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ABSTRACT

This research represents an extenéive‘study of the Augmented
Lagrangian (ALAG) Penalty Function Algorithm for optimizing nonlinear
mathematical mo@els. The mathematical models of interest are
deterministic in nature and finite dimensional optimization is assumed.

A detailed review of penalty function techniques in general and the ALAG
technique in particular is presented. Numerical experiments are conducted
utilizing a number of nonlinear optimiéation problems to'identify'én

efficient ALAG Penalty Function Technique for computer implementation.
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I. INTRODUCTION

The cﬁrrenL advanced stage of development of the theoretical

framework of sunconstrained optimization has served as a powerful force
" for unification of the subject which, until some years ago, consisted
of a collection-of disjointed algorithmé. The evolution of thesé
algorithms depended stroﬁgly on practical computation of solution to
specific problems. The interplay of theory aﬁd algorithms has made

it possible to transfer theoretical progress into improved algorithms.

Powell (P5) has reviewed comprehensively modern algorithms and
the effect of theoretical work on the désign of practical algorithms.
for unconstrained optimization. Murray (M1ll) has presented the main-

"stream of developments in numerical methods for unconstrained optimization.
Much of the current research has been focused on understanding, comparing,
improving and extending the availablé numerical methods instgad of
devising totglly new algorithmic concepts. These refinements and modifi-
cations are not expected to significantly improve thg efficiency of existing
algorithms (G2).

At present a robust collection of potent and sophisticated genergl
purpose algorithms for unconstrained optimization is available as high-
quality software (G2). These algorithms have been tested and prdven to
be efficient and reliable for solving a variety of typical test problems
and practical problems. Successful development of such algorithms for
unconstrained optimization has been the springboard for the more recent

success in the design of algorithms for constrained problems.



Availability of efficient numerical methods for solving
unconstrained opfimization problems has motivated the design of
algorithms that converf a constréined problem to a sequencé of
unconstrained problems~which have the property that successive
solutions of the uncons£rained problems converge to the solution of
the constrainéd problem, This transformation approach has been
systematically employea in the development of numerical algorithms
for constrained optimizatidn for more than a decade. in recent years
a substantial body of theory-has been established féf these transfor-
mation techniques and many computational algorithms have been
proposed (B4), (Fl), (L3).

~To re&iew briefly the transformation technique, consider the
following inequality constrained nonlinear brogramming problem. Let

f(X) and ¢, (X) 1 = 1,2,....,m be real valued functions of class C(Z)
v 1 n

on a nonempty open set L in an ﬁ—dimensional Euclidean space "
Pl : Minimize f (X) over all Xe L

Subject to cy (%) 0, i=1,2,....,m

v

where feasible region F is a nonempty compact set.

Fe{X:c (20 i=1,2,....,m, Xel, LGE")

Methods for solving Pl via unconstrained minimization have been
classified, desc?ibéd and analyzed in detail by Lootsma (L3). Para-
metric transformation methods solve Pl by reducing the computational
process to a seqﬁence of successive unconstrained minimizations of a

compound function defined in terms of the objective function f (é),



the constraint functions ¢y (5) i=1,2,....,m and one or more
: controlling.parameters. By gradually removing the effect of the
constraints in the compound function by controlled changes in the value
of one or more parameters a sequence of unconstrained problems is
generated. Successive solutions of these unconstrained problems
convergé to a sbluﬁion of the original constrained problem. The
~advantage of this approach lies in the fact that the constraints need
not be dealt with separately and that efficient numerical methods for
computing unconstrained extrema can be applied.

During recent years the parametric transformation technique known
as the Augmented Lagrahgian (ALAG) Penalty Function Technique has
gained recognition as one of the most effective type of methods for
-solving constrained minimization problems. Iﬁ the opinion of many
: researchers in this field, the ALAG penalty function technique is the
best method available for solving problems with nonlinear constraints
in the absence of speci;l structure (B4). The disadvantages of the method
are negligible'and the advantages are strong, especially the lack of
numerical difficulties and the ease of using the unconstrained minimi-
zation routine. The method has global convergence at an ultimately
superlinear rate, the computational effort per minimization falls off
rapidly, initial starting poinf need not be feasible and the function is
défined for all walues of the parameters (F7).

The ALAG penalty function technique is a balance between the
classical pénalty function technique and the Lagrangian primal-dual
method which are both parametric transformation techniques. The design

of this method was motivated by efforts to overcome the numerical in-



stability of the penalty function technique near the solution kPB),
(H2) and attempts to eliminate the "duality gap" in nonconvex
programming (R6); The classical penalty function technique and the
Lagrangian pnimal-dual‘method are briefly reviewed and the development
of the ALAG penalty function techﬁique by the merger of the penalty
idea with the primal-dual philosophy is traced in section 2. The

ALAG pénaltyAfunction technique is describéd, reviewed and discuséed in
section 3. The ?esults of numerical investigations are presented in
section 4} The symbols, mathematical terms and related concepts used
in:this work are defined briefly in appendix A. The method of solving
a npnlinear problem using the ALAG penalty function technique‘is

illustrated with numerical examples in appendix B.



II. REVIEW OF RELATED MINIMIZATION TECHNIQUES

2.1 fenalty Fuﬁction Technique

The pertalty methods have been eitensively used in numerical optimiza-
tion for morevthan a decade. The penalty function approach has been-popular,
as evidenced by applications to practical problems (D3), because it is |
conceptually simple and easy to implement. It permits a ﬁranspa;ent program
structure as it is fully based on unconstrained minimization. These methods
are applicable'td a broad class of_problems, even those involving nonconvex
constraints. The most attractive feature of these methods is the fact that
they take advantage of the powerful unconstrained minimization methods that
have been developed in recent years.

The penélty function technique ié a sequential parametric transformation
method. It-is an iterative algorithm that requireg the solution of an
unconstrained optimization problem at each iteration. In these methods
the objective function f(%) is minimized usiné an unconstrained minimization'
technique while maintaining implicit control over the constraint vioclations
by penalizing the objective function at points which violate or tend to
violate the constraints. The solution 5* to the constrained minimization
problem Pl is approached from outside the feasible region F and these
methods are also referred to as exterior point methods. The penalty
function technique has been popularized mainly through the work of Fiacco
and McCormick (Fl). Fiacco and McCormick (Fl) developed the Sequential
Unconstrained Minimization Techniques (SUMI) for nonlinear programming
using penalty function and related concepfs. A chronological survey of

the development of the penalty methods and detailed discussion and analysis



of penalty and related methods are presented in reference (F1).

The penalty function method for Pl consists of sequential minimizations

of the form

mihimize P(X, o), X e L &E"
n, n

P(X, o) is the penalty function with control parameter o > 0. This function
Y .

is designed

to impose an increasing penalty .on the objective function as

constraint violation increases. The control parameter ¢ is used effectively

to increase

the magnitude of penalty.

The penalty function transformation may be represented as

m

P(X, 0) = f(X) +0- £ n.(c.(X)), o > 0 where
n, n, 1 1 a,

i=1

ni(t) is defined as the loss function with the following properties.

(1)
(ii)

(iii)

Usually the

ni(t) is continuous on - < t < ®

v
(@]

for inequality constraintAci(X)
n

_ni(t) > © gg t + -» and ni(t) =0 fort >0

for equality constraint ci(X) =0
n, .
ni(t) > 0 vt, ni(t) =0 for t = 0 and

ni(t) > ® ag t > *o

loss function, n,(t), is chosen such that when the objective
i

' . . 2 .
function and the constraint functions are of class C( ), P(X, o) is twice
4"

differentiable. P(%, o) is defined on an open set L § En and P(X, o) = =
A

as constraint violation increases.

Several different loss functions have.been proposed for use in the

penalty function algorithm and these are discussed by Fiacco and McCormick

(1]



(F1). The most commonly and widely used loss function is the quadratic
loss function. For an inequality constraint ci(g) > 0, quadratic loss
function is ni(ci(f)) = [min (O, ci(i))]z. For an equality constraint
vci(i) = 0, the quadratic loss function is ni(ci(i)) = (ci(§))2}

An elaborate treatment of the penalty function algorithm can be found
in (F1), (L5) and (Z1) for a general nonlinear problem. The basic algorithm
may be represented as follows:

(i) Select an infinite'sequence {c(k)},which is monotonically

increasing.as k > o, Fiﬁd i(o) ¢ F, where f is the feasible
region defined‘by the constraint functions. Set k = 0.
'.(ii) Set k = k + 1. _
(iii) Minimize P(X, o(k)) to’find X(o(k)) = X(k) starting the
n (k—l) . Y v

minimization from X

Return to (ii) if convergence is
n S

not satisfied.

Convergence tests in step (iii) are usually based on the magnitude of -
- k k-1 .
quantities such .as (f(X(k)) - f(X(k 1))) and ]IX( ) - X( )’| where “ XII
v Y v v ’ Y
is the Euclidean norm of the vector %. - Other convergence criteria are

discussed by Fiacco and McCormick (Fl). It is assumed that the function

L0

v

f(X) is bounded below so that a solution to the unconstrained minimization
" )

in step (iii) exists for each c(k). In_étep (i) the initial starting point
i(o) is outside the feasible region F and the trajectory corresponding to
the sequence {E(k)}Agenerated by the algorithm lies outside F. Therefore
penalty_function methods are also known as exterior;point methods. Any

limit point of the sequence {X(k)} generated by the penalty method is a
: . o : A

solution X* to the constrained minimization problem P1 (H4), (L5), (zZ1).
n, .



The penalty function technique might be regarded as a "primal' approach
to implicitly aécount for the constraints, although its connections with
duality are known (Fl), (L5), (Z1). The approximation of the constrained
problem by the unconstrained penalty problem becomes more and more exact as
the control parameter ¢ > «. However considerable computational difficulties
are eXperiencéd'with the traditional penalty function algorithm as ¢ -+ o,
These difficulties are delineated in detail in references (L3), (L5), (M5),
(Rll); The computational difficulties arise from P(i, o) forming an increasingly
steeb—sided valley as thé control parameter is increased to allow the
unconstrained solutions to approach the constrained solution to Pl from
outside the active constraints. In particular, the Hessian matrix of the
penalty function [1] becomes extremely ill-conditioned as o increases.

' This leads to numerical instabilities during unconstrained minimiéations
of the penalty fuﬁction and slow convergence of the algorithm.

A;tempts to overcome thesébcomputatiénal difficulties have resulted
in several modifications (Fl), (F2), (L3) to the penalty function technique.
Hestenes (H2) and Powell (P3), at about the same time, independently
proposed moéifications that resulted in a new method related to the penalty
function technique. In this new method penalty terms are added to the
Lagrangian associated with the original constrained problem. Hestenes (H2)
termed this the '"Multiplier Mephod". It has become known as the Augmented
Lagrangian Penalty Function Technique in suBsequeht discussions. This
method alleviatea séme of the computational difficulties associated with
the traditional penalty function technique (F8) and achieved better
convergence pfopertiesvthan the method of penalty functions (H4). This

method is reviewed Briefly in Chapter 3.



"~ 2.2 Lagrangian Primal-Dual Method

The Lagrangian primal-dual method transforms a constrained convex
prégramming problem into a sequence of unconstrained minimizations.of the
classical Laérangian associated with the constrained minimization problem.
‘The constrained problem Pl becomes a convex programming probiem when the
objective function f(z) is'convex and the cqnstrainté ci(i)‘ i=1,2, ..., m’
are concave.. The concept of the primal-dual method was first implemented
by Arfow, et al. (Al) in the diffgrential gradient scheme for approaching
the saddle—point of the Lagrangian L(%,.A) associated with a convex program.

v

The Lagrangian associated with the convex problem Pl may be represented as

. c 0 m
Ay Ci(i)’ Xe LEE, rekE . , [2]

L(X, \) = £(X) -
NNy n Y

nh~8g

i=1

where ET is the nonnegative orthant of m;dimensional Euclidean space £n
and the vector & e Ei is called a vector of multipliers.

Suppose that a point z* satisfies the constraints of the convex program
Pl and the problem functions are of class C‘l). If there exists a vector

A* such that
N

A% > 0, A% c. (X*) = 0 ¥ i and VL(X*, A*) = 0, - ' [3]
= 1 1A n ny n )

then X* is a global solution to the convex program P1. The vector A* is
v : v

said to be the vector of Lagrange multipliefs associated with 5*. If ﬁhe
gradients of the active constraints at z* are linearly independent, theﬁ z*
is a regular point of the feasible region F and there exists a vector of
Lagrange multipliers Q* satisfying [3]. The conditions in [3] are called

the Kuhn-Tucker first-order necessary conditions for X* to be a solution to
: , Ly ‘
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Pl and for the convex program Pl, these are also sufficient conditions for
X* to be a global solution. For a nondifferentiable convex problem Pl let
v o

m .
there exist an X* € E" and a A* € E, such that the pair (X*, \*) is the
’ v n . v A"

saddle-point of the Lagrangian L(X, A) -associated with the convex program
. n, . .

. n

Pl, i.e., L(X*, X) < L(X*, A*) < L(X, A*). Then X* is the global solution
v n, = Y n = 4" '\;' . n,

to the convex program Pl and Q* is the vector of Lagrange multipliers

associated with %*.

The differential gradientvschemélpf Arrow, et al. (Al) for a convex
program may be viewed as a small—étep primal-dual method where estimates -
of 5* and Q* are modified at each iferation to exploit the saddle-point
nature of L(%,'&) near (%*? &*). This structure of the method is reyealed
by the system of difference equations formulated by Uzawa (Al) to represent

" the differential gradient method. Davis (D1) represents the iterations in

this method as

xR gt g (R,
"N _ ~n 1 1 A w N
X(k+l) = min [O, A(k) -a B—l VAL(X(k), A(k)}

where ay and a, are scalars representing step-size, ZL(X, A\) is the gradient
: . o

of L(X, A) with respect to X, VAL(X, A) is the gradient of L(X, A) with
n, y s LAV A PR, V) N ny ny

and B.1 are positive definite matrices of order n and

respect to A and B
v 1 2 v
. -y 0) © _ ©®
m respectively. The algorithm may be started at any i e F and ) e k.
"

As the constrained problem in the above method is cohvex, the

Lagrangian L(X, )A) is also convex with respect to X. The iterations on
N 49

L0

, therefore, are descent iterations on L(X, ) and update of multipliers
n N
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()
Y

may be viewed as ascent iterations on L(X, A). The X(k) update may
Y n, 4" :
also be regarded as approximate solutions to the associated dual problem

()

at X The dual associated with Pl is
")

. : m
DI: Maximize V()) over all A ¢ E
' P " +

V(A) = infimum L(X, A), X € L
] N - n, N n

X
n

The Lagrangian L(X, A) is minimized over X € L for a sequence of multiplier
v N Y -

vectors A(k)

and the algorithm is a primal-dual method. Methods that are
N : o

similat in concept to this algorithm are described by Powell (Pﬁ),lBertsekas
(B4), and Lasden (L1).

The algorithms based on Lagrangian primal-dual method are not susceptible
to numerical instabilities such as those discussed in connection with the
penalty method. Primal-dual methods are based on the viewpoint that the
Lagrangé multipliers &* are also fundamental unknowns associated with a
constrained problem.l This is due to the reason that Lagrange multipliers
measure sensitivities and often have meaningful interpretations as priceé
associated with comstraint resources (H4), (L5). Useful duality results
for convex programs have been presanted by Luenberger (L5) and Zangwill (Z1).
Various formulations of the duality theory for nonlinear convex prdgrams
using the classical Lagrangian have been reworked and extended by Geoffrion
(G1l) so as td facilitate, more readily, computational and theoretical
applications. Methods based on the classical Lagrangian for solving a
constrained problem Pl have been reviéwed by Lootsma (L3).

The Lagrangian primal-dual method is known to have serioﬁa disadvantages

(R3), (R6). The most restrictive one is that the constrained problem must
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be convex in order for the dual problem to be well defined and Q iterations
to be meaningful. In general inf (P1l) > sup (D1) and the equélity holds
good only for the convex problem Pl. For nonconvex problems only the
ineﬁuality halds in the above relationship ana in such cases a»duality gap
is said to exist. For nonconve# probléms Everett (E2) introduced a primal
dual method called generalized Lagrange multiplier method. This and other
associated methods are'summarized by Lootsma (L3). Even though Everett (E2)
"suggested some methods of handling the duality gap; the method has been |
found to be useful only for certain nonlinear problems with speciél structufe.
The mefhod ié of importance in the decompoisition of large-scale problems
with separable functions. In such cases minimization of the Lagrangian can
be carried out efficiently due go the special structure of the constrained
A'problem (E2), (L1), (L5).

For a convex program, if %* is the optimal solution to the constrained
problem with corresponding Lagrange multiplier vector Q*, then i* is the
unconstrained minimizer of L(%, é*). However; if.ﬁ* is a local solution to
a nonconvex program with corresponding Lagrange multiplier vector &*, then
E* may not be the unconstrained local minimizer of L(X, t*) and_L(%, Q*) may

~
even have negative second derivatives at %* in certain directions normal
to the feasible manifold F (R3). Since curvature at a point. is determined
by the second partial derivatives, attempts were made to ﬁake the Lagrangiaq
associated with ndngonvex programs a convex function by adding quadratic
penalty terms to it. This concept was first suggested by Arrow and Solow (Al)
in connection wiph the solution of a nonconvex equality constrained problem

using the differential gradient method. Arrow and Solow augmented the

classical Lagrangian with quadratic penalty terms and this -elegant idea
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" made the new augmented LagrangianAlocally convex. This idea was independently
Areconsidered in an entirely different algorithmic context for equality
constrained probiems by Hesteﬁes (H2), Powell (P3) and Haarhoff and Buys (H1).
The algorithms that resulted from these efforts'beloné to the Augmented

Lagrangian Penalty Function Technique which is reviewed in Section 3.
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ITI. AUGMENTED LAGRANGIAN PENALTY FUNCTION TECHNIQUE

3.1 Introduction

The ALAG penalty‘function technique may be reviewed from two entirely
different points of view. The first view-point is thgt the methods that
belong to this technique modify the Lagrangian associated with a nonconvex
or a weakly convex conétrained problem to have a local convexity property.
This is because the characterization of solution to a constrained problem
in terms of a saddle-point of the Lagrangian depends heavily on convexity
properties of the underlying problem. The local saddle-point property is
obtained by the presence of a convexifying parameter in the Lagrangian
~ which makes the aséociated Hessian positive definite for large enough, but
finite, values of the parameter. Following this idea of local convexification
many different modifications of the classical Lagrangian have been proposed
to close the dqality gap in nonconvex programming (Al), (A2), (M2).

The second viewﬁoint is to consider the technique and the quadratic
penalty functioﬁ method within a common generalized penalty function frame-
work. The approacﬁ here is to circumvent instabilities associated with the
classical penalty function method by adding penalty terms to the Lagrangian
function. The advantages of using a first-order penalty furnction ﬁave
been listed by Lootsma (L3) and McCormick (M5). Therefore methods that
augment the Lagrangian with quadraﬁic penalty terms are considered in detail.
The development of the ALAG penalty function techﬁique is traced from the

second viewpoint.
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3.2 Review of the Technique for Equality Constrained Problem
3.2.1 Equality Constrained Problem
The equality constrained problem P2 may be represented as follows:

P2: Minimize f(X)
"

Subject to ci(X) =0 i=1,2, ..., m m<n
" =

f(%) and gi(f) i=1, 2, ..., m are real-valued functions of class C(2)
defined on a nonempty open set LS E". The Lagrangian associated with P2
is |

.

LX, \) = £(X) - I A, c,(X), x» e E®. (4]
N ~ i=1 1 1 " o _ .

- The gradient and Hessian of this Lagranglan with respect to X are VL(X, A)
VY

. 2
and V'L(X, )A) respectively.
aY n
Let X* be an optimal solution to P2 and the problem functions f(X)
Y N
and ci(X), i=1, 2, ..., m be of class C(z) in an open neighborhood of X*.
N . Y

The following are assumed to hold good at X*.
N

(i) The point X* is a regular point of the feasible set
.y ) ;
F=iX: ¢, =0 i=1,2, ...,m,’)és,LsEn}
~

Let N* = N(X*) be the nxm matrix [Vc cees Zcm].

1 N €2’
The regularity of the feasible set at'%* is satisfied when
N* is of full rank.

(ii) There exists an unique Lagrange multiplier vector A* such
that the following first-order necessary conditions for

local optimality at X* are satisfied.
v

A% g E®, c.(X*) = 0 ¥i and VL(X*, A*¥) = 0. . [5]
a, 1~ NNy N
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(iii) The - second-order necessary conditions for local optimality
at X* are that in addition to [5]
v

v oviL(x*, \*) Y >0 ¥Yeye ER : ' (6]
Y " a n = L

VY ={Y: Y Ve. =0 vil

(iv) The second-order sufficient conditions for X* to be an isolated
, N :
local minimum are that in addition to [5]

T . :
Y V2L(X*, A%*) Y > 0 ¥ nonzero Y e Y [7]
n n, n, n, N, .

(v) - Strict complementarity holds at %*, i.e., Ai* #0 Vi

3.2.2 Powell - Hestenes Augmented Penalty Function

Powell (P3) suggested the following penalty function to solve P2.

p D 2
¢(X, 8, S) =£f(X) += I o, (c,(X) -8.)
nooony "N 2 . 1 1 q 1
i=1
= f(X) + 5-(c(X) - 0)'S (c(X) - 9) o8]
ny n, ny n, A VIR VY n,

where 8 € Em, C(X) is a vector of constraint functions c . (X) i =1, 2, ..., m
N N : i . i'a
and S is a diagonal matrix of order m with. diagonal elements oy > 0. Let
m .
g € E++ be a vector with o, as components. While the classical penalty
N
function for P2 contains at most m control parameters, the above function
depends on 2m parametérs which are the components of 2 and 2. The main
difference between classical quadratic penalty function and [8] is the
introduction of parameters 6. In [8] quadratic penalty terms have been
. 47

- added to the Lagrangian associated with P2,

The augmented penalty function ¢ is used in the algorithm as follows.
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Algorithm Al:

(L

S 0, k=0, S

= I and x(o) ¢ F.

(i) Select 6
n,
(1) k=k+1
(iii) Minimize b (X, g(k?, sy o find
x| x(®)
n,

n, .
x (k=1)
2 .

k . .
( )) starting the unconstrained
minimization from X

(iv) 1If E(§(k)) is converging sufficiently rapidly to zero then

o (D) _ () _ ()

aV] n n Ny

S(k+l) = S(k) and return to (ii)
otherwise

e(k+1) = (1/10) Q(k)

N

s+ _ 19 s

and return to (ii).

In step (ii) ¢ is minimized with respect to X without constraints for fixed

N
k : k
values of 6( ) and S( ) and this is the inner iteration of the algorithm.
N
Step (iii) is the outer iteration in which e(k) and S(k) are changed to

N

)y

force constraint satisfaction and cause the sequence of solutions {X

to converge to X* at a reasonably fast rate.
Y

The scheme for adjusting e parameters in the outer iteration is

() OINON

based on the observation that if X is the minimizer of ¢ (X, 2
N

(k)

in the inner iteration, then X is also a solution of the problem

Minimize £(X) X e LS E"
n n,

Subject to C(X) C(X(k))
LYY Y

il

In order to solve the equality constrained problem P2 it is sufficient to

find e(k) and S(k) such that X(k) = X(G(k), S(k)) solves the system of
Y n, n v

nonlinear equations
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@ ()

C(X(8 )) = 0. - ' ' | [9]
LAV VIR V] . .

The above system of equations is in terms of 2m parameters 6, and o,
: i i

(k) or.o(k) may be fixed and

i=1, 2, ..., m. One vector of parameters 0
[9] then isii system of m equations in m remaining parameters.

if g(k)-is-fixed, then [8] reduces to a basic penalty transformation.
Specifically_whén 3 parameters are set to zero, ¢ becomes the classical
quadrétic penalty function.- In such a case convergence of the sequence
{E(k)}.tb'ﬁ* is ensured by le;ting ci +zw, i=1, 2, ..., m. This leads
to numerical instabilities and slow coﬁvergence. Therefore in Powell's
(k) () |

is held constant and 2

method S is changed to force constraint

satisfaction thfough iterative solution of [9]. Powell (PZ) derived a

(k) b (k)

~ simple correction for adjusting 9 arameters when S is fixed by

N

.applying generalized Newton iteration to solve [9]. This correction is

represented as

g (D) _ (k) _ o xRy [10]
N N N . :
By definition X(k) ié the unconstrained minimizer of ¢ (X, G(k), S(k)).
LA VI V)

I‘J .
Therefore‘V¢(X(k), e(k), S(k)) =0, i.e.,
N n .

m
+ ¢ o.(C.X
‘ i=1 * i

(k) (k)

VE(X y 0.8y o x®y - o, [11]
LV 1 v 1 4 :

Contiﬁuity of C(X) in the neighborhood of the local minimizer X* of P2
LV Vi - v

implies that the matrix N(X(k)) is of full rank for X(k) sufficieﬁtly‘close
N

v
(k) + X* the estimates

to X*. When X(k) is in the neighborhood of X* and when X
4" Y n 4 N ~

'k(k) - —S(k) (C(X(k)) - e(k)) ' ' [12]
" : A "
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exist and have as limit points the unique values A* = S* 9% where 6% and S*
N n N

are the parameters corresponding to X*. Hence the final value of the j
A"
product S g, in the limiting sense, is a constant and may considered to be
independent of S when S is fixed and 6 is adjusted to let g + 8%, Due to
L 4 f\} . "

v

this reason, when S is increased in step (iii) of algorithm Al to improve
k)

the rate of convergence of the sequence {max]ci(X( )I} to 0 and {X(k)} to
. : .. n N

' 1

X*, 6 is decreased to keep S g a constant.
o, Y

5.

Convergence of the algorithm is measured using the sequence {m§x|c1(§
i

Under the assumptions in 3.2.1 and when the Hessian matrix of ¢ is positive
definite at %*, Pﬁwell (P2).pr9ved'that_the.réte'of.convergence‘is liﬁear
and the convergence ratio &épends on l/oi for oi > o'. The threshold value
.0' is a large but finite positive real number. Therefore by choosing S to
" be large so that S is close to S', where S' = ¢'I, the algorithm can be
.made to have linear convergence at any arbitrarf rate. Superlinear convergence
is achieved when o, > . In Powell's algprithm the rate of convergence is
taken to be satisfactory when the maximﬁm residual, m?x|ci(§(k))|, of the
system of equations [9] is reduce& by a factor of four on each iteration.
The_reason for-preferring the slower rate of convergence implied by the use
of factor four is that faster convergence tends to make the inner iterations

(k)

more difficult (P2). When the sequence {max|ci(X )I} either fails to
. . ny

i
converge or converges to zero at too slow a rate, S is increased by a

factor of ten. The choice of factor ten to increase S is arbitrary.

Numerical evidence indicates that the value of ¢, is seldom required - -to

i
be greater than 102 to ensure rapid convergence (R11).

The Hessian matrix of ¢ depends on both 8 and S. The change in this
i n

matrix is dominated by the increase in S (P2). This is another reason
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for using a factor of ten to increase S when the rate of convergence 1is

slow and keeping S constant when ratevof convergénce is satisfactory. If

S is chosen to bé large in the initial iteratidn, instead of g:adualiy
increasing S% the Hessiaﬁ of ¢ becomes ill—cpnditioned and the unconstrained

minimization of ¢ in the inner iteration becomes very difficult to perform.
<

Further for a large S, an arbitrary starting point
. . ny

and arbitrary values
of 2 parameters, the sequence {X(k)}'may not converge to X*. Therefore S
: : ' v v

(k) - (k) }

is increased so as to force X into a region iﬁ which sequence {X
N N

locally converges to %*. Once this region is reached, S is kept constant

and g parametefs are adjusted so as to let'f(k)'+ %*. Further the éradual

increase of S is designed t§ make ¢ continuous and continuously differentiable

wiFh respeét to %_for all values of the parameters. In Powell's algorithm

the minimizations in the inner iteration are not beset by computational

- difficulties associated with the basic penaity function transformations.

The minimizations are well scaled and prﬁgressivelyvless computational

effort is required as k increases and'i(k) > %*.

Hestenes (H2), independently of Powell and at about the same time,
proposed a ;imilar method for solving P2 and he called it the method of
multipliers. The method is based on the observation that if 5* is a
nonsingulaf'minimum'of P2, there exists.a multiplier vector &* and a constant

o such that X* affords an unconstrained local minimum to the function
n .

T(X, A*,S) = £(X) - A%L C(X) + 1/2 (c(x)T scx) . [13]
n, v n, V] n v n, Ny [aVENAV] ] )

where S = oI. Conversely, if C(X*) = 0 and X* affords a minimum to [13],
LA VIR4V) Y]

then X* affords a minimum to P2. In the method of multipliers a large
Fy !
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positive constant ¢ is suitably chosen and is held fast. The augmented

penalty function considered is
T T | -
T(X, A, 8) = £(X) - A7 C(X) + 1/2 (C(X))" sC(X) [14]
LAVRRY N VoV o, NN

where % € B and B is an arbitrary compact subset of E®. The function in

[14] is sequentially minimized for successive estimates A of the unique

n
Lagrange multiplier vector A* at X*.
N "N )
The unconstrained minimization of T(X, A(k), S) for an estimate k(k)
4" 4V V] ’
of A* is the inner iteration. Let X(k) = X(A(k), S) be -an unconstrained
v v v

(k) 0

minimizer of T(X, X » S). 1In the outer iteration the estimate X
. Y

ny
updated so as to cause X(k) -+ X*, Hestenes suggested the following formula
N . R

N
for adjusting the multiplier vector A(k)
. N

WD ) ) [15]
4" v

(k) (k)

where S =0 I, O0<g <.0, 0 = yo'and 0 <y < 1. The relation

(k)

[15] is derived from the observation that X is a local minimizer of

v
(k+1)

T(X, A‘k),.s) and X is chosen so that first order necessary conditions

’\:-,\l Y]
are satisfied at X(k)

X for P2. Hestenes (H2) did not analyze the convergence

of the method, but subsequently (H4) established that the method converges
linearly and superliﬁear convergence may be achieved when o + ». 1In
practical applications very fast linear convergence occurs for a large
but finite value of o. Convergence ié induced by not only a large value
of ¢ but also by multiplier iteration [15] (F8).

In Powell's method when S is fixed and 2 parameters are adjusted to

(k)

+ X%, the unique Lagrange multiplier vector A* = S 8%, where 6%
4

let X
n n n ~n
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corresponds to the vector of parameters at X*. This implies that a
: ~ _

connection-can be established between the augmented function ¢ in [8] and

T in [14] using the relationship

A =o0:0, i=1,2, ..., m. : [16]

From [8], [14] and [16],

m

0(X, 8, 8) = T(X, A, S) += % A’ /o.. . [17]
Coa PVAY 2 jo1 1 i

The difference between ¢ and T is independent of %. If X(6, S) and X(A, S)
' VLY NN
are unconstrained minimizers of ¢ and T respectively for any S and if 6 and

Y]

A are related as in [16], then X(6, S) = X(1, §). Therefore the iterative
NV n .

V)

methods sqggested by Powell and Hestenes for changing s and % paraﬁeters
are the same.

In view of the equivalence relationship [17] between ¢ and‘T, the
numerical algorithm Al is discussed in terms of the augmented penalty
function T. - In the outer iteration adjustment of & parameters using [15]
is considered,‘assuming that 2 and A are related by [1l6]. The algorithm

")

Al is discussed and analyzed using )\ parameters to emphasize the primal-dual
Y

(k)

nature of thé method which iterates with an-approximation A to the
: N
Lagrange multipliers A* in such a way as to make A(k) > A%,
. v N

The algorithm.Al is now modified and denoted as the Powell-Hestenes
augmented penalty function algorithm A2. The convergence of the algorithm

is measured in terms of B = max|ci(X)|.
. a
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Algorithm A2:

(i) Select %(l) = A(O), S(l) = S(O), k = 0, arbitrary starting

. (0) (1) _ - (0)

. point % and B = BO where B0 > méx|ci(§ )I.
(ii) k=k + 1
(iii) Minimize T(x, 29, s®y to find x® = x (O, sy
LV v vy
starting the unconstrained minimization from X(k-l).
X v
(dv) Find D = {i: Ici(X(k))| > 8 /4.
'\.I =

(1) () ., plerl) _ (0

B Go to (vii).

1f m?xlci(ﬁ )| > B

1

l(k+l)

v) B(k+l) = maxlci(X(k))l. If B < E stop. The E is a
i v B ’

specified tolerance for B.

wvi) 1 3D (g o ), (k=1)
: = N "
set A(k+l) = A(k) - S(k) C(X(k))
ny N . LAV V]
S(k+l) = S(k), go to (ii).
(vii) ser AL _ (k)
4V] ny
o (kt1) _ 10 o (k) ¥i e D
i i i
go to (ii).

When second order sufficiency conditions hold good at %k for P2, there exists
ac' >0 sucb ﬁhat fo; o, 2 o' ¥i, the Hessian matrix of both ¢(§, S*’ S)

and T(%, i*, S) at'z* is positive definite and z* is a strong local minimum
of ¢(§, 6;, S) and T(%, é*, S) (B2), (B7), (F8), (H2). It should be noted
that the local convexity of ¢(§,'3*, S) and T(f, Q*, S) near %* is éstablished :

without any assumptions about the convexity of problem P2. The aim of the

3) ), x

so as to cause )
4" ny

algorithm A2 is to keep S constant and adjust &
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Therefore in. subsequent discussions it is assumed that o, > ¢' ¥i have been

1

chosen and held fast so that ¢ and T are locally convex. Due to this reason

the explicit depéndence of X on S is dropped and %(&, S) is represented as
: b _

X(n).
o ®
Haarhoff and Buys (H1l) proposed a numerical algorithm very similar to
the Powell-Hestenes method. They were motivated by the following observations
about the traditional quadratic penalty function approach to solve P2. Let
the quadratic penalty function for P2 be

m

P(X, 0) = £(X) + 0
n n,

(c. N2, o> 0.
=1 "

Let %(c) be an unconstrained ﬁinimizer of P(E, o) for a large value of
control parameter ¢ and %*'be a local minimizer of P2. The gradient of

P(%, o) is zero at 5(0) but Fhe gradient at %* ;s Zf(i*)i 'Iherefore, in the
usual case when Xf(ﬁ*) is nonzero, i(o)-and %* have to be different. Let %

" be a solution to the under-determined éystem of equations E(%) = 0. At %
the gradient of P(%, o) is Zf(%) which is generally not zero. Therefore %
and %(0) are different and for any finite value of o, z(o) is neither a
solu;ion to P2 nor satisfies E(%) = 0. Usuaily %(o) tends to i* when o » «

(L5), (Z1). From these observations Haarhoff and Buys added a linear

combination of constraints to P(X, o) to obtain
. N

T, A, S) = £ - AY e + 2 o)’ sc), s = oI
VoA " N VN 2 "a N

where A e " and 0 > 0. This function achieved their objective, i.e.,
" .

balanced the gradient of £(X) in the vicinity of the minimum by a linear
N

combination of gradients of constraint functions C(X).
LAV V)
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- The éugmented penalty function proposed by Haarhoff and Buys is
identical to the Poweli—Hestenes augmented penalty function for P2. However
the numerical-algorithm of Haarhoff and Buys has some disfinct features.
They noted that the multiplier updates [15] are valid only when the function

(k) (k) and that it is better to

(k)

T(X, A , S) is minimized exactly for each A
Aoy : N

terminate the inner iterations when a better value of T(X, A , S) is
: Y] V)
obtained. They suggested that the multipliers in the .outer iteration be

obtained from the first order necessary condition,

Vf(X(k)) = N(X(k)) A, A e EN. : _ . - [18]
NN 4" " N

The condition [18] represents an over-determined system of ﬁ equations in m
© parameters. Taking the scalar product of [18] with each ZCi(z(k)), the
following s?stem of equations is obtained.
M@y vex®y - fTax®y nx®y a, 2 e ™ [19]
N 4V 4y ) N - ") ] v Y
The expressibn in [19] repreSents_a system of m equations in m parameters
i that may easily be solved for &.' This, in effect, is a least squares'
solution to [18]. The vector of multipliers & is an estimate of the unique
Lagrange multiplier vector A* at X* and A tends to A*.
' ~ n n n

Haarhoff and Buys were more concerned with computational considerations
than with converéenée or duality aspects of the algorithm. They suggested
that the problem functions be scaled so that the gradients are of the same

magnitude and oi'be on the order of ten. In this algorithm oi i=1, 2, ...,

are kept constant and in the inner iteration the variable metric method of
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Davidon-Fletcher-Powell (DFP) is used to minimize T(X, A(k), S). The
. y B Y V)

approximation to [VZT]_1<is>updéted using the DFP update formula (Mll).'
A restoration step is included in the inner iteration and in ;his step T
is minimized yithoht using derivatives in a direction that leads to the
‘satisfaction of linearized constraints. Other numerical aspects of the
algorithm, éuch'as the various stopping criterialfor inner and outer
iterations and .updating the approximation to inverse Hessian [VZ'I‘]_.l are
discussed in reference (H1).

The elegant idea of local convexification of the Lagrangian was first
iptroduced by Afrow and Solow (Al). They suggested addition of quadratic
penalty terms to the classical Lagrgngian-to arrive at a modified Lagrangian
that was locally convex. They weré motiyated by adaptation of the
- differential gradient scheme, devéloped by Arrow, et al. (Al) for
' ;pproaching saddle points of convex programs, to nonconvex programs, Their
differential gradient method is a small step-size algorithm while those.
of llestenes, Powell and Haafhoff and Buys are large step-size methods.

In the above contributions to the augmented penalty function technique
duality concépts were not employed. Primal-dual interpretation of the
technique was analyzed by Buys (B7), Luenberger (L5), Rockafellar (R12)
and Bertsekas (B2), (B3). A detailed review of the duality results may

be found in reference (F8). The duality results aie summarized briefly

in the next section.

3.3 Review of the Technique for a Constrained Problem with Equalities
and Inegualities
3.3.1_ Constrained Problem
The problem P3 with equality and inequality constraints is represented

as
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n

P3: Minimize £(X), X e LSE
n v

It

0 i

il
—
b
(3]
=

Subject to c, (X)
1 n

ci(z) 0 i

v
1
=~
+
=
=
o
A
=
(LN
=]

L 4

The real valued functions f(X) and ci(X) ¥i are defined on a nonempty open
set L& E". Let %* be a local optimal solution to P3. The problem functions
are of class C(z) on L and specifically in an open neighborhood of X*. The

. : Y

Lagrangian associated with P3 is

LX, A) = £(X) - AL Cc(X), A e E®, xe L SE" - [20]
LAVELV n LV VLV v Y . .

The following conditions are assumed to hold good at %* (F1), (M13).

(1) X* is a regular point of the feasible region
4y

F={X: ¢C.(X
N 1A

0, 1

A
o
A

kand C.(X) > 0, k < i < m}

Il
—~—
[ N
!—l

Let E < i<k}

1= {i: Ci(X*) =0, k<ic<m}. The %* is a regular point
n = )

of F when {VCi(X*)} i e ES I is a linearly indépendent set,
) A1y
(Z)VThere exists an unique Lagraﬁge multiplier vector &* e EF
such that the Kuhn-Tucker conditions are satisfied at (X*, %)
. Y v

E

1]
(]
=
m

Ci(ﬁ*)

C.(X*¥).>0 A *¥>0, A*C (X*) =0 if{ e [21]
1,\1 = . = 1 1’\;

These are first-order necessary conditions for local optimality
' n+m ) . . '
.at X* and (X*, A*) ¢ E satisfying [21] is termed a Kuhn-
n N7 .

Tucker point.



(3) Second-order necessary conditions for local optimality of X*
4v

(4)

(5)

28"

are that in addition to [21]

vr 2 L(X*, A*) Y >0 %Y e Y*SE"
V) 3y N LAV Y .

where

Y = {Y: Y VC.(X*) =0, ie ESTI* and
n, N N 1 A .- .

T .

Y VC.,(X*) >0, i e I-I*}, .

A oy Lo = _ :

I is the index set of active inequalities, I* is the index set

of strongly active inequalities and I - I* is the.index set of

weakley active constraints. However the following weaker
second-order necessary condition is usually assumed instead

of [22] (F1), (M11).

T sz(X*, A¥) Y>>0 ¥YeVeE

N ~n N no= N

Y = {Y: YL vC,(X*) = 0, ie E&T}.
LAV VI VI A

Strict complementarity holds at (%*, &*) when

A * # 0 for each 1 < i < m for which C, x*) = 0.
. R = - ,\)

A weaker form of [24] is

A% >0and C.(X*) =0, 1ie I.
1 1 n,

Second;order sufficient conditions for X* to be an isolated

N

local minimum are that in addition to [21] and [23]

Y" VS (X%, A*) Y > 0 ¥ nonzero Y ¢ Y%,
N Vv V) Y] 4Y

[22]

[23]

[24]

[25]

[26]
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However the condition [26] is usually replaced by the verifiable
condition (M11),

.YT VZL(X*, A%*) Y > 0 ¥ nonzero Y ¢ VY. ' [27]
N EV R n

3.3.2 Powell - Hestenes - Rockafellar Penalty Function
The augmented Lagrangian penalty function for P3 is obtained by
combining the Powell-Hestenes penalty function T and the Rockafellar penalty

"function T. The combined function may be represented as

1 2 :
TPHR(ﬁ’ &, g) = f(%) - _Z [Ki Ci(§) -2 9 Ci (%)] +
: : i€eE _
[28]
1 A2 2
5z [oi(Ci(X) -5 ) N /oi]
ieE v i
where
xi ' Ay
(Ci(i) - ;TD = min [(Ci(i) - 379’ 0]
, i i :
m m
et , Ae E.

In [28], the factor )\i/oi represents a penalizing threshold for the ith

inequality constraint. The multipliers}\i Vi are unconstrained and this

is an useful property of the augmented penalty function TPHR' Further the

function TPHR possesses a number of strong properties not exhibited by the

classical Lagrangian L(X, &). The following properties of TPHR make it
n

ideal for use in. a primal-dual algorithm for solving P3.
Let M(X) be the index set of the inequalities that contribute to
~ .

the quadratic penalty term in T for an estimate, &, of the Lagrange

PHR
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multiplier vector A%,

Y
M) = {i: 14 E, Ci(X) < A /oid. : . [29]
Equivalently,,
MO = {1 1 bE A -0, ¢; & > o} o [30]

At the local optimum (%*, Q*) of P3, M(é*)'is the index set, I*; of the
strongly acfive inequalities. By the strict complementarity(assumption,

I =.I* and therefore M(&*) fepresents the active inequality constraints at
‘the local optimum (z*, Q*). Further the set i?ifﬁngi représents the
inactive inequality coﬁstraipts at the intermediate approximafion (%, &) to

the solution (X%, é*). Let L = EIIPKQ). Then,
. . y ‘

L=1{i: i¢E, € 22,/0l. - [31]
Equivalently, .
L={i: {¢E, Ay =95 € (X) 2 0} . [32]
Using the above results the augmented penalty function TPHR may be
represented as follows.
. 1
T X, x, 0) = £(X) - z (A, - 50, C.(X)) C,(X)
PHR A, ‘m n, ~ i€eE M(é) i 2 i it i,
[33]
1 2
T2 .Z xi /01



31

The representation of TPH in [33] clearly illustrates that it is obtained

R

by combining the Powell-Hestenes penalty function T and the Rockafellar
penalty function T.

Mangasarian (M2) associated a wide class of Lagrangians with the
nonconvex program P3. The unconstrained'stationary points and local saddle-
points of each Lagrangian were shown to be related to the Kuhn-Tucker points
or local or global solutions of P3 (M2). The Lagrangians considered by
.Mangasétian (M2)-wére twice differentiable globally. The augmented penalty
function TPHR belongs to the general class of Lagrangians investigated by

Mangasarian (M2). However the penalty function T is twice continuously

PHR

differentiable in X except at points where A, - o, ¢.(X) = 0, i e M(}).
N i i i "

By the strict complementarity condition, Ai - oi ci(x*) # 0 for i € M(A%),
V]

i.e., 1 e I. Therfore'TP is twice continuously differentiable in an open

HR

neighborhood about (X%, A%).
Mangasarian (M2) established the properties of the general class of

Lagrangians for P3. As TPHR is a member of this class of Lagrangians,

the following properties hold good for T R (M2). .These properties of T

PH PHR

also were established by Rockafellar (R6). For o ¢ E" , (X*, A*) is a
n H A T o

Kuhn-Tucker point of P3 if and only if it is a stationary point of TPHR'

For large but finite o V2T

PHR 1S positive definite (M2), (A3) and

T (X*, A,
Ly

PHR ‘A ) 2T

*
pir &> A%, 0) D

¥ & £ Em, X € A where A is some open neighborhood of %*. Conversely, if
4V

(X*, A*) is a saddle-point satisfying [34], then X* is a solution of P3
4V n, . N -

for X € A.
n,
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A duality theory in terms of extended Lagrangians was presented by
Mangasarian (M2). The' augmented dual problem may be represented as

D3: Maximize g(A, o).
LAV )

(X, A, 0) C35]

g(t, 0) = inf Ty (X, )

v Xel
"

The augmented dual function gk&, g):is'concave in (5, g) and is stfictly
nondecreasing in 2. If the point (%*,.%*) satisfies the optimality conditions
and if g is sufficiently large, then (%*, &*) is an isolated local maximum

of D3. Cdnversely, if (i*, i*) is a global or local solution of D3, then

the optimality conditions for P3 are satisfied at (%*, &*)

Let X(X) = X()A, o) be an unconstrained minimizer of T
"o, v P

HR (,)\K‘, Q_, g) for
% in an open neighborhood of A*. Then the dual function at this point may
"

be expressed as

80, 0) = Tpue (X (M), A, 0) = Tppe (V). I £

Useful duality results for multiplier iterations may be summarized as
follows (F8).
-C, (X(2)) : iekE

1A A

- : [37]
| -min(ci<§ (Q))’ A Jo) i ¢ E :

aTPHR(Q)

9A,
i

Let N be a matrix with Vci(X), ie EﬁJ’M(A) as columns and G be the Hessian
N o, : 3y

of TPHR' Then
] Ny 0 i e EUMO)
2 _ : : A
VA Ter T 9 (381
0 -S i e EUMO
N,
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Because X* = X(A%, g) for 1erge g5 the optimality conditions and the
o " o _
expressions [37] and [38] imply that TPH is concave in A for XA close to

R v n

A* ig'a strong unconstrained maximizer of TPHR'
N .

The above results indieate that the problem P3 mey be solved by

locating a saddle-point of T The saddle-point theory and local duality

PHR®

results suggest a primal-dual algorithm for solving P3. The algorithm

- consists of inner and outer iterations and is similar to the algorithm A2,

(k) (k) (k) (k)) .
is .

In the inner iteration, k, for fixed X and © . X, l
n PHR ~

minimized with respect to X starting the unconstrained minimization from
N ; - :

X(k—l). The initial starting p01nt X( ) need not be feasible and may be
"
chosen arbitrarily. Let X(k) = X(A(k), O(k)) be the unconstrained minimizer
v LV VI N
of TPHR (%, A(k) o(k)).--In the outer iteration c(k) is 1ncreased so as to
n

force'(§(k) m( )) into a region about (X* A*) and X( ) is adJusted so
as to ensure A(k) - A* and X(k) > X%,
Y n Y V]

The duality relationshipé'[37] and [38] suggest gradient and Newton
steps for adjusting A in the outer iteration so as to maximize the dual
: Y .
function: Mangasariah_(MZ) analyzed the method of multipliers with a

. gradient step for adjusting % in the.outer iteration.

(k1) _ (k)
,ﬁ - 2‘, + B&‘ TPHR

). [39]
Y

He established the linear convergence of this algorithm with exact
minimizations in the inner iteration and a large but finite 2. He also
investigated the relation between B and the speed of convergence of the
method.

The convergence and dualityAanalyses presented by Rockafellar (R6)

also are valid‘fer the primal-dual algorithm for P3.. Rockafellar (R6)
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established the;convéfgénce of the algorithm with inexact minimizations in
the innef iteration. Pierre énd Lowe (P2) comprehensively reviewed the
technique for P3 and presented a numerical algorithm, test problems and
computational results. In this implementation of the ALAG penalty function
technique in a numerical algorithm, a simple gradient step for adjusting

A was used in the outer iteration.

N

N | .
A0 i(_k) b ST Ty ). | ko]
The penaltyhbarameters o5 were monotonically increased in the outer iteration.
The linear constraints were also included in the penélty term. A constraint
with upper and lower bounds was treated as t@o separate constraints. This
approach introduces two dual variables for'such a constraint.

Fletcher (F8) suggésted second-order & ite?étion updates. He also
devised a Newton—like iteration for updating Q using estimates of G in [38].
In the numerical experiments, Fletcher (F8) used a quasi-Newton method for

unconstrained minimization of TP and built-up estimate of G. The change

HR
in G was accounted for when g was changed. The computational results
presented by Fletcher (F8) indicate that the Newton;like algorithm for
updating Q is more efficient that the gradient step'for adjusting &.. In
these ‘numerical experiments the pgnalty constants oi were also adjusted
(F8). Fletcher (F8) showed that this scheme for adjgsting oi never fails
~to induce conve;gence of the algorithm and avoids ind;easing o, by an
arbitrary factor of 10.

Buys and Gonin (B9) performed sensitivity analysis with the aid of

the ALAG penalty function TPHR' Similar sensitivity results were developed
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by Armacost and Fiacco (A3) using augmented Lagrangian function T In

PHR’

these analyses the following parametric mathematical programming problem

was considered.

P3(a): Minimize f(X, a), Xe E', aceE’ [41]
Iy AR A Y
Subject to c¢,(X, a) =0, i =1, 2, ..., k
1a" A
c,(X, a) >0, i = k+l, k+2, ..., m
1A n =

o
(LN

T
A
=]

In [41] 3 is the vecﬁor of senéitivity parameters. In these analyses, the
problem functions were assumed to be twice-contiﬁuouslyAdifferentiable

in (%, %) in a neighborhood of (i*, %*) and for some %*, the conditions
_in 3.4.1 were assumed to hold at (i*, 2*, &*). The Q* is the vector of

Lagrange multipliers associated with a solution X* to P3 (%*).
: : n
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IV. NUMERICAL RESULTS

4.1, Introduction

'Nﬁmerical experimehts have been conducted to identify the most efficient
ALAG Penalty Function Technique for computer implementation. These numerical
exercises, include testing individual unconstrained optimizers and constrained
optimizers utilizing a wide range of inequality and equality constrained
nonlinear optiﬁization problems. Phase one of these numerical experiments
involved testing a number of popular unconstrained dﬁtimization algorithms.
The most effective of theée algorithms -were then iﬁcorporated into ALAG
Penalty Function routines for the solution of conétréined optimization

prdblems.

4.2 Unconstrained Optimizing Algérithﬁs

ATwo different classes of algorithms for solving the unconstrained
optimization problems have been tested on several sample problems. fhe
first claés of algorithms tested were those that do not require derivativé
functions. Thgse algorithms make use of finite difference approximations
for derivatives or work solely witﬁ the given problem function in seeking
an optimum. The second class of unconstrained optimizers require explicit
first derivative functions. The unconétrained optimization techniques are
identified in the following table and discussed in (L5).

These algorithms performance on a number .of sample problems is
described in Table II. Based on the results presented in Table II and
computer programming considerationé algorithms 4, 5 and 7 weré incorporated

into computerized ALAG Penalty Function routines and tested with a number
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TABLE 1

UNCONSTRAINED OPTIMIZERS TESTED

.
Derivative Free Optimizers

1. Hooke-Jeeves Pattern Search Algorithm

2, Powell's Algorithm

3. Stewarts Adaptation of the Davidon-Fletcher-Powell
Algorithm

4. Fletcher's Finite Difference Technique for a
Complimentary Davidon-Fletcher-Powell Algorithm

First Derivatives Required

5. Complimentary Davidon-Fletcher-Powell Algorlthm

6. Davidon's Variance Algorithm

7. Complimentary Davidon-Fletcher-Powell Algorithm
(with no line searches)
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of inequality and equality constrained nonlinear optimization problems.-

4.3 ALAG Constrained Optimizing Algorithms
| The selected ALAG routines were tested oﬂ many of the example constra;ned
problems pres;nted in (B6). Table III summarizes the computationai reéults
achiéved for these example prqblems where the algorithrms tested were
1. ALAG aléorithm with.unconstrained optimizer 5'(see Table I).

2. ALAG algorithm with unconstrained optimizer 7 (see Table I).

3. ALAG algorithm with unconstrained optimizer 4 (see Table I).
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TABLE III

COMPUTATIONAL RESULTS FOR NONLINEAR CONSTRAINED PROBLEMS

Number of Function Number of
¢ " and Gradient Unconstrained
Problem (See Reference (B6)) - Evaluations Problems
Algorithm
1 2 3 1 2 1 3
12-1 B b4 33 167 § 3 3 5
12-3 | 19 24 96 21 31 4
- 12-5 ) 42 62 166 3 3 5
12-8 57 49 99 3 4 5
12-10 , 42 | 31 72 2 1 2| 4
12-14 27 74 121 2 3 5
12-15 20 | 30 | 118 | 2| 3| 4
12-17 80 120 | * - 5 9 %
12-18 : 147 | 193 * 7 9 *
12-23 32 45 122 3 3 5
J12-25 . 172 174 326 7 6 9

*Did not converge to correct solution.



APPENDIX A

- MATHEMATICAL CONCEPTS AND PENALTY FUNCTION TECHNIQUES

1. Introduction

" Symbols, mathematical terms and related concepts are defined and briefly
"reviewed in this section. The topics that are directly connected with this
work are aioneléonsidered. The terms and definitions are those commonly used
in standard books on Nonlinear Programming (H4), (HS),'(LQ), (L5), (Ml). A
detailed information about the following coﬁcepts may be found in the abové'

references.

2. Euclidean n-Dimensional Space
In this work real-valued functions on a set L in an Euclidean space E
: : . n L o
are considered. By an Euclidean space t" is meant a linear space whose points

T The nonnegative'

are representable by n-tuples §.= (xl, Xy, ...,vxn)
orthant of E" is denoted as E: and the positive orthant of E" is denoted

as E:+. A point is represented as a column vector using capital letters
with underscpre 5{ z, ..., or lower case letters with underscore i, R, sens
or Greek:létters with underscore g, i, .... The componenté of a vector ére
real numbers represented by lower case letters with subscript. The set of
real numbers is denoted as E. The real numbers in E are represented by
lower case letters a, b, ..., and Greek letters o, B, ..., without subscript

or with subscript al,'az, cees O az, .... Superscript in parentheses A4

used to represent an element of a sequence of vectors or real numbers.

Subscript {4 also used to distinguish different vectors Xyo Xop vens
: ’ 4 N
A linear space E" is a set of elements X, Y, ..., called vectors,

N

for which the operations of addition of vectors and multiplication of



vectors by scalars a, b, ... are defined and the Euclidean norm of a vector

is defined as

. 2 2 . 2.1/2
| §|| = (" +x ot

1 .

Linearity implies that if a ¢ E, b € E, x ¢ E" and Y€ En, then ax + by ¢ £ .
N Y N

A subspace L of E" is a subset of E® such that L is a linear space with the
- same operations as those defined in E" and with the same scalar field. A

subspace L of E" is also called a linear manifold.

3. Sets
‘The set F of elements X in E satisfying a property P(X) is represented
a o

as
F={X: PIX)]}.
X N 4

A member Y of the set F is denoted as y ¢ F and if Y is not a member of F,
4V N n
then y ¢ F. The union of two sets A and B in E" is the set of elements that
[4V] . .
belong to either A or B.

ASB={X: XeAorX é B}.
NoA o :

The intersection of two sets A and B is the set of elements that belong to

both A and B.

A<SB={X: XecAandX e B}.
o Y "N

If every element of A is also a member of B, then A is a proper subset of

B, i.e., ASB. 1f A B, then A may be a proper subset of B -or may be B



itself. The complement of a set A is denoted as A and it consists of
elements not in A. If ae¢ £ and b ¢ E, eté., [a, b] denotes the set of
real numbers a Sx < b. . If x € (a, b] then a3 <-x < b.

A réal—v?lued fundtién f(ﬁ) defined on a subset F of E" is représented
as f(%): E" > E. The minimization of f(%) over the set F is represented

as

Minimize f(X)
n

X e F
")

. n . . . . .
If F is the space E, then the minimization is unconstrained. Otherwise

’

the minimization is constrained.

4. Linearly Independent Set of Vectors
A set of m vectors X,, X,, ..., X 1is said to be a set of linearly:
. 1 2 m

. v WY N

independent vectors if a relation. of the form

al%l + a2§2 + ... + amﬁm =0

holds only when the scalars a;» a a are all zero. The vectors are

gy tre
linearly dependent if they are not linearly independent. A set of n linearly
independent‘vectofs is a'basis_for En. The dimension of é space -is the
number of vectors in a baéis.for that space. Let a set of m linearly
independent vectors in " define_a subspace B of E". The set of all

vectors in E" which are orthogonal to B is a subspace called the orthogonal

‘complement of B and is denoted by Bl. Any vector X € e may be uniquely
4Y L.

represented as X = Y + Z where Y ¢ B and Z ¢ Bl.
AV VIRV N n

5. Characterization of Neighborhood of a Point, Sets and Sequences



5.1 Neighborhood of a Point
The e—neighborﬁood of a point'%* in E" is the set of points X lying in
) 4"

the open sphere or ball of radius € > 0 and X*. The e-neighborhood of X* =
. . N Y

{ﬁi “ X-X* |bp< e}. 1In general it is not necessary to restrict a neighborhood
Vo :
of a point to be an e-neighborhood. Therefore a neighborhood of a point X*
. . v

is defined as any open set containing X¥*.
= V]

5.2 Nature of a Point X With Respect to a Set F in E"
: n ‘ ‘
A point Xo is an interior point of F. if F contains an e-neighborhood of
}Y . ) :
’Xo' A point Xo is an accumulation point or a limit point of F if every
o n, .

e-neighborhood of Xo,contains a point X # Xo belonging to F. A limit point
n ’ n N

of F need not be in F. A point X is an isolated point of F if X is in F
") N
" but is not a limit point of F. A point Xo is a boundary point of F if every
. Y]

e-neighborhood of X contains points in F and points not in F. A point X
Sy, Y

is an exterior point of F if it is interior to the complement of F.

5.3 Characterization of a Set in Terms of the Poiﬁts in it

A set F in " is open if all of its points are interior points.
Equivaléntly, F is open if given E-e F and j and € > 0 3|| Y—X|| < €

NN
implies z e F. It is closed if it contains its limit points. Equivalently,
F is closed if X_ ¢ F and X, + X implies X € F. The closure of any set F
nl Al A "

in E® is the smallest closed set containing F. The boundary of a set is
that part of the closure that is not in the interior. A set F is bounded
if thére exists a positive number r such that ” §|I < r for every § e F.
A closed and bounded sét is said to be compact. A neighborhood of a set

F is an open set D containing F. By an e-neighborhood of F is meant a set

of points each of which lies in an e-neighborhood of some point § in F.



The.e—neighborhood of F is the union of the e-neighborhoods of its points.
If AS E is a bounded set of real‘numbers, then the smallest real
‘number y such that x <y ¥x e A is called the least upper bound or .supremum

of A and is d?noted as

y = sup(x) or y = sup{x: x e A}.
x e A :

Similarly, the greatest lower bound or infimum y of a set A is denoted as

y = inf(x) or y = inf{x: x € A}.
xe A

5.4 . Characterization of a Sequence

. [+ k )
A sequence of vectors is represented as {X(k)}k;o' or as {é( )} when the
~ =

index set is implicitly understood. The sequence {X(k)} is said to converge
. . , "
to the limit X* if ” X(k) - X*|| -+ 0 as k > «, Equivalently, X* is the limit
o N N v

point of the seqﬁence {X(k)} if for every € > 0 there is an integer p such
. 4" .

(k)

that X is in the e-neighborhood of X* whenever k > p. Each of the symbols
n X v P ) .

"X(k) > X", i'lim X(k) = X*" and lim X(k) = X*
N ~N v v koo Y v

(k)}. If X(k) + X* and
n,

signifies that X* is the limit of the sequence {X
. N 4 4"

{Y(k)} is a subsequence of {X(k)}, then Y(®) 5 xx. 4 sequence {X(k)} is a
n N N . "
Cauchy sequence if

lim || X
Y

(k) —-X(2)|| = 0.
k, 4> v

A sequence {X(k)} iﬁ " converges if and only if it is a Cauchy sequence.
f\' -



K ,
A sequence {§( )} is bounded if. there is a finite positive number r such

k
that || X( )II < r for every integer k. A point X* is an accumulation point
" = "

(k)

or a cluster poiﬁt of a sequence {X
- ny

).

} if it is the limit of a subsequence
of {X .

Y

A set F in E" is closed if and only if the limits of convergent sequences
in F are in F. Every bounded sequence {X(k)} of points in E" possesses a

4"

convergent subsequence. Let {r(k)} be a bounded sequence of real numbers
and V(k) = sup{r(l): i> k). Then‘{V(k)} converges to a real number gq*

ON

called the limit superior of {r(k)} and V* = 1lim (r
ko
5.4.1 Order of Cohvergenbe of a Sequence

Let {r(k)} be a sequence of real numbers converging to r*. The order

of convergence of {r(k?} is defined as the supremum of nonnegative numbers

p satisfying

lr(k+l) _ rﬂ
|r(k)

< o,

0 < lim

" kow - r*[p

This definition of the order of convergence is a step-wise concept as it
defines bounds on the progress made in moving from kth term to (k+1)th term.
The order of convergence is determined only by the properties of the sequence
when k » », It is a measure of the speed of convergence of the "tail" of

ON

the sequence {r A large value of p implies a high speed of convergence.

If the sequence has pth order of convergence and if

Jrzk';'l) _ r*lb
k

B = lim

k+o |r - r*|p



then asymptotiéally

|r(k+1) - r*| = Blr(k)‘— r*|p.

When p = 2 the sequence has second order convergence.
k
If the sequence {r( )} has an order of convergence equal to unity, then.
it is said to cdnverge linearly to r*. The sequence converges to r* linearly

with convergence ratio B if

(k+1)
lim Ix ) 'r—*l=8<A1.
ko |x - r*|

‘A linearly-convergent sequence with convergence ratio B is said to have a
~tail_that converges at least as fast as thehgeometric sequence.{ds(k)} for
some constant d. ‘Therefore linear convergence‘is sometimes reéferred té as
geometric convergence. The smaller the convergence ratio, the faster is the
rate of convergence. When p = 1 and B = 0, the rate of convergence is said
to Be superlinear. The convergence of any order greater than unity is also
superlinear.'

The average convergence rates may be used to place bounds on the
average progress per step over a large number of steps. However in comparing
convergence of different sequences, the step—wise convergence rates are
usually used. When the‘squences are well behaved and the limits involved
in the defiﬁition of convergence rates exist the step-wise and average
convergence rates coincide. Additional information on the convergence of
sequences may be found in (L5).

. k
The convergence properties of a sequence of vectors {X( )} are defined
"



with respect to a function that converts the sequence of vectors into a
sequence of numbers. If f(%): E" + E is defined on E", the convergence
of_{z(k)} to %* can be defined in terms of the convergence of f(%)'to f(%*);
The function f(ﬁ) used in this way to measure the convergence of {i(k)} is
called the error function.

In optimization fheory, the objective function f(%) or the function

2 < .
“~X - X% ” is chosen as the error function to analyze the convergence of
n, n, . '

the sequence of intermediate solutions {X(k)} to X*. The order of convergence
: ~ S

of a sequence is iqsensitive to the particular error function used and hence
the particular error function used to measure convergence is not really
very important (L5).

The order of convergence of a sequence is a local convergence property
.and is a measure of the ultimaté speed of convergence. It is generally used
to determine fhe relative ad?antage of one algorithm to another. Thé global
convergence property is concgrned with whether starting at an arbitrary

point the sequence generated will converge to a limit point or a solution,

6. Matrix Notation

© A matrix with m rows and n,coiumns is denoted as an mxn matrix. A
diagonal matrix with n fdws is denotedjas a‘diagonal matrix of order n.
A diagonal matrix with'unity as diagonal élements is denoted as the identity
matrix I. The double subscript notation is used to represent the elements
of a matrix. A matrix H with elements hij is represented as H = {hij}.
The transpose of a matrix B is written as BT. A square matrixAisAsaid to

be nonsingular if its: determinant is not zero. The inverse of a nonsingular

square matrix G is denoted as G-l. A matrix N whose columns are Xl, X2, ceey
Ao

X
N



is represented as N = [X., X, ..., X ]. A vector X ¢ E" is a matrix with
Al a2 a " ’
n rows and one column. A row vector is represented as the transpose of a

column vector. The determinant of a matrix H is denoted as [H‘.

7. Eigenvalues and Quadratic Forms

Let H be a square matrix of order n. A scalar X and a nonzero vector
z e EM satisfyiﬁg H§ = AE are said to be én eigenvalue and an eigenvectbr
respec;ively of H. The number X is the eigenvalue of H corresponding to
A the eigenvector f. All the eigenvalues of H are obtained by solving the
chafacteristic polynomial of degree'n in A, |H - IA| = 0. |

If the square matrix H of order n is symmetric, i.e., H = HT, then

(i) The eigenvalues of H are real.

(ii) Let X, and )\, be distinct eigenvalues of H and X, and X, be the
1 2 : a1 N2
'corresponding eigenvectors, then XlT X2 = 0.
4Y] n

The matrix H is positive definite when

(a) The quadratic form X' H X is positive definite, i.e.,
N Y] :

XT H X > 0 ¥ nonzero X € En,
4" N ny

(b) All its eigenvalues are positive, i.e., Ai > 0 Vi.
(c) The determinants of the leading principal minors of H are positive.

The leading principal minors of H are represented as

H. = {h,} (i,j =1, 2, ..., p).
5 i 3 P

The matrix H is positive semidefinite when

(a) The quadratic form X' H X is positive semidefinite, i.e.,
. 4y v

e
s+
oM
nv

> 0 ¥ nonzero X € E" and
N

n
0 for some nonzeroc X € E .
n

@M
=
2 M
[
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(b) The eigenvalues Ai >0 ¥vi and Ai = 0 for at least one But
not all i.
The leading prinéipal minor test cannot be used to determine semidefiniteness
of the matrix.H. When some of the determinants of'the leading principal minors
are zero, the test will not provide information about the definiteness of H.
A matrix H .is indefinite when
T

(a). The quadratic form XT H X is indefinite, i.e., X" H X < 0 for
N n ’ . n N

some nonzero X € E. and~XT H X > 0 for other nonzero X € E".
(b) The eigenvalues Ai < 0 for some i and Aj > 0 for some j.
(c). Let (Hi[, i=1, 2, ;.., n be determinants of the leading principal

minors of H. The matrix H is indefinite if lHil # 0 ¥i and

IHilllHi_ll <.O for some i And [Hjl/‘Hj_lI > 0 for some j.

8. Norm and Condition Number of a Matrix

The norm of a square matrix H of order n, subordinate to the vector

1 | _

norm ” §|I, is defined as ” H|| = ” Xm”ax?é o —”ifn—-. The norm H‘Hll relative

. n L n. .
to the Euclidean norm [l Xll is

T T :
: H™ HX
fafl = max [§——f—~——]l/z, X e EM.
Ix|l #0 x x v
v N v

Therefore the -norm ”‘H|l relative to the Euclidean norm of a vector X in E"
o , iy
is the square root of the largest eigenvalue of HT H. If H is a symmetric
. -1 '
matrix, then H Hl[ is the largest eigenvalue of H and ” H II is the

reéiprocal of the smallest eigenvalue of H. Let AR and AA be the largest

and smallest eigenvalues of H. Then the condition number r of the matrix
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H is defined as r = X\ _/\ .The matrix H is. said to be well-conditioned if

L8

the value of r is close to 1. 1If the value of r is very large, the matrix
H is said to be ill-conditioned. The ill-conditioning of H increases as

the value of r increases.
[ ]

9. Functions

A real valued éunction f(ﬁ).defiﬁe& on a subset L of E" is represented
as f(%): E" ~ E. A function f(ﬁ) is said to be continuous on a set L if it
is continuous at each point %o in L. It is continuous at a point %o in L if

£(X) >~ f(X ) whenever X € L and X -+ X Equivalently, f(X) is continuous at

A a0 a N a0 ~N .

X 1if given € > O there is a § > 0 such that ” X -X || < 6 implies

a0 ) A A0

lf(X) - f(X )| < €. A set of real-valued functions c,(X), i = 1,2, ..., m
v a0 Lo

~may be regarded as a single vector function C(X): E" >~ E®. Such a vector

N

. . . . n , .
function is said to be continuous on an open set L <€ if each of its

component functions is continuous on L.

¢k ¢ on

A real valued function f(X) is said to be of class or f ¢

N

n . . .
an open set L & E if it is continuous and possesses continuous partial

f e C(k+l)

derivatives of all orders < k. If on L, it is of class C(k) on

(1)

at X* is the column vector

L. The gradient of f e C
. Y

' of of af T
%) = [— , — L
Zf (’% ) [ax b} H LA ] axn .i*

If f € C(z), the- Hessian of f at X* is the square symmetric matrix o6f order
4y

n denoted as sz(X*) or F(%*)
v

of

2 : )

* = {—mmM—— = ] = PR .

v f(§ ) _{axi Bx.}X* {£,.} i,j=1, 2, , 0
Y]
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If the vector-valued function C(X): [ E® is of class C(l), its gradient

n N
Y9G,
at X* is the mxn matrix, VC(X) = {~—=}_, ¥i, j =1, 2, ..., n, called
" oA axj X* :
. N :
Jacobian of C at X*, If a vector A ¢ E" and if the real-valued function
n n N ’
ATc: EWFR E is of class'C(z), the gradient of ATc at any point X is
v AV} Y

viatel = vei” a.
vy N N n

: m
The Hessian of ATC at any point X 1s equal to I A, V2C (X).
NN v i=1 i'n :
The set of points satisfying the equation f(X) = c, where ¢ ¢ E and
’ By

£: £ o E, forms a level surface of f. If f is of the form f(X) =
n v
z
i=1
* dimensional hyperplanes and Vf is the normal to the hyperplanes. In general,
- "

ai x, + b, a; not all zero, then the level surfaces of f are (n-1)

Cif f € C(l)'and VE # 0 at X in L, then Vf(X )-is the normal at X to the

N O n A0 O )
level surface f(X) = f(Xo). If f € C(z), % is a direction vector:in £

v N .
and F is the Hessian of f, then the directional derivative of f at a point
X in the direction d is dTVf and the second derivative of f in that direction
N n, LAV V)

is dT F d.
. n, N

Let f e'C(z) be defined on an open set L& E" and Xl e L. In an open
~ :

neighborhood of X f may be represented using the following Taylor series
1 T

o a T | 1 o 2 a

+ r(X;, X-X,)
AL AL

where r(Xl, X—Xl) is the remainder term. The remainder term satisfies the
v N v L.

relation (H4)

r(X,, AX) o
lim —M=———% = (0 where A% =X

- X .
a0 || ax ||? vond
N N



13

Therefore the quadratic approximation to f£(X) about Xl is the Taylor series
N v

f(X) = f(X,) +AXT VE(X,) + LT
N A1 nooaoal 2 a

2
VE(X,) AX, AX = X - X_.
P A Y

10. Implicit® Function Theorem
The implicit function theorem is concerned with the conditions under

which a set of equations gi(X, A)=0 i=1,2, ..., n, Xc¢ En, A€ Em,
’ n AV) v Y

n+M
g.: E > L ¥i can be solved for X as a function of A, i.e., as X(}). Let
1 : N N Ny

85 ¥i be continuous and have continuous first and second order partial
derivatives with respect to X on an open set B MR et gt gotm ., gn
n n

" be a vector-valued function with 8 as elements. Let Vg be the nxn Jacobian
. Wy . o

matrix of g with respect to X.
4V n,

]

Suppose that g. (X, A\) =0 i=1, 2, ..., n and |Vg| # 0 at a point
i

(X*, A*) in B. Then there exists a continuous function X(\) on a neighborhood
Y] v vy

AS E™ of A* and a constant € > O such that X(\%)
v

X%, g,(X(X), A) = 0 Vi,
N v ~ Lan .

Ly
A e A. Further g (X, \) =0, || X - X || <€, A € A only when X = X(}).
N 1~ N N N N N
If the functions gi(X, A) ¥i are of class C( ) on B, then the function X(1)
N LYY

is also of class C(z) on A,

11. Local and Global Minima of a Function on a Set

Let £(X): E" > E be defined on an open bounded set LS E". A point

v
X* ¢ L is said to be a relative minimum point or a local minimum point of
'\:
f over L if there is an ¢ > 0 such that f(X*) < f(X) ¥ X ¢ L and || X -xx || < €.
o Y N N
The point X* is said to be a strict local minimum point or strict relative
47 .

minimum point or an isolated local minimum point of f over if there exists

an € > 0 such that

F(X*) < £(X) VX e L, X#X* and || X - X*|| <e.
N 4y n N 4" n n
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A point X* ¢ | is said to be a global minimum point of f over L if
o ,
£(X*) < £(X) ¥ X ¢ L. The point X* is said to be a strict global minimum
v = " LN N . .

~ point of f over L if
f(X*) < f(X) ¥ X ¢ L; X # X*,
v n, o, o n ‘

A point X* is a local (global) maximum point of f(X) over L if it is a local

Y : n, . -

(global) minimum point of -f(X). . A point that maximizes or minimizés fonl
_ - " :

is called an extreme point of f on L.

12. Infimum and Supremum of a Function on a Set
Let £(X): E" + E be defined on an open bounded set L S E". The infimum
N )
of f on L is the greatest lower bound of £ on S. It is the largest number,

e < q < ®, such that f(§) > a holds for all 5'5 L. It is denoted as

"inf f(X)"‘dr "inf £(X) on L" or "inf f(X)". Equivalently,
Xel v ' N v

Q
i}

inf {f(X): X e L}V if
.., n

(i) «

(LI

fX) vXel
" n

(ii) there is a sequence {X(k)} e L such that

lim f(X(k)) = Q
k3w
A point X* in L minimizes £(X) on L if and only if £(X*) = inf £(X). When
v . ’ n, 4V Y]
a minimizing point X* € L exists, f(X*) is the infimum as well as the
, " o o i
minimum of £(X) on L. If £(X): E" > E is a continuous function defined

on a compact set FjE.En, then there exists a point X* such that f(é*) =
Iy

inf £(X) on L.
v
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The SUpremum of f over L is the least upper bound of f on L. It is the
smallest real number, -» < B < o, such that f(X) < B ¥ X ¢ L. "It is denoted
= = n o= " .

as "sup £(X)" or "sup £(X)" or "sup £(X) on L". Equivalently,
Xel A "
n .

-

sup{f(X): X e L} = inf{-£f(X): X e L}.
n n, 4V n .

A point X* maximizes f(X) on L if and only'if f(X*) = sup £(X).
o, A, . " N

13. . Convex Seté and Convex Functions
13.1 Convex Sets

n
A set FS E is said to be a convex set if for every X e F and

, X
A7 a2
0 <a <1,

1 + (1-a) %2 e F.

oX

"
Geometrically, a set is a convex set if the line segment joining any two

points in the set lies in the interior of that set. IfVBXl + (1-B) X2 e F

. n, v :

for every X , X

Al a2

or a linear variety.

e F and B € E, then the set F is said to be an affine set

The closure of a convex set is convex. The intersection and union of
any number of convex sets is convex. The null set is assumed to be convex.
The convex set defined by every convex linear combination éf a finite number
of points in E" is a simplex in E". The convex hull of a set S is the
smallest convex éet.containing S. The closure of a convex hull of S is

the closed convex hull of S-

13.2 Convex and Concave Functions
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A function f(%): E® > E defined on a convex set L is said to be convex :

on L if for every X, X, ¢ L'and 0 < a <1,

f(ail + (l—a? 52) < af(zl) + (1-a) f(§2)'

I
f for %l # %2, 0 < a-< 1, 51, %2 e L

f(u%l + (1-a) %2) < af(il) + (1-a) f(éz),

then f(X) is said to be strictly convex on L. A function f(X) is said to be

4] ")
(strictly) concave on L if -f(X) is (strictly) convex on L. A positive linear

- .

combination of convex functions is convex.

- n . n (1)

If £(X): E —» E defined on a convex set LS E is of class C on L,
" _

then f(X) is convex on L if and only if
v

E(X,) 2 £(X) + TEG) (X, - X))

for all points X., X, e L.
a17 a2
If for all %1, %2-8 L,

By > £E + VEED Xy - X))

then f is strictly convex on L. If £(X) is of class C(z) on a convex set L,
; n :
then f(X) is convex on L if and only if at each point X € L the Hessian
N ~
matrix F of f is.poéitive semidefinite. If F is positive definite ¥ % e L,

then f is strictly convex on L.

"13.3 -Convex Sets Defined by Convex and Concave Functions



17

Let £f(X): E" + E be a éonvex function defined on a convex set L. The
N . '
set F = {X: f(X) <a, X € L} is a convex set for every a ¢ E. If £(X) is
~ NS n Vo

a concave function defined on a convex set L, then the set

F=1{X: £X) >a, Xe L}
Y A = N

is a convex set for every o ¢ E.

If f(z) is linear or‘affine, then f(%) < o defines an open half space,
f(%) < a defines a élosea half space and f(ﬁ) =.0 defines an (n-1) dimensional
hyperplane. ‘The intersection of a finite number of closed half spaces is al
convex polytopé. A nonempty bounded convex polytope is a convex polyhedron.
A convex set may be aefined by linear equalities. However nonlinear
~equalities cannoﬁ define a convex set. A detailed treatment of convex sets
and convex functions may be found in refereﬁces (14), (L5), (ML), (Rl),»(Zl),

(z2).

14. Penalty and Barrier Function Methods
Consider the inequality constrained problem Pl. The feasible region F

is defined as follows.

m}.

A

F = {X: C.(x) > 0: 1<i
The interior of the feasible region F is defined as

FI = {%: ci(i) >0, 1 <1ig<ml.

The exterior of the feasible region F is denoted as F.
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14.1 Barrier Function Method
The barrier function method is a transformation technique. The barrier
function transformation for Pl may be represented as

o
B = D+ R(C D), > 0.

The function B(%,}x) is defined so that a barrier is constructed at the: .
boundary of the feasible region F. A solution %* to Pl is approached ffom
the set FI‘by modifying the barrief function using the confrol parameter L.
The set FI is assumed to be nonempty and this.means that any bougdary point
- of F may be-approached from a point in the set F. This also implies that
the barrier function is not a suitable transformation for equality constraints.

In the function B(z,)L),_the second term is the barrier term. For'}1> 0,
this term'is bounded and is defined continuously on the interval ci(i).>~0.
Further pi(t) > ®, as t > 0+.9 The commonly used barrier functions are (Fl),
(R11)

(i) The inverse barrier function p,(c,k (X)) = (c,(X))—l.

: it i it

(ii) The logarithmic barrier function p, (c,(X) = -¢n(c, (X)).
8 _ 1 1y 1 n
The function B(X,}L) is defined on FI and twice continuously differentiable
2 .

I

Therefore a barrier is established at the boundary of the feasible region.

in F_. Further B(X,}k) > 0 and B(X,}L) + » as ¢, (X*) » 0 for any i.
N = n, i

This barrier prevents a search procedure for locating a solution X* to Pl
_ . by

from leaving the feasible region. As B(X,}L) is defined on FI and the method
- N - -
operates in FI, the barrier function method is also called an interior-point
method. If ¢, (X*) = 0, then as X + X*, the growth of pi(ci(X)) is controlled
1 ) ~ ~ .

n
or cancelled by decreasing}l.
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The barrier function method may be summarized as follows. Select a

sequence {}6k)} such that for each k,

(k)

(k+1 k
1 5o, G 0

and lim }L(k) = 0.

koo

k) (k)

For each k, minimize B(X,}A( ) to find X
n, N

. C o . k-1 . . .
‘unconstrained minimization from X( ). The initial starting point X
N n

= X()ik)), starting the
N .. .
(0)
must be in FI' The étopping criteria for each unconstrained minimization
may be based on lf(x(k)) -t x® Dy or | x () -~x(k'l)H.
Y v N "

Let'{ﬁ(k)} be the sequence generated by the method. Then any limit

point of this sequence is optimal for Pl (Z1). The behavior of B(X, ) may
: . \
be interpreted in the following way (R11). Let ci(X*) = 0 for some 1. As
"

) (k) ORI,

However if)& is decreased, then pi(ci(X(k))) can be allowed to increase
. " .

(k)

. X(k) -> X*’ C,(X
N 1,

X ) > e (X% =0, p (e, (X

)) > < and B(X

: A"
without increasing B(% :)L)- The monotonically decreasing sequence {}ik)}
is chosen in such a way that

(i) B(ﬁ(k), ;ék)) monotonically decreaées.

(ii) B(i, (k)) is twice continuously differentiab;e in FI.

n

Gii) o, x®y 0, x® 5 xx, and £x®y > £x%).
1 q N " ", . N

As the search for 5* is started at E(O) € FI’ the barrier at the boundary of
F restricts the search procedure and the seduencg, {E(k)}, of minimizing
points of'B(f, }ék)) té the interior of F. The method is therefore called
an interior-~point méthod.

The strengths and weaknesses of the method are‘discusséd in detail

in reference (R1l). The method facilitates the solution of Pl using an

unconstrained minimization technique and the constraints need not be
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accounted for explicitly. The convergence of the method has been established
(F;) when the problem functions aré continuous and %* is at the boundary of

F or in the-closure of FI; Fiacco and McCormick (Fl) established ﬁhat there
exist a sequehce {)6k)} and a corresponding'sequence of minimizing points
generated by the algorithm such that E(k) > i* as k » ;. Similar convergence
properties and converéence of the other related sequences have been proved

by Luenberger (L5) and Zangwill (Zl).

| The method does not require very strong constraint qualifications and
‘it converges to a local minimum of Pl where the Kuhn-Tucker conditions may
or may not hold. By monitoring the cénvergence of the sequences {E(z(k))}

and {&(k)}, structural information about the problem Pl may be obtained.

The most commonly sought structural information is the set of active

(k) (k) (k)

constraints at X . The vector A
n,

1s an estimate of X of the

Lagrange multiplier vector &* at %*. Thg method converges eveﬁ Qhen the.
minimizaﬁion of B(fs)k(k)) is inexact for each k (R11).

The weaknesses of the barrier function method are of a computational
nature ;nd are most serious when the controlling parameter/u,is small.v The

numerical difficulties associated with the algoritlim arise due to the ill-

(k)

conditioning of the Hessian of B(X,)* ). The condition number of the
. n

(k)

Hessian of B(X,)k(k)) increases as decreases. This causes B(X, M ) to

have steep-sided valleys and makes the search for an unconstrained minimum

(k)

of B(é,)i(k)) difficult. In the algorithm,/L is gradually decreased so

(k)

as to .make B(%, }k ) twice continuously differentiable and to reduce the

(k)

ill-conditioning of the Hessian of B(X,)& ). The feature that restricts
_ N :

the general application of the method is that it requires the initial point
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(0)

to be feasible and the search for X

is as difficult as the problem to
n

be solved.. Further the method cannot handle equality constraints.

14.2 'Penalty Funcpibn Method
The pénéity function transformation for Pl may be_represeﬁted as
A ' m
P(X, 0) = £(X) +0 £ n_(c (X)), o > 0.
4" N i=lllfb
The propertigs of the loss functions ni(ci(i)) and P(i, g) are discussgd in_
detail in Chapter 2. Additional information may be found in references (fl),
(L5), (Z1), (22). The penalty function designed to impose an increasing
penalty on the pbjéctive function as the search point i moves away from F
an@ the constraint violafion increases. The loss functions ni(t) are defined
'for -» < t < » and therefore the ﬁenalty function is defined on En. This
implies that both equality and inequality constraints can be handled by the
pehaity function transformation technique. When % ¢ F, the loss term ié
zero and when 5 ¢ F peﬁalty is imposed on F(%) depending on how far X is away

(0) e EV

from F. Therefore the algorithm may be started at any X andvspecially
. . n :

X(O) € F or X(O) e F.
v v
The loss functions ni ¥i are usually chosen so that P(X, o) is twice
Y
differentiable. However the following loss functions also are used in

some algorithms.

(i) Zangwill's loss function for inequalities ci(X) >0
A=
ni(ci(i)) = -min (0, ci(ﬁ))
(ii) Absolute value loss function for equalities ci(ﬁ) =0

ng (e () = ey (0]
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The Basic penalty function algorithm is described in Chapter 2.

(k)

'The use of monotonically increasing control parameter o in the

algorithm may be interpreted as follows. When ﬁ(k) is in F, the increase

(k)

‘in o

(k)

o b} ni(ci(X)). Due to this increase in the penalty weight associated
. = N

increases the penalty weight associated with the loss term

with the loss term, in the subsequent unconstrained minimization of

P(E, o(k+l)) the loss term is reduced and hence ci(i(k)) + 0, permitting
ﬁ(k) - 5*...The structure of P(%, o) also implies that for large o, the

minimum of P(%, 6) will be in a region Vhere o] ?ini(ci(i)) is small. The
gradual increase'in ¢ is designed to make P(i, ;) continuously differentiable -
and féduceAthe ill~conditioning of the_Hessian of P(X, o).

"
The convergence of X(k)
' Y

to X* and the existence of a corresponding
ponofonically increasing sequence {o(k)} have been es;ablished by fiacco
and McCormick (Fl), Luenberger (L5), Zangwill (21). fhe condition number
of the Hessian of P increases as ¢ increases. The penalty function P(ﬁ, 0)
forms increasingly steep-sided valley as o iﬁcreasgs and this leads to
numerical instabilities in thé unconstrained minimization of P(X, a). Dﬁe
4
to this reason, it is not possible to solve Pl in one step via P(%, g) by
choosing a large o. The gradual increase in ¢ makes the successive
unconstrained minimization problems easily to solve. In the penalty
function method the solution %* is-approached from outside F and therefore
the method also is known as the exterior-point method. Lootsma (L3) has
comprehensively reviewed and classified the loss functions and barrier

functions. Duality analysis of the methods is developed in references

(F1), (LS5) and (Z1).
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14.3 Mixed Interior Point - Exterior Point Method
Fiacco and McCormick (F1) proposed and developed a mixed interior
point - éxterior'point method for solving P3L The equality constréings
are handled by the penalty function method and inequalities are taken into
'accéunt using the barrier function method. The. methods that solve a
constrained problem by sequential unconstrained minimizations Qere-termed
Sequential Unconstrained Minimizatioﬁ Techniques (SUMT) by Fiacco and .
McCormick (F1). The most popular form of SUMI uses a quadratic loss funcfion

to handle equalities and a logarithmic barrier function for inequalities.
2 :

(c,(X))” o> 0.

'i’b

P(X, 0) = £(X) = =
N n o

I 4n ci(X) + 0 I
i¢E v ieE
In the above function E is the index set of equality constraints. The
properties'of the mixed function are the same those reviewed above for
' | (k)

penalty and barrier transformations. The sequence X

converges to X*
n N

when ¢ > «, Additional information about the properties, convergence and
-computational considerations of the mixed methods may be found in reference

(L3), (F1).

15. Duality Theory and Duality Gap
15.1 The Primal Problem

Let the primal problem be defined as follows.
P: Minimize f(X), X € L fiEn
. Y n

subject to Ci(é)'; 0 i=1,2, ..., m

£(X): E" -+ E, c.(X): E“ =+ E wi.
N 1 4,
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The problem functions are defined on the nonempty open convex set L. The

problem P is assumed to have at least one feasible solution and the set

{%: % e L, _ci(ﬁ) > ai}

in En'is compact and nonnull for every choice of a, € E+. These assumptions
imply that a finite optimal value of P is attained in the feasible region

F (R13). Equivalently, -» < min (P) < e, Thevoptimal value of P, in.general,
is inf (P). Equivalently, the optimal value of P is ﬁhe inf f(%) subject to
% ¢ L and ci(ﬁ) 2 0. However, if %* is a minimizer of P in F, then min (P);=
inf (P). The conditions imposed on P imply the existence of a solution %* to
P. Therefore in subseqﬁent discussions the optimal value of P is denoted as

‘ min (P). |

The classical Lagrangian; L(E, Q), associated with P is defined as

follows (R13).

LX, \): EM® L E
AV Y]

£(X) - A C(0, e E)

. v A VR VIRV n
L(X, \) = , '
v -« ptherwise

Since f(X) > L(X, A), sup L(X, A) = f(X) when X is feasible. The optimal
nvooE LIV LYV v v
value of P also may be represented as
min (P) = inf (P) = inf sup LK, M)

§€L AeE™

N

A vector A* is a Kuhn-Tucker vector for P if
S A
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inf (P) = inf L(X, A%).
NNy
The optiﬁality in P may be characterized by the general saddle point condition,

y m
*
& e E

Min L(X, X*) = L(X*, A*) = Max L(X*, )).
Xel v v m Voo
n )\EE .

n

15.2 The Dual Problem and Duality Gap

The dual problem is defined as

D: Maximize v()A), X € "
v n

v(x) = inf L(X, })
v Xel v
~ .

The‘bptimal value of the dual is

sup (D) = sup inf L(X, A).
mn Xel v
- A€ n
o

_Since.min (P) = inf sup L(X, 1), min (P) > sup (D) or in general,
Xel m v v
A aeE

1Y)

inf (P) > sup (D). If inf (P) > sup (D), a duality gap is said to exist
between the primal problem P and the dual problem D. If there exists a )

. n
at which the maximum in D is attained, then sup (D) = max (D). If Q*

solves D and min (P) = max (D), then \* is a Kuhn-Tucker vector of P.

15.3 Global Optimality and Primal-Dual Method

The necessary condition for optimality may be expressed as follows.

Z25-
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1f z* is a global minimum of P and min (P) = max (D), then the above seddle
point condition holds. The éufficient condition may be reformulated as
follows. If 5* satisfies the above saddle point condition, then it is a
global min of P and min (P) - max (D). Further the vector &f in the saddle ‘
point relation is a gloBal maximizer of D. This vector Q* is a Kuhn-Tucker
vector for P.

‘The saddle point condition is always sufficient condition for optiﬁality.
However it is a necessary condition that is required to establish the duality
relation min (P) = max (D). This duality relation is equivalent'eo the
existence of'a Kuﬁn—Tueker’vector é* of P. The primal-dual methods exploit
this duality relation to solve the associated nonliﬁear problem. In the
ideal cese, the dual function v(&) may be maximized to get &* and then
. L(%, %*) may be minimized eo get %*.‘ This method of solving P is possible
only for some simple problems. The numerical algorithms based on the duality
relationship generate a maximizing sequence {%(k)} for D and for each X(k),-
generate X

N
(k) (k)
Y

(k)

as a solution to min L(X, A ). The sequences are generated
N . . :

so that X

+ A* and é(k) + X*, The saddle-point condition may be used to
n n " .

design primal-dual numerical algorithms for solving P only if the duality
‘relationship min (P) = max (D) holds. The satisfaction of this duality
relationship depends on the nature of problem functions and the form of

the Lagrangian function L(%, 1) associlated with P.
LY

15.4 Convex Duality

If P is a convex. program then the compactness assumption is fulfilled

when the set

{X: Xxel, C(X) > 0}
n n, N
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is compact and nonnull. The duality theory for convex programs has been
reviewed in detail by Geoffrion (Gl) and Rockafellar (R12), (R13). >For a
convex pfogram a 'Kuhn-Tucker vector &* ususally exists and .the saddle-point
condition‘is ﬁlways sufficient for the optimélity of P at %*. Rockafellar
(R13) established that for a convex program P, min (P) = sup (D) (R13).

The point (E*, &*) is a saddle-point of L(%, %) on L x Em, if and only_if
X* solves P and A* solves D. 1If &* solves D, then for X* to solve P it is

N n, n

necessary and sufficient that (R13)
(i) X* minimizes L(X, A*) on X ¢ L
ny n 0y N

* ’
1 * * = R
(ii) éi(i ) ;‘0, _Ai > 0 for ci(§ ) 0

Geoffrion (Gl) and Lasden (Ll) presented the computational applications
 of the dﬁality theory for convex programs. Several other possible 'duals"
’of P have been proposed using the Lagrangian function L(%, i) = f(%) -
QT E(ﬁ)’ & € Et . The following dual formulations are reviewed.and
>compared by Geoffrion (Gl).

(i) Geoffrion dual G

G: Ma#imize { inf (fﬂﬁ) - QT g(%))}

A e E % el
Lv +

(ii) Wolfe dual W

W: Maximize £f(X) - AT c(X)
n Ny

n,
A >0
‘\J='
Xe LSE®
N
v -z Ve, = 0
mf(ﬁ) Ai Nci

i
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. (iii) Stoer, Mangasarian and Ponstein dual
SMP: Maximize f£(X) - AT C(X)
. N NV
x>0
o =
- Subject to

X minimize £(X) - AT C(X) over L.
N Y AV VIV

15.5 Duality in Nonconvex Programs
The dual formulation D of P is based on L(X, )) and has inherent limitations
‘ LV

(R13). The implicit feasible set in D is

: m
{Ax: xe&E , v(\) > -=}
NN + o

and it is difficult to determine a representation of this set. This implies
that it is difficult to determine whether the inf L(i, &) over % e L is
finite and attained.- Fﬁrther éveh if 5* minimizes L(%, é*) and Q* solves D,
i* may not solve P unless there is only one solution to P. The dual formulation
D is méaningful only in the convex case, since only in this case it is possible
to establish the relation min (P) = sup (D) (R13).-

Rockéféllar (R12), (R13) and Mangasarian (M2) showed that by associating
a different Lagrangian with P, the duality gap in nonconvex-pfograms may be
eiiminated. A‘wide variety of Lagrangians may be associated with P and each
choice corresponds to a different dual problem. Even though great flexibility
is afforded by the ;heory in the choice of the Lagrangian for P, not all of
these are éf bractical value in computation. The Rockafellar's augmented
Lagfangian Wt%, &, g) is abmember of a wide class of Lagrangians and has

proved to be useful to developing primal-dual numerical algorithms for

solving P. The duality theory in terms of ¥(X, A, o) for nonconvex programs
N A :
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is reviewed in Chapter 3. Detailed analysis of the duality theory based on
¥(X, A, o) may be found in (R6), (R12) and (R13). The duality theory based
LAV VI V)

on . ¥Y(X, A, 0) for convex programs was investigated by Rockafellar (R4), (RS).
n N ny .

-15.6. P;;tial Duality

It is not necessary to include the Lagrange multipliers of all the
constraints of a problem in the definition of the dual function (Gl), (LS);
The duality can be defined with respect to any subset of the constraints.
If a constraint is used to define the Lagrangian associated with P, it has
T a dugl variable of its own. If a constraint is assigned to define the set:
L, it will not possess a dual variable. ~Consider the conve# problem P with
the constraints partitiongd so that the dual is defined with respect to the
. constraints belonging to the index set J. Let p be the number of indices in
jf Then the partial dual of P in terms of L(%, &) and with rgspect to the

set J may be represented as

PD: maximize v()), X € EP
n e

v(\) = inf L(X, \) Xe L, xeEP
n, X N v N n,
n

Ci(f) >0 i¢J.

The choice of assignment of a constraint depends on the structure of the

problem, or the nature of the theoretical analysis or the ease of evaluating

v()).
n
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APPENDIX B

COMPUTERIZED ALAG ALGORITHM AND APPLICATION

1. 1Introduction

Ap ALAG penalty function algorithﬁ to solve the equality and
-iﬂequality constrained probiem P3 (see Chapter 3) is presented. An
é§uality constrained problem and an inequélity constrained problem are
solved using this numerical algorithm.. The algorithm and the examples
‘supplement the review of the ALAG penalty function technique.reviewed
within this report. This numerical algorithm Qas investigated by
Fletcher (F8). This algorithm incorporates the parameter iterations

that have been proven to be efficient (F8). A Quasi-Newton method that
utilizes a complimentary Davidson-Fletcher-Powell update [Fé]vfor,solving

unconstrained problems is used in the inner iterations,

2. ALAG Penalty Function Algorithm for Equality and Ineqdality

Constrained Problem.

The equality and inequality constrained problem P3 is defined in
section 3.4.1. To simplify the presentation of the numerical algorithm

in the next section, following notations are used.

E : The index set of equalities
E={4i:1gcidi¢ck}
Sci : The scale factor for ith constraint
WW (k): The scaled constraint violation for ith constraint in

" iteration k
(k)
. (Ci'
Sc

w, () |t EE
* i i ¢ E and ci(k) < oi(k)



(k). |

AK(k)

AKMIN

' (k)
(Brdpy

(),

() '

Algorithm

(1)
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oo (k)
min(C, , 0)
ww.(k)= = L i ¢ E and C,
i ) Sci i

(k) (k)

%

LAY

The largest scaled constraint violation in iteration k

AKK(k) = max {jwwi(k)g
i

(k)

Initial value of AKK in iteration k

The relative error tolerance required in the constraint.
. . 3 . .

residuals ;e When AKK( ) < AKMIN the algorithm is

terminated. This is the stopping criterion for the

outer iteration.

The tolerance in x. for unconstrained minimization
: i

The current value or residual of ith constraint in

iteration k.

The index set of constraints that contribute to the ALAG

penalty function. M(&(k))'= ‘{ i: 1i¢Eor

i ¢ E and ci(k) < Qi(k)}'

The number of indices in M(A(k)).

(k)

The Powell-Hestenes correction for Ai in kth iteration

(k)

The Newton correction for Ai in kth iteration.

A3
Select

(0

the initial starting point 5 ,

(1)

the initial estimate of parameter vector %

(1)

the initial penalty constants o, , ¥ i
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k=%k+1
(iii) ~Minimize ¢ (X, g(k), o(k)) to find
X(k) =X (e(k), O(k)), starting the unconstréined
SR VoA "
minimization from g(k_l).
» Use Broyden's Quasi-Newton method for unconstrained
minimization of ¢ (X, Q(k), o(k))
AV Y n .
, < 2
- a(k) (k) _ (k) (k)
e X R, g ) = EHQ +1/2 1 o, [c, -9,]
’ ' ieE
1 (k) k), 2
+§ L o, (C, - 9, )
L i i - i -
i¢E
0, Ci - Gi >0
(c, -8,) =~
i i’-

During the unconstrained minimization of ¢, an estimate of the Hessian

(Ci - 91)’ s

-8, <0
i

Cof ¢ is built-up using the first order information about f (%), c;

(k)

and the change in é.

O(k)) is represented as G(o
A _ v

(iv) -

(v)

Estimate

the Lagrange multiplier estimates Ai

).

(k)

the constraint residuals c; ,

the scaled constraint violations wwi
the largest scaled constraint violation AKK
If AKK

If AKK

(k)
(k)

<

>

AKMIN, stop.
)

Estimate (AA.)(k)
1°PH

(ax

i)PH

(k)

(k) _
(Axi) PH

A,
i

O(k

(k

go to (viii). Otherwise go to (v).

) C.
i

(k)

ieE or

idE A, #0, C, <0, A,
1 1 1

(k)

(k)

= g,
1

bl

) $§ E, A\, #0, C, <0,
1 1

The estimate of the Hessian of ® at (%

(k)

(k)

(k)

0.
i

(k)

N

(k)

x

o,

1

s

(k)

C

i

(k)

v
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the constraint tolerance AKMIN
the tolerance EPSi on variable xi

the constraint scale factors Sci

the initial upper bound on constraint violation AK(l)
k=20

If k = 1, go to (vi).

() _ (k1)

ILf )X.
i i

< EPS,, stop.
< ;> stop

Otherwise go to (vi).

Find R = {i : ieEori¢E and

A, # 0 and ci(k) < d}

Let p be the number of indices in R and

) T
(k) (k) (k) : (k) p
1 . s eee e Yp ) € E

(k) )(k)
i

»Estimate'Yi = (AX , i e R.

The Yi(k) , 1 € R are determined by solving the following

subproblem.
. (k)
Min Q(Yi. )
Y,(k) > - A_(k),-i € R
i = i
: T
Q(Yi(k)) -1 ¢, Yi(k) + % :{(k) (N7 Gl_—l N X(k)

ieR
where G is the estimate of the Hessian of ¢ and the

columns of N are the gradients of c;» 1€ R,
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(vii) y, Dy )y Gy g,
1 1 1
: (k) (k)
g (K) _ (Brpy - (Ary) "y
i - o (k)
. | (82D py
£z (k) >1, o 8D _ g G o () qq B g O gy () 57 g
i ‘ i i i i i i
£z 0 g, 5 ) o 0 g B o 5.
1 = 1 1 ) 1
G(g(k+l)) = G(g(k)).+ n pONT
® _ . ® (K k),
D'’ = diag (dl , d2 s eeees dp ).
ax — a (O
go to (ix).
(viii) Find D = {‘i : wwi(k) > AK(k) or
wi, D g (k)}
i i
Set o.(k+l) = 10 6.(k) and A.(k+l) = A.(k)
i i i i
The change in oi(k) is di(k) =.9 cigk), i e D, and
di(k) =0, i § D. Let D(k)'be'the diagonal matrix
with di(k) as‘elements. The estimate G(g(k)) of the

(k)

Hessian of ¢ is-adjusted to account for the change in g

as follows.

(k) &) (T

D
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(k)

The columns of N are the gradients of constraints whose

indices. are in D

(k) (k-1)
i T %

< EPSi, stop.

Otherwise go to (ix).

9'(k-*-l) - A;(k+l)/o,(k+l) V.
1 1 1 1

go to (ii).

Numerical Examples

Example 1l: Equality constrained Problem

- i)z + (xl - x )2 + (x 2

Minimize : f (%) = (x 2

1

+ (x3 - XA) + (x

[}

Subject to 1 (%) x, + x. + x3 -2 -~3YV2 = 0

-, | ]
ey ) =x, - x34x, +2-2V2 =0
¢y (R) = xxg = 2=0

(0)

Starting point X' ' = (2,2,2,2,2)
* .
Solution point % = (1.1911, 1.3626, 1.4728, 1.635, 1.679)
. * -7
Optimal objective function value £ = 7.8776 X 10 .

The relative error tolerance in constraint residuals AKMIN = 0.0008

The error tolerance in variables EPSi = 0.00001 ¥V i
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Quter Iteration 1

0 ' .
')\(' = (2,2a2’2,2)
(1) _ -
,% - (0,0,0).

SC = (7.75736, 1.0, 2.0)

g(l) = (0.03323, 2.0, 0.5)

(1) 60

AK =10 X 10

Inner iteration

é(l) = (1.15955, 1.28716, 1.38550, 1.46505, 1.70426)
C(l) _ . ' '
¢ = (-.76667, 0.00417, -0.023827)
(1) _ e '
Wi = (0.09883, 0.00417, 0.01191)
Ak = 0.09883

Updating of parameters

3 Active Constraints i = 1,2,3

n® - (0.08186, - 0.06302, -.12599), A =0
01(1) increasea to 9.29414
02(1) increased to 52.44928
g S incgeased £o 23.15088
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OQuter Iteration 2

X(l) = (1.15955, 1.28716, 1.38550, 1.46505, 1.70426)

v

Q(z) = (.27830, -.00120, ~-.00544)
2(2) = (0.29414, 52.44928, 23.15088)
k(2

= 0.09883

Inner iteration

(2)
X

g(Z)

(1.19807, 1.37601, 1.48774, 1.66416, 1.66479)

(0.14175, —.00162,‘—0,00545)
ﬁﬁ(z) = (0.01827, 0.00162, 0.00273)
axk?) = g.01827
Updating of parameters
&(2) = (0.08186, -0.06302, -0.12599)
1% = (-0.04160, 0.06244, 0.10922)
3 active constraints 1= 1,2,3.

(2)

o increased to 55.921

Quter Iteration 3

§(2) = (1.19807, 1.37601, 1.48774, 1.66416, 1.66479)



38

3(3) = (.13687, -0.00001, -0.00072)
(3 = (0.29414, 55.921, 2

g = (0. , . , 23.1509)

a3 = 0.01829

Inner iteration

CWW
n,

§(3) = (1.1914, 1.36313, 1.47324, 1.63544, 1.67807)
¢ - (0.00452, -0.00031, -0.00074)
(3) = (0.00058, 0.00031, 0.00037), axk® = 000058

f (é(B)') = 0.07895.

This.ié the optimal solution for sbecified stopping ériterion
AKMIN = 0.0008.

3.2 Example 2: Inequality constrained problem

Minimize f'(§) =2 - 1%6- (xlx2x3x4x5)'

Subject to < (X) =x, >01 1,2,....,5

1

Cipg X)) =i-x 3204i=1,2,....,5

+v

Starting- point %0; (2,2,2,2,2)
: *
Solution point X = (1,2,3,4,5)

. * -
Optimal objective function value f =1.0,
The relative error -tolerance in constraint residuals AKMIN -= 0.0008

The error tolerance in variables EPSi = 0.0001



Outer Iteration 1

0

X = (2,2,2,2,2)
. 9(1) -= 0 .
v .
Sc, = 1.0¥ i
1

0(1) = 3.46667 ¥ i

Ak - 10 x 1090

Inner iteration

39

_é(l) = (1.35159, 2.21458, 3.15082, 4.11547, 5.0933)

'Wﬂ(l) = (0,0,0,0,0,0,35159, .21458, .15082, .11547, .0933)

ark ) = 35159

Updating of parameters

5 Active constraints

AA(l) = (0,0,0,0,0,
‘67(1) 'inc?eased to
08(1) ~increased Fo
: 09(1) increased to
o (i) increased to

10

i=6,7,8,9,10.
.99039, .4847412, .3084211,
4.83063

5.6865

6.2857

5.3862

.2188432,

.1978085)
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Outer Iteration. 2

5(1) = (l.35159,v2.21458, 3,15082, 4.11547, 5.0933)

%(2)‘ = (0,0,0,0,0, .28569, 0.10035, 0.05424, 0.03482, 0.03673)

g(z) = (3.46667, 3.46667, 3.46667, 3.46667, 3.46667, 3.46667,
. 4.8306, 5.68664, 6.28569, 5.3862) |

a&? = 0.35159

Innexr iteration

¥(2) = (1.00438, 2.004, 3.0049, 4.0054, 5.00085)
wﬂ(z) = (0,0,0,0,0, 0.00438, 0.00395, 0.00486, 0.005399, 0.000854)
(2) _ 4.00539

AKK
Updating of parameters

» &(2) = (0,0,0,0,0, 0.99039, 0.48474, 0.308421, 0.21884, 0.197808)

A&(Z) - (0,0,0,0,0, 0.01006, 0.01533, 0.025028, 0.031898, 0.00273)

5 active constraints i = 6,7,8,9,10

L@

6 increased to 4.68405

010(2) increased to 8.76983

Outer Iteration 3 -

5(2) = (1.0043, 2.0039, 3.0049, 4.0054, 5,0009)



41

A g(3) = (0,0,0,0,0, 0.2136, 0.1035, 0.05864, 0.03989, 0.02287)
3(3) = (3.46667,. 3.46667, 3.46667, 3.46667, 3.46667,
4.68405, 4.8306, 5.6866, 6.2857,. 8.7698)
Ak - 0.00540

Inner iteration

5(3)

(1,2,3,4,5)

)
4y

(0,0,0,0,0, 0.00011, 0.000031, 0.000031, 0.00013, 0.000067)

f (X(3)) = 1.60018, AKK(3)
3"

= 0.00013

This is the optimal solution for specified stopping criterion

AKMIN = 0.0008.
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APPENDIX C

COMPUTER PROGRAM DOCUMENTATION

' This p;rticular section of the report contains the pertinent
documentation for the computer'prdg;ams designediand implemented in
conjunction witﬁ this research grant. Three different computer programs
were developed all based upon thé Augmented Lagrangian Penalty function
techniqué for Nonlinear Programming. These programs differ.from each
other primarily as a function of the type of unconstrained optimizer
" used. These programs are entitled ALAGl through ALAG3. ALAGl énd ALAG2
require élosed form gradient equations for the functions to be optimized.

. Whereas ALAG3 does not require gradient information be supplied by the

‘user.
TABLE I. ‘Unconstrained Optimizers for ALAG
Computer Programs
Computer Program . . Unponstrained Optimizer
ALAG 1 ' Fletcher algorithm using a quasi-
- Newton complimentary Davidon-Fletcher-
Powell update formula (P4)
ALAG 2 Variable metric method without line
‘ searches as proposed and analyzed by
Powell (P5) ’
ALAG 3 Same method as ALAGl except derivatives

are estimated by differences
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COMPUTER PROGRAM: -ALAG 1
LANGUAGE: FORTRAN

TECHNICAL REFERENCES: (F8), (P4)



b4

ALAG 1
1. PURPOSE: To minimize a function F (g) = f (Xl’ ey Xn)
subject to both equality and inequality constraints.
.Derivatives of all functions must be supplied in a
user subroutine entitled ALAGB (see item 5). An
-initial estimaté of the solution {not neceséarily
feasible) must be specified. This computer program

is developed from algorithm of section

2. USE: CALL ALAGl (N,M,K,X,EPS, AKMIN, DFN, MAXFN, IPR1,

IPR2, IW, MODE)

N An INTEGER set to the number of variables
n (N > 2).
M An INTEGER set to the total number of

constraints m (M > 1).

K An INTEGER set to the total number of

" equality constraints k.

X A REAL array of N elements in which the initial
estimate of the solution must be set. ALAG1
returns the solution x in X.

'EPS A REAL array of N elements, in which the
tolerances for the unconstrained minimizations
must be set. EPS (I) should be set so that

EPS (I)/X (I) = AKMIN, roughly speaking.
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AKMIN A REAL number in which the relative error
‘tolerance'required in the constraint residuals
must ‘be set. ALAGl will exit when max{|ci(x)|/
scaling factor for ci} < AKMIN. for the active
constraints {i}.

" DFN A.REAL number in which the likely reaction in
F(g) ﬁust be set. This is done in the same
‘way as fér QNWTA - see the QNWTA descriptionm.

ﬁAXFN‘ An INTEGER in which the maximum number of calls
of ALAGB on any'one unconstrained minimization
must be set.

IPRL An INTEGER controlling the frequency of printing
from ALAGl. Printing occurs every IPR1 iterations,
except for details of increases ﬁo the ¢ which
are always prinﬁed. No printing at all occurs
(except fof error diagnostics) if IPR1 = 0.

.IPR2 An INTEGER controlling the frequency of printing
from QNWTA. IPR2 should be set as deséribed in
the QNWTA documentation.

v " An INTEGER giving the amount of storage available
in COMMON/ALAGL/W(.). Set to 2500 unless wishing
to change the restrictions (see Section 5).

MODE An INTEGER controlling the mode of operation of

| ALAGl. If any positive definite estimate is

available of the hessian matrix of the penalty
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function, set IMODEI = 2 or 3, otherwise set
|MODE| = 1 (see QNWTA description). If
estimates of the oi-and Gi parémeters are
available (see item 8) set MODE < 0,‘o£herwise
éet MODE > 0. A normal setting fo; a one-off

job with no information available is MODE = 1.

3.  LABELED COMMON AREAS:

Certain labeled COMMON areas must be declared and set on entry to ALAGI.

COMMON/ALGAGE/C(150)

COMMON/ALAGF/GC(25,50)

COMMON/ALAGG/T (150)

Set scalé factors (>0) for the constraints in
c(1), ¢(2),....,C{M). Choose the magnitude of
these scale factors to give an indication of

the constraints evaluated about the initial
approximation x. If aﬁy constraints are violated
by an amount greater in modulus than that which
is set, thenAthe setting is increased accordingly.
These scale factors are transferred to C(M+1),
C(M+2),.7...,C(2M) by ALAG1.

Set the derivatives of any linear constraints on
entry rather than in ALAGB. This is the most
efficient and the numbers are not disturbed.

The manner of sétting is described in item 4.

If MODE < O is used, then set the parameters
01,02, o Om in T(1), T(2),...,T(M) and thel
parameters 0y,0,, «--,0_ in T(M+1),T(M+2),...;T(2M).

The meaning of these parameters may be found in

section of this report.
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COMMON/ALAGI/G2P(325) If |MODE| = 2 or 3 set the estimated hessian
matrix of the penalty function in G2P(1),...,
G2P(N* (N+1)/2). The manner of setting is that

described in QNWTA under the heading MODE. -

Local storage for ALAGI is through labeled COMMON areas. These
have been set on the assumption fhat N < 25 and M <.50. If it is desired
to remove either.or both of theséArestrictions, then it is necessary to
~increase the storage available in some or all of these areas. This can
bé.done by-definihg the named COMMON areas in the ﬁsers MAIN with the
increased storage settings, in which case the extra storage will be
effective throughout the whole prpgram. The.complete list of labeled

.COMMON used by ALAGl and the corresponding values of N and M are as follows.

COMMON/ALAGC/F M, K, IS MK ,NU independent of N-and M
" D/G(50) ' o _ 2N
" E/C(150) ' < 3M
" F/GC(25,50) : CON,M
" G/T(150) : M
: H/GP(50) o b (4 = max(,N))
" I(G2P(325) . ' N- (N+1)/2
" J/V(50) U
. K/WW(150) | 3u
" L/W(2500) o u?
" M/2z(100) : 2y

" N/LT(100) | 2M



48

4. ACCURACY: This iterative algorithm terminates normally when

the followipg convergence condition is met:

. max {Ici(x)[/scaling factor for c,} j_AKMIN fér
i an element of the set of active constraint indices.
A diagnostic message for abnormal termination is
printed when the program is unable to achieve the
requeéted accuracy. This méy be due to (i) a
mistake in programming ALAGE, (ii) there is no
feasible point (in which case o, > and c; ~ constant
# 0), (iii) EPS has been set too large relaﬁive to

ARMIN, (iv) the pfoblem is too ill-conditioned.

OTHER ROUTINES: ALAGl requires the use of ALAGB, ALAGZ, BQDMA,

MULDA, MULDB, MULDE, and QNWTA

ALAGB: USER SUBROUTINE The user must define a subroutine headed by

This
(1)
(3)

(4)

SUBROUTINE ALAGB (N,M,X)

REAL X(1) |

COMMON/ALAGC/F

COMMON/ALAGD/G (50)

. COMMON/ALAGE/C (150)

COMMON/ALAGF/GC(25,50)
éubrogting takes the vector X and sets
F(x) in F; (2) ¢;(x),..., c (x) in C(1),...,C(M);
(3F/

BXl

N 7 )|§-in G(1),...,G(N);
n
(Bci/aX yeees

)|= in 6C(1,1),...
1 X

ci/ox
n

-GC (N,I) for I =1,:..,M.
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ALAGZ: This subroutine evaluates the augmenfed function comprised
of the original objective function and penalty terms that is to be
optimized.
SUBROUTINE ALACZ (N, X, PHI, GPHI)
N and X as previously defined.
PHI is the value of the augmeﬁted function evaluated at X.
GPHI is the gradient of the augmented function evaluated at X.
BQDMA: . The purpose of BQDMA is to find the values that minimize a
quadratic of n variables subject to upper and lower bounds on some or
all of'fhe variables. |
. The quadratic is defined by
Q) = 1/2 X* ax - B%X
Subject to: |

BL. < X, < BU, i=1,...,N.
1 — 1 - 1

SUBROﬁTINE_BQDMA (N,A,IA,B,BL,BU,X,Q,LT,K,G)

N . an -INTEGER which must be set by the user to the number
of variables.

A a REAL; two aimensional array, each dimension at leést
N; the elements in the upper triangle A(I,J) I<J<N must
be set by'theAuser to the corresponding Aij in (1), and. .
will remain untouched by the subroutine. Elements
A(I,T) N31>J are used. as working space.

IA ~an INTEGER giving the first dimension of A in the
statement which assigns space to A.

B aiREAL array of at least N elements, The user must set

B(I). B is not overwritten by BQDMA.
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~ BU

‘LT

50

a REAL array oant least N elemeﬁts. The user must
set BL(I) to the lower bound on the pth variable.

If the bound is non-existent, set it to a veryAsmall
number like -1E75. BL is not overwritten by BQDMA.

a REAL array of at least N elements. The user must
set BU(I) to the upper bound on the Ith variable.-
If the bound is nbn—existent, set it to a very 1érge
number. BU is not overwritten by BQDMA.

a REAL array of at least N elements; BQDMA returns
the solution in X(I).

a REAL variable in which BQDMA returns the solution
value of the quadratic.

an INTEGER array of at least N elements, set by

BQDMA to a permutation of the iﬁtegers 1,2,...,N

(éee K and G below)

an INTEGER set by BQDMA to the number of free
variables at the solution (those not 'on their bounds).
These are the variables LT(1), LT(2),...,LT(K).

a REAL array of at least 3%*N elements. G(l){----?G(N)
are set by BQDMA to the gradient evaluated at the
solution point. G is indiréctly addressed so that
GkI) contéins the gradient with respectbfo the LT(I)
variablé, whence G(1),....,G(K) will be found to be
zero. G(N+1),...,G(3xN) aré used by BQDMA as working

space.



MULDA is a subroutine for use in problems which involve the

. : . . T R
addition or subtraction of rank-one matrices ¢ zz to positive

definite or semi-definite symmetric matrices A stored in. factored

form A = LDLT, such that the resulting N x N matrix

A=A+o EE?

is also known to be positive definite or semi-definite. Note that L is

lower triangular with gii;l’ and D is diagonal with d,

> 0.
iZ

SUBROUTINE MULDA (A, N, Z, SIG, W, IR, MK, EPS)

A

SIG

A REAL one dimensional array of N*(N+1)/2 elements

T
in which the matrix A=LDL™ must be given in factored

,forﬁ. The order in which elements of L and D are

stored is dl,R d

217831 g 2,232,...,3N2,...

dN—l’lN,N—l;dN'_.The facto#s qf'the matrix

A = A+ o0 E;T will overwrité thoéé of A oﬁ exit.

An INTEGER (Nil) which must be set to the dimension
of the problem.:

A REAL one dimensional array of N elements in which
the vector ;-muét be set, The array Z is overwritten
by the routiné.

A REAL Qariable in which the scalar o must be set.
SIG is not restricted to +., but if SIG<O then it
must be known from other considerations that A is

positive definite or semi-definite, apart from the

effects of round-off error.
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EPS

52

A REAL array of N elements. If SIG>0 theﬁ W is

not used, and thg name of any one dimensional array
can be inse?ted in the célling sequence., If

SIG<0 then W is used as work space. In addition for
SIG<0 it may be possible'td save time by setting in
W the vector v defined by Lv=z. The ways in.which
this can occur are described under MK bélow.

An INTEGER to be set so that |IR| is the rank of A.

'If the rank of A is expected to be different from that

of A, set IR<0. On exit from MULDA, 1&(30) will
contain the rank of ;.

An INTEGER to be set only when SIG<0, as follows.

If the vector v defined by Lv=z has not been calculated
préviously, set MK=O. If MULDA has beén used previously
to calculate Aflé; then ; is a by-product of this
calculatioﬁ and is stored in the W parameter of MULDE."
In thié case-tr;nsfer v to the W parameter of MULDA

and set MK=1. If z has been calculated as ;-= Au for

some arbitrary vector u using MULDD, then again v is

a by-product of the calculation and is available in the

W parameter of MULDD. In this case (or any other in

which v is known) set v in the W parameter of MULDA
and set MK=2.

A REAL variable to be set only when SIG<0 and A is

‘expected to have the same rank as A. 1In certain ill-
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conditioned cases a non-zero diégonal element

of ﬁ might becbme so small as to be indeterminate.
Two‘courses of action are possible. One is to
introduce a small perturbation in order thgt A

keeps the same rank as A. This is the normal course

of action and is achieved by setting EPS equal to

-the relative machine precision €. The other course

of action is to let the rank of A be one less than
the. rank of A. This is achieved by setting EPS

equal zero.

'MULDB - factorizes a positive definite symmetric matrix given in

A. This matrix is then used in MULDA.

" SUBROUTINE MULDB (A, N, IR)

A

IR

Must contain the elements of A in the order

811°%21° " 2 3N12822°%320 072

N2° T ON-1,N-172N, N-1" 0NN
that is as sucpessive columns of its loﬁer triangle).
On exit A will be overwritten by the factors_L and D
in the form described in MULDA.

Order of the matrix A,

An INTEGER set by MULDB to the rank of the factori-
zation.. If the factorization has been performed
suCcessfully IR=N Qill be set. .If IR<N then tﬁe
factorization has failed because A is not positive

definite (possibly due to round-off error). 1Imn this

case the factors of a positive semi-definite matrix
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of rank IR will be found in A. However the

fesults of this calculation are unpredictable,
.~' and MULDB should not be used in an attempt fo

factorize positive semi—definite matrices.

MULDE calculates the vector z* = A_l‘; where A is in factored form

SUBROUTINE MULDE (A, N, Z, W, IR)

A Must be set in factored form.
N . Order of the matrix A.
Z A REAL array of N elements to be set to the vector z.

On exit Z contains the vector z* = A_l z.
W A REAL array of N elements which is set by MULDE

to be véctor v defined by,L?QZ. If this vector is

not of interést, replace W by Z in the calling

sequence to obviate the need to supply extra storage.

IR An INTEGER which must be set to the rank of A.

QNWTA finds the minimum 6f_a function F(;) of several variables
given that the gradient vector can be calculated. - This routine is based

‘upon a quasi-Newton method described by Fletcher in (F8).

SUBROUTINE QNWTA (FUNCT, N, X, F, G, H, W, DFN, EPS, MODE, MAXFN,

IPRINT, IEXIT).

FUNCT An IDENTIFIER of the users subroutine.
N An INTEGER to be set to the number of variables (N > 2).
X A REAL ARRAY of N elements in which the current estimate

of ‘the solution is stored. An initial approximation
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. must be set in X on entry to QNWTA and the best

estimate obtained will be returned on exit.

A REAL numbef in which the best value of F(x)
corresponding to X above will be returned.

A REAL ARRAY of N elements in which the gradient
vector corresponding to X above will be returned.
Not to be set.-on entry.

A REAL ARRAY of N*(N+1)/2 elements in which an
estimate of the hessian matrix is stored. The
matrix is represented in the product form LDL
wﬁere‘L is a lower triangularvmatrix with unit
diagonals and D is a diagonal matrix. .The lower
triangle of L is stored by columns in H excepting
that the unit diagonal elements are rYeplaced by

the corresponding elements of D. The setting of

H on entry is controlled by the parameter MODE.

A REAL ARRAY of 3x%N elements used as working space.
A REAL number which must be set so as to give QNWTA
an estimate of the likely reduction to be obtained in
F (g)._ DFN is used only 6n fhe first iteration s0
an order of magnitude estimate will suffice. The
information-can be provided in different ways
depending upon the sign of DFN which should be set

in one of the following ways:
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DFN>0 the»setting of DFN itself will be
taken as the likely reduction to bé
obtained in F(;).

DFN=0 it will be assumed that an estimate of
the minimum value of F(;) has been set
in argument -F, and the likely reduction
in F(x) wili be computed according to
the initial function value.

DFN<0 a multiple IDFNI of the modulus of the
initial funcﬁion value will be taken as
an estimate of fhe likely reduction.

A REAL ARRAY of N elements to be set on entry to

the accuracy required in each element of X.

An INTEGER which controls the setting of the initial
estimate df the hessian matrix in the parameter H.
The following settings of MbDE are permitted.

MODE=1 An gsfimate corresponding to a unit
matrix is set in ﬁ by QNWTA.

MbDE=2 QNWTA assumes that the hessian matrix
itself hag been set in H by célumns of
its lower triangle, and the conversion
to LDLT form is carried out by QNWTA.

" The hessian matrix must be positive definite.

MODE=3 (QNWTA assumes that the hessian matrix has

been set in H in product form. This is
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_conVenient when using the H matrix
from one problem as an initial
esfimate for another, in which case
the contents of H are passed on
unchanged. |
An INTEGER set to the maximum number of calls of
FUNCT pérmitted.
An INTEGER controlling printing. Printing occurs
évery IPRINT | iﬁerations and also on exit, in the form.
Iterafion No, No of calls of FUNCT, IEXIT (on
exit onl&).
Function value
X(1),X(2),...,X(N) 8 to a line
G(l),G(é),...,G(N) 8 to a line
The values of X and G can be suppressed on inter-
mediate iterations by settiﬁg IPRINT<O. All
intermediate printing can be suppressed by setting
IPRINT=MAXFN+1. All printing can be suppressed by
setting IPRINT=0.
An INTEGER giving the reason for exit.from QNWTA.
This will be set by QNWTA as follows:
| IﬁXIT=O (MODE=2 only). The estimate of the
hessian matrix is not positive defini;e.
IEXIT=1 The normal exit in which |[DX(1) |<EPS(I)
for all I=1,2,...N, where DX(I) is the

change in X on an iteration.
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IEXIT=2 GTDXiO. Not possible without rounding
error. Probable cause is that EPS is
set too small for computer word length.

IEXIT=3 FUNCT called MAXFN times.
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COMPUTER PROGRAM: ALAG 2
LANGUAGE: FORTRAN

TECHNICAL REFERENCES: (F8), (P5)
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The ALAG2 program differs from ALAGl only in the type of unéon-
strained optiﬁizér routine employed. Therefore, this section will only
document thiq routine and the user is referred to the documentation
on‘ALAGl (except for the ALAGl routine, QNWTA) as being applicable to
ALAG2. The unconstrained optimizer routine for ALAG2 is VAMMA. The
purpose of VAMM is to calculate the minimum value of a multivariate

function.  This routine uses the BFGS variable metric method withoqt

line searches of the type analyzed by Powell (P5).

SUBROUTINE VAMMA (FUNC, N, X, F, G, SCALE, ACC, W, MAXFN) "
FUNC The name of the subroutine p?ovided-by the
usef. It must be deélared in an EXTERNAL
statement.
"N An integer whose value must be set to the
number of variables. |
X ' An array of at least n elements, set by the
user to initial values of the variables
(xl,xz,...,xn).: Usually computing time is
saved if theée estimates are close to the
final solution. - They are changed automatically
to the values that give the least calculated
value of the objective function. |
T A real variable that is set automatically to the
least calculated.value of the objective function.
G An array-of at least n elements that are set

automatically to the components of the first
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derivative vector of F fo; the final values
of the variables. Small values indicate a
successfgl calculation. ’

SCALE An array of at least n elementé, whose ith
component (1<i<n) must be set to a pdsitive value
that is a suitable change to make to Xg initially
in the minimization calculation. .About 10% of
the total expected_cﬁange in'xi is often a good
value. This array is called SCALE because its

elements should reflect the relative sizes of

(xl,xz..f,x ).

n
ACC . A real number that defines the required accuracy.
The calculation finishes when, for i=1,2,...,n.

changes in X of size ACC*SCALE(i) do‘not ﬁeduce
the objective function. When in doubt about the

: value of ACC it is usualiyvbest to choose a small.
value.

W An array of at lgast %n(n+l3) elements that is used
as working space. On exit from the subroutine the
first %ﬂ(n+1) locations of W give the final approxi-
mation of the second derivative matrix, stored in
fhe factored form used bylsubroutine MULDA.

3 MAXFN : An INTEGER set to the maximum number of calls of

FUNC permitted.
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BLOCK COMMON for VAMMA

COMMON/VAMMA/IPRINT,LP;MAXFﬁﬁ,MODE,NFUN
The five intégers called IPRINT,LP,MAXFUN,MODE and NFUN'are present .
in a common block in order that they can be reached by the user. |
In most calculations they can be ignored, but sometimes fhey are
useful, their purpose being as follows.
IPRINT This has a deféult value of zero, and is
unchanged by VAMMA. 1If IPRINT=0, then no
printing occurs except perhaps the diagnostic
message mentioned below. Otherwise the value
of the objective functioﬁ is printed every
| IPRINT| iterations. If IPRINT>0 the values
of X(.) and G(.) are ﬁrinted also. If IPRINT#0
the'final values of F,X(.) and G(.) are élways
printed. |
LP . This has a default value of 6, and is the stream
number for any output from VAMMA.
MAXFUN This has a default value of zero, ih which case
it does not influepce the calculation. However,
if it is positive,-then VAMMA finishes automatically
when the user subroutine is called MAXFUN times.
ﬁormal COhvergence can occur earlier.
MODE ' This has a default value of one, in which case the
initial approximatioﬁ to the second derivative

matrix is set automatically to a positive diagonal
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matrix. However, if a suitable positive
definite approximation is known, then it may

- be éassed to VAMMA in the first %n(n%l)
locations of W by setting MODE=2 or MODE=3. -
When MODE=2 these elements of W must contain
the lower triangle of the Hessian approximation,

B say, in the order B B

nl’

’ e . ,B .
B22’B32’ ’BnZ’ *“n-1 n—l’Bn n—l’Bn n When

11°821°8B30 0>

MODE=3 the Hessian apﬁroximation must be given
in the factored form used by subroutine MULDA,
which is also the form used to provide the
Hessian apprqximatién in W at the return from
VAMMA. A check for positive definiteness is made
automatically by VAMMA, and if it fails a diagnostic
message is printed. 1In this case the calculation
proceeds as though MODE=1l, but the actual value of
MODE is not changédi

NFUN " This integer is set by VAMMA tohthe number .of times

it-calls the user subroutine.
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' COMPUTER PROGRAM: ALAG3

. LANGUAGE: FORTRAN

TECHNICAL REFERENCES: (F8)
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The ALAG3 program differs from ALAGl and ALAG2 in the type of
unconstrained opfimizer routine employed. Therefore, this section
will only document this routine and tﬁe user is referred to the
documentation on ALAGl as being appiicable to ALAG3. The unconstrained
obtimizer routiﬁe employed wiéhin ALAG3 is referred to as FDQNW. The
purpose of FDQNW is to calculate the minimum value of a multivariatg
function. The method useq is the quasi-Newton mefhod of ALAGl in which

defivatives are estimated by finite difference techniques.

SUBROUTINE FDQNW (FUNCT, N, X, F, G, H, W, DFN, XM, HH, EPS, MODE,

MAXFN, TPRINT, IEXIT)

FUNCT The name of the subroutine provided by the

user. It muét be declared in an EXTERNAL

statement.

N An INTEGER to be set to the number of variables
(N > 2).

X . -A REAL ARRAY of N elements in which ;he current

estimate of the.solution is stored. An initial
approximation must be set in X on entry to FNQNW
and tﬁe best estimate obtained will be returned
on gxit.

F " A REAL number in which the best value of F(x)
corresponding to X above will be returned.

G " A REAL ARRAY of N elements which is used to store
an estimate of the gradient vector VF(;). Not

to be set on entry.



DFN

66

A REAL ARRAY of N*(N+l)/2 elements in which an
estimate of the hessian matrix BZF/(axiaxj) is

stored. The matrix is represented in the pfoduct

form LDL" where L is a lower triangular matrix

with unit diagonals and D.is a diagonal matrix.
The lower triangle of L is stored by columns in
H excepting that the unit diagonal elements are
replaced by the corresponding'elements of D. The

setting of H on entry is controlled by the

" parameter MODE.

A REAL ARRAY of 3*N elements used as working space.

A REAL'number which must be set so as to givelFDQNW
an estimaﬁe of the likely reduction to be-obtained'
in F (;). DFN is used only‘on theAfirst-iteratioq S0
an order of magnitude éstimaﬁe will suffice. The
information can be provided in different ways
depending upon the sign of DFN which should be set

in one of the following ways:

DFN>0 the setting of DFN itself will be
taken as the likely reduction to be
obtained in F (x).

DFN=0 it .will be assumed thaf an estimate of
the minimum value of F (;) has been set
in argument F, and the likély reduction
in F- (x) will be computed according to

the initial function value.
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DFN<O a multiple |DFN| of the modﬁlus of

the initial fgnction value will be taken as

an estim;té of the likely reduction.
A REAL ARRAY of N eleménts to be set on entry so
that XM(I) > O contains an indication of the
magnitude of X(I). This quantity need not be set
precisely as it is merely used in scaling the problem.
A REAL number to be set so that HH*XM(I) containé |
a step lengfh to be used in calculating G(I) by

t/2

differences. Set HH equal to 2 ‘where t is the

number of significant binary digits in the calculation

- of F.

A REAL number to be set on entry so that the accuracy

- required in X(I) is EPS*XM(I) for all I, (EPS > 0).

An INTEGER which controls the setting of the initial

estimate of the hessian matrix in the parameter H.

The following settings of MODE are permitted.

MODE=1 An estimate corresponding to a unit
matrix is‘set in H by FDQNW.

MODE=2 FDQNW assumes that. the hessian matrix
itself has been set in H by columns
of.its lower triangle, and the conversion
to LDLT form is carried oﬁt by FDQNW.

The hessian matrix must be positive definite.
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MODE=3 FDQNW assumes that the hessian matrix
has been set in H in product form. This is'
. * convenient when using the H matrix from one
problem as ‘an initial estimate for another,
in which case the contents of H are passed on
'unchanged. |
MAXFN C An INTEGER set to the maximum number of calls of
FUNCT permitted. Up to éN more calls may be taken
if the limit is exceeded whilsﬁ evaluating a gradient
‘vector by differences. |
IPRINT An INTEGER controlling printing. Printing oecurs
every IIPRINT| iterations and also on exit, in the
form
Iteration No., No of calls of FUNCT, IEXIT (on
exit only).
Function value
A(lj,X(Z),.;.,X(N) 8 to a line
G(1),6(2),...,G(N) 8 to a line
The valees of X and G can be suppressed on inter-
mediate iterations by setting IPRINT<O. All
intermediate printing can be suppressed by setting
IPRINT=MAXFN+1. All printing can be suppressed by
setting IPRINT=0,
IEXIT An INTEGER giving the reason for exit from FDQNW.

This will be -set by FDQNw.as follows:
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(MODE=2 only). Ihe estimate of

the hessian matrix is not positive-
definite.

The normal exit in which |DX (1) | <EPS(I)
for all I=1,2,...,N, where DX(I) is

the change in X on an iteration.
GTDX>O. Either due to rounding errors
beqause EPS is set too small for the
computer word length, or to the
truncation error-in the finite difference
formula for G being doﬁinant.

FUNCT called MAXFN times.
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