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New High Temperature Crosslinking Monomers



SUMMARY



This report describes the results of a one-year program designed to synthesize


new, nonvolatile crosslinking monomers and to prove their feasibility in the


development of lower temperature curing PMR-polyimide resins with high tem­

perature capability. The objective of this program is to develop PMR-polyimide


resins capable of being processed at a maximum temperature of 2320C to 2880C


(450°F to 5000F) without sacrifice of the high temperature 3160C (600°F) capa­

bility of the state-of-the-art PMR-15 polyimide resin.



Four novel monomethyl esters were synthesized and characterized for use in
 

the crosslinking studies. It was found that all four crosslinkers were capable


of entering into a crosslinking reaction to produce polymer specimens which were


strong, dense and free of voids. The infrared and DSC studies of each cross­


linker with monomers 4,4'-methylenedianiline (MDA) and the dimethyl ester 6f



3,3',4,4'-benzophenonetetracarboxylic acid (BTDE) comprising the resin sys­

tems, crosslinker/MDA/BTDE suggested that curing could be accomplished at


2880C (5500F). However, fabrication of dense, void free polymer specimens
 


required a temperature of 3160C (6000F) and a pressure of 0.69 NTa (100 psi).



The crosslinkers, monomethyl ester of 2,5-bicyclo[2.2.l]heptadiene-2,3­


dicarboxylic acid (NDE) and monomethyl ester of maleic acid (MAE) were selected



for evaluation in Celion 6000/PMR polyimide composites. These composites were


characterized at RT, 2880C (5500F) and 3160C (6000F) initially and after iso­

thermal aging at 2880C (5500F) and 3160C (6000 F) for several hundred hours.



The results of the isothermal aging studies suggested that both PMR systems


NDE-MDA-BTDE and MAE-MDA-BTDE are promising candidates as matrices for addition


type polyimide composites. These studies demonstrated that alternate cross­

linkers to NE/MDA/BTDE are feasible, but mechanisms to lowpr the crosslinking


temperature must be developed to provide lower temperature processing PMR-type



polyimides.
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1.0 INTRODUCTION



This document constitutes the final report on the development of new


high temperature- cr6gsslikifg monomers initiated on June 6, 1977 and describes


the work performed between that date and August 6, 1978. The major objectives


are to synthesize new, nonvolatile crosslinking monomers and to prove their


feasibility in the development of lower temperature curing,(232 to 2880C), PMR­

polyimide resins, without sacrifice of the high temperature (3160C) capability


of the state-of-the-art PM.R-15 polyimide resin. 

The work performed under this contract was accomplished in four tasks


as described below:



Task I - Monomer Synthesis



Four novel monomethyl esters were synthesized and characterized, and attempts


were made to synthesize two other monomethyl esters. The monomers synthesized


were the monomethyl ester of itaconic acid, the monomethyl ester of 2,5-bicylo­

[2.2.l]heptadiene-2,3-dicarboxylic acid, monomethyl ester of 2,5-bicylo[2.2.2]­

octadiene-2,3-dicarboxylic acid, and the monomethyl ester of maleic acid. The


monomethyl ester of 3-vinyl-4-cyclohexene-1,2-dicarboxylic acid and 4-vinyl­

phthalic acid were also attempted. A series of precursors leading to the


above mentioned compounds were also synthesized and characterized.



Task II - Curing Studies



The reaction conditions to achieve curing of each PMR polyimide neat resin


system in the temperature range from 93 C to 3160C were determined. Three cross­

linking monomers were selected for polymerization studies. These were the mono­

methyl ester of itaconic acid (ITE), monomethyl ester of 2,5-bicylo[2.2.1]hepta­


diene-l,2-dicarboxylic acid (NDE) and the monomethyl ester of malcic acid (AE).



Task III - Composite Studies



Two monomers, the monomethyl ester of 2,5-bicyclo[2.2.l]heptadiene-,2­

dicarboxylic acid (NDE), and the monomethyl ester of maleic acid (MAE) were


used as crosslinking in PMR resins for evaluation in composites. The PMR sys­


tems, NDE/BTDE/MDA and MAE/BTDE/MDA were evaluated in composites reinforced


with Celion 6000 graphite fiber. The shear and flexural properties of these


compbsite systems at room temperature and 3160C in the as-fabricated condition


and after isothermal aging at 3160C in flowing air (100 cc/min) for time


periods up to 2000 hours were determined.
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Task IV - Reporting Requirements
 


Monthly technical and financial reports and a final technical report



were submitted to NASA to fulfill the requirements of this task of the



program.



This document is divided into a Results and Discussion section and an


Experimental section, each covering the key activity areas:



1. Monomer Synthesis



2. Curing Studies


3. Processing Studies



4. Characterization Studies



The significant conclusions reached and a summary of the results are given


followed by recommendations for activities that warrant further investigation.
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2.0 RESULTS AND DISCUSSION



2.1 Task I - Monomer Synthesis 

The objective of Task I was to select, synthesize and characterize


monomers for evaluation as crosslinkers in PMR polyimide resin systems.
 


2.2 Monomer Selection



The monomers selected for synthesis in this program are listed as follows:



CH2= 	 C-C02CH3 rC2CH3 

CH2C02 H (a/'C02H 

CH2CH



CH COaCH3



V CO2H



CH2 =C .- J@1Co2H 	 H.-C C O C02 H 

The synthesis of these monomers is discussed below.



2.2.1 Monomethyl Ester of Itaconic Acid



The monomethyl ester of itaconic acid was prepared from itaconic anhydride


by reaction with a slight molar excess of anhydrous methanol at reflux temperature


for one-half hour following the procedure of Baker, et al (Ref. 1).



0
o 	 I11 0 

CH 2 C CH2=CCOCH3 

I 0 + CH3 OH-- I 
ONCH -	 --

CH2 .		 C/
C 	 0 
0 

4





Refluxing (4 hrs) equal molar ratios of the diacid and methanol in toluene,


using p-toluene sulfonic acid as a catalyst gave only trace quantities of mono­


ester and diester mixed in with unreacted diacid. Excess methanol (mole ratio


methanol to acid, 5/1) with no catalyst under reflux conditions (4 hrs) was also


unsuccessful. Refluxing a twenty-fold molar excess of methanol with the diacid
 

using p-toluene sulfonic acid as a catalyst yielded mostly diester and anhydride



by distillation at 900C/25 mm Hg. Attempts to prepare this compound by hydrolysis


of the dimethyl ester with calcium hydroxide were also unsuccessful. A sealed


tube reaction at a mole ratio of methanol to anhydride 1.2/1.0 at 100°C for


3 hrs gave the monomethyl ester in a yield of 12%.



The best procedure was the method described above by heating the anhydride


with a slight molar excess of methanol for 30 min under reflux conditions. The


infrared (Fig. 1) and proton nuclear magnetic resonance (NMR) spectra (Fig. 2)


are consistent for the monomethyl ester of itaconic acid.



2.2.2 Itaconic Anhydride



C2C2 U_ reflux + CH3 C0 2 H+ HCI 
+ CH 3- CC 1 0 

0H 2 C0 2 H Ih H2I


0



Commercial itaconic anhydride contained significant quantities of itaconic


acid impurities which contaminated the monomethyl ester. Therefore, the anhy­

dride was prepared in this program. Attempts to dehydrate itaconic acid in


excess acetic anhydride under refluxingconditions (105-110°C) yielded only



traces of anhydride. Treatment of itaconic acid with excess acetyl chloride


(Ref. 2) at reflux temperature until the acid dissolved followed by removal of


excess acid chloride and acetic acid by distillation, followed by purification


of the syrupy residue by trituration in cold ether provided a white crystalline


product in an 80% yield. The infrared spectrum (Fig. 3) is consistent for the


anhydride and contains no impurities of itaconic acid. The NRM spectrum (Fig. 4)


is further proof of identification.



2.2.3 Dimethyl Ester of 2,5-bicyclo[2.2.l]heptadiene-2,3-dicarboxylic Acid



C02 CH3 H3 

toluene CO2C 
Cref lux 00O2CH 3 

A02CH3 

5





This novel compound was prepared by refluxing a solution of freshly


distilled cyclopentadiene and dimethyl acetylenedicarboxylate in toluene for


2 hrs. Diels and Alder (Ref. 3) report the synthesis of this compound by


adding a molar quantity of diester to freshly distilled cyclopentadiene, while


-cooling-. The-aut-hors -report-a -bo-l-ng point, but do nibt identify the ester by


any other method. It was transformed to the dimethyl ester of 2-bicyclo[2.2.1]­

heptene-2,3-dicarboxylic acid by reduction of the diene to the monoalkene, and to


the dicarboxylic acid by hydrolysis of the diester monoalkene. In our synthesis,


the diester was added dropwise to a solution of cyclopentadiene in toluene.


An exotherm was hot observed, therefore, the reaction mixture was heated to


reflux. It was isolated by vacuum distillation (bp 121-1Z8°C/i mm Hg) in 89%
 

yield. The infrared spectrum (Fig. 5), NMR spectrum (Fig. 6) and elemental


analysis confirmed the structure. The reported (Ref. 3) boiling range was


134-1350 C/0-1l mm Hg.



2.2.4 Monomethyl Ester of 2,5-bicyclo[2.2.1]heptadiene-2,3-dicarboxylic Acid



C02CH3 KOH H30H H+ CO2 CH3+ KO - ..,-­

"tZCO2CH3 0--C0 2H



The monomethyl ester of 2,5-bicyclo[2.2.l]heptadiene-2,3-dicarboxylic acid


(2,5-norbornadiene-2,3-dicarboxylic), NDE, was prepared by modifying a procedure


of Zahorsky and Musso (Ref. 4) for the synthesis of the diethyl ester of 1,1,


2,2 -ethane tetracarboxylic acid. The produce was isolated by removal of the


solvent, followed by extraction of the residue with ether to remove unreacted


diester. The potassium salt of the monoester was liberated by acidification-with


iN HU0. In some cases, the acid separated as an oil, in other cases it separated


as a crystalline solid. When a solid was recovered, it was washed in cold water,


air dried to yield white product, mp 103.5-105.5OC (64% yield). When the pro­

duct separated as an oil, it was extracted with ether and the ether solution


was dried and concentrated to yield an off-white solid. This was purified by


washing in cold ether, yielding product mp 104-107.5°C. The infrared spectrum


(Fig. 7) and NMR spectrum (Fig. 8) as well as elemental analysis confirmed the
 

structure of this compound.



2.2.5 Dimethyl Ester of 2,5-bicyclo[2.2.2]octadiene-2,3-dicarboxylic Acid



c 3 
 - C0 2CH3 

.C0 2CH3 

C02CH3
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This was prepared by the method of Diels and Alder (Ref. 3) except that



the reaction was carried out in toluene at reflux temperature. Diels and Alder


refluxed the reactants in the absence of solvent for 1 hr, and make no attempt



to isolate the addition product. Instead it was identified by reduction of the



diene to the bicyclomonoalkene, followed by hydrolysis to the acid and then dehy­

dration to 2-bicyclo[2.2.2]octene-2,3-dicarboxylic acid anhydride.



CC02CH3



>heat


OC 
 -" 
 02CHZI CO2CH3



C0 2 CH3 KOH H CH 3C-CI
 

- EtOH
C02 CH3 
 

0II 

0



In the present work, refluxing in toluene appeared to yield product, but



vacuum distillation caused decomposition to dimethyl phthalate as follows:



C02CH3 heat C02CH3 CH2



'A, -C2CH @ CO2CH3 + ICH2 

This was established by infrared studies, mass spectroscopy and elemental analy­


sis. Refluxing the reactants at a lower temperature, in tetrahydrofuran,


yielded an oil which by infrared spectroscopy appeared to contain to octadiene



diester. However, elemental analysis indicated that this also contained impurity


components. It was purified by extraction of the basic solution (from the



KOH/CH30H hydrolysis reaction to obtain monoester) with ether and concentration



of this extract to an oil. The infrared (Fig. 9), NMR (Fig. 10) and elemental



analysis were all consistent for the dimethyl ester of 2,5-bicyclo[2.2.2]octadiene­


2,3-dicarboxylic acid.
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2.2.6 Monomethyl Ester of 2,5-Bicyclo2.2.2]Octadiene-2,3-Dicarboxylic Acid 

C 0 2 CH3 CH30H 

4C0 2 CH 3 + KOH A 

r00C 2HCO2CH3 

The monomethyl ester of 2,5-bicyclo[2.2.2]octadiene-2,3-dicarboxylic acid


was prepared by modifying a procedure of Zahorsky and Musso (Ref. 4) for the


synthesis of the diethyl ester of 1,1,2,2 -ethane tetracarboxylic acid.


Unreacted diester was removed by extraction with ether. This afforded a way'of


purification of the diester, leading to its identification and characterization,



as described above. The monoester was liberated from the potassium salt by


acidification with 1N HC1, followed by extraction of the aqueous solution with


ether. The monoester was isolated from the dried ether extracts by concentra­

tion to a solid. The elemental analysis was not consistent for this compound,



but infrared (Fig. 11) and NMR spectroscopy (Fig. 12) studies suggested that the


compound was mostly the desired monoester.



2.2.7 3-Vinyl-4-cyclohexene-l,2-dicarboxylic Acid Anhydride



CH2 CH2 

8H0 
CH~ 
C c + 0 ---­ \ 

"II 0 R 
0CH2 
 

This compound was prepared in only very small quantities (2.5g), by reac­


tion of 1,3,5-hexatriene with maleic anhydride in tetrahydrofuran at reflux


temperature. The oily residue which remained after concentration of the THF


solution was vacuum distilled, yielding two fractions. The first fraction was



identified as unreacted maleic anhydride, bp r'140°C/1 mm Hg, mp 51-53.5°C.


The second fraction, a yellow oil, bp 153-160°C/1 mm Hg, was identified as the
 


correct product by elemental analysis, infrared spectroscopy (Fig. 13) and proton


nuclear magnetic resonance (Fig. 14). Farmer and Warren (Ref. 5) report a



boiling point of 1480C/6 mm Hg, a melting point of 51.5°C, and a water hydrolyzed


product melting at 164-1660C. The melting point and boiling point were con­

sistent for unreacted maleic anhydride, but the hydrolyzed product melting point


was not. Kharasch and Sternfeld (Ref. 6) report a mp 450C for the 3-vinylcyclo­

hexene-1,2-dicarboxylic acid anhydride, and further attempted to prove the struc­


ture by reduction of the diacid (mp 160 0C) to vinyltetrahydrophthalic acid (H2


absorbed, 45.64 cc, calc 47.93 cc), mp 1170C. However, the melting point ot


succinic acid is 1880C, and its anhydride melts at 1190C. It is questionable


whether both workers succeeded in isolating the desired compound. The elemental


analysis and IR and proton NMR spectra of the compound isolated in our work were



consistent for 3-vinyl-4-cyclohexene-l,2-dicarboxylic acid anhydride.
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Attempts to prepare the monomethyl ester of 3-vinyl-4-cyclohexene-l,2­

dicarboxylic acid by reaction of the triene with monomethyl ester of maleic acid



in THE at reflux yielded only trace quantities of product, and mostly unreacted


starting materials. Additional attempts to prepare this compound were curtailed


due to the cost of the starting triene and time constraints.



2.2.8 Monomethyl Ester of Maleic Acid



CH 550C CH-CO2 CH3 

CH . -'" CH3OH CH-CO2H 

The monomethyl ester was prepared using the procedure of Spatz and Stone


(Ref. 7), with the exception that the reaction product was treated in vacuum at



room temperature to remove excess methanol until a constant value for the


refractive index was obtained. The product is obtained in quantitative yield as


a colorless liquid, nD2 0 1.4580, Spatz & Stone (Ref. 7) report nD20 1.4634,


Ushakov, et al (Ref. 8) report nD2U 1.4640. The infrared spectrum (Fig; 15),



proton NMR (Fig. 16) and elemental analysis were all consistent for the mono­

methyl ester of maleic acid.



2.2.9 Monomethyl Ester of 4-Vinylphthalic Acid



This is a multi-step synthesis which was initiated in this program but



which was terminated due to time constraints. The approach was to start with


relatively inexpensive trimellitic acid anhydride, convert this to"4-chloroformyl­

phthalic acid anhydride, followed by Rosenmund reduction of the acid chloride


to 4-formylphthalic acid anhydride. This latter compound was prepared in 32%
 


yield using the procedure of Winslow and Laferriere (Ref. 9) without isolation


of the acid chloride. One attempt to convert the aldehyde to a 4-vinylphthalic


acid anhydride by reaction with triphenylmethylphosphonium bromide was unsuccessful.



Triphenylphosphonium bromide used in the above synthesis was prepared in a


stoppered bottle at 00C by reaction of 1.05 mole of methylbromide with 0.62 mole


of triphenylphosphine in dry toluene. This yielded a white crystalline product,


mp 229-231 0C, in 69% yield. Some product was lost due to excessive pressure


buildup, which caused the rubber stopper seal to break and release product.



2.2.10 PMR-Polyimide Monomers



The dimethylester of benzophenone-3,3',4,4'-tetracarboxylic acid (BTDE)


used in preparing the PMR-15 polyimides was prepared by a method reported pre­

viously (Ref. 10). The 4,4'-methylenedianiline (MDA) used in preparing the PMR­

15 polyimides was purchased from commercial sources in its highest purity avail­


able.
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2.3 Cure Studies of PMRPolyimide Compositions



Because the objective of this program was to develop a low temperature


curing PMR addition-type polyimide, a detailed study of the changes in the


infrared -spectrum of the PMR: systems -was investigatead over the t e e a ute range


of 93 to 3160C with and without catalyst systems, to determine if cure takes
 

place at a lower temperature than the 3160C cure temperature of PMR-15.



The curing studies of PMR-15 containing the monomers NE/MDA/BTDE were also


included in this study for comparison with the novel systems investigated in 
this program. Amine catalysts were investigated in the temperature range 93 to


3160C to determine their effectiveness in lowering the imidization temperature.


Studies by Kreuz, et al (Ref. 11) indicate that tertiary amines increase the 
rate of imidization by a factor of 10 over the free acid. Peroxide initiators 
were investigated in the temperature region 135 to 2000C to determine their


effectiveness in initiating a crosslinkin- reaction. The amines studied in this


program were triethyl amine, tri-n-butylamine and trimethyldodecylamine.- The
 

peroxide catalysts studied were t-butylhydroperoxide (t , 1 hr, 20000), o


cumenehydroperoxide (t , 1 hr, 1900C), and dicumylperoxide (t , 1 hr, 135 0C).


These were selected based on the temperature at which free radicals are generated.



Three monomers were selected for polymerization studies. These were the


monomethyl ester of itaconic acid (ITE), monomethyl ester of 2,5-bicyclo[2.2.1]


heptadiene-l,2-dicarboxylic acid (NDE) and the monomethyl ester of maleic acid


(MAE). The monomethyl ester of 2,5-bicyclo[2.2.2]octadiene-l,2-dicarboxylic


was prepared, but because of the instability of this bicyclo-ring system, it


was not selected for further investigation in a PMR polyimide resin system. The


monomethyl ester of maleic acid was selected because in studies of the PMR-15
 

system containing what was supposed to be the monomethyl ester of 3-vinyl-4­

cyclohexene-l,2-dicarboxylic acid, it was discovered that the monomer was really


the monomethyl ester of maleic acid. However, infrared studies showed that the


PMR system containing this monomer underwent a cure reaction similar to the


NE/MDA/BTDE system. Therefore, this monomer was selected for further studies.



2.3.1 Infrared Studies of PMR-15 Cure Reactions



A study of the sequence of reactions involved in the processing of PMR-15


monomeric systems to a highly crosslinked polymeric material was made. This


was accomplished by following the infrared changes as a functioi of temperature


for a given time period for resin films deposited on sodium chloride salt discs.


The infrared spectra for PMR-15 (Figs. 17-19) are shown for comparison with


spectra of the novel PMR systems developed in this program. At room temperature,
 


-
(Fig. 17a), there is absorption at 1726-1730 cm I due methyl ester carbonyl­

0 ,a doublet at
11 
C-OCH3
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- - 

- -

-i -l


3360 and 3420 cm due to -NH amine groups, and absorption at 1615 cm probably



-
due to carboxyl groups, -C02H, an abosrption at 1665 cm 1 most likely due to di­


arylketone 0 and carboxyl groups, an absorption at 1580 and 1330 cm-1 assigned


-C­

to the carboxyl ion -C02-, an absorption at 1435 cm- 1 due to C-0 stretch, and 
finally, an absorption at 2900 and 2950 cm-1 due to aliphatic C-H groups. The 
resin is mostly in the monomeric state at this stage. There is no evidence to 

suggest that a reaction to produce amide, 0 , had occurred. 

-C-NH-


Treatment of the monomeric resin film at 930C for I hr caused some changes


in the PMR material, as shown in the spectrum (Fig. 17b). First of all, absorp­

tion due to NH2 groups diminished considerably, with a simultaneous shift of



- 1 - I
the 1725-1730 cm peak to 1730-1700 cm (actually a doublet at 1705 and 1725


partly due to ester groups), a disappearance of the 1665 cm-1 peak originally



assigned to carboxyl groups-and diarylketone absorption, a disappearance of


the peaks originally at 1615 and 1580 cm-1 , assigned to carboxyl groups, -C02H

, 
appearance of absorptions due to amide 0 , at 1600 cm I and 1565 cm , the 

-C-NH- 0II


appearance of weak absorption due to imide functionality -C\ appears as a


N­
/ 

-C 
0
-1 ­


shoulder at 1770 cm and as a small peak at 720 cm 1.



The specimens were heated at 1210C for an additional hour. This caused the
-i


appearance of a peak at 1850 cm due to formation of anhydride and a shift of



-
the 3360 peak to 3320 cm , due to amide functionality 0 (Fig. 17c). Ab­

11-C-NE­
-l



sorption bands at 1410 and 1185 cm also appeared. Absorption due to imide groups


at 1770 and 720 cm-1 became a little stronger. The sample was again heated con­


secutively for 1 hr at 149, 163, 177, and 204 C, with spectra taken after each


treatment. During this treatment, shown by Figs. 17d and 18a, b, c, absorption


due to imide functionality continually increased to yield strong peaks at 1775



- I -1 
 cm and 720 cm and at 1730-1705 doublet;labsorption due to carboxyl groups


-C02H persisted through very weak (1335 cm ); absorption due to amine disappeared
 


-
(3360 cm and 3420 cm I ) and a broad band near 3470 cm due to amide -N-H


appeared. Absorption in the doublet region 1730-1705, after the 2040C treatment



(Fig. 18c) was most likely partly due to traces of ester groups, 0 The



-C-0CH 


peak (Fig. 18c) at 1850 cm-1 due to anhydride groups remains strong while that 


at 1600 broadens and shifts to 1615 cm , indicating the weakening of abosrption 

due to amide groups. It is clear at this stage of the cure process that a con­

siderable fraction of the amide and imide forming reactions are complete. It is 

also clear, however, that the imidization process is incomplete, since absorp­


-1
-
-

tions due to amide at 3470 m 1 and 3320 cm 

I and anhydride bands at 1850 cm



still persist.
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The spectrum for continued heating at 2320C for 1 hr is shown in Fig. 18a.


There is a slight increase in the imide peak at 720 cm- 1 due to the 2320C heat


treatment, relative to the 204°C treatment, as can be seen by comparing Fig. 18c


with Fig. 19a. The 2320C treatment remove the last traces of acide, since ab-­


- 1
sorption due to carboxyl ion -CO2H- at 1330 cm was absent, while the absorp­


tion due to anhydride group at 1850 cm still.persisted. The peak at 1705 to


1730 cm-1 is still broad indicating that ester may still be present. This is


further evidence that although most of the imidization occurs in the temperature



range 149 to 2040C, unreacted, anhydride, amide and ester are present at 2320C.


The last traces of these are removed by treatment at 3160C for 1 hr shown by Fig.



19b. This causes a broadening of most peaks present after the 2040C and 2320C
-1


heat treatments, and an emergence of a peak at 1665 cm which may be due to diaryl­


ketone groups. There is no evidence for absorption due to amide, ester or


carboxyl groups. The heat treatment at 3160C for I hr completes the imidization



reaction, removes anhydride and causes the crosslinking reaction to occur, and



increases the molecular weight of the polyimide. This also causes a decrease


in absorption due to imide functionality at 1775 and 1720 cm -
I . Postcure of



0
the sample at 316 C for 16 hrs also shows this decrease and a strengthening of



the 1660 cm- I peak which emerged after the 1 hr treatment at 316 C.



From this infrared study one can conclude that in -the temperature range


from 149 to 2040C, imidization is essentially complete. However, there is still


a small concentration of unreacted amide and ester present at this stage of



the reaction. Apparently, for 100% conversion to imide groups, temperatures



above 2320C are required. This is also suggested from dielectrometric studies



reported by Gluyas (Ref. 12).



The point of this discussion is to trace the events of this reaction in


the temperature range from room temperature to 316 C and to show at which tem­


perature range most of the nonreactive volatile materials are produced. This


study showed that any crosslinking monomer, substituted for NE in PMR must have



a reactivity temperature profile in the range 204 to 232 C. If a reaction


occurs below this temperature, it will coincide with the amidization-imidization


reactions which are the nonreactive gas producing steps. This would lead to a



high concentration of voids, due to the lack of resin flow on the consolidation


stages of composite fabrication.



Therefore, crosslinking monomers must have a reactivity lower than the


amide acids or amide esters which yield imide functionality, but higher in


reactivity than the norbornenyl groups, for decreasing the crosslinking


temperature.
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2.3.2 Curing Studies with ITE as the Crosslinker in the ITE-PMR-14 System



Polymerization studies using the monomethyl ester of itaconic acid (ITE) as 
an end-cap in the PMR-14 system were investigated at a mole ratio of ITE/MDA/BTDE 
of 1.00/1.54/1.04. This mole ratio of monomer reactants generated a PMR 
formula molecular weight of 1400. When using NE instead of ITE, this identical 
molar ratio generates a PMR formula molecular weight of 1500, hence the name 
PMR-15. The monomers were deposited on a sodium chloride disc from a methanol 
solution, and the monomer film was freed'of solvent by evacuation. 

The infrared spectra of the uncatalyzed partially cured ITE-PMR-14 to the 2600C


cured ITE-PMR-14 are shown in Figs. 20 through 26. For comparison, the infrared


spectra of PMR-15 films cured at 149 and 2040C are shown in Figs. 27 and 28. The


dimethyldodecylamine partially cured ITE-PMR-14 to the 3160C cured ITE-PMR-14 and the


cumene hydroperoxide cured ITE-PMR-14 to the 3160C cured ITE-PMR-14 are shown in


Figs. 29-36 and 37-42, respectively. The t-butyl hydroperoxide cured ITE-PMR-14


film is shown in Fig. 43. Heating the films at 930C for 1/2 hr initiates forma­

tion of the imide group, which on further heating at 149, 177 and 2040C for


1/2 hr each causes almost complete imidization. For the amine catalyzed reaction,


the 2040C treatment causes elimination of the amine catalyst as indicated by th


absence of strong aliphatic absorption in the regions between 2850 and 2920 cm


Continued heating to 3160C does not ap ear to change the imide absorption. Com­

parison of the uncatalyzed cure at 204 C (Fig. 26) with the amine catalyzed


imidization at 2040C (Fig. 33) and peroxide catalyzed reaction (Fig. 38) shows



-1 
 that all three contain imide absorption at 720 cm of about equal intensity, and


in addition all other peaks appear to be the same relative intensity. This


suggests that there is no difference in the uncatalyzed, amine catalyzed and


peroxide cured ITE-PMR-14 systems.



Comparison of the infrared spectra of PMR-15 cured at 1490C (Fig. 20) or


2040C (Fig. 21) and above with the spectra of ITE-PMR-14 uncatalyzed (Fig. 24),


amine catalyzed (Fig. 31 or 33), or peroxide initiated cure (Fig. 38) suggests


that the ITE end-capped PMR-14 system is not undergoing imidization at a lower 
temperature than PMR-15.



The infrared spectra of ITE-PMR-14 cured in the presence of either


t-butylhydroperoxide or dicumylperoxide were identical to that spectra of the


ITE system cured in the presence of cumene hydroperoxide. This is illustrated


by t-butylhydroperoxide cured ITE-PMR-14 (Fig. 43). The infrared studies sug­

fest that the peroxide cured ITE-PMR-14 system imidizes over the same temperature


range (93 to 2040C) as PMR-15, but give no evidence of a crosslinking reaction



over the temperature range 204 to 3160C.
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2.3.3 Cure Studies with NDE as the Crosslinker in the NDE-P4R-15 Polyimide System



The monomethyl ester of 2,5-bicyclo[2.2.1]heptadiene-2,3-dicarboxylic acid



(NDE) was combined with MDA and BTDE in the mole ratio of 1.00/1.54/1.14 _(NDE/



MDA/BTDE) yielding a PMR formula molecular weight of 1500, hence NDE-PMR-15.


The NDE-PMR-15 system was studied in the uncatalyzed state, and in the presence



of dicumylperoxide, t-butylhydroperoxide dimethyldodecylamine and tri-n-butylamine



as catalysts, over a temperature range 93 to 316C.



Uncatalyzed partially cured NDE-PMR-15 to uncatalyzed NDE-PMR-15 cured to



2600C, and'dimethyldodecylamine (DMDA) catalyzed partially cured NDE-PMR-15



to DMDA cata'lyzed NDE-PMR-15 cured to 3040C are shown in Figs. 44-50 and 51-59,



respectively. Comparison of these spectra of the two NDE-PMR-15 films with the



spectra of NE-PMR-15 (Figs. 17-19) shows that these systems cure similarly



and that the amine catalyzed system does not appear to lower the imidization



temperature relative to NE-PMR-15 or uncatalyzed NDE-PMR-15.



The infrared spectra of the dicumylperoxide catalyzed partially cured



NDE-PMR-15 and the 3160C cured NDE-PMR-15 are shown in Figs. 60-67. These



spectra are distinctly similar to the uncatalyzed and amine catalyzed NDE



systems. The infrared spectra of these peroxide treated films do not reveal


whether or not crosslinking is occurring and if so, whether it occurs at a lower



temperature than thermal crosslinking of the NDE or NE-PMR-15 polyimide systems.



A significant difference in the infrared spectra of the uncatalyzed and
 


catalyzed NDE-PMR-15 systems and the uncatalyzed NE-PMR-15 systems is the fact



that the NDE systems do not show an anhydride band at 1850 cm-1 in the tempera­


ture range between 204 and 3160C, as does the NE-PMR-15 resin. The amine
 


catalyzed NDE system shows strong absorptions at13210, 3320 and 3420 cm due



to dimethyldodecylamine and at 2850 and 2915 cm due to CH3- and -CH2 groups
-


of the amine which finally disappear after the 316 0 C treatment.



A comparison of the spectra of the uncatalyzed, dimethyldodecylamine
 


dicumylperoxide and t-butylhydroperoxide NDE-PMR-15 systems cured at 2040C



(Figs. 68-71) with the spectrum of PMR-15 cured at 2040C (Fig. 28) reveals



that the NDE systems and the NE system respond similarly to form imide band of



about equal concentration. The triethylamine catalyzed NDE-PMR-15 cured at 93



and 1490C for 1/2 hr each (Fig. 72) is similar to uncatalyzed NDE-PMR-15 and


NE-PMR-15 cured under the same conditions, providing additional evidence that



the amine does not offer any advantage for a low temperature imidization.
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2.3.4 Cure Studies with MAE as the Crosslinker in the MAE-PR-l4 Polyimide System



The monomethyl ester of maleic acid (MAE) was combined with MDA and BTDE at a


mole ratio of MAE/MDA/BTDE (1.00/1.535/1.025) to form a PM system having a


formula molecular weight 1400, hence MAE-PMR-14. Infrared spectroscopic studies


were carried out on films deposited on sodium chloride salt plates from a 45 wt%


solution in anhydrous methanol. This system was only studied in the uncatalyzed state


because of the negative results generated from the catalized ITE- and NDE-PMR systems.


The infrared spectra of partially cured MAE-PMR-14 to 2880C cured MAE-PMR-14 are


shown in Figs. 73-80. The imidization reaction commences at 930C and become


prominent at 1490C (Fig. 75). At this temperature, an anhydride band appears at



-1 
 1850 cm similar to the NE-PMR-15 system. The imide band appears to reach its


maximum absorption at 2040C, as is illustrated by the imide peak at 720 cm-l;


continued thermal treatment to 288°C (Fig. 80) does not alter the absorption


at 720 cm-I . After the 2880C treatment, absorption at 1850 cmI due to anhydride


is still present, as it is in the NE-PMR-15 system.



2.3.5 Conclusion of the Infrared Spectroscopic Studies



The infrared spectroscopic studies of the curing reactions of the three PMR


systems reveal that imidization occurs in these systems similar to the NE-PMR-15


system. The infrared studies, however, do not indicate whether or not cross­

linking of these novel end-capped polyimides occur. This was accomplished by


fabrication of resin samples of each PMR system, and characterization of these


materials.



2.4 Process Studies of the PMR Systems



Each PMR system was subjected to a series of process studies to produce solid


resin discs of each material, and to establish conditions for use in fabrication


of Celion 6000/PMR composites. The procedure used was to prepare a 45 wt% solution


of the PMR resin monomers at a mole ratio of end cap/IMA/BTDE of 1/1.54/1.04 as


described for the infrared spectroscopic studies. The solutions were divided into


several parts for study, amine catalyst or peroxide was added to some of the portions.


The solutions were concentrated to powders for study by thermal analysis and for


conversion to solid resin discs (2.51 cm diameter x 0.835 cm thick), over a


temperature range 93 to 3160C at low pressures, 0.34 to 1.38 MPa (50 to 200 psi).



2.4.1 Thermal Analysis of PMR Uncured Powders



PMR-15, ITE-PMR-14, NDE-PMR-15 and MAE-PNR-14 methanol solutions were con­

centrated to powders at room temperature. The powders were evacuated to remove


traces of methanol and then subjected to differential thermal analysis. Powders
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were also "B" staged at temperatures as determined by DSC analysis of uncured


powders-. These "B" staged powders were also subjected to DSC to determine the


temperature of which polymer discs could be fabricated. 'The results of thermal


analyses are described below.



2.4.1.1 Differential Scanninj alQrimetrx XDCS) of -P$-15-Powder



The-DSC Thermogram uncured PMR-15 powder (Fig. 81) on first observation may


appear to be considerably different than the thermograms of the other PMR systems


shown in Figs. 82:84. Essentially this thermogram shows only one endotherm peak


at 140°C followed by a gradual rise after approximately 2500C. However, the DSC's


of the ITE- NDE- and MAE-PMR powders show a series of endotherms in the temperature


region near 1400C and then exothermic peaks at the higher temperatures. The


multiple peaks at the lower temperature may be due to catalytic activity, and not


necessarily be related to the behavior of the PMR monomers.



2.4.1.2 Differential Scannina Calorimetrz (DSC) of ITE-PM4R-14 Powder



DSC thermogram of uncatalyzed ITE-PMR-14 (Fig. 82) shows a series of endotherms


starting initially at room temperature, and peaking at 100, 183 and 3200C. The


peaks at 100 and 183°C may be due to the condensation reactions, while the peak at


3200C is most likely due to the crosslinking reaction. The DSC thermogram
 

of ITE-PHR-14 containing t-butylhydroperoxide (Fig. 83) also shows a series of


endotherms similar to the uncatalyzed system, but at different temperatures. The


thermal behavior of the two powders suggests that imidization is occurring at 1800C,


and crosslinking near 3000C.



2.4.1.3 Differential ScanninR Calorimetry of the NDE-PMR-15 Powders



DCS's of NDE-PMR-15 catalyzed with dicumylperoxide and t-butylhydroperoxide were


also run. For the two peroxides, no differences in thermal behavior were noted.


The DSC of the dicumylperoxide catalyzed material (Fig. 84) showed sharp endotherms


at 1430C and at 1880C, followed by exotherm above 2600C. Some softening or melting


occurred at 450C and 530C. The DSC-of the t-butylhydroperoxide catalyzed material


(Fig. 85) gave endotherms at 45, 115, 125, 160, 165, 170 and 175 C, followed by an



exotherm above 260C. The endotherms at 1250C and 1750C are the significant ones,


and suggested that processing of the powder to a solid should be carried out at


1750C. DSC thermogram of "B" staged (2000C NDE-PMR-15, Fig. 86) shows an endotherm


near 750C, followed by an exotherm initiating at 2000C and continuing to 4000C. The


DSC thermogram of the 1300C "B" staged NDE-PMR-15 (Fig. 87) shows a broad endotherm


in the region of 1000C, followed by an exotherm near 1500C. The thermal behavior of


the 2000C "B" staged powder suggests that a reaction is occurring above 2000C, while


the thermogram of the 1300C "B" staged material indicates that the reaction is


occurring near 1500C. It is difficult to define processing conditions from the


thermograms.
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2.4.1.4 Differential Scanning Calorimetrx (DSC) of the MAEPMR-14 Powder



DSC studies of the t-butylperoxide, dicumylperoxide, dimethyldecylamine


catalyzed resin powders prepared by evaporation of the solvent from the MAE-PMR-14


solutions were done. The DSC (Fig. 88) of the t-bttylhydroperoxide catalyzed


powders showed an endotherm at 600C, and a series of sharp endotherms between


125 and 1800C. The DSC of dimethyldodecyamine catalyzed powder (Fig. 89) gave


sharp endotherms at 140 and 1500C. At 2300C, both materials developed endotherm
 

peaks followed by exotherms above 2500C, at which point the DSC's were discontinued.


The thermograms suggest that imidization occurs at 180C for the peroxide catalyzed


material, and 1500C for the amine catalyzed material. Above 2500C, a reaction occurs



which may be attributed to crosslinking of the maleimide groups. The thermal


behavior of this powder suggested that fabrication of resin specimens would require



a temperature above 2500C.



2.4.2 Process Studies to Fabricate Solid Polymer Discs



2.4.2.1 ITE-PMR-14



The results of the process studies of the ITE-PMR-14 system are listed in


Table I. It became obvious from the fabrication of the first two discs that a



processing temperature of 3000C was required to produce strong, hard dense resin


discs. This was true even in the presence of dicumylperoxide, which produces


free radicals at 2000C. The peroxide radical sources were added to the resin


system to lower the crosslinking temperature. However, the presence of free


radicals did not appear to influence the processing conditions, as is indicated


by identical 3000C conditions required to produce uncatalyzed, peroxide or amine


containing PMR discs.



2.4.2.2 NDE-PMR-15



The conditions required to produce dense resin discs of this NDE-PMR-15


polyimide system are listed in Table II. The final process conditions required



to produce strong, dense resin discs were 2500C/1 hr at 0.69 NPa. An intermediate
 


temperature of 1800C or 2000C is required for imidization similar to NE-PMR-15.


However, even though moderate conditions produced solid, dense discs, these discs


required additional processing at 3000C for further crosslinking and thermal



stabilization to occur.



2.4.2.3 MAE-PMR-14 

Process studies to produce meat polymer discs of MAE-PMR-14 polyimide are



listed in Table III. As with the ITE- and NDE-PMR systems, final process con­

ditions required to produce strong, dense discs are 3000C/1 hr at 0-69 EPa (100 psi).
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2.5 Characterization of the Novel PHR Polyimide Resin Discs



2.5.1 Elemental Analysis - ITE-PMR-14



Results of elemental analysis of. seyeral-discs are listed in.Table -IV.- The­


calculated values for carbon, hydrogen and nitrogen are based on the theoretical


molecular structure shown below.



1 -E0 0 0 

N CH 2.08 

S2.08



The analysis for carbon, hydrogen and nitrogen for the three samples are in good
 

agreement with the calculated values derived from the theoretical molecular


strucure. This is evidence that the structure as drawn approximates closely the


structure of the actual molecule.



2.5.1.1 NDE-PMR-15



The results of the elemental analyses of several discs of this PMR system are


listed in TableIV. The calculated values for carbon, hydrogen and nitrogen are



based on the theoretical molecular structure shown below.



00 0 0 0 

II N 0 H2 0 II­ -
0 N­

,,I 
CH2 Q N 

0 

00 0 0 
-2.08 

0 

Here, as with the ITE-PM system, the analyses for carbon, hydrogen, and


nitrogen for the four samples discs are in good agreement with the calculated values


derived from the theoretical molecular structure. This is evidence that the


structure as drawn approximates closely the structure of the actual molecule.



2.5.1.2 MAE-PNR-14



Results of the elemental analyses of two MAE-PMR-14 discs are also listed in



Table IV. The calculated carbon, hydrogen and nitrogen values are based on the
 

theoretical molecular structure shown below.



0 0 0 0 0 

a OC 2 N> j 0N CH 2 QN> 

10 -20 
18 

0 



Comparison of the calculated values for carbon, hydrogen and nitrogen with the


found values, particularly disc MAE-PMR-14-II-5, shows good agreement in the
 

carbon and nitrogen values, but only fair agreement in the hydrogen value. This


is reasonable evidence that the structure as drawn approximates closely the


structure 	 of the actual molecule.



2.5.2 Thermomechanical Analysis
 


Samples of resin discs were subjected to thermomechanical analyses to determine


the glass transition temperature (Tg) of each resin. The results of these tests


are listed in Table V. The data show that the glass transition temperatures of


'these PMR 	 systems are lower than the glass transition temperature of PMR-15,


suggesting that the degree of crosslinking in these resin discs as cured, is lower


than that of PMR-15. The Tg of PMR-15 is 3150C. NDE-PRM-III-2 and 111-4 discs


were reprocessed by heat treatment of the discs at 300°C/hr, 1.38 MPa. The treatment


caused considerable improvement in the glass transition temperature of each disc


(Table V). This is further evidence that the initial process conditions produced


a polymer disc with a low degree of crosslinking. The additional cure raises the Tg


to about 3000C.



2.5.3 Thermal Analysis of Cured PNR Resins



DSC thermograms of cured PMR resin systems are shown in Figs. 90-93. Except 
for ITE-PMR-14 the thermal behavior patterns are similar to PMR-15. The DSC 
thermogram of PMR-15 (Fig. 90) shows very little change over the temperature 
range 50 to 2500C. At 2500C the sample starts to exotherm and becomes more 
exothermic as it approaches 3500C. The DSC thermogram of NDE-PMR-15-IIT-4 (Fig. 91) 

and MA-PMR-14-I-5 (Fig. 92) shows essentially the same behavior as PMR-15. 

However, the thermogram of MAE-PNR-14-II-5 reveals a slight endotherm at about 

2600C, then the sample goes into exothermic behavior about 3000C. For the ITE­
PMR-14-II resin system, the DSC thermogram (Fig. 93) shows a slight endotherm at 

25 to 750C, then a plateau region up to 2000C where essentially no change takes 
place, and finally a strong exothermic reaction starting at 2250C and continuing to 
4000C. 

2.6 	 Characterization of the Novel PMR Polyimides


In Celion 6000/PMR Composites



As a result of the infrared and processing studies, two monomers, NDE -and


MAE were selected for further evaluation in composites.
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Celion 6000/PMR composites, fabricated as described in Section 3.4, were


subjected to isothermal aging studies in flowing air (100 cc/min) at 288°C and
 

3160C for time periods ranging from zero to 2000 hours.



2.6.1 Physical Properties



Some properties and composition of each composite are listed in table VI. It


is clear from the data in Table VI that the fiber volume in most composites is


low, and more important, that the void volume is high. The glass transition


temperature (Tg) of the NDE composites falls in the region of about 3200C, while


the Tg of the MAE composite is in the region of 2700C.



2.6.2 Mechanical Properties



0


The results of the shear and flexural properties at room temperature 288 C and



3160C are listed in Tables VII throughXVl. Interlaminar shear strengths of


NDE-'PMR-15 composites are listed in Tables Vii, VIII, and IX. The room temperature
 

shear strength of NDE-PMR-15-3 composite is low initially (% 55.1 MPa) relative to


what is expected for Celion 6000/PMR-15 ('v 82.7 I a).
O However, after 1020 hours 
aging at 288 C, the composite retains about 60 percent if its initial room tem­
perature strength and about 70 percent of its initial 3160C strength. 

The shear strengths of NDE-PMR-15-4 composite are poor after aging 192 hrs 
at, 2880C, but are relatively good after aging 192 hrs at 316 C. This suggests 
that the resin system is becoming stabilized at the higher temperature. This 
stabilization may be caused by increased crosslinking of the resin system. 

The shear properties of NDE-PMR-15-5 composites are considerably better than


the 15-3 and 15-4 composites, and began to approach the values for a Celion 6000/


PMR-15 (82.7 MPa, RT; 41.4 MPa, 3160 C) . Here again, the shear strength after


isothermal aging at 3160C are much better than those after isothermal aging at


2880C. After 508 hours at 3160C, shear average strength values of 55.8, 38.6 and


31.7 MPa at room temperature, 288 and 3160C, respectively, are obtained. It is


clear that the quality of the composite has considerable influence on the initial


and isothermally aged composites, as can be seen from the difference in shear


strength for the three composites containing the same resin. The flexural


strengths and moduli of the three composites NDE-PMR-15-3, -4 and -5 are listed


in Tables X, XI, and XII, respectively. NDE-PMR-15-5 exhibited the highest


flexural strengths and moduli of the three composites. The flexural strengths
 

after isothermal aging at 3160C for 192 hours at RT, 2880C and 3160C average


899 MPa, 524 MPa, and 346 MPa, while the moduli are 87.5 GPa, 55.8 GPa and 38.6 GPa.


The modulus value at room temperature reflects the low fiber content of this


composite, and also explains why the strengths are lower than expected.
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The shear strengths of the Celion 6000/MAE-PMR-14 composite systems are listed


in Tables XIII and XIV. For example composite Celion 6000/MAE-PMR-14-1 exhibited


superior shear strength initially and after isothermal aging at 2880C and 3160C than


the other Celion 6000/MAE-PMR-14 composite. Initial RT, 288 and 31600 shear strengths


for postcured composites are 71.3, 42.2 and 40.7 NPa at 3160C respectively, and after


isothermal aging at 2880C for 1028 hours these values fall to approximately average


strengths of 38.6 MPa, 34.4 PMa and 24.1 MPa. After aging 808 hours at 3160C, this


composite exhibited shear strengths of 62.6 at RT, 51.2 at 2880C and 49.3 MPa at


3.160C, which, are at least equivalent or better than the postcured values. The


improvement in strength on isothermal aging at 3160C indicates that additional


thermal stabilization and crosslinking may be occurring.



The flexural properties of Celion 6000/MAE-PMR-14-5 and -7 composites are


listed in Tables XV-XVI. Composite 14-5 exhibits superior properties to the other


MAE composite. The flexural strength of 1135 M a at RT for the postcured MAE-PMR­

14-5 composite decreased to approximately 517 M a after aging at 2880C for 192 hours.


The initial modulus for this system was 91 GPa at room temperature, falling to


63 MPa after aging at 2880C for 192 hours. The low modulus value suggests a low


fiber content, which is borne out by the data in Table VI. After isothermal aging


at 3160C for 808 hours, the RT strength value was maintained, but the 288 and 3160C


strength values showed considerable decline.



In general, the MAE composites exhibited superior shear strengths to the NDE


composites. However, the flexural properties of the NDE composites are superior


to the MAE composites. This suggests that the quality of the composites within


each resin system vary widely and show considerable range in properties, as is


demonstrated by the shear and flexural strength data for each composite containing
 

the same resin system.



The results of the mechanical tests show clearly that the novel PMRresins


require additional process studies to fabricate composites which approach the


properties of the state-of-the-art Celion 6000/PMR-15 resin systems.
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3.0 EXPERIMENTAL RESULTS



3.1 Monomer Synthesis



The synthesis or attempted synthesis of each monomer is described in this


section.



3.1.1 MonomethylEster of Itaconic Acid



One hundred grams (0.89 mole) of itaconic anhydride was placed in a round


bottom flask fitted with a reflux condenser. To this was added 28.5g (6.89 mole)


of anhydrous methanol. The mixture was heated to reflux for 30 minutes, then


allowed to cool to room temperatures. To this was added 30 ml of cold absolute


ether, causing precipitation of a white solid. This was filtered, and air dried


to yield 69.5g of crude off white solid, mp 61-67°C (54 percent yield). The


infrared spectrum (Fig. 1) and proton NMR spectrum (Fig. 2) are consistent with


the desired product. A recrystallized portion melted at 65-68.50 C.



NMR (CDCl 3): 6 3.37 (m, 2H, -CH2-), 3.68 (m, 3H, -OCH 3),



-
5H 8 (m . C2Me) 0 
5.83 1H )-c=coC$2M, 6.43 (m H, c: 10.43 (s,lH, -9-OH) 

3.1.2 Itaconic Anhydride



Itaconic acid (500g, 3.84 mole) was placed in a 3-liter 3 neck round bottom


flask equipped with a reflux condenser and thermometer. To this was added 1 liter


(l105g, 10.4 mole) of acetyl chloride. The reaction mixture was refluxed until
 

the acid dissolved (1.25 hrs). The reaction mixture was refluxed an additional


15 minutes. The reaction mixture was distilled under reduced pressure (ru 17 mmHg)


with a nitrogen ebulator,.collecting material boiling between 39 to 500 C. When


distillation slowed down, 600 ml of toluene was added, and distillation continued,
 

collecting material boiling 28 to 520C. Toluene (600 ml) was added a second


time, and distillation resumed, collecting material boiling 32 to 5000, until


distillation stopped. Upon cooling, a crystalline material separated. This was


broken-up, slurried in 200 ml of cold ether, then filtered to yield 465 g of crude
 

product. The crude solid was slurried in 150 ml cold ether, filtered, and air


dried to yield a white crystalline solid (378g) m.p. 67-69OC (88 percent yield).


The infrared spectrum (Fig. 3) and proton NMR spectrum (Fig. 4) are consistent


with the desired product.



N (3.63) 5.98 (t, 1H, 11 X 
NR (D 63.3 (in, 2HC-H 2- 5, C), 6.55(t, 1H, C=0 
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3.1.3 Cyclopentadiene from Pyrolysis of Dicyclopentadiene



A 3 neck flask was equipped with a thermometer, distillation column and an



addition funnel containing 300 ml of dicyclopentadiene. An oil bath was placed
 

under the flask and heated to a temperature of 2500C, while slowly adding the


dicyclopentadiene. An internal flask temperature of 2000C, causes cracking of


this dicyclopentadiene to cyclopentadiene. The cracking was continued, collecting


vapors boiling at 430C, until 200 ml of cyclopentadiene was collected.



3.1.4 Dimethyl Ester of 2,5-Bicyclo[2.2.l]heptadiene-l,2-dicarboxylic Acid



To a 3 neck flask equipped with stirrer, reflux condenser, thermometer and


addition funnel was added 60 g (0.42 mole) of dimethylacetylene dicarboxylic acid


in 50.ml of toluene. To this was added 28.8g (0.445 mole) of freshly prepared


cyclopentadiene in 10 ml of toluene, over a period of 15 minutes while stirring.


After the addition, the solution was refluxed for 2 hours. The toluene was


distilled under reduced pressure (water aspirator). The residue was vacuum


distilled, collecting 77.9g (88 percent yield) of product at bp 121-129°C/l mmHg,


reported b.p. 134-135/10-11 (Ref. 3). The infrared spectrum (Fig. 5) and proton


NMR spectrum (Fig. 6) are consistent for the desired product. Mass spectroscopic


analysis of this liquid gave a parent peak at m/e = 208, consistent with a


molecular weight of 208 for this compound.



Elemental Analysis:
 

Cale for C11 H1204 : C, 63.5; H, 5.76



found: C, 63.6; H, 5.85



NMR (CDCI3 ): 6 2.23 (s, 2H, OH2), 3.81 (s, 3H, OCH3),


3.96 (s, 2H, Bridgehead H), 6.96 (s, 24, H C=CH)


, \ 

3.1.5 Monomethyl Ester of 2,5-Bicyclo[2.2.l]heptadiene-2,3-dicarboxylic Acid
 


This compound was prepared by a modification of the procedure of Zahorsky'


and Musso (Ref. 4) for the synthesis of the diethylester of 1,1,2,2-ethane­

tetracarboxylic acid.



To a 3-neck 500 ml round bottom flask equipped with a stirrer, reflux


condenser, addition funnel and nitrogen inlet was added 39g (0.187 mole) of


dimethylester of bicyclo (2.2.1) heptadiene 1,2-dicarboxyclic acid in 50 ml of


anhydrous methanol. To this was added over an 8 hour period, 12.35g (0.187 mole)



of potassium hydroxide in 200 ml of methanol at room temperature. The reaction


mixture was concentrated to an amber oil containing some solid. This mixture


was dissolved in 100 ml of water, and extracted with ether (4x30 ml). The


combined ether extracts were washed with 2x25 ml of distilled water. The ether
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extract was dried over anhydrous sodium sulfate, decanted and then concentrated 
to an oil (18.0g). The water solution containing the potassium salt of the acid, 
was acidified with 1N HCI to a pH % 2.0, causing a precipitate to form. This 
solid was filtered, carefully washed with cold water and air dried, to yield 23.5g 
of white product, mp 103.5-105.5°C. The oil recovered from the ether extract was 
found to be unreacted diester. After correction for recovered starting material was 
made, the product yield quantitative. The yield with no correction for recovered 
diester was 64 percent. 

The infrared spectrum (Fig. 7) and proton NMR spectrum (Fig. 8) of the com­

pound are consistent for the monomethylester of the dicarboxylic acid.



Elemental Analysis:


Cal. for COH1004: C, 62.30; H, 5.15



Found: C, 62.17; H, 5.16



NMR (CDC13): & 2.22 (s, 2H, Bridge H), 3.95 (s, 3H, O-CH)

,


4.22 (m, 2H, Bridgehead H), 6.90 (s, 2H, 1)C=C/H),


12.57 (bs, IH, C02H). / 

3.1.6 Dimethyl Ester of 2,5-Bicyclo[2.2.2]octadiene-2,3-dicarboxylic Acid



This compound was prepared by the method of Diels and Alder (Ref. 3) except


that the reaction was done in toluene at reflux temperature. To a 250 ml 3-neck


round bottom flask equipped with stirrer, reflux condenser, addition funnel and


thermometer was added a solution of 30g (0.211 mole) of dimethylacetylene


dicarboxylate in 50 ml of tetrahydrofuran. While cooling to 50C, a solution of


17.Og (0.213 mole) of 1,3-cyclohexadiene in 10 ml of tetrahydrofuran was added


over a 15 minute period. No exotherm was observed. The solution was heated to


reflux for 2 hours, cooled to room temperature and concentrated to an oil using


the rotary evaporator. Then it was treated at 4000 in vacuum for 4 hours. Solid


impurities were removed by dissolving the oil in ether, filtering and then concen­

trating to an oil. The oil was again treated at room temperature in vacuum for


6 hours. The infrared spectrum of this oil was consistent for the dimethylester


of 2,5-biyclo (2.2.2) octadiene 1,2-dicarboxylic acid, showing strong ester


absorption at 1720 cm-1, strong absorption at 1640 cm-1 due to alkene, and



-1 
 strong absorption at 1430 cm due to CH2 and CH3 groups. There was no evidence


I
for aromatic absorption at 770 cm- , expected for dimethylphthalate. The NMR



spectrum (Fig. 10) also supported.the structure of the desired product.



Elemental Analysis of this oil was performed



Calc for C12H1404: C, 64.8; H, 6.3



Found: C, 60.1; H, 5.79



Calc for dimethyphthalate: C, 61.8; H, 5.15



NMR (CDCI3): a 1.42 (s, 4H, CH2-CH2), 3.75 (s, 6H, C02CH3),


4.00 (bs, 2H, Cm-CE), 6.37 (t, 2H, CH=CH).
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The elemental analysis is not consistent for the structure of the desired



compound and in fact is closer for dimethylphthalate. However, the mass



spectrogram showed a peak at m/e = 222, consistent for the molecular weight of



a compound with the desired structure. This indicates that impurities are



present in the product.



The compound was also prepared on a 0.105 mole scale as described above but



with two exceptions: (1) it was refluxed in toluene for 2 tours and (2) isolation



involved vacuum distillation to yield a colorless viscous liquid, bp 138-1410/



5mm Hg (74.2g, 79.5 percent yield). The infrared spectrum of this compound gave


-
a broad absorption, due to the ester group (1730 cm ) and absorptions at 1595, 1575



-
and 1490 cu , characteristic of an aromatic compound while mass spectroscopic



analysis gave m/e peaks at 194 corresponding to dimethylphthalate and 28.5 corres­


ponding to ethylene, but no parent peak at 222 corresponding to the bicyclic



dimethyl ester. Elemental analysis of product prepared in the manner gave the



following results.
 


Elemental Analysis:



Calc for C1 2H1 4 04 : C, 64.8; H, 6.3



Found: C, 60.1; H, 4.75



Calc for dimethylphthalate: C, 61.8; H, 5.15



The elemental analysis suggests that the compound isolated from the distilla­


tion is dimethylphthalate. Therefore, it is apparent that either the reflux


condition in toluene or distillation causes decomposition of the bicyclooctadiene



derivative to dimethylphthalate. This observation led to preparation of the com­


pound in tetahydrofuran, as described above, with no attempt to purify it by



distillation. As shown above this leads to an impure product. A sample of the



pure product was isolated as described below for the synthesis of the monomethyl­


ester of 2,5-bicyclo [2.2.21 octadiene-2,3-dicarboxylic acid.



3.1.7 Monomethyl Ester of 2,5-Bicyclo[2.2.2]octadiene-2,3-dicarboxylic Acid



This compound was prepared by a modification of the method of Zahorsky and



Musco (Ref. 4) for the synthesis of the diethylester of 1,1,2,2-ethanetetra­


carboxylic acid. To a 3-neck 250 ml round bottom flask equipped with stirrer,



reflux condenser, addition funnel and nitrogen inlet was added 14.Og (0.063 mole)



of the impure diethylester of 2,5-bicyclo [2.2.2] octadiene-2,3-dicarboxylic acid



and 50 ml of absolute methanol. To this was added in an atmosphere of nitrogen



over an eight hour period at room temperature a solution of 4.56g (0.069 mole)



of potassium hydroxide in 25 ml of anhydrous methanol. The reaction mixture



was concentrated to an amber oil to remove methanol. This amber oil was



dissolved in 25 ml of water and then extracted with five 25 ml portions of ether.



The -ether extracts were combined, washed with water, and then dried over anhydrous



magnesium sulfate. The dried ether extract was concentrated to an amber oil.



This oil was analyzed for carbon and hydrogen.
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Elemental Analysis:


Cal for C12H140: C 64.8; H, 6.35



Found: C, 65.0; H, 6.38



The elemental analysis and infrared spectrum (Fig. 9) and proton NMR


spectrum- -(-Fig-. 10)- are -strong -evidence for -this--compound-, --the -d-imethylester 
of 2,5-bicyclo [2.2.2] octadiene-2,3-dicarboxylic acid.



NMR (CDCI3 ): S 1.35 (bs, 4H, bridge H), 3.70 (s, 6H, -OCH3) 

4.00 (m, 2H, bridgehead H), 6.37 (m, 2H HC _ i,



The water solution from the above extraction was acidified with IN HCI. The


oily material isolated was extracted with ether (5x25ml). The combined ether extracts


were dried over anhydrous magnesium sulfate, then concentrated to a oily material


which crystallized to 7.lg of an oily tan solid (80.6 percent after corrections for


unreacted diester is made). A capillary melting point could not be determined for


this material. DSC showed a sharp endotherm at 500C, and two endotherms at 180 and


2250C. The endotherm at 500C is most likely the melting point of the monomethyl


ester. The endotherms at 180 and 225 C could be associated with decomposition of



.the bicyclo ester to phthalate ester. The infrared spectrum (Fig. 11) and proton


NMR spectrum (Fig. 12) of this material are reasonable for acid ester. Elemental


analysis gave the following results:



Calc for CIH120 C, 63.5; H, 5.75



Found: C, 61.4; H, 5.95



NMR (CDCI 3 ): 6 1.43 (s, 4H,bridge H), 3.57 (s,3H,-0CH3), 4.30 (m, 2H, Bridgehead), 

6.37 (m, 2H,HC=C(), 9.50 (s,HI- -0021). 

The analysis shows that the monomdthyl estor contained impurities.. Mass


spectroscopy of this compound gave small peaks at m/e = 209, 208 and 207, consis­

tent for a compound with a molecular weight of 208. The elemental analysis sug­

gests that an impurity of dimethylacetylene dicarboxylic acid is present.



3.1.8 4-Formylphtalic Acid Anhydride



To a three-liter three-neck round bottom flask equipped with a stirrer,


condenser, drying tube (calcium chloride), addition funnel, thermometer and


nitrogen inlet was added 900 ml of sodium dried toluene and 315g (1.65 mole) of


trimelletic anhydride. This was heated to 800C while 300 g (2.52 mole) of thionyl


chloride was added dropwise over a 2 hour period. A clear orange solution resulted.


Excess thionyl chloride was removed by distillation. This was continued until


a negative silver nitrate test was obtained. Xylene was then added to maintain


the same volume as before distillation. To this was added 36g of freshly pre­

pared palladium on barium sulfate catalyst. While stirring vigorously, hydro­

gen was bubbled through the solution and allowed to vent into distilled water.
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This was continued until no more hydrogen chloride evolved, as determined by a


negative reaction with blue litmus paper. The reaction mixture was cooled to



500C, lOg of activated charcoal was added and the material was heated and stirred.


Finally it was filtered,-using Celite R to remove the charcoal. The filtrate was



cooled and an equal volume of petroleum ether was added. This solution was



cooled. The yellow solid which,'precipitated was filtered, and dried at 450C in



the vacuum oven, to yield 92.9g (32 percent yield) mp 108-1180C. The filtrate



was diluted with an equal volume of petroleum ether and cooled in the freezer.
 


An additional quantity of solid (13.1g) was recovered mp 88-1650C. A sublimed



sample melted at 122-123oC (reported, sublimed sample, mp 127-1290C) (Ref. 9).



The infrared spectrum is consistent for the desired product.



3.1.9 Attempted Synthesis of 4-Vinylphthalic Acid Anhydride (Ref. 9)



To a 250 ml flask equipped with a stirrer, thermometer, and reflux condenser



was added a slurry of 3.57g (0.0085 mole) of triphenylmethyl phosphonium bromide



in 50 ml of sodium dried toluene. To this was added 2.8g of sodium methoxide



while stirring. After stirring for 1 hour, 5.Og of 4-formylphthalic acid an­


hydride was added over a period of 3 hours while stirring was continued. The



reaction mixture was vacuum filtered to remove solid. The filtrate was concen­


trated to yield an oil and solid. The solid melted at 115-126°C, and appeared



to be unreacted 4-formylphthalic acid anhydride. The solid and filtrate were



recombined, placed in the reaction flask and diluted with 50 ml of toluene. To



this was added 6.52g of triphenylmethylphosphonium bromide and 1.0g of sodium



methoxide, and the reaction mixture was stirred for 2 hours at room temperature,



then filtered, to remove the solid. The toluene filtrate was concentrated to



another solid. The infrared spectrum of both solids was taken. The infrared



spectrum of the toluene insoluble material showed no absorption due to anhydride



group and very weak absorption at 3045 cm-I due to C=C-H stretch. This was not



considered to be 4-vinyl phthalic acid anhydride, but contained absorption due



to the aromatic ring. It was not further identified. The infrared spectrum of



the toluene soluble material also showed no absorption due to anhydride, but


- I
showed absorption at 3045 cm due to C=C-H stretch, broad absorption at 1700­


1725 cm -I probably due to carboxyl group or aldehyde group, absorption due to


-I -1
 
aromatic at 1580-1480 cm , and aromatic substitution patterns at 885 cm
 

(lone H on aromatic ring), at 700 and 740 cm- 1. This was not considered to be



the product and was not further identified.
 


3.1.10 3-Vinyl-4-cyclohexene-l,2-dicarboxylic Acid Anhydride



1,3,5-hexatriene (5.0g, 0.0625 mole) in 25 ml of tetrahydrofuran was added



to a solution of 6.Og (0.0615 mole) of maleic anhydride in 25 ml of tetrahydro­


furan in an atmosphere of nitrogen while cooling in an ice bath. After the



initial reaction, the reaction mixture was refluxed for 2 hours. After cooling
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to room temperature, the solution was concentrated to a mixture of crystalline


material and yellow oil. The infrared of this oily material appeared to be


consistent for the desired compound. Vacuum distillation yielded 0.35g of white


solid, by 1400C/i mnHg, mp. 5r3.50C, and-02.5g- of -yellow-oil, -b.p-. 153 16000


1 mmHg (reported for the compound, b.p. 148°C/6 mmHg, m.p. 51.500, (Ref. 5).


The infrared spectrum of the solid was consistent with the structure of a com­

pound containing a double bond and anhydride, and was found to be maleic
 

anhydride, (m.p. 51-53.5°C). The infrared spectrum of the solid and the elemen­

tal analysis confirmed this.



Calc for C4H203: C, 48.9; H, 2.04



Found: C. 49.7; H, 2.4
 


The infrared spectrum (Fig. 13) of the oil showed strong aliphatic absorp­

-1 -1
tions at 2860, 2920 cm and 1450 cm in addition to the C=C-H stretch at



- I -1
3020 and 3080 c , C=C stretch at 1640 cm (nonconjugated); C=CH2 out-of-plane


-1 -1
deformation at 910 cm , and cyclic anhydride absorption at 1775 and 1845 cm .



The proton NMR spectrum (Fig. 14) was also consistent for this compound.



0 0 
NMR (CDCI3): 6 2.50 (bm, 2H, C-CH2-C), 3.42 (bm, 3 -CH-GH-d . C=C-CH-C=C), 

5.08 (bm, 1H, C=C ),5.33 (d, 2H, HC=CH),



5;98 (bm, 2H, CH2=C)



Calc for C10H1003: C, 67.40; H, 5.6
 


Found: C, 67.18; H, 5.68



The spectroscopic and elemental analysis are consistent for the structure of



3 vinyl-4-cyclohexene-l,2-dicarboxylic acid anhydride.
 


3.1.11 Attempted Preparation of the Monomethyl Ester of 3-Vinyl-4-cyclohexene­
1 2-dicarboxylic Acid



In an atmosphere of nitrogen, 1,3,5-hexatriene (4.0g, 0.05 mole) in 50 ml


tetahydrofuran was added to a solution of monomethylester of maleic acid


(6.36g, 0.05 mole) in 25 ml tetrahydrofuran, while stirring, at room temperature.


No exotherm was observed. The reaction mixture was refluxed for two hours and


this concentrated to a yellow oil at room temperature. The infrared spectrum was


compared with the infrared spectrum of the starting material, monomethylester of


maleic anhydride, and both are almost identical. The mass spectrogram showed
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peaks at m/e = 239, 208, 194 and 131, indicating the presence of traces of the


monomethylester of 3-vinyl-4-cyclohexene-l,2-dicarboxylic acid and starting


monomethylester of maleic acid (m/e = 130), and a high molecular weight material.


Elemental analysis of the oil gave the following results:



Cale for C11 1404: C, 62.85; H, 6.66



Found: C, 43.94; H, 5.36



Cale for Monomethylester of Maleic Acid: C, 46.15; H, 4.60



It is clear from the elemental analysis and the infrared spectrum that the


oil consisted mostly of starting material and perhaps a small quantity of product


as an impurity. This oil was used to prepare a PMR-14 solution for application


to a sodium chloride salt plate to study in the infrared as a film. The PRM-14


solution was defined as monomethylester of maleic acid/dimethylester of benzophenone­

tetracarboxylic acid/4,4-methylenedianiline (MAE/BTDE/MDA).



3.1.12 Monomethyl Ester of Maleic Acid



The procedure of Spatz and Stone (Ref. 7) was used.



To a three-neck round bottom flask equipped with a condenser, stirrer and


reflux condenser was added 1l0g (1,12 mole) of maleic anhydride and 5.7g (0.006


mole) of anhydrous methanol. The mixture was heated to 550C to dissolve the


anhydride, after which an additional quantity of anhydrous methanol 38.4g,


(1.12 mole) was added. The temperature was maintained at 550C for 2 hours while


stirring. The reaction mixture was cooled to room temperature and treated in


vacuum for 3 hours, to yield 140g (96 percent yield) or colorless liquid,



rD20 1.4588 (reported nD20 1.4634, nD20 1;4640). The infrared spectrum (Fig. 15)


and proton NMR spectrum (Fig. 16) are consistent with the desired product.



Cale for C5H604: C, 46.18; H, 4.64



Found: C, 46.44; H, 4.75



NMR (CDCl 3 ): a 3.83 (s, 3H, -0CH 3 ), 6.37 (m, 2H, H_'C=C'), 8.18 
3 / 

s, IH OH 
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3.1.13 Triphenylmethylphosphonium Bromide



This compound was prepared by reacting triphenylphosphine (0.62 mole, 199g)



in 160 ml dry toluene at 00C with methylbromide (1.05 mole, 100g) in a stoppered



bottle. The pressure developing on warming to rom temperature exceeded the


strength of the stopper seal, and therefore a stream of reaction produce shot



onto the ceiling of the hood. The remaining material in the bottle was slurried


in hot toluene and filtered. The white solid which was collected was dried in


a vacuum oven at 1000C for 2 hrs. A white product, mp 229-2310C, weighing 179.4g



(69 percent yield) was obtained.



3.1.14 Dimethyl Ester of Benzophenone-3,3',4,4'-tetracarboxylic Acid



This compound was prepared by refluxing a solution of 322.2g (1.0 moles) of
 


benzophenone-3,3',4,4'-tetracarboxylic acid anhydride (BTDA) in 310g (10 moles)


of absolute alcohol for 3 1/2 hrs. Excess methanol was distilled off and the


viscous residue was treated in vacuum (0.1 mmHg) at 70C for 3 hrs to yield



380.4g (99 percent yield) of an amber-glassy solid. The infrared was consistent


for the desired compound.
 


3.2 Polymerization Studies - Evaluation of Monomers in


PMR - Polyimide Systems
 


Monomers synthesized as described in 3.1 were subjected to curing studies by


combining them with 4,4'-methylenedianiline and the dimethylester of 3,3',4,4'­

benzophenonetetracarboxylic acid to prepare PMR addition type polymides. The



procedure for performing the infrared studies of these PMR's and the preparation



of polymers discs from powders of these PMR systems are described below.



3.2.1 PMR-14 With Itaconic Acid Ester End Cap (ITE-PMR-14)



A solution of monomethylester of itaconic acid ITE (5g, 0.0347 mole),



dimethylester of benzophenonetetracarboxylic acid (BTDE), (13.9g, 0.036 mole)


and 4,4'-methylenedianiline (MDA), (10.6g, 0.0535 mole) was prepared by dissolving



ITE and BTDE in anhydrous methanol (36.0g), followed by addition of MDA, to yield



a solution with the molar ratio BTDE/MDA/ITE of 1.04/1.54/1.00. A solution with


this composition was used to study the uncatalyzed, peroxide catalyzed, and amine


catalyzed PMR polymerization reaction. A film of each material, containing the


peroxide or amine catalyst was prepared by placing a small portion of the solution



on a sodium chloride salt plate, and allowing the solvent to volatilize. The thin
 


film was evacuated at room temperature for 1/2 hr, and then the infrared spectrum
 

after each temperature treatment was taken.
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The uncatalyzed and the catalyzed polymerization reactions were studied by


subjecting the PMR films to the following temperature cycles:



Heat Treatment, 0C Time



RT


93 1/2 hr



177 1/2 hr


201 1/2 hr


232 1/2 hr


260 1/2 hr



288 1/2 hr



316 1/2 hr



3.2.1.1 Results



Uncatalyzed - this PMR system forms an amber colored PMR-polyimide film, 
similar to PMR-15, with the imidization reaction slowly occurring from 93 0C to 

- ,2320C; the imide bands appearing over this temperature range of 1775 and 1720 cm


which become broad bands on treatment up to 3160C. After the 3160C cure the



-
peak at 3060 cm still persists indicating that crosslinking is incomplete. Cure


does take place, but appears to be incomplete over this temperature range, for the


1/2 hr time period exposure.



Peroxide-induced cure of ITE-PMR-14


cumene hydroperoxide (0.92 mole-% based on vinyl groups)


cumene hydroperoxide-dicumylperoxide (1.4 mole-% based on vinyl groups)


t-butyl hydroperoxide (1.6 mole-% based on vinyl groups)



The uncured films deposited on the sodium chloride salt plate was subjected


to the following heat treatments:



Heat Treatment, 0 Time hr



RT


204 1.0


232 1.0


260 0.5



316 1.0



The uncured films in all three cases showed infrared absorptions similar to


uncured PNR-15 containing NE as end caps. Heat treatment for 1 hr at 2040C


caused considerable change in the absorption spectra. The spectra showed


sharp imide bands at 1775 cm -I and 1720 cm-l, similar to NE-PMR-15, and continued
 

heating up to 3160C strengthened these bands, but did not cause broadening in
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the time period involved (I hr). The absorption spectra differed from the


NE-PMR-15 spectrum in that a peak at 1665 cm -1 was not present, and the peak at



1600 .cmt--was broader in the ITE-PMR-15 spectra than in the NE-PMR-15 spectrum.
 


The peroxide initiated samples appeared to have undergone complete cure.
 

-
Furthermore-, tuidization -appears to be complete at-260°C , white for the -un­


catalyzed and triethylamine catalyzed samples, heat treatment at 316°C caused



broadening of the imide peaks, but did not appear to cause complete crosslinking
 


of the vinyl group.



These results clearly show that the itaconic end-capped PMR-14 can be
 


imidized and polymerized by free radical methods. Additional studies were



made to verify these results and to produce ITE-PMR-14 polymer discs polymerized


by free radical initiators. These results are discussed below.



A second preparation of ITE-PMR-14 solutions was made by dissolving itaconic



acid monomethyl ester (ITE) 2.5g, (0.0174 mole), and dimethyl ester of benzo­

phenone tetracarboxylic acid (BTDE), (5.3g, 0.0267 mole) in anhydrous methanol



.(18.0g), followed by the addition of 4,4'-methylenedianiline (MDA), (6.95g,



0.0180 mole) to the solution. A film was prepared on a sodium chloride salt



-plate to follow the cure process by infrared spectroscopy. To one-quarter of



the solution was added 1.07g dimethyldodecylamine (10 mole percent of the acid


content). A film of this on sodium chloride salt plate was prepared.



The uncatalyzed and dimethyldodecylamine catalyzed ITE-PMR films were heat



treated as shown below, and the infrared spectrum of the film was taken



after each treatment.



Heat Treatment, °C Time, hr



93 0.5



149



177



204



232



260



288



316



The systems were labeled ITE-PMR-14-II. The infrared spectra of the uncatalyzed



ITE-PMR-14-I material and NE-PMR-15 showed no sign of imidization after treat­


ment at 930C for 1/2 hr. However, the infrared spectrum of the amine catalyzed



material showed a definite peak at 1775 cmn- due to the imide bond. After treat­


ment at 930C and 1490C for 1/2 hr each, the imide peak of the amine catalyzed



material becomes even more prominent, while the imide peaks of both the uncatalyzed
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ITE-PMR-14 and uncatalyzed NE-PMR-15 are much less pronounced in size. After


the 2040C treatment, no differences appeared in the sizes of the imide peaks


of the three materials.



A significant difference in the infrared spectra of the ITE-PMR-15-II


systems both catalyzed and amine catalyzed compared with the NE-PMR-15 systems


is the absence of an anhydride peak at 2040C and above. This peak emerges at


2040C in the NE-PMR-15 system and becomes stronger as 3160C is approached.


After heating at 3160C for 1 hour, the anhydride peak disappears. This suggests


that NE in the NE-PMR-15 system has a greater tendency to convert to anhydride


than the ITE in the ITE-PMR-14 system, or that the ITE is lost through


volatilization.



The peroxide cured ITE-PMR-14 systems discussed above was similar to


NE-PMR-15 except for the absence of anhydride peaks during the cure between


204'C to 3160C.



3.2.2 	 PlM-15 with Mononiethyl Ester of 2,5-Bicyclo[2.2.1]heptadiene-2,3­

dicarboxylic Acid (NDE) End Cap, (NDE-PMR-15)



The following solution was prepared:



NDE 3.44g (0.0174 mole)


MDA 5.30g (0.0268 mole)


BTDE 6 .90g (0.0180 mole)


anhydrous methanol 19.50g



A small portion was removed to prepare uncatalyzed films. The remaining


solution was divided into four portions and treated as follows:



Solution 1. NDE-PMR-15 0.0344g dicumylperoxide (1.45 mole % based on moles vinyl group)


2. NDE-PMR-15 0.0172g dicumylperoxide (2.63 	 mole % based on moles vinyl group)


3. 	 NDE-PMR-15 0.0344g t-butylhydroperoxide (2.59 mole % based on moles



vinyl group)



4. 	 NDE-PMR-15 0.017 2g t-butylhydroperoxide (1.29 mole % based on moles



vinyl group)



A series of films were prepared and subjected to the single treatment shown


below, and the infrared spectrum of each was taken after each treatment.



Heat Treatment, 0C 	 Time, hr



177 1



204 1


218 1



232 1


288 1
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Another NDE-PMR-15 solution having the same composition as shown above was


prepared. One-fifth of the sample was removed for studies in the uncatalyzed


condition. To the remaining solution (28.0g) dicumylperoxide (0.025g) was



added. Four films were prepared by depositing a solution on sodium chloride
 


sa3t plate, ad then allowing the solution to evaporate at room temperature.
 


The films were subjected to the following heat cycles and then the infrared


spectrum was taken after each treatment.



Heat Treatment, 0C



93, 149, 177, 204, 232, 260, 288 - 1/2 hr at each temp


149, 204 - 1/2 hr at each temp



163, 232 - 1/2 hr at each temp



204, 232 - 1/2 hr at each temp



Another NDE-PMR-15 solution with the same composition as described above was



prepared except that the quantities were doubled. Half of the solution was


used to prepare powder and film for uncatalyzed studies. The other film was



divided into two portions - to one portion was added dimethyldodecylamine



(5.38g to 17.59g of solution). To the other portion (17.59g) was added 2 .48g


tri-n-butylamine. Films of each solution, uncatalyzed, dimethyldodecylamine



catalyzed and tri-n-butylamine catalyzed were prepared for infrared studies.



The films were subjected to the following heat treatments:



(a) 93, 149, 177, 204, 232, 2600C - 1/2 hr each temp
 


(b) 177, 2040C - 1/2 hr each temp


(c) 163, 2320C - 1/2 hr each temp



(d) 204, 2320C - 1/2 hr each temp
 


The infrared spectrum was taken after each heat treatment. A detailed study of


the infrared spectra of the series was made and is discussed in Section 2.2.1.



3.2.3 PMR-14 with Maleic Acid Monomethyl Ester End-Cap (MAE-PMR-14)



As discussed above analysis indicated that the reaction between 1,3,5­


hexatriene and monomethyl ester of maleic acid yielded only starting monomethyl



ester of maleic acid. The PMR solution was prepared before this fact was



known. Therefore, instead of 4-vinylcyclohexene-l,2-dicarboxylic acid monomethyl



ester as endcap, the PMR solution contained MAE as the endcap. The following'



solution was prepared: MAE, 1.0g; MDA, 1.44g; BTDE, 1.90g; anhydrous methanol,



6.62cc. The solution was divided into four equal portions. To one portion



was added 0.30g triethylamine. To the second was added 0.173 g dimethyldodecylamine.
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To the third was added 0.00486g dicumylperoxide. To the fourth was added


0.00486g of t-butylhydroperoxide. Films of each were prepared on sodium chloride


salt crystals. Each film was treated as follows, and the infrared spectrum was


taken after each treatment.



Treatment



RT, vacuum 1/2 hr


930C, 1/2 hr



1490C,


1770C,


2040C,



if
2320C 
 
2600C,


2880C, "



3160C,



The solutions remaining after preparation of the polymer films were concentrated
 

to the powder for DSC studies. The infrared, and DSC studies are discussed in


Sections 2.2.1 and 2.3.1, repsectively.



3.3 	 Process Studies on PMR Powders to


Prepare Polymer Discs



PMR solutions of the monomers, ITE, NDE and MAE each with BTDE and MDA were



prepared and concentrated to powder for a study of the process conditions required


to prepare void free-polymer specimens. The results of these studies are described


below.



3.3.1 Process Studies on ITE-PMR-14 Polyimide Resin System
 


The following ITE-PMR-14 solutions were prepared for process studies.
 


wt, in grams 

I II III IV 

itaconic acid monomethyl ester (ITE) 5.0 5.0 5.0 5.0



4,4'-methylenedianiline (MDA) 10.3 10.6 10.6 10.6


3,3',4,4'-benzophenone tetracarboxylic acid 15.2 13.9 13.9 13.9



dimethyl ester (BTDE)


anhydrous 	methanol- 36.0 36.0 36.0 36.0
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The -BTDEwas dissolved in methanol, followed by addition of ITE, then MDA. 
All four solutions were a deep red color. The solution of ITE-PMR-14-I was divided 

into five equal portions and treated as follows.



Solution 1. 	 Added 0.87g dicumyl peroxide and 0.066g t-butyl'



hydroperoxide, concentrated to a solid.


2. 	 Added 0.llg t-butyl hydroperoxide, concentrated



to a solid.



j.-	 Added 0.105g cumene hydroperoxide, concentrated to



a powder.



4. 	 Added 0.23g dimethyldodecylamine, and 0.105g cumene



hydroperoxide, concentrated to a solid.



5. 	 No catalyst.



Solution ITE-PMR-14-II was divided into three equal portions and treated



as follows.



Solution 1. 	 Added 0.105g t-butyl hydroperoxide,, concentrated to



a powder.


2. 	 Added 0.105g dicumyl peroxide and 0.105g cumene



hydroperoxide, concentrated to a powder.


3. 	 No catalyst, concentrated to a powder.



Solution ITE-PMR-14-III was divided into two equal portions and treated



as follows.



Solution 1. 	 No catalyst, concentrated to a powder.


2. 	 Added 0.23g dimethyldodecylamine, concentrated to a solid.



Solution ITE-PMR-14-IV was divided into five equal parts and treated as



fbllows.



Solution 1. 	 No catalyst, concentrated to a solid.



2. 	 Added 0.019g t-butyl hydroperoxide, concentrated to a solid.


3. Added 0.23g dimethyl dodecylamine, concentrated to a solid.



Solutions 4 and 5 were kept for reserve.



The process study data for ITE-PMR-14 polymer system are shown in Table I.



Considerable difficulty was encountered in attempts to prepare a dense, void



free, strong polymer disc. Most of the discs prepared were very brittle, and



weak. Peroxide catalysts or dimethyldodecylamine did not decrease the processingg



temperature and did not generate a disc with improved quality over theuncatalyzed



material. In order to produce a dense polymer disc, a process temperature of



3000C for at least 1 hr at 0.51 MPa (75 psi) was required.



36





3.3.2 Process Studies on NDE-PMR-15 Polyimide 'Resin System



The 	 following NDE-PMR-15 solutions were prepared for process studies.
 


wt, in grams


II III 
 IV 


2,5-norbornadiene-2,3-dicarboxylic acid monomethyl


ester (NDE) 4.60 4.60 4.60



4,4'-methylenedianiline (MDA) 7.22 7.20 7.20


3,3'-4,4'-benzophenonetetracarboxylic acid



dimethyl ester (BTDE) 9.42 9.42 9.42


anhydrous methanol 37.0 37.0 37.0



The BTDE was dissolved methanol, followed by the addition of NDE, and finally


MDA. Each solution had a reddish-brown color.



A solution was prepared as described for NDE-PMR-15-IT. It was divided


into five equal portions and treated as follows:



Solution 1. 	 Added 0.0172g t-butyl hydroperoxide, concentrated to a


powder at 140°C, 1 hr, then added 0.108g dicumyl peroxide.



2. 	 Added 0.034g t-butyl hydroperoxide concentrated to a


powder at 1400C, 1 hr, then added 0.36g dicumyl peroxide



3. 	 Added 0.034g dicumyl peroxide, concentrated to a powder


at 1400C, 1 hr, then added .30g t-butyl hydroperoxide.



4. 	 Added 0.0172g dicumyl peroxide, concentrated to a powder


at 1400C, 1 hr.



The powders and resultant discs were labeled NDE-PMR-15-II-I, II-2A, II-3A


and I-5.



The solution NDE-PMR-iII was dissolved into four equal parts and treated as


follows:



Solution 1. 	 Added 0.148g dimethyldodecylamine, concentrated to a


powder, then added 0.130g cumene hydroperoxide, mixed



thoroughly.


2. 	 Added 0.189g dicumyl peroxide, concentrated to a powder.


3. 	 Added 0.189g dicumyl peroxide, then 0.63 t-butyl hydro­


peroxide, concentrated to a powder.


4. 	 No catalyst, concentrated to a powder.



The powders and resultant discs were labeled NDE-PMR-15-III-i through IV.
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A similar solution NDE-PMR-15-IV was prepared as described above and



concentrated to a powder. Discs prepared from this powder were labeled NDE-PMR­


IV-I through 3.



The results d th& process studies on the NDE-PMR-15 system are listed in



Table II. Processing at 1300C in the presence of dicumyl peroxide, followed by



processing with t-butyl hydroperoxide at 1800C or 2000C did not appear to reduce



the temperature required to obtain complete cure of the material. Complete cure



of this system is in the temperature range 275-3000C. Discs prepared below


this temperature under pressure 0.69 MPa (100 psi) expanded considerably when



subjected to a temperature of 3000 C for 1 hr. This suggested that the neat resin



discs were incompletely cured at 2500C. The presence of gaseous products due



to decomposition of peroxide may also have caused the expansion of the discs


at the elvated temperatures. It is apparent that consolidation to a dense,



void free material can be obtained at 2500C, but the material requires further
 

heating for complete cure. Composites prepared with this material were cured



at 300 0C for 1 hr.



3.3.3 Process Studies on MAE-PMR-14 Polyimide Resin System



The following MAE-PMR-14 polyimide solutions were prepared for process studies.



wt, in grams 

I II 

maleic acid monomethylester 7.5 3.75


4,4'-methylenedianiline 10.92 8.75



3,3',4,4'-benzophenone tetracarboxylic acid



dimethyl ester 14.48 11.40



anhydrous methanol 59.0 43.0



The solution was divided into five equal parts and treated as follows.



Solution 1. Added 0.2 6g dimethyl dodecylamine, concentrated to a powder.


2. Added 0.115g t-butyl hydroperoxide, concentrated to a powder.



3. Added 0.175g cumene hydroperoxi-e, concentrated to a powder.



4. Added 0.31g dicumyl peroxide, concentrated to a powder.



5. No catalyst, concentrated to a powder.



The process study data for the MAE-PMR-14 polymer system are shown in Table



III. After several runs with peroxide catalyst, it became clear that catalysts



did not decrease the processing temperature or improve the processing character-­


istics, over the uncatalyzed material.
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3.4 Evaluation of Novel PMR Polyimide Resins in Composites



Two PMR polymer systems were selected for further evaluation in composites


consisting of*Celion 6000 graphite fibers with the novel PMR polyimide resin.


The two monomers selected for crossr-linkers in PMR-15 addition type polymers


were the monomethyl ester of 2,5-bicyclo [2.2.1] heptadiene-2,3-dicarboxylic


acid (NDE) and the monomethyl ester of maleic acid (MAE). The novel PMR poly­

imide systems consist of NDE/MDA/BTDE and MAE/MDA/BTDE. Dense, solid, void free


polymer discs were prepared from each system. However, processing with each


system was studied over the temperature range from 1800C to 3000C, at a pressure


of about 1.38 MPa.



3.4.1 Prepreg Processing with NDE/MDA/BTDE



A Celion 6000 (polyimide sized) graphite fiber/PMR-15 polyimide prepreg was


prepared by passing Celion 6000 (PI sized) graphite fiber yarn through a solution


of 45 w/o of NDE/MDA/BTDE in anhydrous methanol and then wound onto a 43.2 cm



diameter drum to yield a prepreg tape 8.89 cm wide x 132 cm long. Small sections


of the tape were evaluated for processing characteristics to provide process


information for fabrication of 8.89 cm x 20.3 x 0.254 cm composites. These


studies showed that the NDE-PMR-15 tape should be processed at 1500C for 30 min


to affect almost complete imidization. The mole ratio of NDE/MDA/BTDE used was


100:1.54:1.04.



3.4.2 Prepreg Processing with MAE/MDA/BTDE



A Celion 6000 (PI sized) graphite fiber/PMR-14 polyimide prepreg was


prepared as described for the NDE-PMR-15 system. The mole ratio of MAE/MDA/


BTDE used was 1.00:1.54:1.04. Process studies on the tape were made to determine


conditions for composite fabrication. These studies revealed that tape processing



at 100C for 1 hr provided material that contained a partially imidized system



capable of being processed into a dense composite.



3.4.3 Composite Fabrication



3.4.3.1 Celion 6000/NDE-PMR-15 Composites



Several compoistes were fabricated by stacking 7 to 8 plies of the pre­

processed tape into a 3.8 x 20.3 cm mold or 8.89 x 20.3 cm mold. The mold was



placed into a preheated press (2600C) and allowed to reach the press temperature,



during which time outgassing occurs. When the mold temperature reached 2250C,



pressure (1.38 MPa) was applied to consolidate the plies. The temperature of the



press was set to 3160C. The mold and press temperature increased to 3160C during



a period of 10 min, while maintaining a pressure of 0.86 MPa. During this period,



pressure was released several times to allow for outgassing of the composite.



39



http:1.00:1.54:1.04
http:100:1.54:1.04


The mold was held at 316°C, .89 Ma for a period of 80 min. it was allowed to



cool to room temperature in the mold, and then postcured at 3160 C for 16 hrs



in the free state.



a.4.,2 Celion 6000/MAE-P-MR-14 -Composites- -

Several of these composites were fabricated in the manner described for



the NDE system, except that the mold was placed in a press preheated at 2220 C.



When the mold reached this temperature, the composite system was consolidated



at 1.38 IlPa, the press temperature was set for 316'C, and the mold was allowed



to reach this temperature, during which time pressure was maintained at 1.38 MPa,



except for pressure releases to allow for outgassing. The composites were allowed



to cool in the press and then postcured at 316°C for 16 hrs in the free state.



Composites of 3.8 x 20.3 x .254 cm and 8.89 x 20.3 x .254 cm wize were fabricated



in this manner.



3.4.4 Composite Characterization



The composites were cut into shear specimens with a span-to-depth ratio



of 4:1, and flexural specimens with a'span-to-depth ratio of 20:1. These were



tested for shear, flexural strengths and flexural moduli at room temperature,



2880C and 3160C. Some specimens were tested before postcuring. In addition,



shear and flexural specimens were subjected to isothermal aging in flowing



air (100 cc/min) for time periods of 200, 500, 800, 1000 and 2000 hrs at two



temperatures, 288CC and 3160 C. Selected specimens were monitored for weight



changes at 100 hr intervals under these isothermal aging conditions. Fiber



volume, resin volume and void volume of each composite were also determined,



as well as the glass transition temperature (Tg) by thermal mechanical analysis



(TMA). The results of these studies are discussed in Section 2.5.



3.4.5 Mechanical Properties of Composites



Shear and flexural properties of Celion 6000/PMR-type polyimide composite



systems are listed in Tables VII through XVI. A discussion of the results of



these tests can be found in Section 2.5.



40





4.0 SUMMARY OF RESULTS AND CONCLUSIONS



Four monomethyl esters were synthesized and characterized for use in


crosslinking studies to produce PMR addition-type polyimides. The monomers are


the monomethyl ester of itaconic acid (ITE), the monomethyl ester of 2,5-bicyclo


[2.2.1]heptadiene-2,3-dicarboxylic acid (NDE), the monomethyl ester of 2,5-bicyclo


[2.2.2]octadiene-2,3-dicarboxylic acid (ODE), and the monomethyl ester of maleic



acid (MAE). These crosslinkers with the exception of the ODE were capable of 

entering into a crosslinking reaction to produce polymer specimens which were 

strong, dense and free of voids. However, none of the crosslinkersaffected a 
crosslinking at a lower temperature than the state-of-the-art PMR-15 polyimide 
derived from the monomethyl ester of 5-bicyclo[2.2.1]heptene-2,3-dicarboxylic 

acid (NE), 4,4'-methylenedianiline (NDA), and the dimethyl ester of 3,3', 4-4'­
benzophenonetetracarboxylic acid (BTDE). 

Two of the crosslinkers, monomethyl ester of 2,5-bicyclo[2.2.1]heptadiene­

2,3-dicarboxylic acid (NDE) and the monomethyl ester of maleic acid (MAE) were


combined with MDA and BTDE to form the PMR systems NDE-MDA-BTDE (NDE-PMR-15) 

and MAE-MDA-BTDE (MAE-PMR-14) and were evaluated in Celion 6000/PMR polyimide 
composites.



The results of the flexural and shear strengths after isothermal aging



at 550°F and 600°F for up to 2000 hours suggest that both PMR systems are


promising candidates as matrices for addition type polyimide components.
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5.0 RECOMMENDATIONS



Additional investigations to synthesize the- two monomethyl esters, .monomethyl


ester of 3-vinyl-4-cyclohexene-l,2-dicarboxylic acid and the monomethyl ester


of 4-vinylphthalic acid should be performed and the two monomers should be evaluated


for their ability to lower the crosslinking temperature of PMR type polyimides.
 

In addition, monomeric bis-imides with therminal olefinic groups, capable of


crosslinking to dense polyimides, should be synthesized and evaluated as monomeric


type polyimide materials.



Additional composite process studies should be performed in order to optimize


the mechanical properties of the NOE-PMR-15 and MAE-PMR-14 graphite fiber composites
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TABLE I 

PROCESS STUDIES TO PREPARE NEAT POLYMER DISCS OF



ITE-PMR-14 POLYIMIDE POWDER 

Inter-
Initial mediate Final Final Density of 

Process Process Process Process Polymer Disc 

Temp Temp Temp Pressure g/cc 
Disc No. Catalyst °C/time 0C/time °C/time MPa (psi) Observation 

ITE-PMR-14-1-1 DCP 150/1 hr 200/1 hr 230/20 min 0.069 (10) weak, brittle 

t-BHP 250/1 hr 
1-2 none 150/1 hr 200/1 hr 310/1 hr 0.069 (10) weak, brittle 

ITE-PM{-14-II-1 t-BHP - 200/1 hr 300/1 hr 0.517 (75) 1.04 porous 

11-2 DCP 150/1 hr 200/1 hr 300/1 hr 0.517 (75) 1.32-porous, hard, stron 

ChP 
11-3 none 150/1 hr 200/1 hr 300/1 hr 0.517 (75) 1.31-hard, strong 

71 

ITE-PMR-14-111-1 none - 200/1 hr 250/1 hr 0.517 (75) 1.19-porous, weak brittlE 
-111-2 DMDA - 200/1 hr 310/1 hr 0.344 (50) weak, brittle 

ITF-PMR-14-IV-I none - 200/1 hr 300/1 hr 0.482 (70) 1.31-strong, brittle 

IV-2 t-BHP - 200/1 hr 300/1 hr 0.413 (60) weak, brittle 
IV-3 DMDA - 200/1 hr 300/2 hrs 0.413 (60) 1.28-hard, strong 

DCP = dicumyl peroxide 

t-BHP = tertiary-butylhydroperoxide 

DMDA = dimethyldodecylamine 

CHP = cumene hydroperoxide 
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TABLE II



PROCESS STUDIES TO PREPARE NEAT POLYMER DISCS OF



NDE-PMR-15 POLYIMIDE POWDER



Inter-

Initial mediate Final Final Density of 

Process Process Process Process Polymer Disc 
Temp Temp Temp Pressure g/cc 

Disc No. Catalyst °C/time °C/time °C/time mPa (psi) Observations 

DE-PMR-15-11-1 DOP 130/1 hr 180/1 hr 150/1 hr 0.69 (100) 0.966 - hard, strong, 

t-BHP porous 

II-2A DCP 140/1 hr 200/1 hr 250/1 hr 0.69 (100) 1.25 - strong, hard, 

t-BHP void free 

II-3A t-BHP 130/1/2 hr 180/1 hr 250/1 hr 0.69 (100) 1.17 - hard, strong, 

DCP void free 

11-5 none 180/1 hr 250/1 hr 0.69 (100) 0.750 - hard, strong, 

porous 

DE-PMR-15-III-la DMDA 180/1 hr 250/1 hr 1.38 (200) 0.90 - hard, strong, 

CHP porous 

Ill-lb DMDA 180/1/2 hr 230/10 min 0.517 ( 75) 1.17 - strong, hard, 

CHP 200/1/2 hr 250/1 hr void free 

111-2 DCP 180/1 hr 230/10 min 0.69 (iO0) 1.23 - strong, hard 
200/1/2 hr 250/1 hr void free 

III-3a DCP - 180/1 hr 250/1 hr 0.69 (100) 1.08 - strong, hard, 

t-BHP 200/1 hr void free 

III-3b DCP - 180/1 hr 250/1 hr 0.69 (100) 0.78 - hard, strong, 

t-BHP porous 

111-4 none - 180/1 hr 250/1 hr 3.45 (500) 1.25 - strong, hard, 

200/1/2 hr void free 

IV-I none - 180/1 hr 250/1 hr 0.517 (75) 0.905 - strong, nard, 
200/1/2 hr void free 

IV-2 none - 180/1 hr 250/1 hr 0.517 (75) 1.04 ­ strong, hard, 
200/1/2 hr void free 

IV-3 none - 180/1 hr 250/1 hr 0.s17 ( 75) .1.05 - strong, hard, 

200/1/2 hr void free 

iP = dicumyl peroxide 

BHP = tertiary-butylhydroperoxide 
'JA = dimethylododecylamine 

P= cumene hydroperoxide 
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TABLE III 

PROCESS STUDIES TO PRhPARE NEAT POLYMER DISCS OF 

MAE-PMR-14 POLYIMIDE POWDER 

Inter-

Initial mediate Final Final Density of 

Process Process Process Process Polymer Disc 

Temp Temp Temp Pressure g/cc 

Disc No.- Catalyst OC/time °C/time 0C/time MPa (psi) Observation 

MAE-PMR-14-1-2 t-BHP - 200/1 hr 300/1 hr 0.517 (75) 1.2 0-dense, har, 

1-4 DCP - 200/2 hrs 300/1 hr 1.38 (200) no consolidatiol 

t-BHP 

1-5 none - 200/2 hrs 300/1 hr 0.69 (100) -0.50-weaK, po 

MAE-PMR-14-II-5 none - 200/2 hrs 300/1 hr 0.69 (100) 0.96-hard, stro 
void free 

DCP = dicumyl peroxide 
t-BHP = tertiary-butylhydroperoxide 

DMDA = dimethyldodecylamine 

Clp = cumene hydroperoxide 
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TABLE IV 

ELEMENTAL ANALYSIS OF PMR POLYIMIDES


Sample No 
 C 

Percent 

H N 

ITE-PMR-14-


-11-3 
 

-IV-I 
-IV-3 
 

Calculated For C8 3H5 0N6014  
 
Found 
 

Found 
 

Found 
 

73.6 

73.4 

73.3 

73.2 

3.72 

4.19 

4.37 

4.48 

6'.19 

6.18 

6.07 

5.90 

NDE-PMR-15-

-I-2a 
 

-111-2 
 

-111-4 
 

-IV-3 
 

Calculated For C9 3H5 9N6014  
 
Found 
 

Found 
 

Found 
 

Found 
 

75.50 
74.06 

74.80 

74.50 

74.27 

3.62 
4.20 

4.45 

4.26 

4.52 

5.62 
5.96 

6.00 

6.12 

6.04 

MAE-PMR-14-


-1-2 
 

-11-5 
 

Calculated for C8 1H6 6N601 6  
 
Found 
 

Found 
 

73.30 

75.21 

73.89 

3.49 

4.54 

4.44 

6.32 

7.90 

6.19 

TABLE V


THERMOMECHANICAL DETERMINATION 
TRANSITION TEMPERATURE OF PMR 

OF GLASS 
RESINS 

PMR Resin Sample 
 Tg, °C 

PMR-15 
 315 

ITE-PMR-14-IV-1 
 200 

ITE-PMR-14-IV-3 
 215 

NDE-PMR-15-III-2 
 225 

NDE-PMR-5-III-4 215 

Reprocessed NDE-PMR-15-III-2 
 315 

Reprocessed NDE-PMR-15-III-4 
 

MAE-PMR-14-1I-5 

295 

225 
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TABLE VI



PHYSICAL PROPERTIES OF CELION-6000/PMR COMPOSITES



Cbrmpos-te Dfensity Vol/%­ Tg°C 

No g/cc Resin Fiber Void From TMA 

NDE-PMR--15-3 1.34 49.6 41.8 8.6 - 320 

NDE-PMR-15-4­ 1.39 38.6 52.7 8.5 " 325 

NDE-PMR-15-4 1.39 39.7 51.3 9.0 

NDE-PMR--15-5 1.38 45.6 46.9 7.4 330 

NDE-PMR-15-5 1.42 45.9 49.1 5.0 

MAE-PMR-14-1 1.37 54.5 40.2 5.3 255 

MAE-PMR-14-1 1.33 55.2 36.9 7.9 

MAE-PMR-14-5 1.42 47.5 47.6 4.9 275 
MAE-PMR-14-5 1.45 47.2 49.8 2.9 

MAE-PMR-14-7 1.36 35.8 56.4 7.8 -­
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TABLE VII



SHEAR STRENGTH1 OF CELION-6000/NDE-PMR-15-3 COMPOSITE



AFTER ISOTHERMAL AGING IN FLOWING AIR (100 CC/MIN)



- Postcured After 192 hrs @ 288°C 

Strength Strength 

RT 28800 316°C RT 288°G 3160C 

MPa psi MPa psi NPa psi MPa psi MPa psi PPa psi 

53.7 7780 32.8 4760 30.0 4360 48.8 7080 26.3 3820 14.6 2120 

56.4 8180 46,.8 b790 27.9 4040 51.7 750U 29.1 4230 21.5 3120 

51.8 7510 30.8 4470 30.4 4410 

After 1028 hrs @ 2880C After 2098 hrs @ 2880C 

Strength Strength 
RT 2880C 3160C RT 2880C 31600 

MPa psi MPa psi MPa psi MPa psi MPa psi MPa psi 

30.7 4500 cracked on 24.0 3500 27.1 3940 7.70 1120 13.1 1900 

39.0 5700 aging 18.4 2700 

1. S/D = 4/1 
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TABLE VIII



SHEAR STRENGTH1 OF CELION-6000/NDE-PMR-15-4 COMPOSITE


AFTER ISOTHERMAL AGING IN FLOWING AIR (100 CC/MIN)



Postcure& AfCe 192 hr @ 2b8C


Strength Strength



RT 288°C 31b°C RT 2880C 316°C



MPa psi MPa psi MPa psi MPa psi MPa psi mPa psi 

64.1 9290 36.4 5280 37.2 5400 41.2 6000 20.4 2970 20.4 2970 
-- -- 31.9 4630 46.7 6780 40.2 5820 -- 16.6 2410 

After 928 hrs @ 2880C After 1028 hrs @ 288°C



Strength Strength


RT 2880C 3160C RT 2880C 3160C



MPa psi MPa psi Pa psi Pa psi MPa psi hiPa psi



23.7 3440 19.7 2860 11.2 1620 22.3 3240 18.0 2610 18.3 2700



25.8 3740 19.7 2860 -- -- 21.1 3100 29.9 4330 -- --

After 2098 hrs @ 2880C After 192 hrs @ 316'C



Strength Strength


RT 288 3160 RT 2880C 3160C



MPa psi MPa psi MPa psi MPa psi MPa psi MPa psi



15.4 2240 14.8 2140 7.70 1160 41.0 5970 36.4 5300 58.2 844



After 573 hrs @ 31600 After 808 hrs @ 3160C


Strength Strength



RT 2880C 31600 RT 2880C 3160C



MPa psi MPa psi MPa psi MPa psi MPa psi 4Pa psi



22.0 3180 14.3 2100 18.2 2640 21.7 3150 24.8 3600 15.8 22



After 1114 hrs @ 3160C



Strength


RT 2880C 3160C



MPa psi MPa psi MPa psi



57.5 834 5.03 729 4.73 .682



1. S/D = 4/1
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TABLE IX



SHEAR STRENGTH1 CELION-6000/NDE-PMR-15-5 COMPOSITE
 

ISOTHERMALLY AGED IN FLOWING AIR (100 CC/MIN)



Postcured After 192 hrs @ 2880C



Strength Strength



RT 	 288*C 3160C RT 2880C 3160C



MPa psi MPa psi MPa psi MPa psi MPa psi MPa psi



72.8 10,600 46.0 6680 33.3 4830 51.7 7500 62.3 9040 50.4 7310



51.2 7430 40.5 5870 37.0 5370



After 928 hrs @ 2880C After 1028 hrs @ 2880C



Strength Strength



RT 288°C 3160C RT 2880C 3160C



MPa psi MPa psi MPa psi MPa psi MPa psi MPa psi 

27.7 	 4020 cracked on 27.3 4000 32.6 4720 -- -- 24.6 3600 

aging 

After 2098 hrs @-288°C After 192 tfrs @ 3160C



Strength Strength



RT 2880C 3160C RT 2880C 3160C



MPa psi MPa psi MPa psi MPa psi mPa psi MPa psi



9.24 1340 b.93 1300 6.67 968 55.5 8050 22.1 3210 13.0 1890



6.79 985 	 66.9 9700 18.4 267u 17.1 2470



After 508 hrs @ 316C After 808 hrs @ 31600



Strength Strength



XT 2880C 3160C RT 288°C 3160C



NMa psi MPa psi MPa psi 4Pa psi MPa psi MPa psi



62.3 9040 35.3 5120 31.4 4600 27.5 3980 29.5 4280 34.b 5020



49.3 7150 42.1 6100 31.4 4600 28.9 4200 33.0 479U 22.2 3220



After 1114 hrs @ 3160C



Strength



RT 2880C 3160C



MPa psi MPa psi



16.1 2330 9.83 1430 14.3 2080



19.7 2850



1. S/D = 4/1 
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TABLE X



FLEXURAL PROPERTIES 1 OF CELION-6000/NDE-PMR-15-3 COMPOSITE



ISOTHERMALLY AGED IN FLOWING AIR (I00 CC/MIN)



Postcured Postcured



Strength Modulus


RT . 2880C 316°C RT 288°C 3160C



MPa ksi MPa ksi MPa ksi GPa 106psi GPa* 106psi GPa 106psi



984 143 543 78.8 532 77.2 88.0 12.8 72.9 10.9 61.2 8.88 

1073 156 703 102.0 457 66.3 91.1 13.2 75.3 10.6 52.3 7.59 

1004 146 660 96.5 -- -- 83.8 12.1 71.6 10.4 -- --

After 1028 hrs @ 2880C



Strength Modulus



RT 288°C 316°C RT 288°C 3160C



MPa ksi MPa ksi MPa ksi GPa 106psi GPa 10psi GPa 106psi 

-- 250 36.2 330 47.9 .. .. 56.0 8.13 53.2 7.71 

1. Four point flexure, S/D = 20/1
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TABLE XI



FLEXURAL PROPERTIES 1 OF dELION-6000/NDE-PMR-15S4 COMPOSITE



AFTER ISOTHERMALLY AGED IN FLOWING AIR (100 CC/MIN)



Strength Modulus 

RT 28800 3160C RT 2880C 31600 

MPa ksi MPa ksi MPa ksi MPa 106psi MPa 106psi MPa 106psi 

360 52.2 391 56.7 352 51.1 88.9 12.8 102.7 14.9 82.7 12.0 
356 51.7 232 33.7 361 52.3 93.7 13.6 79.9 11.6 91.0 13.2 

After 192 hrs @ 2880C 

Strength Modulus 

RT 2880C 3160C RT 2880C 31600 

MPa ksi MPa ksi MPa ksi GPa 106psi GPa 106psi GPa 106psi 

318 46.1 504 73.1 345 50.0 79.0 11.5 61.8 8.97 71.3 10.3 

449 65.1 284 41.2 92.4 13.4 64.3 9.37 

552 75.6 86.0 12.5 

After 192 hrs @ 3160C 
Strength Modulus 

RT 2880C 3160C RT 2880C 31600 

MPa ksi MPa ksi MPa ksi GPa 106psi GPa 106psi GPa 106psi 

519 75.3 337 48.8 291 42.2 83.6 12.1 81.6 11.8 64.3 9.33 

After 523 hrs @ 316°C 

Strength Modulus 

RT 2880C 316°C RT 2880C 3160C 

MPa ksi MPa ksi MPa ksi GPa 106psi GPa 106psi GPa 106psi 

737 107 435 63.1 326 47.3 111 16.1 84.9 12.3 51.6 7.48 

After 1114 hrs @ 3160C 

Strength Modulus 

RT 2880C 3160C RT 288°G 31600 

MPa ksi MPa ksi MPa ksi GPa 106psi GPa 106psi GPa 106psi 

384 55.7 101 14.7 92.7 13.4 47.6 6.91 21.8 3.16 32.2 4.67 
69.3 10 1 112 16.2 94.9 13.8 17.7 2.57 26.3 3.82 6.3 .92 

1. Four point flexure, S/D = 20/1
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TABLE XII



FLEXURAL PROPERTIES 1 OF CELION-6000/NDE-PMR-15-5 COMPOSITE



ISOTHERMALLY AGED IN FLOWING AIR (100 CC/MIN)



Postcured



Strength Modulus



RT 2880C 31600 RT 2880C 316 0C



MPa ksi MPa ksi MPa ksi GPa 106psi GPa 106psi GPa 106psi



703 102 5b6 82.1 290 42.0 100.1 14.6 198 28.7 58.7 8.51 
588 88.2 235 34.1 -- -- 73.1 10.b 98.8 14.3 

After 192 hrs @ 288°C



Strength Modulus


RT 2880C 3160C RT 2880C 3160c



MPa ksi MPa ksi MPa ksi GPa 106psi GPa 106psi GPa 106psi



538 81.0 512 74.2 347 50.3 85.2 12.4 43.1 6.24 40.9 5.9



After 192 hrs @ 3160C


Strength Modulus



RT 2880C 3160C RT 288°C 3160C



MPa ksi tPa ksi MPa ksi GPa 106psi GPa 106psi GPa 106psi



1170 170 524 76.0 464 67.3 92.1 13.4 65.1 9.44 39.4 5.72



626 90.8 525 76.2 298 43.2 83.6 12.1 59.6 '8.62 37.6 5.46



After 1114 hrs @ 3160C


Strength Modulus



RT 2880C 3160C RT 288°C 3160C



MPa ksi MPA Ksi MPa ksi GPa 106psi GPa 106psi GPa 10 psi



228 33.1 161 23.4 237 34.3 36.3 5.26 2.92 .42 32.0 4.65


259 36.3 188 27.3 268 38.9 38.4 5.58 51.1 7.42 44.6 6.47



1. Four point flexure, S/D = 20/1 
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TABLE XIII
 


SHEAR STRENGTHS1 OF CELION-6000/MAE-PMR-14-1 COMPOSITt
 

ISOTHERMALLY AGED IN FLOWING AIR (100 CC/MIN)



"As Fabricated" Postcured



RT 2880C 3160C RT 2880C 3160C



MPa psi MPa psi MPa psi MPa psi MPa psi MPa psi



86.5 12,600 55.5 8050 30.6 -- 71.3 10,300 42.2 6120 " 40.7 5900


80.5 11,700 -- -- 30.2 4380 -- -- -- -- -- --

After 192 hrs @ 2880C After 928 hrs @ 288C



RT 28800 316°C RT 2880C 3160C



MPa 	 psi MPa psi MPa psi MPa psi M a psi MPa psi



72.4 11500 33.4 4850 22.5 3260 53.1 7700 31.4 4550 36.4 5280


79.8 	 11600 28.3 4110 22.5 3260 -- -- -- -- 37.2 5400 

After 1028 hrs @ 2880C After 2098 hrs @ 28800 

RT 2880C 3160C RT 28800 3160C



MPa ksi MPa ksi MPa ksi MPa psi VIa psi MPa psi



33.6 	 4900 29.3 4240 28.1 4100 31.8 4620 18.4 2670 16.6 2410



44.1 	 6400 40.2 5840 19.1 2800 33.7 4890 -- -- -- --

After 508 hrs @ 3160 After 808 hrs @ 31600



RT 2880C 3160C RT 2880C 3160c



MPa 	 psi MPa psi MPa psi MPa psi MPa psi MPa psi 

50.6 	 7350 44.1 6000 30.3 4400 62.6 9080 51.2 7430 49.3 7150



1. S/D 	 = 4/1
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TABLE XIV 

SHEAR STRENGTH 1 OF CELION-6000/MAE-PMR-14-5 COMPOSITE 

ISOTHERMALLY AGED IN FLOWING AIR (100 CC/MIN) 

RT 

As Fabricated 

288.C 316°C RT 

Postcured 

2880C 3160C 

MPa psi MPa psi MPa psi MPa psi MPa psi MVa psi 

65:b 
42.8 

60.3 

9500 
6200 

8740 

18.9 
16.6 

14.9­

-2400 

2160 

2220 

15.2 
20.5 

13.5 

2220 
2980 

1950 

49.5 
81.4 

7170 
11,810 

26.5 
22.8 

3840 
3310 

15.4 
14.4 

2230 
2020 

RT 

After 192 hrs @ 2880C 

2880C 3160C 

After 808 hrs @ 316°C 

RT 2880C 3160C 

MPa psi MPa psi MPa psi 4Pa psi MPa psi MPa psi 

76.0 
74.6 

11,000 13.5 
10,800 20.1 

1950 
2920 

9.41 
24.2 

1371 
3510 

27.5 
28.9 

3780 
4200 

29.1 
33.0 

4.28 
4.79 

34.6 
22.2 

5020 
3222 

1. S/D = 4/1 
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TABLE XV 

FLEXURAL PROPERTIES1 OF CELION-6000/MAE-PMR-14-5 COMPOSITE 
ISOTHERMALLY AGED IN FLOWING AIR (100 CC/MIN) 

"As Fabricated" 

Strength Modulus 

RT 288°0 3160C RT 2880C 3160C 

MPa ksi MPa ksi MPa ksi GPa 106psi Ga 106psi GPa 106psi 

435 63.1 101 14.6 118 17.1 90.9 13.2 10.1 1.47 11.7 1.70 
346 50.2 137 19.8 125 18.1 90.2 13.1 12.4 1.80 13.9 2.01 
316 45.9 98.1 14.2 109 15.8 9p.3 13.1 10.6 1.53 8.71 1.26 

Postcured 

Strength Modulus 

RT 2880C 316°C RT 288°C 3160C 

MPa ksi MPa ksi MPa ksi GPa 106psi GPa 106psi GPa 106psi 

1141 166 454 65.8 233 33.8 91.5 13.3 58.2 8.44 23.2 3.36 
1129 164 407 59.0 127 18.4 90.8 13.2 57.9 8.40 11.2 1.63 

After 192 hr @ 288C 

Strength Modulus 

RT 288°C 31600 RT 28800 3160C 

MPa ksi MPa ksi MPa ksi GPa 106psi GPa 106psi GPa 106psi 

614 89.0 268 38.8 222 32.2 65.0 9.42 36.3 5.27 31.3 4.53 
442 64.1 329 47.7 270 39.2 60.0 8.70 49.6 7.20 16.8 2.43 

After 808 hr @ 31600 

Strength Modulus 
RT 2880C 3160C RT 2880C 3160C 

MPa ksi MPa ksi MPa ksi GPa 106psi GPa 106psi GPa 106psi 

531 77.0 128 18.7 150 21.7 77.4 11.2 39.3 5.71 29.b 4.29 
180 26.1 .. .. 203 29.5 56.2 8.15 .. .. 41.4 6.00 

1. Four point flexure, S/D 20/1
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TABLE XVI



FLEXURAL PROPERTIES1 OF CELION-6000/MAE-PMR-14-7 COMPOSITE



ISOTHERMALLY AGED IN FLOWING AIR (100 CC/MIN)



Postcured



Strength Modulus



RT 2880C 3160C RT 2880C 316°%



MPa ksi MPa ksi MPa ksi GPa 106psi GPa 106psi GPa iU6psi



829 120 355 51.5 168 24.3 67.6 9.81 30.8 4.4 15.6 2.2



727 105 269 39.0 207 30.0 66.4 9.63 29.5 4.3 28.2 4.1



After 312 hrs @ 2880C



Strength Modulus



RT 2880C 3160C RT 2880C 3160C



MPa ksi MPa ksi MPa ksi GPa 106psi GPa 106psi GPa 106psi



558 80.9 405 58.7 372 54.0 72.2 10.5 63.4 9.2 42.9 6.2



590 85.6 597 86.6 419 60.7 53.3 7.7 43.7 6.3 45.1 6.5



After 528 hrs @ 288C



Strength Modulus



RT 2880C 3160C RT 2880C 3160C



MPa ksi MPa ksi MPa ksi GPa 106psi GPa 106 psi GPa 106psi



599 86.8 424 61.5 431 62.b 58.5 8.49 54.9 7.96 63.7 9.24



639 92.6 576 83.5 415 60.1 83.7 12.1 54.8 7.94 44.1 6.40



1. Four point flexure, S/D = 20/1 
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FIG. 8 	 PROTON NMR SPECTRUM OF THE MONOMETHYL ESTER OF 2, 
5-BICYCLO [2.2.1] HEPTADIENE-2,3-DICARBOXYLIC ACID 
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FIG. 9 INFRARED SPECTRUM OF THE DIMETHYL ESTER OF 2,5­
-BICYCLO [2.2.2 OCTADIENE-2,3-DICARBOXYLIC ACID 
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FIG. 10 PROTON NMR SPECTRUM OF THE DIMETHYL ESTER OF 2, 5­
-BICYCLO [2.2.2] OCTADIENE-2,3-DICARBOXYLIC ACID 
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FIG.-13 INFRARED SPECTRUM OF 3-VINYL-4-CCLOHEXENE--1,2-DICARBOXYLIC 
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17a. PMR,-15 UNCURED AND RESIN FILM DEPOSITED ON SODIUM 

CHLORIDE SALT PLATE FROM METHANOL SOLUTION 

17b. - PMR-15 TREATED AT 930 C,1HR (SAME FILM AS 17a.) 

17e.------- PMR-15TREATED AT 93C,1 

(SAME FILM ASlb) 

HR,THEN AT1210 C, 1HR 

17d. PMR-15TREATEDAT93 0 C,1 HR, THEN121'C, 1 HR 

AND1490 C, 1 HR (SAME FILM AS 17c) 
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FIG. 17 INFRARED SPECTRA OF PMR-15 POLYIMIDE RESIN 
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18a. - PMR-15 TREATED 1 HR EACH AT 930C, 121 UC, 1490C, AND 

1630C (SAME FILM AS 17d.) 

18b.-----	 PMR-15 TREATED 1 HR EACH AT 930C, 121'C,14900,1630C, 

AND 1770C (SAME FILM AS18a.) 

18c.-	 PMR-15 TREATED 1 HR EACH AT 93C 1210 C, 1490C, 1630C, 
1770C, AND 2040C (SAME FILM AS 18b.) 
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FIG. 18 	 INFRARED SPECTRA OF PMR-15 POLYIMIDE RESIN 
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19a.­ 'PMR-15 TREATED 1 HR EACH AT 930, 1210,149°C, 

163C, 177°C, 204C, AND 2320 C,(SAME FILM AS 18c) 

19b.----- PMR-15TREATED I HR EACH AT 930C, 121'C, 149CO, 

1630C, 1770 C, 2040 C, 2320C, AND 316 0C (SAME FILM AS 19a) 

19.--- PMR-15TREATED1 HR EACH AT 930C, 121C, 149, 1630C, 
1770C,2040C, 2320C, 31 6CC, AND FINALLY FOR 16 HRS AT 

3160C (SAME FILM AS 19b) 
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FIG. 19 INFRARED SPECTRA OF PMR-15 POLYIMIDE RESIN 
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FIG. 20 INFRARED SPECTRUM OF UNCURED ITE-PMR-14IN ! 
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INFRARED SPECTRUM OF ITE-PMR-14 FILM, HEAT AT 930 C FOR 1/2 HR. 
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FIG. 22 INFRARED SPECTRUM OF ITE-PMR-14 FILM, 930C, 1440C, 1/2 HR. EACH 
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FIG. 25 	 INFRARED SPECTRUM OF ITE-PMR-14 FILM, HEATED AT 93, 149, 177, 204, 

232c, 1/2 HR. EACH 
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FIG. 26 INFRARED SPECTRUM OF ITE-PMR-14 FILM HEATED AT 93, 149, 177, 204, 232, 2600c, 1/2 HR. EACH 
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FIG. 28 INFRARED SPECTRUM OF PMR-15 FILM HEATED AT 2040C, 1 HR. 
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FIG. 29 INFRARED SPECTRUM OF UNCURED ITE-PMR-14 FILM CONTAINING


030 DIMETHYLDODECYLAMINE (DMDA)



t
7. 

0.

,. . ......... .. ..................... 
 

! 0 1 "":' tI I 
.10 : : . .... .......E. J 00 


............. , , .. : .



0102 

FIG. 31 INFRARED SPECTRUM OF ITE-PMR-14-DMDA FILM HEATED AT 
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FIG. 32 INFRARED SPECTRUM OF ITE-PMR-14-DMDA FILM HEATED AT 
o93,149,177C , 1/2 HR. EACH 
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FIG. 33 	 INFRARED SPECTRUM OF ITE-PMR-14-DMDA FILM HEATED AT 93, 149, 177, 2040C, 
1/2 HR. EACH 
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FIG. 34 	INFRARED SPECTRUM OF ITE-PMR-14-DMDA FILM HEATED AT 93, 149, 177,204, 
273,2c, 1/2 HR. EACH 
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FIG. 35 	 INFRARED SPECTRUM OF ITE-PMR-14-DMDA FILM HEATED AT 93, 149, 177,


204, 273, 288 0C, 1/2 HR. EACH
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FIG. 37 	 INFRARED SPECTRUM OF UNCURED ITE-PMR-14 FILM CONTAINING CUMENE 
HYDROPEROXIDE (CHP) 
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FIG. 38 	 INFRARED SPECTRUM OF ITE-PMR-14-ChP FILM HEATED AT 204°C, 1 HR. 
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FIG. 39 	 INFRARED SPECTRUM OF ITE-PMR-14-CHP FILM HEATED AT 204, 

2320C, 1 HR. EACH',, '.'.. .		 .........
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FIG. 40 INFRARED SPECTRUM OF ITE-PMR-14-CHP FILM HEATED AT 204(1 HR.) 
232(1 HR.), 2600c, 1/2 HR. 79-EA-1C7-14 
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FIG 41 INFRARED SPECTRUM OF ITEPMR14 CHP FILM HEATED AT 204(1 HR)232(1 HR.),
260(1/2 HR.),316CO,(1/2 HR.). 
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FIG. 43 INFRARED SPECTRUM OF ITE-PMR-14tBHP FILM HEATED AT 204C o FOR 1HR. 
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FIG. 48 	 INFRARED SPECTRUM OF NDE-PMR-15 FILM HEATED AT 93, 149, 177, 2040C,

1/2 HR. EACH


FIG. 49 	 INFRARED SPECTRUM OF NDE-PMR-15 FILM HEATED AT 93, 149, 177, 204,2320C,

1/2 HR. EACH
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FIG. 50 INFRARED SPECTRUM OF NDE-PMR-15 FILM HEATED AT 93, 149, 177,

204, 232, 2600C, 1/2 HR. EACH
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FIG. 52 	 INFRARED SPECTRUM OF NDE-PMR-15-DMDA FILM HEATED AT 930C, 1/2 HR. 
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FIG. 53 	 INFRARED SPECTRUM OF NDE-PMR-15-DMDA FILM HEATED AT 93,1490C, 
1/2 HR. EACH 
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FIG. 58 	 INFRARED SPECTRUM OF NDE-PMR-15-DMDA FILM HEATED AT 93, 149, 177, 204,


232, 260, 288oC, 1/2 HR. EACH
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FIG. 59 	 INFRARED SPECTRUM OF NDE-PMR-15-DMDA FILM HEATED AT 93, 149, 177, 204,


232, 260, 288, 3160c, 1/2 HR. EACH
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FIG. 60 INFRARED SPECTRUM OF NDE-PMR-15 FILM CONTAINING DICUMYLPEROXIDE 
(DCP)-" 

FIG 61 	 INFRARED SPECTRUM OF NDE-PMR-15-DCP FILM HEATED AT 93, 149c,
.1/ 3.0 	 EAC ..... 

WAV AR, (C.lIFIG. 62 	 INFRARED SPECTRUM OF NDE-PMR-15-DCP FILM HEATED AT 93, 149, 177CH+,i-h+;11 , 1! ;7 i ii 3i 1i Ri 1/2 HR. 	 EACH 	 i1
film 	 ttl m+: Ill!I 

24 20 40 	 C0 *0 50f 2 0 0 00 1 1 1 1 0 230354 

f ;ill! MII!li 1tiIf l li; 

IIi I4 

FIG. 63 	 INFRARED SPECTRUM OF NDE-PMR-15-DCP FILM HEATED AT 93, 149, 177 204oC, 
1/2 HR. EACH 79-06-157-21 
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FIG. 64 	 INFRARED SPECTRUM OF NDE-PMR-15-DCP FILM HEATED AT 93, 149, 177, 

204, 2320c, 112HR. EACH,0 
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FIG. 66 	 INFRARED SPECTRUM OF NDE-PMR-15-DCP FILM HEATED AT 93, 149, 177,20 
20232, 26088C, 1/2 HR. EACH 

FIG. 67 	 INFRARED SPECTRUM OF NDE-PMR-15-DCP FILM HEATED AT 93, 149, 177 204, 
232, 260, 288, C,1/2 HR. EACH 
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tFIG. 68 INFRARED SPECTRUM OF UNCURED NDE-PMR-15 HEATED AT 24C, /2 HR. 
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FIG. 70 	 INFRARED SPECTRUM OF NDE-PMR-15 FILM CONTAINING DCP HEATED


AT 2040C, 1 HR.



is 30 
t o 10a p 1 

FIG 
 71.
INFRARED SPECTRUM.. . oI OFillii..NDE-PMR--15if FILM CONTAINING t-BHP HEATED 
AT 2040c, 1 HR. 
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FIG. 72 INFRARED SPECTRUM OF NDE-PMR-15 FILM CONTAINING TRI-N BUTYLAMINE
HEATED AT 93, 149c, 1/2 HR. 	EACH 

S79-06-157-24 

86 



... .0 .... IOO l00. 	 7.0 M0 *0 5 51 5 5 3 3 3 3 4 

02. .0... . .. :1. 6.::: :f: : 

... 	 ...... 

i 	 oi.



00 E00 0 0 I 500 00 t
5CO 


WAOEAD 5014'WAV55E0055501 

FIG. 73 	 INFRARED SPECTRUM OF UNCURED MAE-PMR-14 FILM 
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FIG. 74 INFRARED SPECTRUM OF MAE-PMR-14 FILM HEATED AT 930C,1/2 HR., 
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FIG. 76 	 INFRARED SPECTRUM OF MAE-PMR-14 FILM HEATED AT 93, 149, 1770C, 

1/2 HR. EACH 79-06-157-2 
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FIG. 77 INFRARED SPECTRUM OF MAE-PMR-14 FILM HEATED AT 93,149,177, 2040C, 
1/2 HR. EACH 
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FIG. 79 INFRARED SPECTRUM OF MAE-PMR-14 FI LM HEATED AT 93, 149, 177, 204, 232o, 
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