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Abstract

Through the method of truncation functions, the oceanic geoid undulation
is divided into two constituents: an inner zone contribution expressed as an in-
tegral of surface gravity disturbances over a spherical cap, and an outer zone
contribution derived from a finite set of potential harmonic coefficients. Global,
average error estimates are formulated for undulation differences, thereby pro-
viding accuracies for a relative geoid. The error analysis focuses on the outer
zone contribution-for which the potential coefficient errors are modeled on the
assumption that the coefficients are determined from a global distribution of
1°x 10 mean anomalies. The method of computing undulations based on gravity
disturbance data for the inner zone is compared to the similar, conventional
method which presupposes gravity anomaly data within this zone. The two meth-
ods exhibit analogous error characteristics, the estimated errors of the gravity
disturbance method being only slightly better. For continuous and errorless
gravity data inside a spherical cap having a radius of 10 0 and with potential
coefficients derived to degree 180 from a global set of 1 °x 10 mean anomalies
given to an accuracy of f 10 mgal (f 1 mgal), the typical error in the difference
of undulations is 30 cm to 40 cm (5 cm to 10 cm), depending on their separation.
In the absence of more detailed cap data, the error is as high as 160 cm (70 cm).
In the latter case, the corresponding error for 1°x 10 mean undulation differences
is about 140 cm (30 cm).
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1. Introduction

This report again attacks the problem of determining the geoid accurately
from gravity information over the entire globe. The route that is normally
followed starts with a formulation of the geoid undulation in terms of mean
gravity anomalies, or potential harmonic coefficients, or both and follows with
an examination of how the errors in these observed quantities propagate into the
computed undulation; see for example, Rapp and Rummel (1975) and Christo-
doulidis (1976), to mention only two.

Christodoulidis based his thorough error analysis on the method by which
undulations are computed from mean gravity anomalies and a set of potential
coefficients (according to Molodenskii's truncation theory). Moritz (1974) out-
lined a procedure in which the undulations are determined not by integrating
gravity anomalies (Stokes' formula), but by integrating gravity disturbances.
It is the purpose of this report to carry out an error analysis of undulations
(more precisely, undulation differences) that are also obtained according to
Molodenskii's truncation theory, but as applied to an integral of gravity distur-
bances. The structure of the analysis is very similar to that of Christodoulidis.
From his conclusions, it is evident that the procurement of a highly accurate
(- 10 cm) relative geoid on the oceans requires a dense and accurate network of
gravity anomalies around each point of computation, as well as potential coeffi-
cients to at least degree 70. We shall see that the method of determining the
geoid from gravity disturbance data under most practical circumstances can
claim little, if any, substantial improvement in accuracy over the conventional
method. Because the ultimate determination of the sea surface topography is
foreseen to be effected by combining accurate geoid undulations and satellite
altimetry, the areas of primary interest are the oceans. Therefore, this al-
ternate method does offer two advantages; first, measured gravity values on
the ocean's surface need not be reduced to the geoid (which differs from the
surface of the ocean by the "sea surface topography, " on the order of I m), and
secondly, satellite altimetry as additional observed data fits very neatly into the
process.

For reasons to be explained later, the analysis here is essentially devoted
to investigating the effects on the undulation due to erroneous potential coefficients,
as well as the lack of higher-degree coefficients.: The discussion is further lin
ited to the case in which the earth is approximated by a sphere. Moritz (1974)
treats the effect of the earth's ellipticity; Christodoulidis (1976) thoroughly
studied the corrections for the atmosphere which are applicable also in this case;
and finally, the terrain correction is negligibly small on the oceans.

2. The Concept in Principle

The known orbit of a satellite determines its altitude above the reference
ellipsoid. The altimeter measurement a establishes the sea surface height
h above the ellipsoid (see Figure 1). This height is the sum of the geoid undo-
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Figure 1

lation N and the sea surface topography t , since it is generally assumed that
the three surfaces depicted in the figure are parallel locally.

Gravity g is measured on the sea surface, e.g. at point P , while the normal
gravity yp at P is computed with the aid of the sea surface height:

Y 	 YQ + h I 1i	 (1)
Q

where the normal gravity y Q on the ellipsoid and its radial derivative are known
quantities. Thus, the sea surface height as obtained from the altimeter measure-
ment serves the dual purpose of providing normal gravity at P, as well as the
sea surface topography for a known undulation.

We note that the gravity measurements on the surface could be reduced to
the geoid if the heights of the sea surface above the geoid were known; but pre-
cisely these heights are to be determined. Therefore, in practice it is simpler
conceptually to obtain gravity disturbances (aided by altimetry data) on the ocean
surface, than gravity anomalies on the geoid, the latter being required for any
use of Stokes' formula.

From the definition of the gravity disturbance, 6g gp - yp , and the
disturbing potential T, there is the basic relation (Heiskanen and Moritz 1967,
p. 8 5) :

sg = ' ah	 (2)

From this and with a spherical approximation, Moritz (1974) derives

4TTJJT	 bg _S(0)  dG,	 (3)
4TT J j

Cr

where Q is the unit sphere, and 6 g is given everywhere on the earth's surface
(assumed to be a sphere of radius R). S O is an analogue to Stokes' function,
defined by

-2
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S ( )	 00 2n+1 Pn (COS ^) = csc ^ - en ( 1 +csc )	 (4)
=0 n+1	 2	 2

The argument 0 is the usual central angle between the point at which T is
computed (on the sea surface) and the surface element dQ . The closed ex-
pression for the infinite sum is derived by Hotine (1909, pG 311). Note that the
sum in (4) includes zero- and first-degree harmonics; whereas, these are
absent in Stokes' function.

Let y be the normal gravity in the ellipsoid. The difference between the
disturbing potential on the geoid, T = N Y ( Bruns' formula), and the disturbing
potential on the sea surface (equ. (3)) is approximately t 6g and is neglected
( for t = 2 m, bg = 40 mgal, N = 30 m, it is only .003% of T). Hence, the
geoid undulation in terms of gravity disturbances is

N	
4 

Ry j J 
Sg §_(0) do,	(5)

Q

It is mentioned again that this, as Stokes' integral, is only a spherical approx-
imation, so that Y becomes an average value of normal gravity.

The integral in (5) is unlike the usual Stokes' integral, however, in that it
incorporates the zero-degree and first-degree potential harmonics. Whereas,
the gravity anomalies in Stokes' integral must average to zero (so that N is the
geoid undulation with respect to the given reference ellipsoid) and have no first-
degree term in their harmonic expansion, no such provisions are necessary for
the gravity disturbances in (3) or ( 5) ( see also Hotine 1909, p. 317). Never-
theless, since the error analysis will require a decomposition of the undulation
N into spherical harmonics, the zero-degree and first-degree contributions will
be singled out. Certainly, if the global gravity disturbance data are known to
possess neither zero- nor first-degree harmonics, then 9(0) could be modified
by also excluding its first two harmonics ( see the end of section 3 and Appendix C).

3. Truncation Coefficients

To compute the undulation from an integral equation such as (5), gravity
must be known, in theory, at every point on the earth. In practice, of course,
such detailed gravity information is not attainable. Instead, only a finite set of
measurements is available in the vicinity of the point of computation. Limiting
the integration in (5) to this area is not sufficient, however, since geoid undula-
tions are predominantly the consequence of the global features of the gravity
field (as, for example, an inspection of the degree variances of the undulation
covariance function shows). Therefore, the influence of the "remote zones'.'
must be taken into account, and this is usually accomplished by separating the
contributions of the inner and outer zones as follows:

-3
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N = 4Ry J J 6gS( )da + 4RY J 
j6g ST(o) do,

	

Q c 	 U-Qc

NI	 +	 Na

where o ' c is a spherical cap with radius 0 0 , Q-Qc being the "cap" with
radius 17- 0 0 . The evaluation of Na is predicated on a given set of potential
harmonic coefficients, and therefore, should be rewritten in the form of an
infinite series. A way to proceed follows the lines of development given by
Heiskanen and. Moritz ( 1967), sec. 7 . 4, starting with the definition

Si( ) =	
0 , if 0 < 0 <0 0

fg (o), if 00so <77

8 1 (0) is piecewise continuous in the interval 0 < 0 < ;T , and hence, this
function is expandable in a series of Legendre polynomials:

	

,I1	
^co

S1 ( `Y) — i k n Qn P. ( COS)	 (9).jn=0

The coefficients kn Q n are determined by multiplying both sides of equation (9)
by Pn ( COS 0) and integrating over 0 < 0 < n ( taking advantage of the orthog-
onality of Pn) :

2n+1 rn
knQn =	 2	 J S1 ( {V) P n (COS 0) sin OdO	 (10)

0

With the choice

k	
2n+1

	

n 

_	

2

equation ( 10) becomes, upon substituting (8),

r
n

Q n ( TO ) = J S( ) Pn(COS ^) sin 0 do	 (11.)
00

Let coordinates (0, a) be spherical coordinates on a sphere where the pole is
the point ( 6 , ,k) at which N is to be computed. Then, from ( 6) and ( 7),

Na = 4R r217 TT6g (0, a ) 9(0) sin 0dodac	 (12)
Y 0 0 0

which in view of ( 8) and (9) is

^ n rr

N2 ^	 11 "0
 

n-t•1 
;̂n f y	 6g (0 ,a ) Pn (coso)sinododa (13)4r7y n ,0 2	 0 J0

The gravity disturbance can also be expanded in a series of Laplace harmonics

-4-
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(let 9, X be the spherical coordinates of the point at which N 2 is computed):

co

bg ( 9,X) _

	

	 6gn ( e,X ) 	 (14)
n=0

These Laplace harmonics, conversely, can be found by integrating the gravity
distuubances ( let (e, X) be the pole of the earth and use equ. (1-71) of Heiskanen
and Moritz 1967)

2	 2n n

6gn ( 9 , X ) =4 11 f6 J0ag(0,a)P. (COS 0)sinododa (15)

A comparison of equations (15) and (13) shows that
co

N2R X Q. bgn	 (16)2y n =0

To achieve the objective of expanding Na in a series of potential coefficients,
we write

T =	 Tn

n =0

n	 (17)

with T. = kM^ [ Gnm cos mX + S n m sin mil ) P n m (cos 9)
R,=O

Pn m (cos e) is a fully normalized Legendre function; Cn m , S„ m are fully
normalized potential coefficients, with Z%, being the coefficients after the
normal gravity field has been removed; and kM is the product of the gravita-
tional constant and the mass of the earth. Finally, with (Moritz 1974, p. 48)

Sgn = n+1 T n	and	 y = kM	 (18)
R	 R

equation (16) becomes
c,	 n

N2 (9,X) =	 ( n +1)Qn> I C n ,cosm^l+k.SinMXIR m (COSe)	 (19)
U0	 a"O

Remembering that Qn is a function of the cap radius 0 O , it is noted that for

0 0 =0,  N2 = N . For `N'0 > 0 , the coefficients Q n , which are analogous to
a

	

	 Molodenskii's truncation coefficients ( Molodenskii, et al. 1962, p. 147),
actually effect an increase in the rate of convergence of this series, as the

j,

	

	contribution of the finer structure of the gravity field (the high-degree harmonics)
is essentially accounted for by Nl in equation ( 7). Of course, this increase in
the convergence rate depends on the size of 00 .

The difference between Stokes' integral and its analogue in terms of
gravity disturbances ( equation (5)) has already been elucidated in the previous
section. This difference has a direct bearing on the truncation coefficients Qn.

—5—
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It is again noted that as opposed to Stokes' function the series expansion of
S (+) ( equation (4)) includes zero- and first-degree terms. If 6go and 6g1 in
the series expansion of 6g (equation (14)) were zero, then the integral formula
(5) in concept would not change; but in order to be consistent with Stokes' in-
tegral, the first two harmonics of S (0) could be excluded. This modification
of the kernel function evidently induces a change in the truncation coefficients
Qn ( see also section 10). Since the formulation of the truncation coefficients
as presented above yields the higher error estimates in the analyses of section
7 ( see also DeWitfe 1966), the alternative approach using the modified kernel
function S* (0) = if (0) - 1 - 1-cos 0 is pursued only in Appendix C.

4. The Evaluation of Q„

There exists a handful of methods to evaluate the coefficients Q n ; not a.l
are equally accurate and efficient_ Direct integration by analytic means seems
plausible for small n (as Molodenskii has done for his coefficients). A recourse
to numerical integration for larger n is unsatisfactory in view of the limited
attainable accuracy and the singularity of 5T(0) at 0 = 0 (see equation (4) ). It
is possible also to determine a finite sum for each Q,, since P n is expressible
in this way. But the volume of computations ( coupled with a loss of accuracy)
for large n is prohibitive. A desirable formula for Q n would be in the form
of a recurrence relationship, such as Paul (1973) has derived for Molodenskii's
coefficients by utilizing the series expansion of Stokes' function (Hagiwara (1976)
also formulated a very elegant recursive solution).

In the case of the coefficients Q the integral (11) actually admits to a
simplifying integra_on by parts, and by borrowing several results from Hagi
wara (1976), a relatively simple recurrence formula can be derived. The appen-
dix gives a full account of this derivation for 0 o 9& 0. This solution of Qn seems
to yield quite accurate and very efficient evaluations_ even for small values of
rho. Although ST( tin) has a singularity at 0 9 0 , Qn is nevertheless well-
defined there; for indeed, a comparison of (9) and (4) shows (noting that when
00 =0 , S (0) S1 (0) for 0<O<n )

2
Qn(0)= n+1 '	 n	 0

5. The Global Error Estimates

The total geoid undulation at a point can be expressed as an infinite series
of spherical harmonics by combining Bruns' formula (N = T / y), and equations
(17) and (18):

N
Rr6g, )
ynL_on+1 (21

Considering equations (7) and (16), (21) may be divided as follows:

-6_
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N = Nl + Na

00
_ E  / 1 _ 1 \

Nl	
yn.o n+1	 2 Qn ) 69n

00Na = 2 [ Qo Ego + Qi 6g1 ] + 2y Q. 6gn
n=2

It is usual to assume in gravimetric determinations of the geoid that the centers
of mass of the reference ellipsoid and the earth coincide. Then 6g1 = 0. How-
ever, their total masses may not be equal; in this case, the zero-degree term
does not vanish and from (18) and Heiskanen and Moritz (1967, p, 98)

R— 
6	

R	 To _ Qo k 6M	 (23)
2ŷ,Qo go	

2'Y Qo R _ 2YR

where 6 M is the difference in the total masses. Nl also contains a zero-degree
term, but it is not necessary to treat it separately if N l is evaluated according
to the integral expression of equation (6). To be observed is that the difference,

/	 6W, between the ellipsoidal and geoidal potentials has so far been ignored. If
6W 0, then by the generalized Bruns' formula (N = (T - 6W)ly) the total con-
stant part of N is k 6M/ y R - 6W/Y.

The first infinite sum in (22) is the contribution to N from the gravity
'	 'yield within the cap ac (see equ. (6) ). To obtain a high degree of accuracy in

Nl ; one usually visualizes a sufficiently dense set of measured gravity and
altimetry values in v c which are then processed in some systematic fashion
resulting in an approximation to the first integral of (6). The errors in this
approximation arise from errors in the gravity and altimetry data itself (pro-
pagated error), as well as from an unavailability of continuous data over the
cap (discretion error). Christodoulidis (1976) investigated two methods which
could provide estimates for the errors in Nl when it is formulated (analogous
to equ. (6) ) as an integral of gravity anomalies. He concluded that these meth-
ods are computationally unfeasible and proceeded to estimate the corresponding
errors in the so-called "frequency domain", that is, when N l is expressed in
a spectral representation as in equation (22). The structural differences between
the formulations of the geoid undulation in terms of gravity anomalies and in

}

	

	 terms of gravity disburbances are practically nonexistent; and hence, it will
be assumed that in the present context, the same type of numerical difficulties
would occur in the error estimation of Nl . Moreover, and for the same rea-
son, it is obvious that a similar procedure as developed by Christodoulidis can
lead to error estimates for Nl in the frequency domain. Relying on the argu-
ment that the local 'behaviors of gravity anomalies and gravity disturbances are
not inherently dissimilar, the derivations and evaluations of these error esti-
mates are omitted with the assumption that no significant deviations from Chris-
todoulidis' numerical results would be expected.

M	
-7-
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To put some rigor into the underlying argument, we digress briefly and
derive the covariance function for gravity disturbances. For the disturbing po-
tential, the covariance function is given by (Moritz 1972)

CO	
2	 2 n+1

K(P, Q) 
n4(n_ 1) 

cn 
C p r4
	 P" (COS)	 (24)

where 0 is the spherical distance between the points P and Q , rp , rQ are
the radius vectors to P and Q , and the c n are the degree variances for gra-
vity anomalies. By the law of propagation of covariances (Moritz 1972) as applied
to the relation (2), the covariance function for gravity disturbances is

r	
- (
	 1	 r	

2 .
1D(P,@) _ - ^rP L ar4 K(P,Q) ] = I^\n^ 

2

l/ c n \rR 
a+ 2

4 I	 (cos ) (25)
n

By inspection, the degree variances for gravity disturbances are

do	 n-1 C.
(n+ 1	

n ' 2
	 (26)

For large n , that is, for high frequencies, the difference between the degree
variances d o and c n is negligible, which supports the contention that the local
variations of gravity anomalies and gravity disturbances are quite similar.

Having made these comments, the remaining part of the report will be
concerned only with errors in the contribution to N from the gravity field out-
side the spherical cap o°c . Furthermore, only differences in undulations are
treated, these being used in the definition of a relative geoid. This also effec-
tively eliminates the need to consider errors in the zero-degree (constant) term
of the undulation. Since N2 (see equations (6) and (22) ) is to be computed from
a given set of potential harmonic coefficients, it is natural to estimate the errors
in the frequency domain; that is, we start with Na as defined by equation (22).

Let P and Q be two points on the earth (sphere) at which Na is deter-
mined. The error incurred in the difference 6N 2 = Nap Na Q is

AE = (N2 P - NaQ)	 (Nap - NaQ) TRUE	 (27)

or	 AE = E p - EQ
	 (28)

3
{
}

where Ep and EQ are the errors in N2p and Naq . The error Ep is composed
of two (presumable uncorrelated) errors; namely, the error E .1 p due to erroneous
potential coefficients (commission error) and the error Eap resulting from the
lack of higher-degree coefficients (omission or truncation error):

AE, + AE" = ( Ei p - E1Q) + ( E2P E20	 (29)

-8-
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The error estimates that are studied in this report are global averages of
the errors, the average being defined by the operator M;

M( • ) = 4n jj (') dQ	 (30)
Q

This so-called "space average s ' (Moritz 1978) serves also to define the covariance
functions, such as equations (24) and (25).

Consider first the error E2P induced by the unavailability of harmonic co-
efficients of degree greater than n ; from (22) it follows that

CO

E2P7= - 2y	 Qn 69n	 (31)
n=n +l

This expression is quite analogous to the expansion of the gravity disturbance into
spherical harmonics as in equation (14). Recalling the covariance function for
6g, equations (25) and (26), it is immediately evident that the covariance func-
tion for E2 (that is, the global average of the products E 2P E2Q for points P, Q
which are separated by a fixed spherical distance Op Q ) on the earth is given by

M2
MCEZP E2q) _ R 2	 Qn2 dn P n (eos OPQ	 (32)

n==, n+1

When P and Q coincide (O Pq = 0), then M (E2 2 ) is the variance of the error
E2 (independent of the location of point P on the earth)

2 CO

M ( E2)	
Y7	

Qn2 do	 (33)
n = n +l

On the other hand, the variance (global mean square) of the difference error
E2 is

M( (,6E2)2) = M ( E2P) +M(E2 --2M ( EaP E2Q) 	 (34)

which when equations (32), (33), and (26) are substituted becomes

S	 M( ( AE2) 2 ) _ -- ^_ Qn 
(n,+n,

1 ^ cn (1 - Pn(cos OPQ))	 (35)
1 2y n=n+1

t	 The degree variances c n in this equation refer to the mean earth sphere of
t. radius R . if, on the other hand, they are computed according to the model

of Tscherning and Rapp (1974), for example, then the sphere of reference is
the Bjerhammar sphere (the sphere entirely embedded within the earth). To
rectify equation (35), the factors Q n+2 _ ( Ro?/R2 ) n+ 2 are introduced
(Jekeli 1978). Henceforth, unless otherwise stated c n is understood to refer
to the sphere of radius Rs ; then



,r

2	 2 ) = R2 	2 (n+ 1 2	 n+2
	m, = M((^E2) )-2y^	 1^ Qn	

Cr
\n-1/cn 	

(1-Pn(cos OPQ))	 (36)
n=n+

m2 is the global estimate of the error in AN 2 due to a lack of higher-degree
potential coefficients. This equation is obviously valid for any value of R? RB
but we restrict ourselves to the earth's surface, where R = 6371 km.

For comparison, the corresponding error estimate derived by Christodou-
lidis (1976) is

(ma)2 =_
R
 ^ Qn2 Cn or	 (1-P n (COs OPQ))	 (37)

2y
T+1

wherewhere the Q n (Oc,^ , n = 2, 3, ... are Molodenskii's truncation coefficients.

The remaining error El , caused by noise in the available potential coeffi-
cients can be estimated similarly. Let C nm , S nm be the true, fully normalized
harmonic coefficients (see also equ. (17) ) and let C am , '9 1 m be the corresponding
coefficients that are available from combined, global gravity and satellite data
(see also section 61. Then explicitly, using equation (19), the error in N2 can
be expanded in the series (note that the zero-degree term has been omitted)

CO	 n

E1	 ^(n+l)Qjj(2	 Cm—nC^)cos lll^^f (Snm — S nm )Sln ma)Pnm(cos8) (38)
n=2	 m =0

If the covariance function on the earth of this error component is written in the
form

tt

M ( E1P ElQ) _ X Sn Pn (Cos OPQ)	 (39)
n=2

where OPQ is the spherical distance between points P and Q then the degree
variances ^ n are given by (see e, g. Moritz 1972).

2	 _ n _
n = 

4 (

n +1)2Qn	 L(Cnm-Cnm)2+(Snm—Snm )2 l 	 n'- 2	 (40)
M=O

Suppose that n is the maximum degree to which these coefficients have been
determined, then obviously we can take

C nm = 0 = C nm ,	 Snm = 0 = Snm , for n > n	 (41)

since the error due to neglected coefficients past degree n has already been
accounted for.

The true values Cnm and S„,,, are unknown, therefore, the differences
appearing in equation (40) must be replaced by the corresponding estimated
standard errors of the coefficients. It is shownlaterthat under certain conditions,

_10-



we can assume equal standard errors for Cnm and Sna for each degree n:

MEnn = Inn = mS
nm , 2 <- n :9 	 (42)

A

Then if ^ n denotes the estimate of n based on (42),

Sn = 42 (n+l)2 (2n+1)m n2 Qn2, 2 s n s n	 (43)

A
and in view of (41), ^ n = 0 for n > _S;  which yields finally the following
estimate of the covariance function (19) on the earth:

A	 2 ^	 _
) = 4 •X (n+l)2(2n+1)mnQn p, (COS O 

Q )	 (44)M( ElP ESQ 

n=2

As in the case of 6E2 (see equation (34) ), the estimated global mean square
of the difference error 6E, is

M [ ( AEJ) 2 J = 2[M(E2p ) - M(E2PE2Q)]

2 n

= 2 ^(n+1) 2 (2n+1)mnQn (1-Pn (cosP4 )) (45)
n=2

Again, if the potential coefficients refer to a sphere of radius Rs ( in the sense
that R in equation (17) is replaced by Ra ), while the undulation differences
are determined on a sphere of radius R , consistency is restored by multiply-
ing A n by Cr'  ( see Appendix B) where a = Ra2 /R2 c

2 n

	

m12 = 
ML(oEl)2l	 2 ^Qa(n+l) 2 (2n+1)mnQ°(1-Pn(COS t j'Q )) (46)

n=2

ml is then a global estimate of the error in 6N2 that results from the random
errors in the given potential harmonic coefficients. Christodoulidis (1976)
derives the following estimate of the corresponding error in terms of the
Molodenskii truncation coefficients Qn , written here for comparison and later
reference:

2 n

( mi )2 = R Qna (n-1) 2 (2n+1)mnQ°(1- Pn(COS Q))	 (47)
n=2

As briefly remarked earlier, the estimates m l (equation (46)) and ma
(equation (36)) maybe regarded as uncorrelated errors; and therefore, the
total estimated error in ON2 is

	

M
	

m12 + m22	 (48)

Some final notes with respect to the computation of these errors are
appropriate. Both the commission error m l and the truncation error m2
are subject to further approximation in the type of analysis (simulation study)
to be conducted here. The degree variances c n for gravity anomalies and
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mn2 for the errors in potential coefficients are obtained through simple models.
The ( global) model for cn is usually determined on the basis of 'observed"
degree variances of low degree (e.g. Tscherning and Rapp 1974). However,
the sum in (36) requires degree variances for the high frequencies of the gravity
field; this mares the choice of the model somewhat problematic in that it should
actually reflect primarily these high-degree variations of gravity anomalies.
The model for in.2 , on the other hand, depends to some extent on the method
by which the potential coefficients are determined. Christodoulidis (1976)
constructed a model first tailored specifically to agree with the accuracies of
the GEM 6 solution ( (16,16) combined solution) and then generalized in a
natural way for similar higher-degree solutions. We shall see later, in the
light of newer and improved data, that this model may no longer be entirely
appropriate. One further approximation in the evaluation of mat replaces the
upper limit - of the sum by a number, but with a fast computer there is no
difficulty in making this number sufficiently large.

6. The Models for cn and mn2

Little need be said in regard to the c„-model - only that the model of
Tscherning and Rapp (1974) was used here exclusively. The effects of a different
model (the one proposed by Moritz (1976)) on the truncation error will be inves-
tigated briefly in section 9.

The model for M n 2 that was selected by Christodoulidis (1976) has the
form ( F is a constant)

4 4

lnn2 _
	 2 ( F/ I1) 'n ci	

9 
2 s n	 n , n > 16	 (49)y (n-1)-(2n+1)

Noting that the degree variances for gravity anomalies are given by
n

en = y 2 (Il -1)2
	Cnm + S nm)	 n > 2	 (50)

it is readily seen that when n = n in (49), F 2 is the relative error of the
potential coefficients of degree if.  Therefore, this model was designed on the
basis that every solution for the potential coefficients yields approximately the

	

same relative error at the maximum degree ( Christodoulidis chose F 	 8 ,
implying a 64% relative error at n) o

Potential coefficients can naturally be determined from purely terrestrial
gravity data, as well ( Rapp 1969)

C , I 
_•	 1	

J 
f Ag Pnm (COS 

6) (Cos mAl 
do	 (51)

StUo	 4ny (n-1) Cy	 j` sin m

Given a global distribution of mean gravity anomalies, the integral must be
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approximated by some type of sum, e. g.

Cn.
Sn„ _ 4rry (n-1) !, Aar 	 8) { sonniX	 (52)

Q

where Tg is the observed mean gravity anomaly for the block Da that is
centered at ( 9,X) , The potential coefficients are computed through a least
squares adjustment. It is not difficult to show (Rapp 1969) that the standard
error (i.e. the square root of the diagonal element of the covariance matrix)
of the coefficients of degree n is given by

4rry (Il - 1) 	
>2, D8 AX in radians

This formula is derived with the assumption that the mean gravity anomalies
are observed over the whole earth with the sane accuracy EAe . Also, the
error due to the fact that these observations constitute a noncontinous data
set is ignored. It will be assumed that any such fault in the standard error
above is incorporated into the overall uncertainty of the modeled error variance.

For a given solution of the coefficients C,,,,, Snm all quantities ( except n)
on the right side of (53) are constant; thus, we may say that the error in the
potential coefficients of degree n ? 2, as determined from a global set of mean
anomalies, is inversely proportional to ( n -1) . Hence, the following simple
model suggests itself for this case:

Mn _ K	 K = constant, 2 ^:; 11 n'	 (54)
n- 1

Table l below compares the models given by equation (49) and (54) against
-^	 the errors Inn of the solution obtained from GEM 9 plus 1° x 1 0 mean anomalies

(Rapp 1978, private communication) up to n = 12. In equation (49), we take
F = .8 ; H-=  20 ( GEM 9 is a ( 20,20) satellite solution),

A
Table 1. Comparison of Models (49) and (54) with mn

(obtained for the solution using GEM 9 plus 1°x 1° mean anomalies)

n Mn Y 10 6 Ill„ x 1.0 `', model (49) 111,, x 10 6, model (54)

2 .0027 .0080 .0581

3 .0066 .0155 .0291

4 .0046 .0138 .0194

5 .0072 .0136 .0145

6 .0057 .0137 .0116

7 .0067 .0139 .0097

8 .0057 .0142 .0083

9 .0057 .0145 .0073

10 .0051 .0148 .0065

11 .0050 .0151 .0055

12 .0044 .0154 .0053



and the c,,-model of Tscherning and Rapp (1974) (see equation (59) ). In
equation (54), K .0581 x 10 3 . This value of K is the average of the values
of K implied by the standard errors from n = 13 to n = 60 of potential
coefficients computed from 1 0 x 10 gravity data alone (Rapp 1978, private
communication). Table 2 shows the relevant information by comparing the
resulting model (54) with the standard errors of the potential coefficients.

Table 2. Comparison of model (54) (K = .0581 x 10 -6 ) with mn obtained for
the solution using 1 0 x 1 0 mean anomalies ( Rapp 1978).

n Inn X 10 6 m„ x 10 6, model (54) n m„ x 106 mn x 106, model (54)

13 .00483 .00484 37 .00162 .00161
14 .00446 .00447 38 .00157 .00157
15 .00414 .00415 39 .00153 .00153
16 .00386 .00387 40 .00149 .00149
17 .00362 .00363 41 .00145 .00145
18 .00311 .00342 42 .00142 .00142
19 .00322 .00323 43 .00138 .00138
20 .00305 .00306 44 .00135 .00135
21 .00290 .00290 45 .00132 .00132
22 .00276 .00277 46 .00129 .00129
23 .00264 .00264 47 .00126 .00126
24 .00252 .00253 48 .00124 .00124
25 .00242 .00242 49 .00121 .00121
26 .00232 .00232 50 .00119 .00119
27 .00223 .00223 51 .00116 .00116
28 .00215 .00215 52 .00114 .00114
29 .00207 .00207 53 .00112 .00112
30 .00200 .00200 54 .00110 .00110
31 .00193 .00194 55 .00108 .00108
32 .00187 .00187 56 .00106 .00106
33 .00181 .00182 57 .00104 .00104
34 .00176 .00176 58 .00102 .00102
35 .00171 .00171 59 .00101 .00100
36 .00166 .00166 60 .00099 .00098

The GEM 9 solution combined with the 10 x I° terrestrial data yields one
of the most recent and realistic accuracy estimates for the potential coefficients.
This solution supplies coefficients up to a maximum degree n = 60 ; but
solutions up to n = 180 have been done (Rapp 1979, private communication). An
inspection of Table I reveals the inadequacy of model (49). Different values for
the model parameters r and n` could conceivably diminish the discrepancies,
but such changes in the parameters are not easily justified from a theoretical
sLandpoint since the model is purely an empirical construction. Consequently,
the model (49) is not studied further in this report. Table 2 exhibits the ex-
cellent agreement between the model (54) and the errors of potential coefficients
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( for 13 5 n s 60) that are derived from terrestrial data. 	 However, model
(54) compares not as well with the low-degree (n:9 6) errors obtained through
the combined solution ( see Table 1) which are favorably influenced by the "a
priori" coefficient errors from the satellite solution. 	 In specialized investiga-
tions, it is not unfeasible to use a model such as (54) for the high-degree errors
and the actual standard deviation, 	 ill,,, as given in Table 1 (first column) for
the errors at the low-degree end of the spectrum:

Inn	 J.	 2 S n	 nl
mn =	 {	 K	 _	 (55)

nl<n s nn-1

7.	 Computational Analyses of the Errors

The radical dissimilarity between model (54) and model (49) which was
used by Christodoulidis (1976) warrants some new tests here with his error
equations (37) and (47). 	 (It should be remarked that these equations are com-
pletely valid provided that gravity anomaly data referred to the geoid are avail-
able within the cap ar c .) Since m, and ma are the square roots of squared
errors averaged over the earth, they are designated root mean square ( HMS )
errors in the figures.	 They are also called simply error estimates in the

+ following discussion.	 To avoid unnecessarily cumbersome language, the
following designations are introduced:	 j

Method A = the method of computing error estimates of
AN based on gravity anomal	 data within the
cap Qc	 (equations (37) and (47) )

(56)
Method B = the method of computing error estimates of

6N based on gravity disturbance data within
the cap ac (equations (36) and (46)

u•

The error estimates of 6N2 may be investigated with respect to variations in
the separation 0 p , in the cap radius 0 o , in the maximum degree F of the
potential coefficients, and in the model (54) itself.

Method A was used to determine the general characteristics of the AN, -
errors as they are implied by the model (55) with K,= .05S1 s 10 -F ,	 nj = 12,
and m„ given in Table 1.	 figure 2 depicts, for Oo = 300 , the coinmission and
truncation errors in 6N2 as functions of the separation 4Q and the maximum
degree n .	 For these and all subsequent evaluations of the truncation error,
the upper limit -	 in (36) and (37) is "approximated" by 3000 at which point a
precision of at least . 1 mm seems to be attained. 	 Evidently, since the trunca-
tion error is independent of the standard errors of the available potential coeffi-
cients, the corresponding curves trace the same values given by Christodoulidis
(1976, Table 7, 	 ii = 30).	 The commission errors, however, increase with

. increasing	 n, as opposed to the corresponding decrease in the commission
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Figure 2. Commission (Solid line) and Truncation (Dotted line)
Undulation Difference Errors Using Current Potential
Coefficient Error Estimates and Assuming Perfect
Gravity Anomaly Data Within a 300 Cap.
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0.00502 x 10 -6

n-1 `As	 »	 (57)mn

1W

errors of Christodoulidis ( see his Table 6). These contrasting characteristics
are obviously the direct consequence of the difference in the error models,
specifically, because the model (54) or (55) does not stipulate the same relative
accuracy at all values of F. As seen in Figure 2, the commission errors do
appear to be bounded (as n varies ), at least for larger values of OpQ . It is
observed that the truncation error loses its dependence on the separation OpQ
as the number of available potential coefficients increases. Contrarily, the
commission error varies significantly ( but not without bound), regardless of
the value of n, as the spherical distance between points P and Q increases.

The root sum of squared truncation and commission errors of Figure 2 is
presented in Figure 3 for both Methods A and B. Figures 4 and 5 are analogous
to Figures 2 and 3 in that the same error model (55) is used in the computation
of the errors. But here, the errors are shown as functions of the separation
Op. and of the cap radius O o, n being fixed at 180. A "cap radius" of 00 = 0
signifies that there is no cap and implies that the undulations are determined
from potential coefficients only. Again, the truncation errors are practically
independent of the separation OPQ ( since n = 180, cf. Fig. 2). The commission
errors exhibit a similar type of dependence on 4Q as in figure 2; and they
must plainly increase strongly as the size of the cap Qc decreases implying
less and less detailed gravity data near the computation points. The total (RMS )
error as a function of 0 aQ and 0 o , shown in Figure 5, in this case resembles
the dominating commission error.

It is noted that for 0 o = 0 (no cap), the errors according to Method B are
equal to those of Method A since no terrestrial gravity measurements "within
the cap" enter into the computations of the undulations. In fact, the error equa-
tions (36), (46) are identical to (37), (47) when Qn (0) = 2/(n+1) and Q n (0)
2/(n-1) are substituted ( see also Figure 7).

Having established the general characteristics of the commission and
truncation errors in Figures 2 and 4, the remaining investigations, concentrate
on the total (RMS) errors in 6N2 with ri fixed at 180. In addition, the potential
coefficient error model (54) is now used for the entire spectrum, n = 2,... ,180.
More explicitly, this model can be written ( with y = 979800 mgal., 06 	 AA =
10 = . 01745 rad. in equation (53)) as

r:

where Ede as a new variable in the analysis is the average error in the mean
10 X : 1 0 gravity anomalies. Figure 6 displays two sets of errors computed by
Method A, for 0,0 = 00 and 0 0 = 30 0 . The curve for 0 0 = 0° , cAK = 11nga1
essentially traces the truncation error which in this case almost completely
overshadows the commission error; and therefore, it represents the maximum
attainable accuracy in undulation differences which are derived solely from
potential coefficients up to degree 180. Recall that the standard errors as
modeled by (54) for small degree are much larger than what -night be expected

-17-
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Figure 3. Total RMS Errors for Geoid Undulation Differences
Assuming Perfect Gravity Data Within a 30 0 Cap Using
Gravity Anomalies (Method A) and Gravity Disturbances,
(Method B), and Current Potential Coefficient Error
Estimates.
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Figure 4. Commission (Solid line) and Truncation (Dotted line)
Undulation Difference Errors Assuming Perfect Gravity
Anomaly Data Within a Cap of Radius 00 and Potential
Coefficients Estimated to Degree 180.
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from a combined solution ( see Table 1, columns 1 and 3). We find that this is
the reason for the steeper increase of the (0 0 = 0, EA6 = 10 mgal) curve at
the larger values of O FQ when compared to the corresponding curve of Figure 5
( where K = .0581 x 10 -6 implies E,,g = 13.6 mgal ). Finally, Figure 6 includes
curves for errors in AN2 when the undulations are referred to a perfect 30-
degree potential reference field. These errors are computed by replacing the
lower limit of the sum in equation (37) by n = 31. Results ( not shown) similar
to those of Figure 6 can easily be produced also for Method B; the same general
characteristics should be expected.

Figures 3 and 5 have shown that the errors, whether through Method A
or through Method B, possess a parallel dependence on both the maximum degree
F and the separation O pQ ; Figure 7 finally compares Methods A and B in rogard
to the dependence on the cap radius 0 0 . These curves represent the errors only
for a particular separation, 0 pq = 1500 km. Other values of 0 pQ would not alter
the basic interrelationships shown here.

As observed in Figure 3, the total errors of Method B are greater than the
corresponding total errors of Method A when the cap radius is 30 0 and the model
(55) is chosen. However, Figure 7 ( where the model (54) is used) and Figure 5
both show that this is not normally the case.

It should be strongly emphasized that, except for the case 0 o = 0 , all
figures depict estimated, average errors associated with only the outer zone
contribution, AN2 , to the total undulation difference. Recall that 0 o equal to
zero implies that AN2 = AN is the total undulation difference. Up to this point,
no numerical description has been given to the errors that are encountered within
the spherical cap.

If the data of this inner zone were continuous and errorless, thus yielding
exact values of AN,, the error in AN 2 , of course, would also be the error in
the total undulation difference. In the absence of this ideal situation, two types
of errors in the gravity data enter into the computation of N l ; namely, the
discretion error resulting from the lack of continuous data, and a propagated
error due to imperfect measurements. The latter includes the influence of
errors in altimeter measurements ( see section 2).

It is important to realize that the principle of truncation functions as
utilized here, and in general, is based on the assumption_ that the gravity ma-
terial in the vicinity of the computation point ( i. e. within the spherical cap) is
more dense and accurate than in the remote zones. Indeed, for a global, uni-
formly accurate field of mean anomalies it is pointless, if not invalid, to com-
pute first potential coefficients ( and subsequently N2 ) from this global set and
then Nl from the same mean gravity anomalies in a spherical cap. In this
special case of uniform coverage with no possibility of local densification, we
iliust choose 0 0 0
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Figure 7, Total RMS Errors for Geoid Undulation Differences at ;1,900
160	 km Assuming Perfect Gravity Data Within a Cap of Radius

00 with Potential Coefficients Estimated to Degree 180 Based
on Anomalies Given to an Accuracy of EDg .
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Rapp (1973) and Christodoulidis (1976) have examined these errors with
respect to the inner zone. Christodoulidis formulates the errors in the differ-
ences AN, based on Method A. The argument of section 5, that the errors of
AN, do not differ substantially in going from Method A to Method B, can be used
to obtain average estimates of the discretion and propagated errors of AN, by
quoting results from Christodoulidis (1976). Only an example is given here to
illustrate the orders of magnitude that may be expected.

Assume that potential coefficients are available to degree 180 as obtained
from a global field of 1 0 x_ 10 mean anomalies that have a uniform accuracy of
± 5 mgal. Further, suppose that two spherical caps, each having a radius of
Oo = 25° are covered by 30' x 30' mean gravity disturbances with an average
accuracy of ±1 mgal. Let's say that the cap centers are separated by 1500 km.
The discretion and propagated errors associated with AN, ( see Tables 3 and 4
of Christodoulidis, 1976) ave 32.2 cm and 27.4 cm, respectively. From Figure
7, the total error in z^N2 is 9.2 cm. Provided that AN, and AN 2 are uncor-
related, the average, estimated error in AN, the total undulation difference, is
43. 3 cm.

8. Mean Undulation Difference Errors

Thus far, the error analysis has been confined to differences between
oint undulations. The mean undulation function which represents an average of

undulations over a spherical cap is characteristically derived from the point
undulation function by introducing a smoothing factor gn into its spherical har-
monic expansion. Details of this procedure may be found in Meissl (1971). Very
briefly, the average undulation over a cap a, of radius 01 on the sphere can
be expressed as

N(09^)	 2rr(1-cos t^ l ) j^J'N(8,X) da^	 (58)
1

where 2 rr (1- cos 01) is the area of the cap o' 1 (on the unit sphere), and
( 6, _^) are spherical coordinates associated with this cap, for example, its cen-
ter coordinates. The eigerf nctions of the integral operator above ( operating
on N) are the spherical has n--onics sin ma P,,. ( cos 0) and cos m), Pnm ( cos 8 );
while the corresponding eigenvalues are ( for all orders 0 s m s n, and n > 0)

__i	 1
P8 _ 2n+1 1-cos	 ^ 1'n-1( Cos 01) - Pn+1( cos 0 1 ) l	 (59)

Therefore, when the spherical harmonic expansion of N ( equation (17) with
N = T f y ) is substituted into (58), the mean undulation becomes ( zero- and
first-degree terms are omitted, see section 5)

03	
\
n

N	 R	 811 L (C ,, cos n-iX+S,,.sin niX)P,,(cos e)	 (60)
n=2 m=0

f
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The only difference between N and N is in the harmonic coefficients. This
fact implies that we may write (cf. equation (22) )

N = Nz + Na
co

	

where	 Nl	
Y x \11+1 _ tln^ ^n Sbn	

(61)
n =3

to

Na 
°2Yn a n A, b g"

This analo-- can be extended to the point that the average, estimated
errors in A Na ( =Rap - N2Q ) due to erroneous potential coefficients up to
degree n and due to a lack of higher-degree coefficients are given by (cf.
equations (46) and (36), respectively)

^ A

llla	 a( n+l)2(2n 1 1),8 3111n 0A(1- Pn(coS0pQ))
n=2

(G2)
-- 3	 ^^ XQ 2 /I1+ \^ 8 3	 n+2
llla 

= 2y 2	 n {\n _-1 1 Nn 
(n v	 (1- P n ( cos O P Q ) )

n= tt•hl
kM

Y =

It is assumed Quat if 0 0 > 0, then ^ 1 < 0 ; that is, the mean undulation cap
is smaller than the cap representing the inner zone. If 0 -= 0, then the :mean
undulation is compu ted Solely from a finite set of potential coefficients. Similar
error equatioIs for AN2 can be derived on the supposition that the inner zone
is covered with gravity anomaly data. (cf. equations (47) and (37), respectively)

n
Q^(n-1) 2 ( 211+1)Pn 111ngr n (I-P n (cos0pQ ))	 (G3)

n=2

,3 L°— r 2	 IV	 s n +^	 ,'1	 kM
(nly) = Jy 2 ^ 	 c„ Q	 (1 - Pn(c,os OPQHP Y =	 (G4)

n=n+1

Normally, the cap associated with the mean undulation is approximated by
a block which has the same area. Therefo:m, for a @1 x 0 1° mean undulation,
the core sponclill0 cap radius 01 is roughly ( since E111n ° )

^1	 6^1, n	 (65)

where 0 1 and 0 1 have the sa111c units. For 0 1 = 1°, ^ 1 - 00564; and for
el 5°, 01 = 2"s21.

Mean undulations are presently envisaged to be derived fro in gravity anomaly
data; and therefore, the estimated errors are displayed for .Method A only. More-
over, of the many combinations of the variables 0 0 , n, EA& ', 8 1 that. could be in-
vestigated, only a few of particular interest are shown in the figures.

-25-

1t Y

r s



For small values of 8 1 , such as 1 0 or 2°, the attenuation of the smoothing
factor gn (equation (59) ) is rather slow for the low frequencies ( e. g. 8 1 = 10;
& = • 999, gioo = .883, 0300 = .240).  Therefore, the effect of 0n in the trun-
cation error ( equation (64)) is much more pronounced than in the commission
error ( equation (63)). This is verified in Figure 8, where two pairs of curves
( for E6, = 1 mgal and EA. = 10 mgal) trace the estimated errors in the AN2

contribution to 10 x 1° mean undulation differences. Figure 8 should be com-
pared to Figure G which depicts error curves for point undulation differences.
If EAg = 10 mgal ( and n = 180 ), the commission error dominates the truncation
error and the total error generally falls by only 10% to 15% in going from point
to 1 0 x 10 mean tuidulations. Note however, the more substantial decrease when
the centers of the 10 x 10 blocks are close together ( 30% for O N = 100 lam).
Similar results for 0 1 = 50 , EA ,; = 10 mgal ( not shown) mostly show an additional
decline in the errors of about 20(/, to 30 % ( somewhat more for small O PQ ).

The more dramatic effect is in mean undulation errors which reflect pre-
dominantly the neglect of high-frequency gravity information. Evidence to this
is given by the two curves of Figures G and 8 which correspond to the case
0 () =O, EQ6 = 1 mgal and show a difference of 50°lc) between them. A further re-
duction by 50 11/10 to estimated errors of 10 ctn to 15 cm. is obtained for 2 0 x 20
mean undulation differences. The curves in Figure 8 represent estimated errors
in the total mean undulation differences EN_ for the case O o = 0 , but also when
0 o = 20 0 if errorless differences 6N l can be derived from the data of the inner
zone.

Figure 9 exhibits a comparison of mean undulation difference errors
( 0 = 0 0 ) with respect to various potential fields of reference. Little seems
to be gained in accuracy when changing from a 20-degree to a 30-degree ref-
crence field. Again, because the truncation error overshadows the commission
error when EA, = 1 mgal., the choice of the reference field, practically speaking,
is immaterial in this case.

9. The Effect of a Different c,-Model

As mentioned previously, the estimated truncation error relies on the choice
of the model. for the anomaly degree variances To examine this dependence, the
errors with the model of Moritz (1976),

Ln = V I 	 I1 +2 	 n — 1	 n+2	 ^	 )

	

l n+A 
0' 1	 + cxa

(n-2)(n+B)° a 	' tl -. 3	 ( GG

are compared to the errors wish the model of Tscherning and Rapp (1974) which,
so far, has been used without exception:

C	 01;a	
n— 1.

(n`2)(n+B)

where a. = 425.28 mga1 2 , B = 24

-2V -
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Figure 8. Total RATS Errors for 10 x 10 Mean Undulation Differences,
Assuming Perfect Gravity Anomaly Data Within a Cap of
Radius 00 and Potential Coefficients to Degree 180 Estimated
from 1 0 x 1° Gravity Anomalies Accurate to E6., .
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The parameters for the model (66), as given by Jekeli (1978), are

a l = 18.3906 mga12, Q1 = .9943667	 A = 100
a z =658.6132 mgal2, va = .9048949	 B = 20

This model refers to the sphere of radius R (cf. p. 9 ). Comparing the two
models, in general, it is clear that for large n , the first term of model (66)
provides the dominant contribution; and therefore, the decrease of c n in (66)
is less rapid ( for 100 < n < 600) than in (67). The implication is that the
truncation error, which is essentially the sum of the high-degree error vari-
ances, is greater.when model (66) is used instead of model (67). This conclusion
is verified by the values of Table 3 which are computed via equation ( 37) ( Method
A) with n = i80 and 0 o = 00 . Similar results would evidently be obtained if
other cap radii and equation (36) (Method B) were used.

Table 3. Truncation Errors of Undulation Differences ( 0 = 00 , n = 180,
Method A) based on two different c,,-Models.

M2 (cm) ma (cm)
(V pq (km) model (67) model (66)

200 63.6 88.3

600 66.6 93.2
1000 67.1 94.0
1400 67.1 93.9
1800 69.9 93.6

It cannot be stated categorically that one of the above models is superior to
the other since the characteristics of the gravity field on which they differ are
not yet established with sufficient confidence. Therefore, the considerable
differences between the last two columns in Table 3 suggest still some uncer-
tainty in the estimation of the truncation errors.

10. Other Methods

By no means is the method based on Molodenskii's truncation theory the only
approach to undulations from gravity disturbances. Collocation ( Moritz 1972) is
a method as amenable in this case as when gravity anomalies constitute the gravity
data. Although this method is not discussed further (Christodoulidis (1976) shows
that the corresponding error analysis is quite difficult for large amounts of data),
the cross-covariance function between gravity disturbances and geoid undulations
is given here for the sake of completeness (cf. equation (25))t

2 CO 	 n+1
cov (NP , 6&) =	 L n+12 cn C R	 Pn( cos OP Q )	 (68)

rQ n=^n -1)	 \ rP rQ
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The sum starts with n = 2 under the assumption that the zero- and first-
degree potential harmonics are absent; also c n refers to a sphere of radius R.

An error analysis was conducted by Sjoberg (1979), in which the geoid
undulation is assumed to be computed from global mean gravity data. The lack
of more detailed data than mean anomalies constitutes a type of truncation
error; while erroneous data implies a commission error. The global mean of
these errors in this case can be written in terms of the smoothing factors S,.
The commission error also relies on an error model similar to equation (53).
Both error estimates are infinite series and are also developed for undulation
differences by Sjoberg (1979). On the basis of a 1 0 x 10 mean anomaly field
with an accuracy of 1 mgal, computations using these formulas give a total
error in ON of 55 cm (OP Q = 2000 km). Assuming that the lack of detail beyond
1° x 10 mean anomalies is equivalent to a truncation error with n = 180, the
curve for 0o = 0, fps = 1 mgal in Figure 6 shows an error in AN of 68 cm
(OpQ 2000 km). The difference in these results (-20%) is not excessive in
view of the totally dissimilar methods of analysis.

It was noted earlier ( section 3) that the Molodenskii truncation theory
provides for the series of a part of Stokes' integral to converge faster than the

`	 series expansion of the entire integral. Molodenskii, et al. (1962) discuss a
further improvement in this convergence. A very elegant type of generalization
of their principle was investigated by Colombo (1977). The concept of this meth-
od rests on the simple fact that a change in the Stokes' function( the kernel of
the integral) naturally induces a change in the errors as embodied in part by
the (now also changed) Q n coefficients. Colombo parameterized the kernel
and achieved, to some extent, the "best" Stokes' function by minimizing the
errors in a least squares sense. These promising techniques can obviously be
applied to the integral of gravity disturbances without any difficulty.

1.1. Summary and Conclusions

It was the intent of this report to subject the geoid undulation differences
as they are determined by a surface integral of gravity disturbances to an error
analysis in the frequency domain. The principles of the Molodenskii truncation
theory are applied to the extent that the undulation N is decomposed into an

S

	

	 integral over a spherical cap centered at the computation point and an infinite
series of spherical harmonics which essentially represent the contribution to -
N from the gravity field outside this cap. A study of the data requirements as
they pertain to the acquisition of gravity disturbances within the cap was omitted
under the assumption that they do not differ significantly from the correspon-
ding requirements of gravity anomaly data,: as examined by Christodoulidis (1976).

' The errors of primary interest, therefore, were those due to the neglect
of the high-degree potential harmonic coefficients, as well as the errors in the
available coefficients. A new model for the standard deviations of the coefficients
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was introduced to better simulate their accuracy when they are determined
from terrestrial gravity data. The final analysis was based on an assumed set
of potential coefficients to degree 180 and on various cap radii between 0° and
300'. Furthermore, the analysis was expanded to include investigations with
respect to the conventional formulation of point and mean undulations; that is,
in terms of gravity anomalies within the cap plus potential coefficients.

Figures 2 through 5 demonstrate that as the distance between the points of
computation increases, so do the commission errors ( due to erroneous potential
coefficients) for all values of the cap radius, as well as n, the maximum degree
of the coefficients. However, for large values of n ( e.g. n = 180 ), the trun-
cation error is essentially independent of the separation between the points.
Naturally, both the commission and truncation errors increase with a decrease
in the cap size because the undulations must then rely more heavily on the po-
tential coefficients.

A comparison of errors derived through Methods A and B ( see (56)) showed
that Method B, for the most part, is not inferior to Method A, and in some cases
it may yield as much as a 30% improvement in accuracy (cf. the curves in Fig-
ure 7: for OpQ = 1500 km, EA, = 10 mgal 11 mgal), Method A gives 48 cm ( 8 cm)
and Method B gives 33 cm (5 cm) ). For small spherical caps (0 0 < 20 ), the two
methods give practically equivalent error estimates ( Figure 7; the error for
00 = 20 , Op Q = 1500 km, EQ6 = 10 mgal (lmgal) is about 75 cm(13 cm); with
a maximum error (at 0 o = 0°) in undulation differences of 151 cm ( 68 cm)).
The confidence that can be placed on either method taken individually depends on
how realistic the models are for the degree variances of gravity anomalies and
potential coefficient errors. For example, the truncation error can vary 30% to
40% by changing the degree variance model c„ ( see Table 3) . ( However this
may be of little consequence to the total error when n is large, for then the
truncation error is often smaller than the commission error.)

As mentioned in section 1, the possibility of determining oceanic geoid
undulations from an integral of gravity disturbances, thus dispensingwith reduc-
tions to the geoid, prompted the investigation of Method B. In contrast, Method
A is predicated on the availability of gravity anomalies reduced to the geoid, this
being a feasible hypothesis if the sea surface topography is known beforehand,
perhaps through an oceanographic model (or if the error caused by neglecting it
can be tolerated). For small caps, when both methods of computing undulations
render similar errors, the route to follow may be decided by weighing the prob-
lem of acquiring such sea surface topography against the need for altimeter
measurements which are required for the computation of gravity disturbances.
The latter requirement demands considerations with respect to the accuracy of
the radial positional component of a satellite-borne altimeter ( and the accuracy
of the altimetry itself). For example, in view of the radial component of the
gradient of normal gravity (.- . 31 mgal/in), the sea surface height above the
ellipsoid should be known ( from altimetry, see Figure 1) to better than 3m in
order to derive gravity disturbances with an accuracy greater than 1 mgal ( this
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being required for data within the cap if the potential coefficients for the outer
zone contribution are determined from mean anomalies accurate to 1 mgal,
see section 7) .

For larger caps (0 0 50 to 300 ), the apparent improvement in the trunca-
tion and commission errors according to Method B may constitute an additional
factor to consider when choosing the particular method of computing undulations.
Quite significant reductions in the error, as compared to Method A, are found
for large caps when the zero- and first-degree harmonics of the gravity distur-
bances do not exist (or are known) ( and this may be the more appropriate prem-
ise on which to base comparisons to Method A). Appendix C includes a_

S
n abbre-

viated analysis of errors derived -through the modified kernel function * (0)
( see section "3 ).  It is shown there that for V o = 30 0 and small separations OQ ,
the reduction in error ( from Method A to Method B, modified) is 75% to 90%,
and for i /̂ o = 10 0 , it is as much as 50% .. For larger separations (OpQ > 1000 km),
the difference between Method A and Method B (modified) is substantial ( about
50%) only if the truncation error is the predominant error source (e, g, if E8g

1 mgal ). On the other hand, as OpQ increases, the difference between Method
B and Method B (modified) becomes less conspicuous. In the comparisons above,
it is assumed that the gravity data within the cap is perfect and continuous. The
reader is referred to the table of Appendix C for specific values of the estimated
RMS errors.

Finally, in regard to mean undulation differences, it was seen that the
estimated errors are substantially reduced only when the truncation error is
the dominating constituent. In the latter case, a typical reduction of 50% ( from
68 cin to 31 cm, for EA,; = i mgal) is attained when potential coefficients to
degree 180 are used to compute V x 1° mean undulation differences instead of
corresponding point values.

raking all numerical comparisons into consideration, it is apparent that
for small caps (x o < 10 0 ) the stringency of the data requirements as estimated
by Christodoulidis (1976) for a 10 cm relative oceanic geoid has not diminished
significantly in the case when undulations are determined on the basis of gravity
disturbances. For larger cal,s, soine improvement in the truncation and com-
mission errors is indicated, but whether sufficiently dense and accurate gravity
data can be amassed within large caps ( say, with radius W 0 = 200 or 300 ) is
questionable at present.
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Appendix A

The integration of
_	 n

J
S (0) Pn ( COS 0) sin 0do, 0o ^ 0
J0

is achieved by utilizing the recurrence relations of Legendre polynomials. Let
P„ (x) (or simply P n ) denote the nt'-degree Legendre polynomial and let Pn'(x)

(or simply Pn ') denote its derivative with respect to the argument x. The fol-
lowing recurrence formulas are well known:

(n+1) Pn+l + nPn -1 = (2n+1)xP„	 (A. 1)

(1- ) 2 )Pn' = n(Pn- 1 - xPn)	 (A. 2)

(2n+1) Pn = Pn+1 ` Pni 1	 (A. 3)

To facilitate the integration, let t = Cos 0 and x = COS 0 . Then the function
S (^) ( see equation (4)) becomes

S( t ) =
J
P2 - en (1+ 12t }, t 1	 (A. 4)

and	 x	
(	 1Qn( x) = f l l u t Pn( t ) dt - Pn(t)on
	 12t/dt, x^ 1 (A. 5)

In all further derivations, it will be understood that x -1 1. For n ? 0,

( )	
1 jx Pn(t)_ 	(	

1^-91
 Xlet	 Ln 

x = IT - 	 1-t'Kn x) - 2 	 (1- t )3 2 dt

Y
and for nz 1, In( x)	 J Pn ( t ) dt =	 1 ( Pn+1 (x) - Pn-i (x)-1	 2n+1

The last equality follows from equation (A. 3) and the fact that

P,(-1) = (-1) 1 , for all n > 0

Hagiwara (1976) shows that

Kn +1 - 2K n + Kn_1 =	 (1 x) In , n ? 1

with Ko = - Cl - 1 2 x ) , K1 = Ko _ (1 _ jl' :2-^x I
I\	 /	 1

and* Ln = 72(1-x)	 [K n +1- 1"-n -1) 2n+1 	
n2 

1

* This differs from the misprinted version in Hagiwara's paper.
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The first integral in (A. 5) is
r x ^--^

4 1_t Pn( t ) dt = 2Ln(X)	 (A. 10)
Let the second integral in (A. 5) be

	

R. ( X ) = - J 
1

P r, (t ) P/22 j 1	 I2t) dt	 (A. 11)

Substituting the recurrence formula (A. 1) gives
_	 _ x

	

Rn(X)	
nn 

1 Rn—^(x)- 
2
nll 1f tPn-^(t)(1+ ^)dt (A. 12)1	 1-t

Now, putting (A.2) in the integral of (A. 12) results in

R. (x) _ - n 

n 1 Rn-2(X) - 
2n-1 

rjPn-2( t ) On (1+ f2   +

	

n ^ 1	 ( X11- t

1a 	 (
I+

'V	 ^Jn-1	
t )Pn!1(t)Pin 	 dt

x_	
r

	

Rn-2(X) + n ( n	 ,1 1(1-t`)Pn-' J(t)PJn {1+ N1-t/ dt (A. 13)

The integral in (A. 13) is integrated by parts. To this end, let

w = (1-t2) an (I+^)
1-t

After some simplifications, it is found that

	

dw	
L 

12t 
+1-2tPm(1+v1-t)ldt

Also, if dv = Pn ! 1 (t) d. t, then v = Pn -1 (t) and the integral in (A. 13) becomes

	

T
x	 x- Jx

	

i
wdv = wvI-1
	

lvdw

jx

	

(1- x2 )Lir(1+ ^22 	 Pn-1(X) + 12 /I--t Pn_1 (t) dt +
.1

	

i
x	 x
1 Pn-1 (t) dt+2 J Pn-1,(X) t2n(I+1-`t) dt

-1

Substituting this back into (A.13) yields

Rn( x )	 R.-2(X) + n x2 ) Pin (1+ ^, x) Pn-1( x ) +	 (A. 14)

2n-1	 2n-1	 2n-1
+	 A,^(n -1)n n- 1(X) - n(n-1) In- 1(X) + 2n(n - 1)Bn- 1(X)

In -, (x) is given by (A. 6), and
r x

An-1(X)	
J 1 

t P n-1( t ) dt,
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a

t°. B.— ,(X) _ 
^x t P r,-1( t )	 (1+	

2^/ 
dt

1	 1-/

An-1 (x) is computed by inserting (A. 3) and integrating by parts;

A n -1( X ) = 2n11 [V"- X  ( Pn( X ) - Pn-2(x))-^T($(-1)- Pn-2(-1)) +

1
(Ln(X) - Ln-Z( X ))I	 (A. 15)

The second term in (A. 15) is zero in view of (A. 7) and Ln(x) is given by (A. 6).
Finally, Bn-1 ( x) is obtained by substituting (A. 1):

B.-,(x) = - 2n-1 R„( X ) - 2n-1 Rr.-2(X)	 (A. 16)

Also, from (A. 6) we find

In -1( X ) _	 (Pn(x) - P .-2( x ) )	 (A. 17)2n-1

Putting (A.15), (A.16), and (A. 17) into (A.14), it is readily found that

n
±1 

Rn( X ) = n n 2Rn- 2( X ) 
+ 2n(1	 ( Ln( X ) - Ln-2( X ) ) +

+ n(n-1) 2 ( 1-x - ^) ( Pn( X ) - R, -2(x)) +

	+ n(n -1)	 (1+N1-x/(1-x2 ) Pn-1( x )	 (A. 18)

The remaining problem is to find a suitable recursive relation for the L n ( x)
functions. This can be done with some juggling of equations (A.8) and (A.9).
For convenience, let u = 1 / V2 (-I- x) , then

(A. 8) becomes Kn+1 - 2K n + K;;- 1 = -u In	 -	 (A. 19)

and (A. 9) beconnes	 Ln	 u In - (Kn+1 Kn-1) 1	 (A. 20)
2n+1

Solving (A.19) for Kn+i and substituting into (A.20) yields

(2n+1) Ln `- (2n+2) u In - 2K n + 2Kn-1

Also, (2n+3) Ln+1 = (2n+4)u In +1 - 2K n +1 + 2Kn

Adding these last two identities and substituting (A. 20) gives

(2n+3) L,,+1	 2u [( n+2 ) I n +1 - n In ] + (2n+1) Ln



2
(2n+1) L n (x) =	 1 _x [(n+1) In (x) - (n-1) I„_ 1 (x) ] +

+ (2n-1) L„_ 1 (x),	 n > 1

with Lo (x) = 2 - 2 1-x 2 -	 (A. 21)

10 (x) is easily determined from (A. 6). The starting functions Ro(x) and R l (x)
are found by integrating (A.11) directly, changing the variable t to

t = 1-2 z2,	 z / 0

and integrating by parts. Only the final results are stated below.

The recursive formulation of Q n may be summarized as follows:

For x=cos Oo, Oo # 0:

Q. (x) = 2 L. (x) + R.(x),	 n z 0

where (2n+1)L n (x) _ J^2-[(n+1)In(x) - (n-1)1„_1(x)] +

+ (2n-1) L„_ 1 (x),	 n > 1

with Lo = 2 217X
2

and I,,( x ) - 2n 1	 [ Pn +1( x ) - P. -1( x )],	 n >_ 1

and (n+l) Rn( x ) _ n ( n -1)(n-2) Rn-
2(x) + I [ L n( x ) - L, 2 (x) ] +

+ 2nn 1(^ 12 _111„-1(x)
L	 J	 +

+ 2nn 1 ( 1 - X2 ) Pn-i( x ) on (l + 1 2 x), n a 2

with Ro(x) _ -22n 1+^
1 2 x

}+(1-x)Pirc(1+VT-x) 1- 
12x1

and R,(x) = Cl 1 2 x[(1-x) Pm 
(l+ 12x1-11+ 3 (1 -1 2 X 12x1

-ind (n+1) P,,, I (x) +nPn _1 (x) _ (2n+1) x P,(x),	 n	 2

with Po(x) __ 1

and Pl (x)	 x
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Appendix B. Concernin; the factor a" in equation (46)

The extension of the disturbing potential into the space outside a sphere-
of radius RL; is given by (cf. equation (17))

1„^•
T C r+^ ^^)	 lti	 ^ 

r	 t
J	 ( ^nmeos ttix-F S n^sin.ni ' ) X'nw( cos 9)

n p	 m -:: 0

V

T. ^^	 (B. 1)

where 	 refer to this sphere ( that is, 11 is replaced by 'Ra in equa tion

(17)). on the` splier:' of radius 13	 R[3, it is
Q
0.:	

I, F X	
U

T11Cola )	 7 'n	 (1^.`3>

If Na is coanputed on the sphere of radius 11, t:hen nce...ording to equation (16) it
is It

Np 	 Y	 `,!„ tin	 h
N

where 6g„ on this sphere is obtained froth (13) and (13.?):

c* n	 v	 it	 T n ;'	 Il	 r1, n	 .ii !	 (,[^ . =]:)

Consequently, the substitution of (13. 4) and T„ of (1-1). 1) into (h. 3) leads to
,^

N•z :, 1	 (11 +1) C).n 
1w

n̂	 ( C n'cos111A +S"sinniA) „m( cos 8)

The corresponding formulation of Hic error Ez differs from equation (38) by the
factors ( R)/ Il f , this implies tlx:it the degree variance-,; ^ n as given by (40)
should be inodified by tho fnc+tor Or n - (1l^̂ ' 1.ta)".

Appendix G. Trunc.tztion Coefficients Implied by the Rernel 1?tinction

If the series expansion of the gravity disturbance function bg ( equation (14))
contains no zero and first -degree terms, then trite intehrzl equ ,,04on (5) becomes

N :", —L— P j f	fig„	 t i 1'.^. ( os 0) cif
`	

(C`.1)
thy 

Q n='a	 tl` 	
1^: ^•1

whore tine series expansion for 	 (equation (4)) has been used and 1) e, (cos
t' •-- 0, 1. are excluded because they are orthogonal to tho h:trmonie functions of
6g. 1;cYti:ivulent:l ', eguat.icxuz (C.1) is

Il 	 f. rr y f 	 ig q* (ib) dd	 (C -or
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where S* (0) = S(0)-1-  a cos o . This modified kernel function defines the
following truncation coefficients (cf. equation (11))

JQn*	 n= 	S* (^) P, (cos 0) sino dO	 (C. 3)
o

Cin _	 u (l: + a Cos 0) P, (Cos0) sin  d o 	(C. 4)
00

It is noted that for too= 0, ^5n* = Q n , n z 2; also ;l O* and Q 1* are not equal
to zero unless 0 0 = 0, but this is immaterial in the error formulas since bgo =
0 = bgl.

The integral in equation (C.4) is evaluated by utilizing the results of
Appendix A ( let t = cos 0, x = Cos 00).

TT

P n ( cos 0) sin 0 do = In( x )	 (C. 5)
^^ o

J n cos O P n ( cos 0) sin 0 do = J x t Pn ( t) dt	 (C. G)
00	 -1

The integral in (C. G) is directly integrable when the recursion formula (A. 1) is
introduced:

J x t 
Pn( t ) dt	 1	 x (( n+1 ) P,1 , 1 (t) + n P,-,(t) ) dt

-1	 2n+1 J-1

211+1 In +1(x) + 2n+1 In-1 (x)	 (C. 7)

Substituting (C. 5) and (C. 7) into (C. 4),
P„ 

Qn* = Qn — [ In + 4n+2 ( (
n +1) 1n+1 + nln-1 )

where Qn and In are given on page 38.

I The equation for the global error estimates —m 1 and —n-12 of the. outer zone
undulation differences are obtained by replacing Cln with fi n* in equations (46)
and (36). The following table indicates the type of corresponding reductions that
can be expected in the error estimates.



Total (RMS) errors (cm) in undulation differences assuming perfect and continuous
gravity data within a cap of radius 0 0 (n = 180, Method B, parenthetical values
are obtained via Method A).

EAs = 1 mgal EQg = 10 mgal

O N [kml using Q. (Qn) using Qn* us ing Qn (Q.) using Qn*

100 4.8	 (7.4) 3.5 8.2	 (12.4) 6.0

00 = 10 0 1000 5.0	 (7.6) 3.8 27.3	 (39.5) 23.0
2000 5.7	 (8.6) 4.7 37.9	 (54.8) 36.0

100 2.1	 (1.7) 0.1 3.6	 (	 3.1) 0.8

00 = 30 0 1000 2.3	 (2.1) 0.8 12.9	 (14.5) 8.3
2000 2.6	 (2.9) 1.6 18.7	 (25.0) 16.2

Generally, for most n, Q n* is Mess in magnitude than Q n , and the absolute
differences between these coefficients increase substantially as the radius 0 0
of the cap changes from 100 to 300. The truncation error (n = 180) for 00 = 300
is practically nonexistent (.;; 0.02 cm, compared to 1.9 cm when Q n is used);
while for 0 0 = 10°, the truncation error of 3 cm to 4 cm is closer to the 4 cm to
5 cm that is obtained with Q. This accounts for the considerable decreases in
error for the larger cap, particularly when 0 p is small as the commission er-
ror is then minimal. The tabulated values which are enclosed in parentheses
correspond to error estimates based on Method A (using the coefficients Q„).
Note that both Q„ and Q n* are derived from kernel functions (S ( 0) and S*( 0),
respectively) whose zero- and first-degree harmonic coefficients are zero.

We see then the noticeable improvement (up to 50% for 0 0 = 10°) in the
accuracy of geoid undulation differences when determined on the basis of perfect
and continuous gravity disturbance data within a cap of radius 00 = 300 , and
when the modified kernel function S* (^) is employed. This naturally leads to
further possible improvements with more discriminating selections of the kernel
function, as alluded to in section 10.
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