONS

(a) PCC calculations worksheet

(b) Calculation formulas

Calculation of mean: $P C C=\frac{1}{m} \sum_{i=1}^{m} P C C_{i}$ where $m=$ total number of data points
Calculation of standard devaation of the mean: $\left.\left.\left.\begin{array}{rl} S_{P C C}^{2} & =(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{m}(P C C \\ i \end{array}\right) P P C C\right)^{2}\right) ~=\frac{m-1}{M-1} .$
Calculation of the PCC half-confidence interval at the 90 -percent level: $\Lambda=t_{0.95(\mathrm{~m}-1)} S_{\mathrm{PCC}}$
Confidence interval of PCC: $(\operatorname{PCC}-\Lambda, P C C+\Lambda)$
Symbol definition: m $-P S U$ sample size. M $-P S U$ population size. $P C C$ - Average of PSU sample. PCC $_{i}$ - PCC for the ith PSU. $S_{P C C}^{2}$ - Variance of PCC.

In TES, the number of PSU's chosen was determined so that the upper limit of the half-confidence interval or Δ was less than or equal to 0.05 PCC at a confidence level of 0.90 . This number is a popular criterion for qualifying a good, tight statistical estimate and was used for that reason. If (with the use of 10 PSU's) the Δ were larger than 0.05 PCC , more PSU's were selected and evaluated. The maximum number of PSU's for the TES was set at 25. Some sites with a \triangle larger than 0.05 PCC required 25 PSU's to be evaluated.

5. CLASS PROPORTIONS

The photointerpretation and classification map readings presented in table 3-1 of section 3 are used in the evaluation process to obtain a summary of class proportions (table 5-l). The mathematical procedure for this is described below.

From table 3-1, obtain the total of SSU proportions by class (softwood, hardwood, etc.) for photointerpretation (P) and divide this number by the total number of SSU's in each PSU which is always 10 for TES. Enter the results in table 5-1 under the appropriate heading. For the classification map proportions, obtain the total of the most nearly correct proportion set and divide by the number of SSU's in each PSU (10 for TES). Enter the result in table 5-1.

All the data calculated for table 5-1 were used for the summary of class proportion errors (table 5-2). By adding each classification column \hat{P}_{i} of table $5-1$, the total of the readings from the classification map are derived for softwood, hardwood, grassland, water, and other. For each classification, divide the total of column \hat{P}_{i} by the number of PSU's evaluated for the estimated class proportion. This number for each class should result in a total of 1 ; otherwise, mathematical errors are suspected.

The SR5lA calculator was used to determine the error bias (column B, table 5-2). The sum of the differences between the photointerpretation and the classification map totals for softwood in table 5-1 were averaged to obtain the average error (B) for softwood.

TABLE 5-l.- SUMMARY OF CLASS PROPORTIONS WORKSHEET

$\begin{aligned} & \text { PSU } \\ & \text { number } \end{aligned}$	Softwood		Hardwood		Grassland		Water		"Other"	
	P_{i}	\hat{P}_{i}	P_{i}	\hat{P}_{i}	P_{i}	\hat{P}_{i}	P_{i}	\hat{P}_{i}	P_{i}	\hat{P}_{i}
1										
2										
3										
-										
-										
-										
						.				
\cdots										
							.			

Total number of PSU's =

TABLE 5-2.- SUMMARY OF CLASS PROPORTION ERRORS ${ }^{\text {a }}$ WORKSHEET

	Proportion error					Relative proportion error	
Classes	```Estimate of of class proportion, \hat{P}```	$\begin{aligned} & \text { Average } \\ & \text { error, } B \end{aligned}$	Standard deviation of average error, S_{B}	$\Delta_{0.9}$	Confidence interval	Photointerpreted class proportion, P	Relative error, RB
Softwood							
Hardwood .							
Grassland	-		-	,			
Water					-		
Other	-						

$a_{\text {The }}$ algorithms used in the computation of the class proportion errors are:

$$
\begin{aligned}
\hat{p} & =\frac{1}{m} \sum_{i=1}^{m} \hat{p}_{i} \quad(\text { from table } 5-1) \\
B & =\frac{1}{m} \sum_{1=1}^{m} B_{i}=\frac{1}{m_{i=1}} \sum_{i=1}\left(P_{1}-\hat{P}_{1}\right) \quad \text { (from table 5-1) } \\
S_{B} & =\left[(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{m}\left(B_{i}-B\right)^{2}\right]^{1 / 2} \\
\Delta_{0.9} & =1.64 S_{B} \\
R B & =\frac{B}{P} \times 100
\end{aligned}
$$

where $R B$ is expressed as a percentage.

The standard deviation of the average error (S_{B}) was also obtained and the formula used is:

$$
S_{B}=\left[(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{m}\left(B_{i}-B\right)^{2}\right]^{1 / 2}
$$

The standard deviation S_{B} times the same cumulative t-distribution constant, previously used, gave the Δ for a 0.9 confidence level. The average error (B) minus and plus the Δ determined the confidence interval of this average error.

The relative error (column RB , table $5-2$) was determined by dividing the average error (B) by the estimated class porportion (P) of the photointerpretation and multiplying the result by 10.0 to obtain a percentage reading.

This summary of class proportion errors completes the major part of the evaluation process.

$$
5-4
$$

6. REFERENCES

1. Kan, E. P.: An Ad-Hoc Map Evaluation Procedure. Lockheed Electronics Company, Inc. (Houston, Tex.), LEC-8278 (JSC-11154), April 1976.
2. Kan, Edwin P. (ed): Technical Analysis Procedures for the Ten-Ecosystem Study. Lockheed Electronics Company, Inc. (Houston, Tex.), LEC-9379, Dec. 1976.

APPENDIX A

A PROCEDURE FOR TRANSFERRING PSU LOCATIONS FROM DIS TRANSPARENCY TO AN AERIAL PHOTOGRAPH

APPENDIX A
 A PROCEDURE FOR TRANSFERRING PSU LOCATIONS FROM DAS TRANSPARENCY TO AN AERIAL PHOTOGRAPH

The Dell Foster digitizer and the Texas Instruments SR5l calculator were used to transfer PSU locations from the DAS transparencies to aerial photographs. The DAS transparency and the aerial photograph (color infrared, scale l:120 000) covering the same area were mounted on the Dell Foster light table. They were carefully squared using the sliding action of the eyepiece and then firmly secured in place. At this point, the photograph and DAS image were studied to find at least six correlative points, such as confluence of drainage, road intersections, or any other finite point that could be identified on both images. Corresponding points were given a number with a Rapidograph pen.

Working first with the Landsat DAS imagery, each site was divided into four quadrants. Each quadrant was approximately 485 by 485 pixels in size, but there was a slight variation with each site which required a different scale for each quadrant of every site. A scale of 685 for X and 671 for Y gave a close approximation and offered a number from which adjustments could be made. When the proper scale was found, the coordinates of each of the six selected points were located and entered on the worksheet.

After changing the scale to $X=1000$ and $Y=1000$, the same procedure was followed to read the location of the six selected points from the aerial photograph. These.coordinates were entered on the worksheet. With the addition of the four corner coordinates from the PSU, all the necessary data were in place and the calculations could be made using the SR5I calculator.

The following steps outline the method for generating the coordinates for the location of the PSU on the aerial photograph.
a. Two plastic program cards numbered $12-1$ and $12-2$, containing the least-squares program, are removed from the carrying case.
b. Turn on the SR51 calculator; insert card l2-1, side A; hit "2nd" then "Read"; insert side B; hit "2nd" then "Read." Punch E' to initialize.
c. The calculator was now programmed to receive the coordinate numbers. Punch in the Landsat sample number, enter in A; then Landsat line number, enter in B; then punch in the coordinate from the photograph, photo-X, and enter it in C. All six sample, line, and photo-X numbers were entered in a like manner.
d. Do not clear the machine; insert the second card 12-2, side A; hit "2nd" then "Read"; insext side B, hit "2nd" then "Read." At this point, (by punching A) the coefficient for c is calculated; punch.B and receive the coefficient for a; punch C and receive the:coefficient for b.
e. The last step in this phase was to insert the Landsat sample number and punch.D; insert the Landsat line number and punch E and get the computed X for each of the six registration control points. The computed x numbers were then compared to the photo-X control point numbers to prove their validity. If the computed X number was within 2 digits of the photo-x number, it was considered good enough to be acceptable. If the difference were larger than 2 digits, other points must be picked and checked in the same manner as described above.
f. When all six registration control points have been calculated and proved acceptable, the first PSU corner point for the Landsat sample was entered and D was punched; then the Landsat line number was entered and E was punched. This generated
the computed X -coordinate for one corner of the PSU. The remaining three corner numbers were entered in like manner, and all four computed X-coordinates of the PSU were thusly located.

To determine the computed Y-coordinates, the exact procedure used to find the computed X-coordinates was used, with exception of using the photo-x number. Instead, the photo-Y number was employed in conjunction with the Landsat sample and Landsat line numbers.

APPENDIX B
 PROCEDURE FOR COMPARISON OF CLASSIFICATION PRODUCT WITH AERIAL PHOTOGRAPH

APPENDIX B
 PROCEDURE FOR COMPARISON OF CLASSIFICATION PRODUCT
 WITH AERIAL PHOTOGRAPHS

In order to compare the results of the classification product with the ground truth of the aerial photographs, some special equipment was necessary; therefore, 10 stabilene overlays were constructed to fit the area covered by the 50 -pixel by 50 -pixel PSU's of the alphameric printouts. Each overlay had ten 2-pixel by 2 -pixel SSU's outlined. These SSU's were randomly placed, using the random number selector on the hand-held calculator. Ten different sets were generated to further ensure a truly random selection.

An aerial photograph with the outline of the PSU was mounted on the viewing screen Zoom Transfer Scope (ZTS). A PSU overlay with 10 SSU locations was then situated beneath the ZTS; and, using the enlarging, stretching, and image rotation selectors, the image on the photograph was made to fit exactly the overlay underneath. It was then possible for the photointerpreter to identify and classify the areas under each of the 10 SSU 's on the overlay. These interpretations were recorded and represented the ground-truth data used in the evaluation. The overlay was then removed and situated over the corresponding PSU on the alphameric printout, thus making it possible to compare directly the same areas from the photograph with the alphameric classifications. Both the photointerpretation and the alphameric readings were recorded on a worksheet for further study.

APPENDIX C
SUMMARY EVALUATION TABLES FOR TES SITES
EXTRACTED FROM OTHER TES DOCUMENTS

TABLE 4-1.- SUMMARY TABLE OF PCC CALCULATIONS GRAND COUNTY, COLORADO (INVENTORY)

PSU\#	PCC_{i}	$\mathrm{PCC}=\frac{1}{\mathrm{~m}} \sum_{i=1}^{\mathrm{m}} \mathrm{PCC}_{i}$
2	0.90	$=0.75$
5	. 70	a
5	. 80	s^{2} (1-f) ${ }^{\text {l }}{ }^{\text {m }}$
6	. 80	$S_{P C C}^{2}=(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{M}\left(\mathrm{PCC}_{i}-\mathrm{PCC}\right)^{2}$
7	. 70	PCC \quad (m-1) $\sum_{i=1}{ }_{i}$
8	. 70	
9	. 90	
10	1.00	$S_{P C C}=0.033$
11	. 90	
12	. 40	$\Delta=\mathrm{t}_{0.95(\mathrm{~m}-1)} \mathrm{S}_{\mathrm{PCC}}$
13.	. 80	0.95 (m-1) PCC
15	. 70	
16	. 70	$=$ confidence interval
18	. 60	
19	. 50	$=0.058$
20	. 70	
23	. 70	Confidence interval of PCC
24	1.00	----
25	. 80	$=(\mathrm{PCC}-\Delta, \mathrm{PCC}+\Delta)$
Motal	$\mathrm{m}=20$	$=(0.69,0.81)$

TABLE 5-1.- SUMMARY TABLE OF CLASS PROPORTIONS
GRAND COINIY COLORADO, (INVENTORY)

PSU\#	Softroosa		- Haxcivood		Grassland		Water.		"Other"	
	Pi	$\stackrel{1}{1}_{i}$	p_{i}	\hat{p}_{i}	P_{i}	\hat{p}_{i}	P_{1}	\hat{r}_{i}	Pi	\hat{p}_{i}
2	. 41	. 425	0	0	0	0	0	0	. 59	. 575
3	. 95	. 80	0	0	. 05	. 05	0	0	0	. 15
5	0.	0	0	0	. 16	. 025	0 ,	0	. 84	. 975
6	. 57	. 575	0 :	0	. 15	- 0	0	0	. 28	. 425
7	. 29	. 1	0	0	0	. 075	0	0	. 71	. 825
8	. 57	. 575	0	0	. 01	0	0	0	. 42	. 425
12	. 74	. 3	0	0	. 02	. 05	0	0	. 24	. 65
13	. 85	. 725	0	0	0	. 05	0	0°	. 15	. 225
16	. 78	. 515	0	0	0	. 05	0	0	. 22	. 375
18	. 8	. 775	0	0	. 17	. 075	0	0	. 03	. 15
19	. 8	. 525	0	0	. 06	. 15	0	0	. 14	. 325
20	. 29	. 175	0	0	0	. 025	. 13	. 10	. 58	. 7
21	. 37	. 2	0	0	. 1	. 1	0.	0	. 53	. 7
23	. 67	$\therefore 475$	0	0	. 13	. 15	0	0	. 2.0	. 375
24	. 84	. 75	0	0	. 07	. 175	0	0	. 09	. 075
9	. 06	. 025	0	0	. 03	0	0	0	. 91	. 975
10	. 60°	. 70	0	0	0	0	0	0	. 40	. 30
11	. 08	. 075	0	0	. 04	0	0	0	. 88	. 925
15.	. 71	. 65	0	0	0	0	0	0	. 29	. 35
25°	. 24	. 125	0	0	. 13	. 125	0	0	. 63	. 75

rotal $\mathrm{HPSU}=\mathrm{m}=20$

TABLE 5-2.- SUMMARY TABLE OF CTASS PROPORTION ERRORS GRAND COUNIY, COIORADO (INVENTORY AND SEPARABIIITTY)

. Classes	True class proportion,	Separability		Confidence interval, 0.9 level	True class proportion, p	Simulated inventory		Confidence interval, 0.9 level
		$\begin{gathered} \text { Estimated } \\ \text { class } \\ \text { proportion, } \\ \$ \end{gathered}$	$\underset{B}{\text { Error, }}$			$\begin{aligned} & \text { Estimated } \\ & \text { class } \\ & \text { proportion, } \\ & \hat{\hat{p}} \end{aligned}$	Error,	
Hardwood	0.001	0.02	-0.019	-0.026, -0.012	(b)	(b)	(b)	(b)
Softwood	. 517	. 555	. 038	-.085, . 009	0.531	0.4275	0.1035	0.0596, 0.1474
Grass1and	. 0055	. 045	. 0105	-.016, .037	. 056	. 055	. 001	-.0227. . 0247
Water	. 0065	. 0075	-. 001	-.003, . 001	. 0065	. 005	. 0015	-.0009, . 0039
Other	. 42	. 3725	. 0475	.004, . 091	. 4063	. 5125	-. 106	-.143, -. 069

a $_{\text {True class proportion (} p \text {) comes from photonnterpretation, and estimated class proportion (} \hat{p} \text {) comes from }}$ plxel-counting of ADP classifications. The true class proportions are slightly different between the two classification methods. Thls results from the use of one set of SSU locations, for each pSU, in the The later procedure will be used in all subsequent evaluation in TES.
Extensive hardwood sites did not occur in the area from which signatures were extracted and thus this class was not considered for thas portion of the evaluation.

$$
\begin{aligned}
\hat{p} & =\frac{1}{m} \sum_{i=1}^{m} \hat{p}_{i} \quad \text { (from table 5-1) } \\
B & =\frac{1}{m} \sum_{i=1}^{m} B_{i}=\frac{1}{m} \sum_{i=1}\left(P_{i}-\hat{p}_{i}\right) \quad \text { (from table 5-1) } \\
S_{B} & =\left[(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{m}\left(B_{i}-B\right)^{2}\right]^{1 / 2} . \\
\Delta_{0.9} & =1.64 S_{B} \\
R B & =\frac{B}{P} \times 100
\end{aligned}
$$

where RB is expressed as a percentage.

PSU\#	PCC_{i}	
2	. 50	$\mathrm{PCC}=\frac{1}{10}{ }^{\mathrm{m}}$ PCC
3	. 80	${ }^{10}{ }_{i}{\underline{\underline{2}}{ }_{1}{ }^{\text {PCC }}}^{\text {i }}$
5	. 80	
6	. 70	
7	. 60	=. 73
8	. 50	
9	. 80	
10	. 70	$\mathrm{S}_{\mathrm{PCC}}^{2}=(1-\mathrm{f}) \frac{1}{m(m-1)} \mathrm{m}^{\text {a }}$ (PCC $\left.-P C C\right)^{2}$
11	.90 .80	$\mathrm{SPCC}^{\text {P }}$ (1-1) $\frac{1}{m(m-1)} \mathrm{E}_{1}\left(\mathrm{PCC}_{i}-\mathrm{PCC}\right)^{2}$
13	. 80	
15	. 80	$S_{\text {PCC }}=.0289$
16	1.00	PCCC ${ }^{\text {P }}$
18	. 80	
19	. 70	
20	. 70	$\Delta=t^{95}(\mathrm{n}-1) \mathrm{S}$
21	. 50	- ${ }^{\text {(n-1) }}$ SCC
23	. 70	
24	. 80	
25	. 60.	$=$ half width of 90% confidence
		interval
motal \#PSU $=\mathrm{m}=20$		
		$=.050$
		Confidence interval of PCC
		$=(\mathrm{PCC}-\Delta, \mathrm{PCC}+\Delta)$
		$=(.68, .78)$

TABIE 5-1.- SUMMARY TABLE OF CLASS PROPORTIONS GRAND COUNTY, COLORADO (SEPARABIIITTY)

PSU ${ }_{\text {fr }}$	Softwood		\therefore Haxdmood		Grassiand		Water		"Other"	
	P_{2}	\hat{P}_{i}	${ }^{1} i$	\hat{P}_{i}	P_{i}	\hat{p}_{i}	p_{i}	\hat{p}_{i}	${ }^{1}$	\hat{p}_{i}
2	. 41	. 575	0	0	0	0	0	0	. 59	. 425
3	. 85	. 925	0	0	. 15	. 05	0	0	0	. 025
5	0.	0	0	. 025	. 16	. 025	0	0	. 84	. 95
6	. 57	. 825	0	0	. 15	- 0 .	0	0	. 28	. 175
7	. 29	. 25	0	. 025	0	. 1	0	0	. 71	. 625
8	. 57	. 725	. 02	. 05	. 01	. 05	0	.025.	. 40	. 15
9	. 06	0	0	0	. 03	0	0	0	. 91	1.00
10	. 76	. 875	0	. 025	0	0	0.	0	. 24	$\underline{.1}$
1.1	. 08	0	0	. 025	. 04	. 05	0	0	. 88	. 925
12	. 82	. 90	0	0.	. 09	. 075	0	0	. 09	. 025
13	. 78	. 725	0	. 05	. 02	. 1	0	0	. 20	. 125
15	. 71	. 725.	0	0	0	. 025	0	0	. 29	. 250
16	. 71	. 70	0	0	. 01	0	0	0	. 28	. 30
18	. 85	. 95	0	0	. 03	. 025	0	0	$\stackrel{.}{.} 12$. 025
19	. 55	. 85	0	025	. 19	. 025	0	0	. 26	. 1
20	. 29	. 325	0	05.	0	. 075	. 13	. 125	. 58	. 425
21	. 37	. 275	0	025	. 10	. 15	0	0	. 53	. 55
23	. 69	. 85	0	. 05	0	. 025	0	0	. 31	. 075
24.	. 74	. 575 :	0	05	0	0	0	0	. 26	. 375
25	. 24	. 05	0	0	. 13	. 125	0	0	. 63	. 825

rotal 朝SU $=\mathrm{m}=20$

TABIE 4-1.- SUMMARY TABLE OF PCC CALCULATIONS

WARREN COUNIY, PENNSYLVANIA (INVENIORY)

TABLE 5-1.- SUMMARY TABIE OF CLASS PROPORTIONS WARREN COUNIY, PENNSYLVANIA (INVENIORY)

PSU ${ }_{\text {\% }}$	Softriond		Hardwood		Grassland		Vater		"Other"	
	P .	$\stackrel{\rightharpoonup}{P}^{1}$	p_{i}	\hat{p}_{i}.	P_{i}	\hat{p}_{i}	$\mathrm{P}_{\text {i }}$	\hat{P}_{i}	P_{1}	\hat{p}_{i}
2	0	0	. 73	. 575	0	0.	0	0	. 27	. 425
4	0	0	. 41	. 525	0	. 025	0	0	. 59	. 450
5	. 02	0	. 69	. 625	0	0	0	0	. 29	. 375
8	. 05	0	. 85	. 950	0	- 0	0^{-}	0	. 10	. 05
10	0	0	. 96	. 900	0	0	0	0	. 04	. 10
12	. 03	0	. 71	. 650	0	0	0	0	. 26	. 35
15	0.	0	. 98	. 975	0	0	0	0	. 02	. 025
17	0	0	. 90	. 875	0	0	0	0 .	. 10	. 125
18	0	0	1.00	1.00	0	0	0	0	0	$\stackrel{1}{0}$
20	0	0	. 69.	. 725	0	. 05	0	0	. 31	. 225
21	0	0	. 97	. 950	0	0	0	0	. 03	. 05
23	0	0	. 96	. 925	0	0	0	0	. 04	. 075
3	0	0	. 67	. 70	0	0	0	0	. 33	. 30
11	. 13	- 0	. 72	. 725	0	. 025	0	0	. 15	. 25
16	0	0	. 23	. 225	. 18	. 125	0	0	. 59	. 625
24.	0	. 025	. 10	. 975	. 0	0	0	0	\bigcirc	${ }_{0} 0$
-										

rotal \#PSU $=m=16$

TABLE 5-2. . SUMMARY TABLE OF CLASS PROPORIION ERRORS WARREN COUNTY, PENNSYLVANIA (INVENIORY AND SEPARABILITY)

	May separabil2ty study				May inventory study			
Class	Estimated class proportion,	$\underset{\mathbf{B}}{\text { Error, }}$	Confidence interval, $\Delta 0.9$	Significance of error	Estimated class $\underset{\hat{\mathrm{p}}}{\text { proportion, }}$	$\underset{B}{\text { Error, }}$	$\begin{gathered} \text { Confidence } \\ \text { interval, } \\ \Delta 0.9 \end{gathered}$	Significance of error
Hardwood	0.773	0.005	-0.018, 0.029	None	0.770	0.009	-0.003, 0.029	None
Softwood	. 005	. 010	-.006, .026	None	. 002	. 013	-.002, .028	None
Rangeland	. 016	-. 004	-.011; . 003	None	. 014	-. 003	-.012, . 006	None
Water								
Other	:206	-. 011	-.034, . 012	None	. 214	-. 019	-.050, .013	None

$$
\begin{aligned}
& \hat{p}=\frac{1}{m_{i=1}} \sum_{i=1}^{m} \hat{p}_{i} \quad \text { (from table 5-1) } \\
& B=\frac{1}{m_{i=1}^{m}} B_{1}^{m}=\frac{1}{m_{i=1}} \sum_{i}\left(P_{i}-\hat{P}_{i}\right) \quad \text { (from table 5-1) } \\
& S_{B}=\left[(1-\bar{f})_{m}^{m} \frac{1}{m-1)} \sum_{i=1}^{m}\left(B_{i}-B\right)^{2}\right]^{1 / 2} \\
& \Delta_{0.9}=1.64 S_{B} \\
& R B=\frac{B}{P} \times 100 \\
& \text { 'where } R B \text { is expressed as a percentage. }
\end{aligned}
$$

TABLE 4-1.- SUMMARY TABLE OF PCC CALCULATIONS

 WARREN COUNTY, PENNSYLVANIA (SEPARABIIITTY)

TABLE 5-1.- SUMMARY TABLE OF CLASS PROPORTIONS WARREN COUNTY, PENNSYLVANLA (SEPARABIITTTY)

Total \#psu $=\mathrm{m}=16^{\circ}$.

TABLE 4-1.- SLMMARY OF PCC CALCULATIONS ST. LOUIS COUNTY, MINNESOIA (INVENIORY)
[Calculations, ref. 4]

Quad- rant	PSU no.	PCC $_{i}$
1	1	0.70
	23	.90
	29	.70
	35	.80
2	2	0.60
	4	.80
	5	.90
	21	.70
	36	.90
		.70
3	1	0.70
	26	.50
	28	.70
	30	.70
	34	.50
4	2	0.80
	4	.90
	5	1.00
	24	.90
	32	.80

$$
\begin{aligned}
& P C C=\frac{1}{m} \sum_{i=1}^{m} P C C_{i} \\
&=0.76 \\
& S_{P C C}^{2}=(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{m}\left(P C C_{i}-P C C\right)^{2} \\
&=0.029 \\
& \Delta=t S_{P C C}(t=1.729) \\
&=1.729 S_{P C C} \text { at } 0.9 \text { confidence level } \\
&=0.051 \\
& \text { Confidence interval of PCC } \\
&=(P C C-\Delta, P C C+\Delta) \\
&=(0.71,0.81)
\end{aligned}
$$

NOTE: Total number of PSU's $=m=20$. The PSU numbers listed here are those used in the calculations and do not include those RSU's randomly selected but not used because of cloud cover, hazy photographic rendition, etc. Thirty-five PSU's were randomly selected originally, but 15 were eliminated from use.

TABLE 5-1. - SUMMARY TABLE OF CLASS PROPORTTONS
ST. LOUIS COUNTY, MINNESOTA (INVENIORY)
[Computed by evaluating PSU's on the photographs, p_{i}, and on the alphanumeric map, $\left.\hat{p}_{i}\right]$

Landsat quadrant	$\begin{aligned} & \text { PSU } \\ & \text { No. } \end{aligned}$	Softwood		Hardwood		Grassland		Water		Other	
		p_{i}	ρ_{i}	p_{1}	\hat{p}_{i}	$\mathrm{P}_{\text {i }}$	$\hat{\mathrm{p}}_{i}$	P_{1}	$\boldsymbol{\beta}_{\text {i }}$	p_{i}	\hat{p}_{i}
1	1	0.05	0.025	0.72	0.6	0.07	0.225	0.03	0	0.13	0.15
	23	. 41	0.4	. 08	. 05	. 02	. 075	. 03	. 025	. 46	- . 45
	29	. 22	0.15	. 31	. 225	. 03	. 1	0	0	. 44	. 525
	25	. 2	0.225	. 58	. 4	. 09	. 125	0	0	. 13	. 25
2	2	0.44	0.475	0.11	0.075	0	0	0	0	0.45	0.45
	4	. 15	0.225	. 64	. 525	. 04	0.025	.10	. 10	. 07	. 125
	5	. 65	. 575	. 11	. 05	. 04	0.075	. 20	. 20	0	. 1
	21	. .51	. 425	. 42	$\checkmark .375$. 07	0	0	${ }^{\circ}$	0	. 2
	22	.73	. 75	. 02	0	0	0	.25	. 22	0	. 05
	36	. 55	. 475	. 21	. 125	. 04	0	. 15	. 15	. 05	. 25
3	1	0.04	0.075	0.65	-0.475	0.22	0.125	0	0	0.09	0.325
	26	. 02	. 125	. 6	. 4	. 07	.125	. 3	. 275	. 01	. 175
	28	. 16	. 2	. 58	. 45	. 1	0	.15	.175	. 01	. 175
	30	0	0	. 7	. 65	. 29	. 175	0		. 01	. 175
	34	. 19	. 1	. 59	. 55	0	0	. 22	. 125	0	0.225
4	2	0.28	0.125	0.52	0.55	0.03	0.05	0.12	0.1	0.05	0.175
	4	. 12	. 075	. 23	.225	. 04	. 025	. 51	. 5	. 1	. 175
	5	0	0	. 05	. 05	0	0	. 9	. 9	. 05	. 05
	24	. 3	.225	. 7	. 7	0	0	0	0	0	. 075
	32	. 62	. 6	. 3	. 15°	. 08	. 025	0	0	0	. 225

TABLE 5-2.- SUMMARY TABLE OF CLASS PROPORTION ERRORS
ST. LOUIS COUNTY, MINNESOTA (INVENTORY)

Class	simulated inventory estimate, \hat{p}	Photointerpretation estimate, p	$\begin{aligned} & \text { Average } \\ & \text { error, } \\ & (\mathrm{p}-\hat{\mathrm{p}}) \end{aligned}$	Standard deviation error, S_{B}	One-half confidence interval, 4.9, for error (a)	Conifidence interval ($\mathrm{B}: \mathrm{A}$)	$\begin{gathered} \text { Does } \\ \text { interval } \\ \text { contain } \\ \text { zero? } \end{gathered}$	Relative error, (100B/p)	-ADP agreed. over/under estimate
Softwood	0.263	0.282	0.020	0.014	0.024	(-0.004, 0.044)	Yes	7.07	Agreed
Hardwood.	. 331	. 406	. 0.075	. 015	. 025	(.050, .100)	No.	. 19.47	Over
Grask 2and	. 058	. 062 .	. 004	: . 014	. 024	(-.02, '028)	Yes	, 6.47	Agreed
Water	. 132	. 148	. 016	. 008	. 013	(-.003, .029)	Yes	- 10.81	Agreed

$$
\begin{aligned}
& \hat{P}=\frac{1}{m_{i=1}^{m}} \sum_{i=1}^{m} \hat{P}_{i} \quad(\text { from table } 5-1) \\
& B=\frac{1}{m_{i}} \sum_{i=1}^{m} B_{2}=\frac{1}{m_{i}} \sum_{i=1}\left(P_{i}-\hat{P}_{i}\right) \quad(\text { from table } 5-1) \\
& S_{B}=\left[(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{m}\left(B_{i}-B\right)^{2}\right]^{1 / 2} \\
& \Delta_{0.9}=1.64 S_{B} \\
& R B=\frac{B}{P} \times 100 \\
&! \\
& \text { where } R B \text { is expressed as a percentage. } .
\end{aligned}
$$

TABLE 4-1. - SUMMARY TABLE OF PCC CALCULATIONS SANDOVAL COUNTY, NEW MEXICO (INVENTORY)

PSU\#	PCC_{i}
3	. 70
6	. 80
17	1.00
21	1.00
8	1.00
15	1.00
5.	1.00
18	1.00
1	1.00
23	1.00
- 9	1.00
4	. 70
9-3	1.00
9-4	1.00
9-5	1.00
9-6	. 90
6-7	. 80
6-8	1.00
6-9	1.00
6-10	. 80

Total \#PSU $=\mathrm{m}=20$

$$
\begin{aligned}
& \mathrm{PCC}=\frac{1}{\mathrm{~m}}{\underset{i=1}{\mathrm{E}} \mathrm{E}_{1} \mathrm{PCC}}_{i} \\
&=.935 \\
& \mathrm{~S}_{\mathrm{PCC}}^{2}=(1-\mathrm{f}) \frac{1}{\mathrm{n}(\mathrm{~m}-1)} \sum_{i=1}^{\mathrm{m}}\left(\mathrm{PCC}_{i}-\mathrm{PCC}\right)^{2} \\
& \mathrm{~S}_{\mathrm{PCC}}=.024 \\
& \Delta=\mathrm{t} .95(\mathrm{n}-1) \mathrm{S}_{\mathrm{PCC}} . \\
&=\text { half width of } 90 £ \text { confidence } \\
& \text { interval. }
\end{aligned}
$$

$$
=.039
$$

$$
\begin{gathered}
\text { Confidence interval of PCC } \\
=(\text { PCC-A, PCC }+\Delta) \\
=(.896, .974)
\end{gathered}
$$

Inventory	PCC	90 -percent confidence interval	Δ
20 PSU's	93.5	89.6 to 97.4	± 3.9

TABLE 5-1.- SUMMARY TABLE OF CLASS PROPORTIONS SANDOVAL COUNTY, NEW MEXICO (INVENTORY)

PSU ${ }_{\text {\% }}$	Sofitwood		Hardwood		Grassland		Vater		"Other:"	
	P_{i}	\hat{P}_{i}	P_{i}	\hat{P}_{i}	P_{i}	\hat{p}_{1}	P_{1}	\hat{p}_{i}	P_{i}	\hat{p}_{i}
3	. 98	. 775	. 01	0						
6	. 54	. 45	. 0	0	0	0	0	0	. 01	
17	. 07	. 025	0	0	0	0	0	0	. .93	. 975
21	0	0	0.	0	. 03	-. 025	0.	0	. 93	. 975
15	0	0	0	0	. 04	. 025	0	0	. 96	. 975
5	0	0	0	0	0	0.	0	0	1.0	1.0
18	0	0	${ }_{0}^{0}$	0	. 08	. 05	0	0	. 92	. 95
1	0	0	0	0	. 35			0	. 65	. 70
23	0	0.	0.	0	. 32	. 3275	0	0	. 68	. 675
9	. 21	. 20	. 11	. 125	$\stackrel{.24}{0}$. 275	0	0	. 76	. 725
4	. 59	. 425	$\stackrel{11}{0}$	$\stackrel{.125}{0}$	0	0	\bigcirc	0	. 68	. 675
9-3	. 18	. 20	. 10°	. 075	0	0	0	0	. 41	. 575
9-4	. 09	. 05	. 09	. 075	0	0 0 0	0.	0	. 72	. 725
9-5	. 12	. 125	- 0	-0	0	0.	0	0	. 82	. 875
9-6	. 12	. 075	. 05	. 05	0	0	0	0	. 88	
. 6-7	. 33°	. 35	0	0	0	0	0	0	. 83	.875
6-8	. 50	. 50	0	0	0	0	0	0	. 67	.65 .50
6-9	. 55	. 50	0	0	0	0	0	0	. 50	$\begin{aligned} & .50 \\ & .50 \end{aligned}$
6-10	. 40	. 525	0	0	0	0		0	. 45	$\begin{aligned} & .50 \\ & .475 \end{aligned}$

Total : $\mathrm{FPSU}=\mathrm{m}=20$

TABLE 5-2.- SUMMARY TABLE OF CLASS PROPORTION ERRORS SANDOVAL COUNTY, NEW MEXICO (INVENIORY)

Class	Inventory 11 PSU's				\cdots. Inventory 20 Psu's			
	True class proportion, P	Estimated'class projortion, \hat{p}	Average. error, B	$\begin{gathered} \text { Confidence } \\ \text { interval, } \\ 2 \Delta 0.9 \end{gathered}$	True class proportion, p	Estimated class - proportion, , $\hat{\mathrm{p}}$	Average error, B	. Confidence interval, $2 \Delta 0.9$
Softwood.	0.164	0.132	0.032	(0.001, 0.063)	0.234	0.21	0.024	(-0.001, 0.049)
Hardwood	. 011	. 011	$\bigcirc .0004$	(-.031; .031)	. 018	. 016	. 002	(-.001, .005)
Rangeland	. 096	. 091	. 005	(-.005, .015)	. 053	. 05	. 003	($=.003, .009)$
Water	No Water				No water			
Other ${ }^{\text {' }}$ ',	. $\quad .729$. 766	-.037.	$(-.07,-.004)$. 695	. 724	-. 029	(-.054, -.004)

$a_{\text {True chas }}$ proportion (p) comes from photointerpretation; estimatcd class proportion (\hat{p}) comes from ssu evaluation.

$$
\begin{aligned}
& \hat{p}=\frac{1}{m_{i=1}} \sum_{1}^{m} \hat{p}_{1} \quad \text { (from table 5-1) } \\
& B=\frac{1}{m_{i=1}^{m}} \sum_{i}^{m}=\frac{1}{m_{i=1}} \sum_{i=1}\left(P_{i}-\hat{p}_{i}\right) \quad \text { (from table 5-1) } \\
& S_{B}=\left[(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{m}\left(B_{i}-B\right)^{2}\right]^{1 / 2} \\
& \Delta_{0.9}=1.64 S_{B} \\
& \cdot R B=\frac{B}{P} \times 100 \\
& l^{\prime} \text { where RB is expressed as a percentage. }
\end{aligned}
$$

TABLE 4-1.- SUMMARY TABLE OF PCC CALCULATIONS KERSHAW COUNTY, SOUTH CAROLINA (INVENIORY)

$$
\begin{aligned}
& \text { PSU\# } \quad \text { PCC }_{\text {i }} \\
& \text { Total. } \# \text { PSU }=m=24 \\
& P C C=\frac{1}{m}{\underset{i=1}{\sum_{1}} P C C_{i}, ~}_{\text {in }} \\
& =.704 \\
& S_{P C C}^{2}=(1-f) \frac{1}{m(m-1)}{\underset{i}{i}}_{i}^{\underline{E}_{1}}\left(\text { PCC }_{i}-P C C\right)^{2} \\
& S_{\mathrm{PCC}}=.034 \\
& \Delta=t .95(n-1) S_{\mathrm{PCC}} \\
& =\text { half width of } 90 \% \text { confidence } \\
& \text { interval } \\
& =.058 \\
& \text { Confidence interval of PCC } \\
& =(P C C-\Delta, P C C+\Delta) \\
& =(.65 \text {, } .76)
\end{aligned}
$$

Inventory ${ }^{\text {a }}$	Number of PSU's	PCC	90-percent confidence interval	$\Delta .9$
Original PSU locations	18	60.0	(0.54, 0.66)	0.058
Best fit (local registration)	24	70.0	(.64, .76)	. 057

TABIE 5-1.- SUMMARY TABLE OF CLASS PROPORTIONS KERSHAN COUNTY, SOUTH CAROLINA (INVENIORY)

FSU\#	Sostriod		Haxdwood		grassland		Water		"Other"	
	P_{j}	\hat{P}_{i}	P_{i}	\hat{p}_{i}	${ }^{1}$	\hat{P}_{i}	P_{i}	\hat{p}_{i}	Pi	\hat{p}_{i}
1	. 66	. 7	. 14	. 05	0	0	. 1	. 1	. 1	. 15
. 2	. 38	. 4	: 46	. 275	0	0	0	0	. 16	. 325
4	. 20	. 15	. 20	. 1	0	0	0	0	. 6	. 75
5	. 49	. 075	. 08	. 05	0	. 075	. 02	0	. 41	. 8
7	. 36	. 225	. 44	. 25	0	0	0	0	. 2	. 525
9	. 5	. 4	. 24	. 1.75	. 1	. 1	0	0	. 16	. 325
10	. 65	. 575	. 35	. 375	0	0	0	0	0	. 05
11	. 4	. 425	0	0	0	0 ..	0	0	. 6	. 575
12	. 34	. 35	. 45	. 475	. 18	. 075	0	0	. 03	. 1.
13	0	0	. 22.	. 275	. 1	. 05	. 1	0	. 58	. 675
14	. 41	. 375	. 25	. 175	0	. 025	0	0	. 34	. 425
15	. 05	. 075	. 2	. 125	. 1	. 225	0	0	. 65	. 575
16	. 47	. 325	. 29	. 1	0	. 05	0	0	. 24	. 525
18	. 1	. 2	. 64	. 325	0	. 025	0	0	. 26	. 45
20	. 41	. 425	. 37	. 275	0	0	. 2	. 2	. 02	. 1
23	. 21	. 05	. 19	. 025	0	. 1	0	0	. 6	. 825
25	. 5	. 4	. 3	. 4	0	0	0	0	. 2	. 2
1-A	. 47	. 525	. 28	. 15	0	. 025	0	0	. 25	. 3
2-A	. 2	. 25	. 65	. 575	0	0	0	0	. 15	. 175
3-A	. 69	. 575	. 1	. 225	. 2	. 05	0	0	. 01	. 150
4-A	. 54	. 4	.07	. 075	0	0	0	.05	.39	. 475
$=5-A$	-26	-20	. 27	:20	. 12	0	0	0.	. 35	. 6
$6-\mathrm{A}$. 12	. 05	. 5	. 275	. 11	. 20	0	0	. 27	. 475
7-A	.5	. 4	. 37	. 375	. 03	0	0	0	. 1	. 225

Total $\# P S U=\mathrm{m}=24$

TABLE 5-2.- SUMMARY TABLE OF CLASS PROPORIION ERRORS KERȘHAW COUNTY, SOUTH CAROLTINA (INVENTORY)

Feature	Proportion error			
	Photographic class proportion, p	ADP class proportion, \hat{p}	Average error, B	90-percent confidence interval
Softwood	0.371	0.314	0.057	(0.021, 0.093)
Hardwood	. 291	. 222	. 069	(.036, .108)
Grassland	. 039	. 042	-. 003.	(-.025, .019)
Water	. 018	. 015	. 003	(-.005, .011)
Other	. 278	. 407	-. 129	(-.167, .091)

$$
\begin{aligned}
& \hat{\underline{q}}\left.=\frac{1}{m_{i=1}^{m}} \sum_{i=1}^{m} \hat{P}_{i} \quad \text { (from table } 5-1\right) \\
& B=\frac{1}{m_{i}} \sum_{i=1}^{m} B_{i}=\frac{1}{m_{i=1}} \sum_{i=1}\left(P_{i}-\hat{P}_{i}\right) \quad \text { (from table 5-1) } \\
& S_{B}=\left[(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{m}\left(B_{i}-B\right)^{2}\right]^{1 / 2} \\
& \Delta_{0.9}=1.64 S_{B} \\
& \ldots R B=\frac{B}{P} \times 100 \\
& \text { 'Where RB is expressed as a percentage. }
\end{aligned}
$$

TABLE 4-1.- SUMMARY TABLE OF PCC CALCULATIONS FORT YUKON, ALASKA (INVENTIORY)

PSU\#	PCC_{i}	
I 3	. 30	$P C C=\frac{I}{m}{ }_{i=1}^{m} \sum_{i} P C C_{i}$
5	. 40	
6	. 80	
11	. 90	
14	. 80	= . 712
17	. 90	
18	. 70	
II 13	. 80	$\left.S_{\text {PCC }}^{2}=(1-f) \frac{1}{m(m-1)}{ }_{i}^{m} \underline{\underline{E}} 1^{(P C C C}{ }_{i}-P C C\right)^{2}$
16	. 90	
21	. 60	
22	. 50	
23	. 60	$S_{P C C}=.035$
III ${ }^{\prime \prime}$. 60	
4	. 80	$\Delta=t_{.95(n-1)} S_{P C C}$
	. 70	
9	. 40	
15	. 90	
20	. 80	$=$ half width of 90% confidence interval
25	. 80	
IV 1	. 70	
10	1.00	
12	. 50	$=.060$
19	. 80	
24	. 90	Confidence interval of PCC
Total \#PSU $=\mathrm{m}=25$		$=($ PCC $-\Delta$, PCC $+\Delta$)
		. $=(.65$, .77)

Inventory sample size	PCC	Half-confidence interval, $\Delta .9$	PCC $\pm \Delta .9$
25 PSU's	72.48	5.98	66.5% to 78.38

TABLE 5-1.- SUMMARY TABLE OF CLASS PROPORTIONS
FORT YUKON, ALASKA (INVENTORY)

Total \#P SU $=\mathrm{m}=25$

TABLE 5-2.- SUMMARY TABLE OF CLASS PROPORTION ERRORS FORT YUKON, ALASKA (INVENIORY)

Class	Inventory 25 PSU 's ${ }^{\text {a }}$			
	Photointerpretation proportion, p	ADP class proportion, $\hat{\mathrm{p}}$	Average error, B	Confidence interval, $B \pm \Delta .9$
Softwood	0.338	0.358	-0.020	(-0.052, 0.012)
Hardwood	0.142	0.102	0.040	(0.019, 0.061)
Tundra	0.276	0.268	0.008	(-0.021, 0.037)
Water	0.008	0.005	0.003	(-0.002, 0.008)
Other	0.236	0.267	-0.031	$(-0.055,-0.007)$

$\mathrm{a}_{\text {These }} 25$ PSU's were randomly located in the site.

$$
\begin{aligned}
& \hat{P}=\frac{1}{m_{i=1}} \sum_{i=1}^{m} \hat{p}_{i} \quad \text { (from table 5-1) } \\
& B=\frac{1}{m_{i=1}} \sum_{i=1}^{m} B_{i}=\frac{1}{m_{i=1}} \sum_{i}\left(P_{i}-\hat{P}_{i}\right) \quad \text { (from table 5-1) } \\
& S_{B}=\left[(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{m}\left(B_{i}-B\right)^{2}\right]^{1 / 2} \\
& \Delta_{0.9}=1.64 S_{B} \\
& R B=\frac{B}{P} \times 100 \\
& \text { Where RB is expressed as a percentage. }
\end{aligned}
$$

TABLE 4-1.- SUMMARY TABLE OF PCC CALCULATIONS

 WELD COUNTY, COLORADO (INVENIORY)| PSU\# | PCC_{i} | |
| :---: | :---: | :---: |
| 1 | . 60 | $\mathrm{PCC}=1 \mathrm{~m}$ |
| 2 | . 80 | $\mathrm{PCC}=\frac{\mathrm{m}}{\mathrm{m}}{ }_{i}{\underline{\underline{\underline{1}}} \mathrm{PCC}_{i}}$ |
| 3 | . 90 | |
| 4 | . 70 | |
| 5 | . 70 | |
| 6 | . 70 | $=.73$ |
| - 7 | . 80 | |
| 8 | . 70 | |
| 9 | . 70 | |
| 10 | . 70 | |
| Total \#PSU $=. \mathrm{m}=10$ | | |
| | | $S_{\text {PCC }}=.026$ |
| | | \cdots |
| | | $\Delta=t .95(n-1) s$ |
| | | . 95 (n-1) SPCC |
| | | $=$ half width of 90% confidence interval |
| | | $=.047$ |
| | | Confidence interval of PCC |
| | | $={ }^{\prime}(\mathrm{PCC}-\Delta, \mathrm{PCC}+\Delta)$ |
| | | $=(.683$, . 777) |

Inventory sample size	PCC	Half-confidence interval, $\Delta .9$	PCC $\pm \Delta .9$
10 PSU's	73%	4.78	68.3% to 77.7%

TABLE 5-1.- SUMMARY TABLE OF CLASS PROPORIIONS

WELD COUNIY, COLORADO (INVENTORY)

PSU number	Cultivated		Weeds		Grassland		Water		Other	
	p_{i}	\hat{p}_{i}	p_{i}	\hat{p}_{i}	p_{i}	\hat{p}_{i}	p_{i}	\hat{p}_{i}	p_{i}	\hat{p}_{i}
1	0.000	0.000	0.000	0.000	1.000	0.750	0.000	0.000	0.000	0.250
2	0.000	0.000	0.000	0.000	0.600	0.750	0.000	0.000	0.400	0.250
3	0.000	0.000	0.000	0.000	0.480	0.525	0.000	0.000	0.520	0.475
4	0.210	0.025	0.000	0.000	0.150	0.200	0.000	0.000	0.640	0.775
5	0.000	0.025	0.000	0.000	0.470	0.675	0.000	0.000	0.530	0.300
6	0.000	0.000	0.000	0.000	0.300	0.525	0.000	0.000	0.700	0.475
7	0.000	0.050	0.000	0.000	0.200	0.225	0.000	0.000	0.800	0.725
8	0.300	0.125	0.000	0.000	0.000	0.025	0.000	0.000	0.700	0.850
9	0.000	0.000	0.180	0.000	0.570	0.875	0.000	0.000	0.250	0.125
10	0.000	0.000	0.090	0.000	0.630	0.875	0.000	0.000	0.280	0.125

Definitions:
$\mathrm{p}_{\mathrm{i}}=$ photograph sample for ith PSU
$\hat{p}_{i}=$ ADP sample for ith PSU

TABLE 5-2.- SUMMARY TABLE OF CLASS PROPORITION ERRORS WELD COUNIT, COLORADO (INVENTORY)

Class	Inventory class proportion, $\hat{\mathbf{p}}$	Photograph class proportion, p	Average error, B	$\begin{gathered} \text { Standard } \\ \text { deviation } \\ \text { of error, } \mathrm{S}_{\mathrm{B}} \end{gathered}$	Malf-confidence interval, 4.9	Confidence interval, $\mathrm{B}=\Delta$	Percent relathe error, RB
Cultivated	0.022	0.050	0.028	0.025	0.047	(-0.019, 0.075)	56
Weeds	0	. 027	$.027{ }^{\circ}$. 019	. 035	(-.008, .062)	100
Grassland Water ${ }^{a}$. 543	. 441	-. 102	. 050	. 091	(-.193, -.011)	23.13
Other	. 435	. 482	. 047.	. 052	. 096	(-.049, .143)	9.75

${ }^{a_{T}}$ There were no significant water bodies in this site.

$$
\begin{aligned}
& \text { * } \\
& \hat{\mathrm{p}}=\frac{1}{\mathrm{~m}_{i}} \sum_{i=1}^{m} \hat{p}_{i} \quad \text { (from table 5-1) } \\
& B=\frac{1}{m_{i=1}} \sum_{i=1}^{m}=\frac{1}{m_{i=1}} \sum_{i=1}\left(P_{i}-\hat{P}_{i}\right) \quad \text { (from table 5-1) } \\
& S_{B}=\left[(1-f) \frac{1}{m\left(m^{-1)}\right.} \sum_{i=1}^{m}\left(B_{i}-B\right)^{2}\right]^{1 / 2} \\
& \Delta_{0.9}=1.64 \mathrm{~s}_{\mathrm{B}} \\
& \mathrm{RB}=\frac{\mathrm{B}}{\mathrm{~F}} \times 10 \mathrm{l} \\
& 1 \\
& \text { 'where RB is expressed as a percentage. }
\end{aligned}
$$

table 4-1.- SUMMARY TABLE OF PCC CALCULATIONS
GRAYS HARBOR COUNIY, WASHINGION (Inventory)

TABLE 5-I.- SUMMARY TABLE OF CLASS PROPORTIONS GRAYS HARBOR COUNTY, WASHINGION (INVENIORY)

PSU*	Sof.twood		Hardmood		Clearcut		Water		"Other"	
	P_{2}	$\stackrel{\stackrel{\rightharpoonup}{P}}{i}$	$\mathrm{P}_{\text {i }}$	\hat{j}_{i}	P_{i}	\hat{p}_{i}	P_{j}.	\hat{P}_{i}	P_{i}	\hat{p}_{i}
$\frac{1}{3}$. 49	. 525	0	. 025	. 21	. 05	0	0	. 3	. 4
2	1.0	. 975	. 0	. 025	0	0	0	0	0	0
3	. 69	. 725	. 05	0	. 21	0	0	. 025	. 05	. 25
4	. 20	. 20	. 2 .	. 35	. 38	.1.	. 0^{-}	0	. 22	. 55
5	. 73	. 45	0	. 025	. 27	. 075	0	. 025	0	. 425
6	. 1	0	. 25	. 2	0	0	0	0	. 65	. 8
7	. 83	. 80	. 05	. 05	. 12	. 075	0	0	0	. 075
8	. 52	. 65	. 23.	. 05	0	0	0.	0	. 25	. 3
9	. 72	. 5	0	. 175	0	0	0	0	. 28	. 325
10	. 96	. 725	0	. 075	0	. 05	0	0	. 04	. 15
11	. 4	. 5	. 28	. 15	0	0	. 1	0	. 22	. 35
12	. 5	. 6	. 46	. 325	0	0	$\stackrel{-1}{0}$	0	. 04	. 075
13	. 31	. 325	. 15	0	0	0	0.	0	. 54	. 675
14	. 8	$\bigcirc .725$.	. 04	0	. 16	. 05	0	. 05	0	. 175
15	. 41	. 425	0	0	. 1	. 025	0	0	. 49	. 55
16	. 83	. 375	0	0	. 1	. 275	0	0	. 07	. 35
17	. 67	. 675	0	0	. 1	. 1.	0	0	. 23	. 225
18	. 5	. 6	0.	0	0	- 0	0	0	. 5	. 4
19.	. 76	. 8225	. 04	0	0	0	0.	0	. 2	. 175
20°	. 5	. 45	. 15	. 15	0	0.	0.	0	. 35	
21	. 44	. 525	. 11	. 15	0	0	0	0	. 45	. 325
$\cdot .22$	$: 98$. 9	0	0	0	0	0	0	. 02	. 1
23	. 74	. 75	. 12	. 1	0	0	0	0	. 14	. 15
24	. 51	. 7.	. 44	. 1	0.	0	0	0	. 05	.2
25	. 75	. 675	0	. 1	. 11	0	0	0	. 14	. 225

Total \#PSU $=\mathrm{m}=25$

TABLE 5-2.- SUMMARY TABLE OF CLASS PROPORTION ERRORS GRAYS HARBOR COUNTY, WASHINGION (INVENTORY)

Feature	Inventory, $25 \mathrm{PSU} \mathrm{s}^{\text {a }}$			
	Photograph class proportion, p	ADP class proportion,	Average error, B	Confidence interval, B $\pm \Delta .9$
Softwood	0.614	0.584	0.030	(-0.018, 0.078)
Hardwood	. 103	. 074	. 029	(-. $004, .062)$
clear-cut	. 070	. 032	. 038	(.007, .069)
Water	. 004	. 004		(-.008, .008)
Other	. 209	. 306	-0.097	(-.137, -. 057)

a'These 25 PSU's were randomiy located within the site.

$$
\begin{aligned}
& \hat{p}=\frac{1}{m} \sum_{i=1}^{m} \hat{p}_{i} \quad \text { (from table 5-1) } \\
& B=-\frac{1}{m_{i=1}^{m}} \sum_{i}=\frac{1}{m} \sum_{1=1}\left(P_{i}-\hat{p}_{i}\right) \quad \text { (from table } 5-1 \text {) } \\
& S_{B}=\left[(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{m}\left(B_{1}-B\right)^{2}\right]^{1 / 2} \\
& \Delta_{0.9}=1.64 \mathrm{~S}_{\mathrm{B}} \\
& R B=\frac{\dot{B}}{P} \times 100 \\
& \text { 'where RB is expressed as a percentage. }
\end{aligned}
$$

TABEE 4-1.- SUMMARY TABLE OF PCC CALCULATIONS WASHINGION COUNTY, MISSOURI (INVENIORY)

PSU number	PCC $_{i}$ expressed as proportion
1	0.80
2	.90
3	.80
4	.90
5	.70
6	.90
7	1.00
8	.80
9	1.00
10	.70

$$
\begin{aligned}
P C C & =\frac{1}{m} \sum_{i=1}^{m} P C C_{i} \\
& =0.85 \\
S_{P C C}^{2} & =(1-f) \frac{1}{m(m-1)} \sum_{i=1}^{m}\left(P C C_{i}-P C C\right)^{2} \\
S_{P C C} & =0.034 \\
\Delta & =t S_{P C C} \\
& =1.833 S_{P C C} \text { at } 0.9 \text { confidence interval } \\
& =0.062 \quad ; \\
\text { Confidence interval of PCC } & =(P C C-\Delta, P C C+\Delta) \\
& =(0.788,0.912)
\end{aligned}
$$

Inventory PSU's	PCC	Half confidence interval at 0.9	PCC $\pm . \Delta_{0.9}$
10	85%	± 6.28	$(78.8 \%-91.28)$

Notation

$\mathrm{m} \quad=$ number of PSU's in sample scheme.
PCC $_{i}=$ percent correct classification ($i=$ PSU index)
$\mathbf{f}=$ finite population constant $=\left(\mathrm{m}^{\circ}-1\right\rangle /(\mathrm{N}-1)$, where $m=$ number of PSU's in sample scheme and $\mathrm{N}=$ total number of PSU's in entire population
$s_{\text {PCC }}^{2}=$ variance of mean
$S_{\text {PCC }}=$ standard deviation
$t=$ constant obtained from statistical tables

TABLE 5-1.- SUMMARY OF CLASS PROPORTIONS WASHINGTON COUNITY, MISSOURI (INVENTORY)

$\begin{aligned} & \text { PSU } \\ & \text { number } \end{aligned}$	Softwood		Hardwood		Grassland		Water ${ }^{\text {a }}$		Other	
	F_{i}	\hat{p}_{1}	p_{1}	\hat{P}_{i}	p_{i}	\hat{p}_{i}	P_{i}	\hat{p}_{2}	p_{i}	\hat{p}_{1}
1	0.00	0.000	0.85	0.750	0.14	0.125			0.01	0.125
2	. 00	. 025	1.00	. 825	. 00	. 000			. 00	. 150
3	. 00	. 000	. 77	. 875	. 13	. 000			. 10	. 125
4	. 00	. 050	. 96	. 850	. 02	. 000			. 02	. 100
5	. 09	. 100	. 81	. 625	. 08	. 000			. 02	. 275
6	. 07	. 050	. 82	. 775	. 10	. 100			. 01	. 075
7	. 08	. 025	. 86	. 875	. 00	. 000			. 06	. 100
8	. 00	. 000	. 95	. 950	. 00	. 025			. 05	. 025
9	. 00	. 000	. 88	. 775	. 10	. 200			. 02	. 025
10	. 05	. 000	. 85	. 725	. 04	. 075			. 06	. 200
Total	0.29	0.250	8.75	8.025	0.61	0.525			0.35	1.200

Average proportion	Sofftwood		Hardwood		Grassland		Water		Other	
	p	\hat{p}	p	\hat{p}	p	\hat{p}	p	$\hat{\mathrm{p}}$	P	\hat{p}
	0.029	0.0250	0.875	0.8025	0.061	0.0525			0.035	0.120

${ }^{\text {a }}$ None in test area.

Notation

$p_{i}=$ photograph sample proportion for i th PSU
$\hat{\boldsymbol{p}}_{\mathrm{i}}=$ inventory sample proportion for i th PSU
p = average photograph sample proportion
$\hat{\mathbf{p}}=$ average inventory sample proportion

TABLE 5-2.- SUMMARY OF CLASS PROPORTION ERRORS WASHINGION COUNITY, MISSOURI (INVENTIORY)

Class	$\begin{aligned} & \text { Inventory } \\ & \text { class } \\ & \text { proportion, } \\ & \hat{0} \end{aligned}$	Photograph class proportion, P	Average error, . B	```Standard deviation of error, S```	Half confidence interval, $\Delta_{0.9}$	Confidencè interval, B $\pm \Delta$	$\begin{gathered} \text { Percent } \\ \text { relative } \\ \text { error, } \\ \text { RB } \end{gathered}$
Softwood	0.0250	0.029	0.004	0.0099	0.018	(-0:114, 0.022)	13.79
Hardwood	. 8025	. 875	. 073	. 028	. 052	(.021, .125)	8.34
Grassland	. 0525	. 061	. 009	. 019	. 036	(-. .027, .045)	14.75
Water ${ }^{\text {a }}$. 120	. 035	-. 085	. 026	. 047	(-.132, .038)	-242.86

${ }^{\text {a }}$ None in test area.

Notation

$B_{2}=p_{1}-\hat{p}_{2}=$ individual error
$B=\frac{1}{m} \sum_{2=1}^{m} B_{2}=$ average error
$S_{B}^{2}=\frac{(l-f)}{m(m-i)} \sum_{i=1}^{m}\left(B_{2}-B\right)^{2}=$ variance
$\Delta_{0.9}=1.833 S_{B}=$ half confidence interval
$R B=\frac{B}{p} \times 100=$ relative error

