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~PART A. INCOMPRESSIBLE FLOW

1., Introduction . .

The purpose of the stebility theory of the laminer boundary layer is

- 40 determine whether a small disturbance introduced into the boundary layer

will amplify or damp., If the disturbance damps, the boundary layer should

remain laninar. If the disturbance amplifies, and by a sufficient amount,

then transition to turbulence should eventually take place. The stability

theory cannot predict the location of transition. What it can do is to

establish those states of the boundary layer which are most likely to lead

to transition,.to identify those frequencies which are the wost dengerous,

and éo in&icate how the external farameters can best be changed to avoid
transition.

Tt will be the purp;ée of these lectures to give the fundementals of
the stability theory, to establish its chief results, and to give an idea
of +the ihysical mechanisms at work. Detail, except for a few topics felt

to be of particular importence, will be left to the numerous references.

Of the laiter, there now exist a nunber of review articles and itwo books.

The articles are by Shen (1964%), Stuart (1963), Reid (1965), and Drazin and
Howard (1966). The latter is devoted execlusively 1o the inviscid theory.
The article by Reid is particularly completé on the asymptotic theory. The
books afa by Lin (1955)'and Betchov and Criminale (1967). An older review
article that can still be read with profit is Prandtl (1935). The well-
known book of Schlichting (1960) on bounda&y»layer theory.includes two -

chapters on boundary-layer stability.
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There has always been a certain air of mysﬁery about stability theory
for many people. This is probably a result of ‘the elaboraﬁe mathemgtical
procedures that were necessary to arrive at any results. The well-developed

inviscid stabllmty theory suffered the embarrassment of predlcting complete

stability for itwo of the most common flows, the Blasius boundary layer and

'flow in a pipe. The viscous theory was of such a complexity thet almost

no general results could be established. In splte of the many difflculties,
the ins£ab;lity of the incompressible Blasius boundary leyer was worked out
by Tollmien (1929), and fhis theory received confirmation in its essential
aspects in the classlc experiment of Schubauer and Skramstad (1947). ‘

Since about 1960, the approach to stability theory has been considerably

modified by the modern high-speed digital computer. Instead of the painful

extraction of a hgndful of' numerical results from elaborate and time~consuming
caleulations of dubious accuracy, the computer can produée an immense gquantity
of accurate numerical results direétl&_fr;m the differential equations. The
ease of: producing these resulis makes it possible ta not only solve any specifie
ﬁroblem, but also.to fill in ﬁhe gaps in our undérstanding which still exist
because of the difficulty of analysis. For ekample, the theory deals almost
exclusively with disturbances of neutral stability, which from a practical
standpoint gre of limited interest. The computber permits the study of the
much more interesting disturbances of maximum aﬁplification, vhich can be
obtained as easily, indeed more easily, then the neutral disturbances.

In épite of the limitations of the theory in producing numerical results,
it is s%ill essential for our understanding of boundary-layer stability and
as a guide %o the formulation and use of the compuber programs. Fo% this
reason, it will be covered in these lectures, and will provide the motivation
for the entire subject. The computer will elaborate and provide the main body

of nunerical resulis.




Before we get into the main body of the sublect, a few _ﬁords are in
order‘ to orient those who are ne# to this field., The stebility theory
considers indiviéual sinusoidal dis‘burba.ncrele whose amplitude is small
enough so that a linear theory can be used, 'The wave numbér in the free-

stream direction is o{(:f 2w/ N\ ; vhere A is the wave length)., The

i wave may be two~dimensional, with the normal to the wave front parallel to

the free-stream direction, or it may be nbliq_ue', with the wave normal at

an angie \Jr to the free-stream direction. The disturbance propegates in-

the downstreem direction with phase velocity ¢,.. The ﬁ_hase velocity is

alvaeys less than the free-stream veloeity, M, , so that at some point in

the boundary laiyer the mean veloeily is equel to ¢ . This point is 'ca.lled

" the eritical ﬁoin’c., end it plays a central role in the methematical theory.
At e given distance from the origin of the boundary layer, or better,

at a given- Reynoléé number R, ( = U xS, where L~ is the kinematic

viscosity), the disturbance may be in one of three states: demped, newtral,’

or ampJ,.ified. The numericel resulis obfa.ined from the stability theory are |

often presented in the form of neutral-stability diagrams which show graphi~

cs;lly vhich state a gilven disturbance is in at each Reynolds number. There

are two.genera.l kinds of neutral-stability diagrams to be found, as is shown

in Fig. 1.1.

..... ' . STABLE
s STAGLE o | 5
e
_____ i
STAGLE
o £y .
{a) Inviscid stability - (b) Inviscid instability
[N ‘W"— l“\mi(n-x w:.'_"'ud‘}

Fig. l.1. Typical curves of nevtral stebility .
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In these diagrams? o is blottéd aéainsﬁ Rx, I&sturbanceg are neubral

at those values'qf ® and Ry vhich lie on the contour marked neutral; they
are ampl?fied inside of the‘contours and they are damyad‘?utsiée of the
contour. With a neutral-stability curve of type (s.)‘v all wave numbers

are damped a@ sufficiently high Reynolds numbers. Tit this case, the mean

flow is sald to have inviscid stability. Since decressing Reynolds number,

or increasing viscosity, can lead {o instability, it is apparent that vis-

cosity does not act solely to damp out disturbances, bub actually can have:

8 destabilizing influence. The flst plate, or Blasius, boundary'layér is

an example of a flow which is unstable only through éhe action of viscosity.
With a neutral-stability curve of type (b), wave numbers smaller than s »
thé ne@tral wave number at infinite Reynolds number, remain unstable no
matter how large the Reynolds number becomes. A mean flow with a type (b)
neutral-stability curve:is said tO»havé inviscid instability. The bhoundary
layer in an adverse pressure gradient 1s an example of a flow of_this kind.
In both cases (a) and (b), all disturbances With o < ofme are unsteble
for some range of Reynolds numbers. The Reynolds number, K.. below ﬁhich
no amplification at all is possible; is called the eritical Reynolds number.
It is often én objective of the stability theory to compute Re. , although
it must be cautioned that it has a limited significance and is oftgn not the
best indicator of the relative instability‘of.various ﬁean flows. .

Although the wave number is a useful quantity in developing the theory,

~‘the frequency, which is equal to ™« c,. ; is more useful in practice. A dis~

turbance which is introduced Into the boundary layer with a particular fre-
e _-::1:,!_,-'-'

guency will preserve that frequency as it progresses dbwnstreah;ﬁwhile the

wave number will change. A frequency ¥ which crosses the unstable region
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will be démped from the leading edge up to R. , the Tirst neutral point.
Between R. and R, , the second neubrel point, it will be emplified;

.downstream of Ky it will be damped again. If the magnitude of. the dis-

turbance becomes large enough befdre Ry is reached, éhen’the nonlinesr
processes which eventually lead ﬁo:transition will ﬁgke éver, and the
disturbance will continue to'grow even though the linear theory says it
should damp. '

The theory can be used to calculate amplification and damping rates
a5 well as the wave number,.Beynolﬂs number and phase velocity of neutral
disturbances. TFox example, it is possible to compute the amplification rete
as 8 function of frequency at a given Ry . The neutr;l—stability curve only
identifies tﬁe range of uns@able frequencies, but the calculation of the
amplification rateg tells how fast each frequency is growing, and which
fréqnency is growing thé~most. Perhaps even more useful than the ampli-
fication rate is the overall growtﬁ of é disturbance of constant fraguency
as it travels through the unstable region. This result can be obtained from
the theory as a supplemenfal calculation once the amplification rates are
known. Consequently, it is possible to identify, for each initial spectrum,
the frequency which has the largest amplitude st each Reynolds number. It
is presumably one of these frequencles which, when it reaches some criticel
amplitude, friggers the whole transition proéess.;
¥ OF THL
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2, Derivation of Btability Equations - f

2.1 TFormulelion of theory

The conventionsl form of the theory will be used th_roug}iout these
lect‘ures'. That 13, 'Ehe actual boundary layer is repla:ce.d b;gr, 2. pa:rallel
flov bhaving the same veloeity profile as the boundary layer at a particular_
Re;ynolds nuni’oe:ru A single Fourier componént is considered as the dis%:urbance.
It extends to infinity both upstream and downctream and grows or damps in
time, not in space. However, the physical prjoblem suggests a disturbance
growlng in space, and the theory could be carvied through for this type
of disturbance.

The Navier-Stokes equations of s viscous incompressible fluid are:

'QH FuM o e o 3w o 1o (v $ U gut) (2.1)
It ax _ 91 3z P ax T 33" £ .
T z 2
v 7 v A o W r = __.‘.3__'9 4+ I ('a_g.r + 9—-"- 4 9-1;)
3 &
2w W Jur dw 11p (G, Tur gﬂ)
% S v + v a% 4w xd . 3% T+ % a?z 2* (2,3)
W T, W ' '
ax ¥ 9 , (2.4)

The x axis can be considered to be in the direction of the free~stresm
velocity; the y axis is normael to the surfacé; and the z axis is normal
to the x and y axes. The velocities U , v s W are in the %, y, 2
directions, respectively. The density is P the pressure p , gt}ﬁ"the
kinematic viscosity » = /m/e « The first three equat:ions are tl‘ie"'x, ¥, |

z momentum equations; the fourth equation the equation of conbinuity.
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2.2 Linearization of equations

A1) flow qﬁantities are divided inbto & mean flow term and a fluctuation
, bt

: £
term: : . A

i

§Chga ) = QUuypn v Plmyd) (2.5)

-

The mean-flow terms (denoted by cepital letters) satisfy the boundary-layer

equations, which are

. * l l
% .2 U 9 _ 1 9P U -
| uaﬁ'x Y 5_1 - W T e 3 + 93“ . (2.6)
1 eP. . |
o 2 - -Q 3—-:( o (2-7)
+
14 aw v oLwaw ] . v 9“:"\:. (2.8) -
o 2 3z g @ 2
W, Ay, 3_1{’ T 0 . ' . (2.9)
¢13 2 =

in the linear case it will not be npecessary to distinguish between
‘the undisturbed mean flow and the mean flow in the presence of a disturbance.
The replacement for (2.6) in the nonlinear case is given in Section 10 by
(10.6). When the expressions {2.5) are substituted into (2.1)-{2.%); the
negligible mean~flow terms (by the boundaryniayer approximation) dropped;
the mean boundary-layer equations subtracted out; and the nonlinear terms

neglected; there remains the following system of equations:

' ' ey
?L*wu'."l‘+u°i-'+v‘93‘ +V3—“+Wa-
Y % 2 24 o 2
| 1y o 2 2,10
cw oo oL ua..‘_"z+9_“;4 g_ﬂ“t) ’ (2.10)
ot ¢ 3% 2 9z



o f o ® g 9%
dw v ou! aw P w r ‘U'! q’l\r Y Fwr rw 'al\.l"
i t ) Blz 9;[ Ed
¢ : gw' | di’ , ow
W Wwo- -J-ai U'( P 'ﬁz + '—1)
3 { 2z ax ax 2

3_‘_," 4 g_‘" T a‘iﬁ':
n 3 g

2,3 Reduction to perallel-flow equations

The above equations are still too complicated and must be reduced

further. If it is assumed that all velocity fluctuations are of the same

order of magnitude, and all derivatives of velocity fluctustions are of

the same order of magnitude (but possibvly different from the fluctuations),

then the application of the boundary-layer relatlions to the mean flow
quantities will result in the desired simplification. These relations

ares:

' 2 7 9
L vs £ <
Ve IL"W' 3/3 3‘a€y Jz

The terms with velocity fluctuabions are compared separately, and those

with derivatives of the fluctuations are also coﬁpared separately. The

equations reduce to

# i
- ¥ U LT L + W % =

3’ LTy
)£ ¥, I Iz g

(2.12)

(2.13)

(2.14)

{2.15)

.
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! ' LV o1 o, .

% 2t a 22 {9y
! i 4 . o
a_‘f, + U W + v W AW 3_}2" = - a_t" + VZ\W“ (2.17)
oL % -3 3z {2 .
i i
(Al ) av! ?_\,_"f - U - (2.18)

—
Y ara 2z

Nﬁw a close inspedtionlreveals that.the coefficients of the v' terms in
(g.lﬁ) and (2.17) are an order of maganitude larger than the coefficienfs
~of the 9/9x%. and §/32 terms on the right-hénd sides, while in {2.16)
the'coéfficient'of v' is of the same order as the other two terms. Since
v e U, W for the l’nearization to be valid, the +' 3’\{/965 term can be
dropped from (2.16). iﬁ (2.15) and (2.1?), elthough aujgu and W /32
are an order of magnitude larger than 1L and W , the v' ol 24 end \r'a\ar/gy
terms are not necessarily larger than the terms immediately preceding and
following, because although V' is alvays small, the derivatives of n' and
v’ do not have to be smell. Conseguently, (2.16) is replaced by

! i .
Wy W w2 2% L Gy
At KL 1z R 2 (2.16a)

and (2.15) and (2.17) remain as given. The final approximasion is to con-
sider that for disturbances for which the wé.velengbh is not too ELong, the
mean-flov quantities will bg slowly varying functions of X and £ compared
with the fluetuations. Therefore, ¥ and W can be taken as ;E'L_J.r"mtiéné of

né' alone, and the stability of the veloeity profile at a glven x is con-

sidered independently of the rest of the boundary layer.

4
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lhe final system of equations (2.15), (2.16a), (2.17), (2.18) is the
same as would have.been obtained by meking the assumpbion o? parallel flow

&t the outset. This assumption is

o

Uz Uly) , W= W, V=o | — (2.19)

The argument given above that led to these equations ls far from rigorous
end is included mainly to point out the terms that are neglected in the
parallel-flov equations., These equations are the basis of alwost all
gtability investigations. They are exact for the flow in a channel, but
are only an approximastion for other flowso. Their adequacy is best tested
by cqmpgrison'of the results with experiment., Also the megnitudes of the
neglected terms can be checked a posteriori, and it is hoped that some dayv
& more exact theory will be available fqr.comparisona

2.4 Nondimensional equations

Before proceeding further; the equations will be written in dimen-
sionles; form. The characteristic veloecity is Z&‘, the free-stream velocity
in the x* direction; the characteristic length is § , the boundary-layer
thickness; and‘the characteristic pressure is pf s Lhe free-stream pressure,
If.the dimensional quantities are designated by asberisks (except for the.

boundary-layer thickness), the nondimensional quantities are

-

&g , ."f > ‘ ‘r.
u"-:..b.‘_.a 5 v:_v_? ;'I,{:E‘% ,"\J\F:.}-N———;
'3 Y, LA W
. x* _ont - at oy '
X’-s- ; ’j-% ; %=-§  ;o= ?%74; (2.20)
.
p=t
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and the Reynolds number ils defined as

@
\

oA

R, = l? (2.21)
v
.. We define the boundary-layer thickness to be equal to %f at the point where
U = 0.999 IL? . | For the Blasius boundary layer $VRz/ x*= 6.0. The
dimensionless equations are the same as (2.15)-{2.18) except for the coef-
ficient of the pressure terms and the replacemenﬁ.of »r by ¥/[35. The
pressure 1s nondimensionalized with respect to'the free~stream préssure
rather than the more usual P*lﬁz in order to mske the development here
correspond more eclosely to the derivation for compressible flow to be given

later. The dimensionless equations are

Lo, e, 4l N N
— — i — == . R V u 2.22
av' o, et L e U S | N P |
AT TR A R A T = A (2.23)
R T ey TR =
a—v_{’ 4+ u a&rt + w ?-\:-’? + '\!" ‘.l.-.-w - --:E-i-—;-i ‘B.-P; + -i. VL\'\F# (2. 2’"‘)
. t}4 a2 dn g‘% 1 - R

w9 vt : '

PV ?"55 + 51 = 0 (2.25)

2,5 Boundary conditions

The boundary conditions are that the no-slip condition applies to the

disturbance velocities at the'wéll,

1]

WiY= 0, viev=o, wil=o (2.26)



and that the disturbances go to zexo a5 M - 2 .

”’(‘j} v U, .V'Cg\ w0, w"t.‘rg\ ] a; j 5 W ‘ (2.27)
Since all of the boundary conditions are homogeneous, it can be expected

" that solutions will exist only for particular .combinaﬁion's of Rg and the
parameters of the disturbance ( o , fiy 5 C ;l see next paragraph). That
is, 'bhé stability problem is an eigenvalus problem. The values of oy,

QS s ¢ and Ra for which the boundary conditions can be satisfied are
eigenvalues, and the corresponding amplitude functions are eigenfunctions.

2.6 Introduction of Fourier components

. The final form of the dilferentilal equations, where the coefficients
gre functions only of M os end ¥ , 2 , © appear only as derivatives,

suggests the following type of disturbance.

g(ﬁ,ql%, 7&} = TC!‘}\ 2Rp [.iCO(BX-t' Qs% - W\slcl. 5&] | ! (2.28)

In (2.20), 2(y\ is a typlcal complex amplitude function; oy and‘ Qa are the
dimensignless wave numbers, ¥ = 2w § /A, , Bs = 2T §/X\: , where Ax and
3\: are the wavelengths in the ¥ and 2 directions; respectively, and

d 1is the boundary-layer thickness. If ¢y and Q; are real; then &

complex ¢ will give a disturbance that grows in time. With
N - (2.29)

the phase velocity is C. . The dimensiorless i‘requencf}r @ is %5 ¢y, and
V. G is the time derivative of the logarithm of 'Ehe amplitude,

{ \
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LAyl oy o - (2.:30)
iql dt ' : : |

We shall refer to dQy¢; as the time rate of amplifica’bion. It is also

possible to take ®; complex and ug < real, thus providing & disturbande
* that grows in space. All results to be presented here wiil e for real
ofs and complex ¢ . In (2.28), only the real part of ¢ is to be con-

sidered to have physical meaning.
of < v : .
Real ﬁ = & ? [ql\' cos (0{5 ¥ + Q& - da Ci- kl- z ' : (2:: 31}

-c‘h Sin(Hg% 4 B2 - %5 o :b]]

'Equa:l;ion (2.30) gives the time rate of amplification, but we also
neefi to know the épé.ce ;'ate of amplification in order to compute the
overall growth of a dist'ufbance as it travels through thg boundary layer.
. The spaée rate can be aobteined from the time rate only if tﬁe' prop‘e:_r' proﬁ-
agation'velocity is knovn. When a wave packet made up of individual waves

of the form

2yp i (oty~ wif:‘
propagates through a dispersive medium, i.e.; & mediun, such as the boundary
layer, where the frequency (v is a function of o s each frequency advances

with the phase velocity

Ce-'-‘.

#1g

.(2.‘32)
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but an overall quantity such as the ensergy of the wave packet advances
with the group velocity
g = Sw- | (2.33)
Ad |

{

- It seems reasonable that the propagation veloclty needed to obtain a space

rate of emplification from (2.30) would be the group velocity rather than

the phase velocity., Therefore, we write

Lodglh | % | .
gl Ax ¢ : ; (2.3k)

In terms of Ry,

Lodll L g %G

(2.35)
' I ks q
end the ratio of the amplitudes at two Reynolds numbers is
E’L : o ’ L
192 5 Ci S '
—-‘1.. = L b S 4&5 ) . (2.36)
“lan R4 ‘

where the ihtegration will normally be carried out for e constant dimen-
sionless frequency. A commonly used form of the dimensionless frequency
which varies as the frequency for a constant free stream is -

&

‘ - TR - s C\-M
F= - = - (2.37)
S

4

Fquation (2.34) has been demonstrated by Gaster (1963) to be correct
for small amplification rates. Unfortunately Lhe group velocity requires
some additional caleulations to be made, and it is difficult to resist ‘the

ilim



?émptation ‘to simply replace it with the phase veloclty. This temptetion
is all the more attractive in that ¢, rarely differs from <y by more-
than about 15%, anq, perhaps more important, eﬁcellent agreeméht is
obtained vith éxperiment by using Cy. . Another difficu%ty with the‘group
. ‘velocity is that if there is a region of anomalous disggrsion ( dcufétd_
changes sign), the group velocity'no longer represents the veloeity of
energy propagation in ‘this reglon. In the coméressible shability the&ry,

we will find that Just such regions can actuslly occeur.

15
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3. Reduection of Equations to Two~Dimensional Form

Tnepection of (2.22)-(2.25) reveals that w’ and W ocgur ohly in
b/az terms except in the z momentum.equation. Consequent}y, ir thé-
‘disturbanc.es have the form (2.28), and the X, 7 &xes are gotated a’ﬁout
© . The ¥y axis so that the new z axis is p;ara?.lel to0 the wa.ve,;front, the =z
derivatives in tbe nev coordinate system must be zero, and the w’ and
W +terms will drop out of {2.22), (2.23) and (2.25). This special
coordinate system is called the tilde system. If, further, the ‘rgference.
veloelty is changed from U o luff' = ¥ cos V , where. V¥ is the angle
between the wave normal and the x'a.xis,. then the renormalized equebions

_in the tilde coordinate system are ' : o

b e ~r Ap 11 2 2” 2.,
gu:' + U ?-%' y v ’-{-y = -—-P-‘-,_,_ o 4 (9_3‘; -+ ‘L‘f.') (3.1)
i ax R AT Rs \ 2% %!

7 ~ N I i o f ) .
I oy $It g R ;"1- 3—'2' |
i 9% I 5 8 X “

ot A oy v
W A g L (?-‘-‘-’ ) e
3z x g ¢ Ry \ 2% 24y
fep, o
S " (3.)
T |
where | [
s . . Tq"‘ r~1 'U'"
i= % Cog Y Re = Ry cosVy 0w s — = e
. ! 8 . 5 # iz;a ' w | (3.5)
A W’ o - N )
W= e ; :
W



. : ;
and : ' .

B Wesy |, By= Reesw . ¢ (8

The original and tilde coordinate systems are shovn in Fig. 3.1.
. N 4

%
LS wave oo

\
A .
\
. S
Ed

Fig. 3.1. Original and tilde coordinate :systems

tha aiagiell sgplem, (Bdiv ) &F \?ﬂ)-gﬂﬂ?&é i B < :
The system of equations (3.1), (3.2) and (3.4) is)identicael in all
respects to the equations for & two~-dimensional disturbance in the

boundary la.{er i’(.( ’3\ at Reynolds nwnbe:g- Ré ?. +The transformation
. formulas are '

e

PRI Y

X
nooc

U+ W temd W= - Udm oy ¢ W
W= o e owtanap %= Aoy o+ ow'
. : (3.7)
¥ o= v/ cos v _
(= '.

LeosW & 2 sinV T T O-USiny 4 o2 cos
The dimensional normal velocity is ﬁﬁcha.nged by the transformation, bub
. . [

the dimensionless noymal velocity must change because of the change in

w1

R Quap v
|



the reference velocity. The transformation is; 'cf course, only valid
for disturbances of the type (2.28) with a vave, front at a filxed angle.
The relations between the wave muibers and wave velocities in the two

coordinate systems are

% ‘[L ~t

;21 = (6{52'1“ @5] = &g I‘Cﬂs\l-f ” C = £ | (3.8)

Al'bhough th.e dimensional phase veloclty inrthe‘;. ‘direction is gf“lcas\[f P
tﬁe dimensionless phase veloclty ¢ is thz same es ¢ because of the
difference in the reference’ velocities in the two cases.

Since ﬁfﬂ;\ is different :f‘oz_" each Y , a different eigenva:‘tu'e problem
must be solved for e;a.ch Yr . The only simplification is that' & ;icwer
order systeml of @ifferentisl equations can be used.. However, to-obtain
the disturbance velocities i:t' and w' in the original coordinate system,

it is necessary to know: i/ s Which means that the 2z momentum equation

AT VK U T S g“__‘\;i * 9w') (5 9)
Lard [od > et . ot L]
i% 9% o Rs \ 9% ”

e . !
must be solved. Note that because of the term ' AW/ A'J s bhere will
alvays be a w’ component as long as there is a‘.’%' component. A norma.l
fluctuation velocity always gives rise to a f;qctua'tion in any;; qm'ti'ty
whici. has a normel gradient. * . \ v
If W=0 in the original coordinate system, Y, 4 £ ; il.e,, the
boundafy Jayer is two-dimensional, A'lz :{s 1denti¢al to U , and the trans-

- formed equations for a three~dimensional disturbance at angle TP' are

precisely the equations for a two-dimensional .distﬁrbance at a lower
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Reynoids number R; .Cvs\{f + This is the conte;rt..of the celebrated theorem
of Sq_ui‘re tl935). Consequently, if‘ the minimum Reynolds number for in-
stability of two-dimensional disturbances is Re., then it follows that

the minimom ﬁnstable Reynolds number for three-dimensiongl disturbances

e.;l:. vave angle ¥ is Re /cos Y. It is in this sense tha{; the statement

is made’ that the most unstable disturbance is a two-diménsiongl disturbance.
Obviously, if the complete stability characteristics are known for two-
dimensional t.'listurbances, then the stability charecteristics of all oblique
waves can be obtained. For a wave at angie V and Reynolds number Ky with
‘xﬁg'sers os and P’; ; ."c.he time rate of amplification is equal %o 3{'5 ¢; Cos Yy
where Ea = g ]Cos\'f is the wave number of a two-dimensional disturbance at
Réynolds nwnl;er ﬁs = Rs sy . It is pbssi‘ole , depending on the exact
éha.pe of the unstable region in an o, R; plene, that an o J fs which is
stable for W=0 is urfstablevfor some range of nom-zero \J . Since the

. stebility characteristics of a three-éiimensional wave can be deduced from
'those.oi' a two-dimensional wave, the subsequent analysis will be for a two-
dimensional wave.

REPRODUCIBILITY OF THE
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L. Special Forms of the Stability Equations

4.1 Orr-Sommerfeld equation

The Fourier components of the flow quantities are defined to be

vy (X- ¢ £ P jaglk~catl

£y4) 2 LoV A= KO e
L R kel (k1)

LJ'CJ(, 9 ;(;\

N L

[

. . &y CXmg
vy, £ = Ty e ¢4
(1£ ? is replaced by —\§' , then ? is the amplitude funcition of the
stream function. This procedure is the usual one, but the present.
derivation is chosen te¢ correspond with the course followed in com-

pressible flow.) Substitution of these relations into (2.22), (2.23)
and (2.25) yields

1 ‘ i t’f‘ s ! " z : -
(U~ + U oo 1T 4 - o T : (4.2)
L g, etul"" . .déga ( 5 )
W g s - B w5 h ) (4.3)
¢ W Rs '
it s ?‘== o | (L.4)

The primes now refer to differentiation with respect to y . If (k.2) is
differentiated with respect to 4 and 7' and T eliminated, a single 4th-
order differential eguation is obtained for ?’ .

% u i w' 2 4
(- e)(g"- 59) - W = -— (3%~ 24"+ %) (h5)
LAY

This is the Orr-Sommerfeld equation. The boundary conditions ars

-To

i
.
4
!
3




9lo) = 0

) ?‘(9) =0
(4.6)
) g)Cg\'—VO , 6;‘(,3\__;7 (4] wsl Ig-—-vﬁﬁ
.2 Four Pirst-order eqﬁations \

It is also possible to write (L.2)-(4.L) as four Pirst-order

eguetions in terms of £ 3 £ , T and g . In order to correspond with

the compressible-flov theory, these are written as

. ! oo
-Z,: £ ) ZLt + ; Zg = Q ] Z. = ,‘;{.‘z i (4.7)
. . Q :
The fourrequations are
2! = 2, (4.8)
2. o= (1R #3120 + R WE + idRy 2 (4.9)
2. = -iZ (¥.10)
el 14 “u %1 2
24 = - %oz - [.( MPARE SR ] 2 (L.21)
Rs \ . Rs
with the boﬂndary conditions
ll_l (U} = 0 ! %3(0) = g
(k.12)
&l{q‘ - O i %3(4'3\ - 0 ag g - 0

D]



h;3 .Simp;ifiéd forms of the Orr-Sommerfeld equation

.3.1 Free stream

The Orr-Sommerfeld equation will now be applied to three simplified
| situations: to the free-stream, where ¥ =1, lL'z.a s 1" = 0 ; to
'iﬁviscid disturbances, where 'qéﬁg-vua; ‘and to Viscbus layers within

‘the boundary layer.

In the free stream, {%.5} can be written

2

" R,s@-c\(i: -) 9 - (i %) g (4.13)

Since this eguation has constant coeflficients, the solutions must have the

form
_ SR . S
giyy = Ae? | (1 124)

When this form is substituted into (4.13), a quartic equation for the
characteristic value A is obtalned (the term eigenvalue is reserved for '
those combinations of Dy s ﬁ5 ; € vwhich provide soluiions of the Orr-

Sommerfeld equation and boundary conditions).

Z

i %y Ry (- <) (X’.- 0(;) = (\L“ “:) o {4.15)

The four solutions can be written down -y inspection, and are

. . %
Verh L A=l inrgeal .36

Only two of these characieristic values satilisfy the boundary conditions

et infinity. They will be called A, and As .
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. "

r
)5| = - ,O{S ; )\J = - [“(; + el Q;;Cl-ﬂ\] (li-.l?)
The corresponding cherazteristic vectors A are, from (4.8), (4.9),
(4.10), (4.11), and leaving out A‘_{“ s

Oy .
T Y

n

A

i

(4.18)
0

As

Tag (1= <)

angd

b
f

| K
= ] [a’g + 1o%g Ry Ct—c\J -

| (%.19)
N

>
ube

i
o

)
The vector A' 1s the inviscid solution, and is just the linearized inviscid

@)
solution over a wavy wall of wavelength 2W/u; . The second vector A" is
the viscous solution, and represents a viscous decay.

4,3.2 Inviscid equation

The inviscid solution in the free stream is obtained from the inviscid
equation

(4.20)



which is the free-stream form of the complete inviseid eguation

n

U
U-¢

W

g" - g -

g = o ()

(4.21) is obtained from "oh-e complete Orr-Sommerfeld equation by taking
the limit o Ry-poo. | |

Since (_l.L.El) 1s only a second-order equetion and the Orr-Sommerfeld
equation is fourth order, only two instead of four boundary conditions

~can be satisfied. These two conditions are
Qey =0 ; QL4) v o a5 My ¥ & : (4.22)
As is usual in inviscid flow, the normal velocity at Y= 0 1is zero, but

the no-slip condition is not satisfied.

4,3.3 BSimplified viscous equaticn .

Since instability occurs at large Reynolds numbers, «z& will be

large and, consequently,
A : .
A & - [ig g a-a)] (4.23)

It is interesting to observe thai the version of the Orf-Sommeri"eld

equation that leads to (4.23) is

v

(A= - ;“'5; | S 2y

Both (k.21) and (4.2%) are the basis for important further developments.
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5. Inviscid Theory

The inviscid equation, (4.21), is important for two reasons.
First, it is possible that there are situations where ?iécosity is of
little importance in the stability problem, except as it establishes
the mean flow, and a purely inviscié stability theor& is applicable.
Second, thé asymptotic viscous theory, where ™3 Ry is large, uses
the inviscid solutions as two of the necessary four independent solutions.
It is important to clearly distinguish between these two separate uses
of the invisecid solutions. ©Since the inviscid equation is much éimpler
tbﬁn the Orr-Sommerfeld equation, an extensive inviscid theory has heen
developed, mainly by Rayleigh (see list of references in Betchov and‘
Criminale {1967)), with important additions by Tollmien (1935) znd Lin
{1945). A comprehensive review of the inviscid theory may be found in
the article b& Drazin and Howard (1966).

5.1 Rayleigh theorems

As a first step in the inviscid theory, some important results of a
general nature will be established. Multiply (L.21) by ¢* , the complex
conjugate of 9 .

(1

¢ 9% - o g¢" - U (u- ) gg* = o (5.1)

[U-ct?

Subtract from this equation its complex conjugate. Then

A

, d oo 9! *.&_‘li—g_! l“ .
;:l(gg g7 ) 1‘%:\11@1 = o - (5.2)
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When (5.2) is integrated from M =0 %o infinity, the first term is
zero by the boundary conditions. Hence .d
. o 02 ‘ "
o[y e
p el | o

It follows from (5.3) that if c; %o , U must change sign in the interval
0<'§‘ ¥ . Consequently, a necessary condition for an amplified dis-
turbance is that the boundary-layer velocity profile must have an inflection
point. This result was First obtained by Rayleigh. ’It has subséquenfiy
been proved by Tollmien (1935) that for certain velocity profiles, which -
" include the Eoundary-lgyer profile, this condition is also sufficient. A
st¥onger result wﬁs obtained by Hpiland (1953). He proved that an amplified
rsolut'ion can exist only if U U- U} is negative between N=0 and AI =5,
Consequently, " the vorticity X' must héve a maximum at Me s This condition
rules out certain veloecity profiles for which 24:= o , but where Y, is a
minin m.

Tt can also be proved that an inflection point is necessary for a

neutral disturbance. Let
- 1 Lo o e
W= (99 99" ) - | (5.%)

It follows from (5.2, that with C; =0, W must be constant except possibly
av the crivical point. A result of Hayleigh for which the proof will not
be given establishes that the eritical point 3¢ will aiways lie between

the wall and free stream. When (5.2) is integrated across the boundary

T



leyer, the only contribution to the integral for ¢;-~0 comes from

near AJ:"J.;.

Hlqere) L
Wiy + €)= Wge-8) = e lﬁ", &% An  (5.5)
' U Gyoe @ (U-e\" ¢+ &8
u(g;-s‘t

The integration veriable has been changed from 4 to U . In the limit
of ¢;~ o0 , the integral of (5.5) acts like a delta funetion. Conse=-

quently,

Wihore) - Wike e = T % [g,1" (5.6)
| " S

S8ince by the boundary conditions, N¢£7;+z\ and \N1ﬂ¢-é] are both zero,
1&1 must alsé be zero, and 1t has been proven that a neutral disturbance
can only exist if the velocity profile has & point of inflection. It
further follows from (5.5) that the phase velocity of the neutral dis-
turbance is equal to the mean wvelocity at the inflection point.

5.2 Analytic solutions

The chief analytic feature of the inviscid equation is the singularity |
ét U=¢ , a singularity which is not present in the Orr-Sommerfeld equation.
This singlarity is called the critical poiﬁt, and its location is denoted
By,%c . Since ¢ is complex, so is Ne o The mean velocity U is real, of
" course, but it may be analytically continued onto the complex plane. The

" continuation may be carried out by a power series expan51on of U .
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5.2.1 Methed of Frobenlus

Two epproaches have been used to find analytic solutions of the

inviscid equation. The f{irst approach applies the method qf Frobenius,

and was used by Tollmien (1929). The two solutions are

?O{IJ\ '-: (’!"‘V“I(.\ p\('J-— ‘Ja\ (5'7)
?2.(’3\ = PL('J- ln‘ + 7.,_{5:‘ (“1" ‘J-.\ Pl[j"’sf.\ i#j (fj- OJ¢\ (5-8)
U
where
R z U U e o) L
l(‘j—'nr.) = |+ ) (ﬂj- "1:.] -\-( e + o (rj-. :‘c\ e
b (5.9)

' P!-("l-qa\ = +(E‘: - %fz + Jid‘z")(;j_'ﬁ,_)l £

(2 Y

‘The first solution, o » is regwiar, buf because of the logarithmic term,
‘P&. is not regular near Ye o Als0, there is an awbiguity about which
branch of the logarithm to use for Mame +TWi or-mwi . The reso-
lution of this ambiguity is discussed in Section 5.l4.

- R Z
5.2.2 Power series in

The second method of solution of (4.21) is due to Heisenberg (192h4).
In this method, the solutions are obtained as convergent power series in
' «". These series were reintroduced into the stability problem by Lin
(1945), and form the basis of his computational procedure. They have the
further advantage of permitting simple approximate formulas to be de-

veloped for such things as the critical Reynolds numbexr. Their drawback

=28



is that they are only convenicnt to usce for small values of g , and

they do not show the analytic nature of the solubtions as

Tollmien's solutions. The two solutions are

f‘f"ca;\ = (U-¢) !:l v o '!’*“;\' 4 o(j AR ]

K

"

@’1('3\ R ["h(’:ﬂ L NP o Bt '+ -

where

>
o
—
a2
—
]

y "
. ‘ %

s ‘
A
Ay = j TRY 1y

4
: & { b, / z

a) = [ —— (U~0) &, (o)
b= [ G b (4l 4

The path of integration to be followed in the evaluation of these integrals

is under the singularity.

5.3 DNumerical integration of inviscid equation

clearly as do

(5.10)

. ] (5.11)

(5.12)

(5.13)

Neither of the analytic meihods described above are really adequate

for produeciig numerical soclutions of the inviscid eguation. Only direcct

numerical integration of (4.21) can produce solutions accurately and quickly.

There are two basic methods available. In the first, which was developed

by Conte and Miles (1959),.the integration is restricted to the real axis

-29..



and the Tollmieﬂ solutions are used télcarfy the solution across the
eritical point.  In the second method, which was developed by Zaat
(1958),.the solution is produced entirely by numerical integration.

This is made possible by use of an indented contour in'the complex
plane, and the calewlation is performed on this contour just as easily
as if the paﬁh of integration were the real axis. This same method will
be applied in Part B to the integration of the compressib;e inviscid
equatian.

5.4 Use of inviseid solutions in asymptotic theory

Since U. must be zero for an inviscid neutral disturbance, the
second inviscid solution (5.8) is regular in this case. However, for
a viscous neutral solution, which is constructed in part from the two
inviscid solutions @, and ?1 » UQ' is not zero and the logarithmic term
of (5.8) must be dealt'ﬁith. The guestion to snswer is, which branch
of the logarithm does one use for & aHe, -7 or #iT ? Tollmien
(1929) provided the answer by obtaining a viscous correction to gz
in the region around the critical point, and requiring that this viscous
correction match @1 away Trom the critical point. This comparison gives
-iW ras the proper branch of the logarithm, which means the path of
integration for the inviscid solution must pass under the critical point.
The viscous correction which provides this result is derived in Section

6.6.



5.5 Amplified and damped inviscid solutions as_complex conjugates

Now we continue with the inviscid theory itself. Since deP o for
a bounda.:.ry layer, it follows that when ¢, >0 , the c:ritif:al :pé)int lies
above the real y axis (4, » o) , and vhen ¢ <o , it is below the
real axis {p&c; <o) . When ‘€ =o', the singularity is on the real axis,
but thanks to }. = 0. the logarithmic term drops out of {5.8) and there
is no problem. For amplified and damped solutions, the singularity is
off of 'the real axis, and it would seem that there is also no problem
in these two cases. Indeed it can be seen by m&nipuiating the irivisclid
equation, (4.21), that if @, + i9, is a solution for ¢.+4i¢; , then
‘ gy-i9i is a solution for ¢, -\¢;, . Thus amplified end damped solutions
a.ré coqlplex con,jugates; and the existence of one implies the existence of
the other. From this _point of view the eriterion for instability is that
c. is complex; the onij stability is .neutral stability with ¢ real.
Equation (5.3) applies for c¢ <o a5 well as C;> 0 , 50 unless there is
a point of inflection, neither .amplified_ nor damped solubtions can exist.
Since the Blasius boundary layer has no inflection point, this argument
says that no inviscid disturbances are possible: amp_lified, neutral or
damped. But viscous disiturbances exist; what happens in the limit as
R-r» 7

5.6 Amplified and damped inviscid solutions as R-rw limit of
viscous solutions

. The clarification of this point is due to Lin (1945), who showed
 that if the inviscid solutions are regarded as the infinite Reynolds
number limit of viscous solutions » & consistent inviscid theory can be
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constructed in which damped disturbrnces exist and are not complex
conjugates of amplified disturﬁances. To achieve this resuil.,%:, something
mist be sufrendered, namely the existence of the damped sol{ztigns every=-
where on the real y axis. What this amounts to is that év_g_an 'bhcnigh
viscosity is zero im the limit, the region over which it'aicts e;.lso
goes to zero, so an integrated effect remains and thé inviscid solutio_n
must break .down somewhere. Lin's arguments were physical and heuristie,
but a rigorous justification was given by Wasow {1948).

Ii': is also possible to arrive at Lin's results i‘rom a strictly
numerical point of view, wﬁich is the procedure to be followed he:re.
To apply the method of direct numerical integration, (§.21) is replaced
by tvo first-order equations for 23 (= q?) end Z4=(k/ ?W'z) ™). These
equations are '

; H

% =

£3+'

- 2o ' (5.14)
k-c U-c ‘ ‘ . T

24: 2 =1 n(;' (U-e) & (5.15)

The analytic solutions in the free stream,

Ve dn -l
Z = L et Zs, = = (i-c) & !
ths /

(5.16)

are used to start the integration which then proceeds to the wall for
selected values of X and c,.+1¢; + To obiain an inviseid solution,
‘the boundary condition Z;(0\= 0 is satisfied by a linear perturbation

of any two of o, e +16;.

+



The main question to decide is how to indent the contour of inte-

gration. The o possibilities are shown in Fig. 5.1.

F A ‘

'Ji | ‘j‘; :i‘ ,
. e : ]

T e He ST

Fig. 5.1. Alternate contours of integration for inviscid equation”

i) For an inviscid neutral solution, =0 3 Eé is pure iﬁaginary
gnd 2, 1is réal. It makes no difference if the contour is indented below,.
as in (a), or abové as in {b). |

ii) When the irviseid solubions are used in the computation of a
viscous neutrél solubtion, c:::u ,‘buﬁ Z3{0)# 0 since the boundary
condition is to be satisfied by the inviscid solution plus a viscous
solution. The solutions are complex and peth (a) under the singularity
must be used as shown by Heisenberg {1924) and Tollmien (1929).

iii) If ¢;zto , the integration can be res£ricted to the reél axis;
However, then the Rayleigh theorem applies, and unless U"=0 +there ave
no amplified solutions (or their complex conjugates, the damped . solutions).
But if contour (a} is used for damped solutions, and contour (b) for
emplified solutions, both of these solutions exist even with U #0 .

Some eigenvalues compubed for the Blasius velocity profile are shown in

-
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Table 5.1.

Contour oy Cr | .c;
(a) 0.226 0.100 - 0.00057 _
(v) 0,226 . 6.100 | + o.i)oos'r
(a) 0.529 0.200 - 0.00717
(b) 4.529 0.200 + 0,00717

Table 5.1. Inviscid eigenvalues for Blasius veloecity profile
with indented contours.

As can be vefified from (5.1%) and (5.15), the solutions with <. -ic;
;nd contour (a) are related to the solutions with cr;ici and contour
(v) by

()

AN . (A ) .
23,'_ + i Zﬂi; = 23" = ‘EJ{

- W . (b
-E(::- + ‘.z_it = _2‘[:}‘ + |Z‘,r: . (5-17)

Hhich option does one pick? Since the neutral-stability curve for the
Blasius profile is as shown in Fig. l.la, the viscous solutions at all

% become damped in the limit -+ « . With the inviscid solufions
required to be the limiting viscous solutions, it is evident that contour
_(a) is to be used, just as in the asymptotic theory and in agreement with
Lin. ' There are no amplified inviscid solutions. For a profile with

Zf';o at Ms both amplified and damped solutions exist for easch contour,
unlike the Blasius case. The neutral solution is o, ,- and can be obtained

with either contour. With contour (a) the amplified solutions have e oy,
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the damped solubions O > ®g , - Qontour.(b) gﬁves the opposite Qééults.
Comparison with.tpg viscous neutral-stability curve, which ﬁill be of
the type shéwn in Fig. 1.1b, shows contour (b) must be rejected.

The'damped solutions with contour (a) do not exist géerywhere oﬁ
the real axis.” According to the theory, thers is a ;gggﬁg of real axis
where viscosity will always have an efféct end the inviscid solution does
not apply. The pumerical integration produces a.perfectly reaschable
looking solution éverywhere except at Mep s but for sufficlently large
~ ¢; the numerical solution ceases to be an analytie funciion of - .
Tﬁis matter may need further invesbtigation as physically it is difficult
to imagine how in the limit R+ o viscosity could continue to have an
effect over a lengbh of the real axis and not just at a point (or several
pointsj.

Figure 5.2 gives-:%é(, the time rate of demping, as a function of

de for a Blasius veloecity profile. o ‘ o

01-4‘ -
G‘ 02
v =
¥
t
/] — I _ : .
0 0.5 .o

o L5 2.0 - 25

Fig. 5.2, Inviscld damping rate as function of wave
nunber for Blasius velocity profile. '
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6. Asymptotic Viscous Theory ‘ ‘ : '

6.1 General ideas

We now turn our attention to finding four linearly independent
solutions of the Orr-Sommerfeld equation at large but finite Reynolds
‘numbers, ﬁhich means that an asymptotic theory in «F is;indicated. ir
. ' ’ 1L

ﬁ +..),

the first term will satisfy the inviscid equation; and thus this approach

a. simple expansion is made in inverse powers of aR ( g = QM t (‘*R\-

yields only two‘of the necessary four solutions.‘ However, the inviscid
solution designated by '@ (= 23\ , whicﬁ is the solutién that behaves.
as €%% in the free stream and is a ;ombination ¢t ¢, and @, , or of

@: and @; ; goes a long way towards solving the whole problem. It
satisfies the boundary condition at infinity; it is an adequate solution
over the large part of the boundary layer where viscosity is unimportant;
and the device of follawing an indgnted céntour under the singularity at
l=c properly accounts.for the effect that the action of viscosity in
the region of the critiesl point has on the solution Eetween the eritical
poiht and the wall. What remains is to determine the influence of vis-
cosity %n the region immediately adjacent to the wall. A true inviscid
soluiion can only satisfy one boundary condition at the wall, and indeed,
as vwe have seen, only.damped inviscid solutions are possible for the
Blasius boundary layer. To satisfy both boundary conditions, w¢g@ust use
a combination of the inviscid solution which satisfies the boundéry con~
dition at infinity and a viscous correction. With the viscousrcsrrection

designated by ¢§; , end the subscript w used for conditions at the wall,
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the boundary conditions at the wall are

s
Q

B v A Gy

(6.1)
3.« A?;‘, =0

s W

where A is a complex constant. Because these two equations are homo-

geneous, solutions can only exist when the determinent is zZero. Hence

Bowoe g:; = <4 @ (6'2)
R TR}

The left-hand side is a function of o, and ¢ , and the right-hand

side is & function of «, , ¢ , and R; . Thus (5.2) is the secular
equation, oxr equation for the determination of the eigenvalues. Once

the eigenvalues are knowﬁ, the constant A is found from either one of
the equations of (6.1)1, and the eigenfunctions can be computed over that
pqrtion_ of the boundary layer for which § and @; are adequate approxi-
mations., Most of the rest of this section is devoted d‘cc'.t finding a i‘orrr_1
of @ whilch will provide reliable numerical resulis. The viscous cor-
rectiong} is obtained from the simplified Orr-Sommerfeld equation
(4.2%), which was indicated in Section 4.3.3 tc be the appropriats -iscous

equation for large o,y » This equation is, when rewritten slightly,

g~ TR (U-1¢" = o (6.3)
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The physical reas;aning behind (6.3) is 'bha;'b viscosity is important

for the distur'b'an_ces only where lerge disturbance velocity gradients
exist. A first-order viscous theory need only rebtain the la.rge'st viscous
term (‘right-hand side) and largest inviscid term (lefi-hand side) of the
complete Orr-Sommerfeld equation (4.5).

6.2 length scales of the viscous regions

There are two regions of *“+< boundary layer where viscosity is of
importance for the disturbances. ‘he first of ihese regioﬁs is near
,‘ the wall. Since the eigenvelues are computed from {6.2), which involves
only wall velues of § and 373 » the asymptotic vheory is dev_oted pri-
marily to developing solutions which are gdegua‘be near the wall. The
second viscous region is near the ecritical point, where viscosity is
brought into play by 't;he singularity of the inviscid equation. As already
mentioned, the effect of viscosity near the critical point has been in-
cluded in the inviscid solution by the device of Integrating along an
indented contour under' the singularity. However, the function @ does
not correctly represent the solution in the vicinity of the critical point,
a:nd if 'bhe' critical point is close to the wall, the use of T in the eigen~
value' equation will not be correct. The development of the viscous cor-
rection to § near Ye is given in Section 6.6.

Tt is useful to have available estimates of the thickness of the
viscous regions. If the thickness of the wail viscous region is small
léompar‘ed with “j"' ’ the distance from the wall to the eritical point, ﬁhen
(6.3) simplifies to
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?v +"ln‘.6[2‘sccf"=o (6.’4-)

The solution of {6.L4) which decreases with increasing y is

_“-”4“91__85_5,: ) . (6 5)

‘?3(3\ = §i(0) e

This solution decreases to if¢ of its wall value in the {istance

i,

€ = [—2
. (“aRs"—) (6.6)

We can use g, as én estimate of the scale of the wall viscous region.

As 93 decreases, it also oscillates with a "wavelength" of 27 ¢, .

A definition of the thickness of the viscous region which is more com-
parable to the usual-defini£ion of a boundary-layer thickness would

give a result closer to 27g, than to £.. The viscous solution (6.5),
which will reappear in Section 11.1 when we discuss the viscous insta-
bility mechanism, is not adequate for the eigenvalue problem. :

' The reason for the inadequacy of 6.5 is that the assumption U<« ¢
is too drastic. Two methods have been developed to solve (6.3) without.
making this assumption. The first solves (6.3) by the WKB method and is
discussed in the following section. The second takes advantage of the
fact that the velocity profile in many instances is almost linear between

the wall and M. , and uses (6.3) in the form

c3“' ~ 1oy Ry U (- 59" = 0 . - (6.7)

This equation can be regarded either as the viscous equation in the
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immediate vicinity of Me » OT as en approxiﬁa.te’ form of (6.3) which

is valid when the velocity profile is almost linear. It is'the latter
view that ‘is appropriate for the wall viscous region. The .Blasius
velocity profile constitutes a pariticulaerly favorable casa’: for tihis

. assumptioﬂ since 1(.“ is equal to zero {:J.t §=0 . With a .n;aarly line;emr
ll.t'g\ , solubions of (6.7) will be valid from the wall t'o!' beyond the
critical point. In particular, these solutions will be valid even when
the critical point is too close to the wall for 'bhe WXB method to be
accurate. It is the latier case which exists over much of the ﬁnsta‘ble
region of practical importance. b

The solutions of (6.7) are functions of the variable 5 , where

A
t

VM | "
3 o= (%5 Ry W) Cg=ye) . (6.8)
Hence a new viscous length scale
fv = consti % £e o (69
hé.s appeared, where . ‘
-l . f
g = (WsRsUy) s o . (6.10)

The behavior of the solutions of (6.7) is complicated and it is not easy
to assign a meaningfu_l‘ numerical value to the constant in (6.9)." i In-
spection of the actual sclutions, which are présented later (Figs. 6.1
and 6.2), shows that in the wall viscous region s is‘ reduced to /e

of its wall value when AA inereases by 1 to 2 units of €. . For the

0=




viscous correction to ® near Me s the major .effect of viscosity
extends over a distauce of aboubt two units of E. on each s;ide of the
e¢ritical point. Consequently, a length scale of 2¢, would be & reca-
sonable estimate of the half-thickness of the viscous region near Nc ,
and also of the wall viscous region when (6.7) is the governing, equation.
| Tc; get an idea of typicai magni'budesl of g, and  £= and thelr re-
lationship to yc , we take two points from the néutral-stabili‘by curve

of the Blasius boundary layer:

i) wupver branch: Ry = 3500, d

= 1.25, & = 0.37, Ui= 1.91
N 7 (6.11)
€w = 0.035,2€. = 0.098, r;c.=_o.187
ii) lower branch: Ry = 3500, 4; = 0.60, c'= 0.32, U = 1.94
' (6.22)

0.162

= 0.053,26.=0.126, He

6.3 WKB solutions
The WKB method is a standard method of obtalning solutions of
equations ‘of the type (6-3), and was first applied to the sta.'bilitir

problem by Heisenberg (1924). It will provide solutions which are valid

faxr from AJ‘ . Let

(g0 = exe[ 500 4y) N (6.13)
and ea.cpand j(:}\ in the series

j(’!] = (iﬂs Q‘S{b‘ jg(ﬂj}.\ “+ g‘(%\ ‘.+. Vo (6.111-)

-
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Substitute (6.13) and (6.19) in (6.3) and equate equal powers of Cd;f%\f

The following two equations are obtained for ja and 3, .

e (U-9) y '
d : j (6.15)

433 fo s 6'13‘33 = (U-\ (g * 2400y
The solutions of these equations are
B !
9 = t(U- -, 4, = gk (6.16)
4 U~-c

If more terms in g are desired, it is necessary to return to the complete
Orr-Sommerfeld equation, but to the above order of ap}iroximation (6.3}
and the complete equation are the same.

With (6.16} ve find the two WKB solutions to be

Ty

| q)s(g\ = (Y~c) exp [- (%Rs\‘tz Q(rs\] ‘ (6717)
s el ey 69
. where
. _ ¥ ) o |
ch\ *{/ [‘ (u-cl ‘2-} , (6.19)

’ac
The point -"3" R where = ¢ , is a branch point for these solutions.
Just as for the inviscid solutions it is necessary to select the proper

~Loo
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branch by specifyiné the path of integration. The correct patﬁ;;which
is determined by comparison with the solution of (6.7) to be obtained
in Section 6.4, is the same as for the inviseid solution, i.e., under

the singwlarity. Consequently, when ¢ is real,

U-¢c = {Y-el ; cwg Q=-;—T ‘Fm’_ Ié?'zz.

- (6.20)

' =5 = Jor -

- = -C = - 7 <
U-c = lu m,wgq =T 44 ye
Of the two WKB solutions, §3 decreases exponentially (and oscillates)
with increasing % « Since 3@ increases exponentially, it is ﬁot
suitab}e for the boundary-layer stabilify problem and need not be con-
sidered further. ?3 is a maximum at ﬁ}zﬂ and with increasing " it

oscillates with répidly_decreasing magnitude. r.

With (6.15), the ratio £5(4)/ xq) is found to be

{ . ’ .
M-\ = - [‘l Ay Ra(?,(-C)] l- .5: L (6021)
§3(y) T e

E.nd, 8.‘!3- !3'4"-0 Fl

2

! Y -~ % !
S %W o (gRse) e - 2 U : - (6.22)
4 =&
Fow
The right-hand side becomes a function of a single variable if (6.22) is
multiplied by </WUw .

i

T _—
-2 Qo 3tgs -% | (6.23)
Rl £
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The single varlable is

3 '
Ee (ki) = : . (6.24)

Uw

It can be noted that for a veloeity profile which is linear from the

. R B . B i .

wall to the critical layer, Uw =Uc and ¢/, = Me . In this case,
Z is equal to the variable -3, which is defined by (6.8).

We can now write the boundary condition (6.2) as

Else)y = F(E) | | (6.25)
where
,fi@m ‘aE(%¢\f"%§'%i ' - '(&g&
and

-

- :f:) | (6.27)

2.

Fa = (32

The left-hand side of (6.25) , E(#,9), is determined entirely by the
inviscid solution @ . The right-hand side, hF-(““E\ s 1s determined entirely
‘ by the viscous solution 5?3 . Fl.lr‘c.hez:, it is a universal function of Z
and does not depend on the particular bc-und.ar}.r-layer profile, Eguation
(6.25) is the equation for the determination of the eigenvalues o , <

.Rg » or as it is often called, the secular equation. It is easily solvable

“llym



by & graphical procedure devised by Tollmien (:, 29) in which the
functions F(EZY and E(dc) are both plotted in the comfplegc plene.
The inﬁersection point of the two curves determine o & and Z and
bence Ry from (6.24), the definition of £ . An example of this ‘
procedure, using the Tietjens function instead of F(Z) , 1s gi%en in
Seetion T.1.

The only thing wrong with the method just outlined is that it gives
poor numerical results except for  greater than sbout 7. It could have
“been expected to fail on the lower branch begause the wall viscous region
occupies more of the distance between the wall and Yo there, -and ?3 is |
not valid near Me s but it is somewhat of a disappointment that it is not
really adequate on the upper br;nch either until very high Reynolds numbers
are reached. -

6.4 Hankel funciion solubtions

The second method of obtaining viscous solutions replaces (6.3) by
(6.7) and will be valid when ﬁ‘ is a much smaller multiple of £, than
is permissible with the WKB method. The independent varlable is S 3

given by (6.8) and repeated here for convenience;

S= (g /e = RN (o9 (6.28)

With the solutions designated by X (§) , (6.7) becomes

iv

-‘)(-n - 'lsxtx: = 0 ‘ . | (6_29)

L5



Four solutions of this equation are

)(l.,_g' - | . (6.30)

Xa=1 | " e

22
]

c/ai/s;ﬁ{jcn 23 (6.32)

s 3 . :
X4 =J Asf s 1Y, [2G3T™] 48 (6.33)
-t o2 - '

01y (2}
where Hy, and My, are modiried Hankel functions of order 1/3 of the

Pirst and second kind, respectively. These solutions, which were first
used in this problem b;y Beisenberg (1924), are usually expressed in most
" recent work (e.g. s Reid (1965)) in terms of Airy functions in order to
ma.'.lce use of the highly developed asymptotic theory of second-order dif-
feregtial aguations.

A tabﬁlation of the funetion ')(3 and its first two derivatives is |
ziven by Stuart (1963) from the paper of Holstein (;950)._ The real and
imaginary parts of A3 , and also |X;| , are plotted in Fig. 6.1.as
functions of 3 i the reel and imaginary parts of X:: , and ’X; |, are
given in Fig., 6.2. The critical point is alwéys at §=0 , and the wall
is et sume particular value of -S . It is seen that |X3| , unlike
I')(é.,I ] » does not decrease monotonically wiil increasing S . The

asymptotic expansion of X3 , given below by (6.34), is not valid until

S ~-¢
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The first two solutions, (6.30) and (6.31), are the leading terms
of the inviscid solutions (5.7) and (5.8). The two Hankel function
- solutions, (6.32) and (6.33), can be identified with the WKB solutions

@; and §4+ . The asymptotic expansions of (6.32) and (6.33) for large

S are
5 -Zgl _
v 5 ep(380E™™) (6.34)
-1 W Lo T
Yo o5 exp(35 ™) (6.35)

I7 -in the WKB solutions, {6.17) and (6.18),' Q(f;\ is replaced by .

| . bE ' vz X ]

ae = [ Leal 4w (1) 3¢50 (6.35)
: '}r. ' o ‘

‘then
| Jh N 3
6)},4 = [Ul(f;-fao\] exF[; -522('1 o Rs e ) (f}-—gc\ ] (6.37)

T Ly Tt/4 W,  ~dg
and, sipce 5= (@R Ue (g"éa); -1 , and (-1} = el ,

93 can be identified with Az , and Qu with Xy . It is this identi-
fication that establishes the integra;tion path for the WKB solutions to
be.under the singularity, because the asymptotic expansions, (6.3%4) and
(6.35) , ‘of the Hankel functions are only valid in regilons traversed by

such a path, and not in the regiqns traversed by a patfu above the singu-

l.ari“cy. This whole question of ‘the proper path to fol.'}:dw and the regions

4G




of validity of the asymptotic expansions is highly complicated. For
more detailed discussions, it is necessary to consult Lin's book, and,
for the complete rigorous theory, the paper by Wasow (1948). A good

discussion is given by Reid {1965). : -

i

6.5 Tollmien'g improved viscous solubions

The WKB solutions are valid for Y-yl >? Ec > and the Hankel
function solutions are strictly valid for !ﬁ-ﬁ;l_: O(€\ , since in
general IL(:},\ is not linear from 4=0 %o e - Tollmien (1947) gave
8 pair of solutions for real ¢ which are valid everywhere. Similar -
solutions were obtained for complex ¢ by Wasow (1953). The form of

these solutions is suggested by a simple argument of Lin (1955). In

~ thé comparison of the WKB solutions with the asymptotic expansiohs of

the Hankel function solutions, the arguments of the exponentlals were
shown to be identical when M-c in Qly) vas expanded in a series about
%é and only the first term retained. If the two arguments are iden-

tified without the expansion,

o

~ s £‘ﬂ'l )
531 &ﬁ = -(05595\ Q

2
3 ORIGINAL PAGE IS (6.38)
OF POOR QUALITY
then Y

- W3 1l t 2 : ‘ '

CANE] [ (- by | (6.39)
{
?o

- With the variable § of (6.32) and (6.33) reinterpreted to be (6.'39)

instead o (6.28), and with a sultable factor placed outside of the

=50~



integral signs, the viscous solutions are

~ 2 g y iz g - -. |
%s =( S ) ] ASJ § H,‘,j[%(iS)]iK o ©(6.%0)

W-¢

P TR

{ 3 ' '
~ e (8 3, . :
Y’r"‘(;f,c)f As/ 3" iy, [563) ] 48 (6.1)

These are Tollmien's solutions; Their asympitobic expansions for large

§ are equal to the WKB solutions; for M7 iye s they reduce to (6.3?)
and {6.33) (except for an unimportent constent factor). Pollmien proved
that these solutions differ from two solutions of the Orr-Sommerfeld

equation by an error of order £: for all j .

6.6 Improved inviscid solutions

The viscous sdlutipn )B discussed in Section 6.k, and EE ; The
solution of the inviseid equation, are adequate to solve the eigenvalue
problem. However, for the caleculation of the eigenfunctions it is nec-
essary to get rid of the singularity in the invisecid solution at %c .

This singularity does not exist in the OrrnSommerfelé equation, and it
can be removed from the inviseid soluticon by adding a wviscous correction, .

The first two of the four solutions of the simplified wiscous equation
(6.7), which are given by (6.30) and (6.31), are the first terms of the
analytic series solution for gh and 91 . They are actually solutions
of tye'equation g": 0 , which may be regarded as the inviscid eguation
with the u;g end 1[’3/(Hrc\ terms neglected. Now the improved inviscid
solution must come from a belance of the main viscous term Egv,/déﬂs P

the convection term (Tz(_- £y 3‘" ; and the term M"g’ s Which in the absence

51



of viscosity is responsible for the singulari'ty.' Hence, the equation

for the viscous correction is

q"’- iy Ry (U-~e) 03’" +ody Ry kuﬁJ = 0 o . (6.42)

Since the scale of the viscous region in the vicinity of Me is

Yy

proportional to €. = {95 Ry Uc)  , the varieble § given by (6.28) is

the proper one to use. The solutions sought have the form

X G) = Xfa\(S] + £ X?\(S\ . (6.43)
Y. 6) = X )+ e ¥ ) - (6.4k)

Wuen these are substituted into (6.42) and eyual powers of &, are
: (o (\
equated, it is found that X, and ¥, satisfy the simplified viscous
. ) ()
equation (6.29), and are given by (6.30) and (6.31). X, and X,
satisfy the equation .

(v NURL (w

) . ‘M: . vu:' [
XI,L - ‘SX‘F’- = }_L'S —u:; Y'i.z = '{;L} X‘Jz . (6*')‘6)

@\
or, since X, =0,

1]

G} v (IR (=\ .
W i§XI,l = 7 ?ii X'a" - (6.16)
’ Ue

{"\
For A, the proper solution is

O gt .
Xo=gpS . - (6.47)
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since, with (6.47),

il

%= X e =5 e Xy (648)
2 Ue
and agrees with the first two terms of the regular inviscid solution'
aé given by (5.7).

The second solution of (6.k6), )éﬂ , cannot be written down in a
simple form: It is determined from (6.46) by the requirement that its
asymptotic form for large § behave as (H:/HL)S (lugS +lc2€£), the first
singular term of (5.8). The solution 'X:‘ has been calculated and tabu-
lated by Holstein (1950). The tabulation may also be found in Stuart
(1963). The first derivatives of 'Xj: and 'Xz? , Which are proportional
to the real and imaginary parts.of 'F , the amplitude function of the
longitudinal disturbance velocity u’ , are plotted in Fig. 6.3. Also
shown is the real part of the singular term of @; , which is also the
asymptctic form of ;L’ . It will be recslled from Section 5.4 thst thé
proper branch of the lpgarithm to use in ?L for M e could not v«
established within the framework of the inviscid theory. The imaginary
part of 7(2, , a8 seen from Fig. 5.3, clearly establishes the correct
branch to be -TIi

According to Tollmien (19L7), the improved second inviscid solution

can be immediately written down as

Qi) = Pl + £e Bly-yo X:_”(_S) | (6.49)
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where P’; 'and B #re still given by (5.9). However, according to
Reid (1965), XT can only correct the first singular teym of @u(x)
and higher-order corrections would have to be obtaineq tq remove the.
higher-order singuwlarities. Reld gives for 92, :

i

9’:.{3] = F"‘.*.C'}-'g.-.'\ + & 'Xf.d(S)

Y " X . {6.50)
+ —i’ (f}-»&c)[e(/}-gd I] lﬂ;\é-'gc\l
in which the most importent singwlarity is (rnu -Jﬁ\:' Io} (':L“j ¢\ ' . I

: : o
Mc 15 close enough to the wall so that Xz (8) differs from its

asymptotic form_(ui/wc)oaéf-r log &) at M= 0 ', then the viscous cor-
rection will affect the eigenvalues. No caleulations have yet been made
. with either (6.49) or {6.50) used in place of (5.8) for 311 .

6.7 Tistjens function and the secular eguation

The ratio §{/9; , when X3 in the form (6.32) is used for g; ,

-t «
i : Y H- N 'z'( SIJ]L 0%
& _ (0(5@,14‘:._13 /, !5[3 i3) J

92 J s ] K H(‘,; [2an™] &

(6.51)

e

This ratio is to be evaluated at :}:9 to provide the right-hand side
of {6.2). 1In order to have a positive variable, §, is replaced by

-7 .
' RE . '
2= =S = (% KU e (6.52)
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The ratio av % =0 is expressed by Tietjens function, which is defined
to he, |

-2 . I . . *
Laf e pats

FCE} =

" p ‘ (6.53)
[ ) . [ .
'“,] S’LH [%C'\S] ]vﬁU
Then the function which in the WKB method could be expressed as a
universal function of Z , is
, .
e $e L o2 __L (6.54)
ul, 3w Uw He F(2
Define
U . |
|+ )\(9\. = = e (6.55)

If the veloecity profile is linear from M= 0 ‘to e s the quantity A
will be zero. In any case it caﬁ be expected to be a small guanbtity

and could well be ignored. The secular équation, (6.2), now takes the

form
_...‘:"_ 9, _ .k 9 (i+ A) F(2 (6.56)
c @, C Qi | ' ‘
ox B
- E(d, ) = F& | (6.57)



This equation is the counterpart of (6.25) in the WKB method. The
right-hand side is a wniversal function of 2 and is iﬁdepeédent of
the velocity profile, ﬁnd the left-hand side is a_functign;of % and
c and depends on the velocity proffile. . ; -‘
When the Tollmien viscous solution (6. lLO) is used for ¢; a secular

equatlon of the form (6.57) is also obtained. However, the variable

2 and the function A have different interpretations. They are

U3

s ' te ;3 | : '
g’-"- (‘-‘&5 Qﬂ/; [%f “’f-‘ﬁ]’ 49*3} , ' ) . (6-58)

] Ye ,
~ ’ Y.
[+ A o= y—%z %f lu" Cl U(fg, . . (6'59)
- [ L]

The Tietjens function, first introduced by Tietjens (1925) in the
form 2¥%(%)} , 1s perhaps the most coméuted funetion in fluid mechénlcs.
The paper of Holstein (1950) includes tabulgtiohs of the results of his
own computation plus the results of Iive other authors. The most recent
and extensive compubaticn is by Miles (1960). The Tietjens function is
equivalent to the .:f‘unction ‘F;{i) of the WKB method, but has an entirely
different belhavior except for large z . The same graphical procedure
as described iﬁ Section 6.3 can be used to solve (6.57). The use of the
‘Tollmien solutions reguires the computation of thre integral appearing in

(6.58) and (6.59) as a supplementary calculation.




T. Numerical Examples of Asymptotic Metho'gi

T-1 Caleuwlation of neutral-stability points

After all of the theoretical development, we can tal,&é a brief respite
by woi'kihg out some numerical examples, The :f'.ix-st examp}‘e- will consist of
tﬁe calculaﬁion, by Tollmien's graphical prodedure , of the upper and lover -
branch ;ﬁoint.s of neutral sté.'bility for the Blasius velocity profile and -
Cr = 0, 360. Thé caleulation proceeds as follovs: |
a‘) From a taebulation of the Tietjens function, such as given by Miles
(1960) or Mack (1960) ) Fi(#) is plotted against F. (%) +to give the
curve labe‘lled Tietjens function in Fig. 7.1.

b) From a computer program that integrates the inviséid equation, lthe
fuizctioﬁ E(d,2) / [(; +X) of -the left-hand side of the secular equation
(6.56.)‘-15 computed for ¢, = @.3¢o , ¢; =0 and several values of oy

E; is plot’r;,e_ed agains;t E. on the same graph as F(2) . The result is
the éurve labelled inviscid in Fig. T.l. |

¢) The intersection point of the two curves esteblishes o, and 2 for
“the two neutral-stebility points.

The numerical results are (with SVR, [x=¢60):

“e = 0,1823, U, =1.922 for <. = 0.360
Lower Branch . Upper Branch
oy = 0.7290, 2 = 2.642 of, = 1.20k, K, = 3.965

Bince = (%R, KLYy
Mg R, = 1584 % Rs = 5350
Ry = 2173 Ry = bblh
8.

H
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These Pesults may be compared with those obtained by Kaplan (1964) from

the numerical integration of the Orr-Sommerfeld equation.

® = 0.765, R, = 2360 * ='i,go, R, = 4360

The cldse agreement on the upﬁar branchlié probably a lucky accident.
The differeqces on the lower branch are about what one would expect.

If the calcuiations are periormed with the Tollmien viscous so;utioﬂ
of Sectio. 6.5, the values of “a remain unchanged because the left-~hand .
side of the secular equetion is unchanged except for the unimportant
function A{e) ( N changes from 1.009 to 3..005"5). Only the gefinition

of 2 , and hence R; , changes. According to (6.57),

~ 113

- i - '
E = («5 Rf,\ ‘3’/ “tf:"“-! ar}J

!

For C»= 0.360,
% o= 01190 (4R,
;nd _
1555 © Ry = sl
2133 : - R, = 4356

o5 Ry
R,

I

The a?feady good agreement on the upper branch is made even better; the
discrepancy on the lower branch becomes a bit greater. The Tollmien

solution 1s an unnecessary refinement for the Blasius velocity profile,

~ -60-




since- Z{,[%B is 50 nearly linear. However, it should offer a distinct
inmprovement over the simpler solution for those profiles 1'whe::'e 744 ?)

is far from linear.

T.2 Thickness of viscous regions

We‘can compute the viscous lengtli scales

£, and £, from their definitions (6.6) and (6.10).

Ew = 0.0592 £

n

0.0322
(2)(0.0440) ='0.0880

i

2¢, = (2)(0.0690) = 0,138 £,

/ w/
Since the funetions X; and X, are available to us » We may exXamine the

extent of the viscous regions directly from Figs. 6.1 and (6.2). The wall

values are .

IXLl=230 [Xeje 150

t

)(; is reduced to ife of its wall value at

§ =-1.0 §=-21

Hence, in terms of v the thicknesses of the viscous regions are

%, = (2.6k - 1.00) £, Yo = (3.96 - 2.10) &,
= 0.113 ’ = 0;082
and
'Z’v/"g‘r. = 0.62 ’h‘r‘_[m' = O.l[.s

J‘
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These vaiues for Npv Bre not too far from the value of g, cpmputed above.
It is zpparent th’e;t &w glves a considerable underestima'tg of the thickness.
However, it should be ncﬁ;ec’l that the ra.tio ef v at the two neutral points
is proportional 0 nelther the ratio of g. or g. -

By reference to Fig. 6.3 rfor the correction function '}{z s ve- are
able to check directly whether the critical-—point viscous region extends
to the wall. For the upper-branch point (¥ = 3.96), it is evident that
this region does not extend to the wall, although it does overlap the wall

[GW4
viscous region. However, for the lower~branch point (% = 2.64), X, is

r
still 23% below its asymptctic value at Nem 0 Tt is not known how much
of an effect this small difference would have on the eigenvalues, but we

can -expect any effect to be well within the order of accuracy of the method.

7.3 Calculation of an eigenfunction

The final step in :cHe computation .is; to obtain the eigenfunct'ions , and
we shall par;cially indicate how this is done for the longitudinal velocity
fluctuation at .he upper_-branch point caleculated afb'ove. The inviscid ampli-
fude functicn F= i§' is plotted in Fig. 7.2. It is valid for v greater
than e + 3¢, (3€. = 0.132). For s -3 <& « 4+ 3¢ it must be
corrected by Xf” 5 and Tor 4 < qe it must also be (.-orrecte.d by X; .
Conseq_uenﬁly, foxr v ¢ Aéc these two corrections must be applied simultane-
ously.

The first step is to compute the complex constant A (actually iA here)

s
ot

from the second equation of (6.1). - ' . Cee
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We obtain F.. and F; from the output of the computer program for

» ? * F)
Ce = 0.360, & = 0,8 = 1,20b The X;, and X; are taken from
Stuart's (1963) table, with the second derivatives used to caleulate

the values listed here. -

It
il

Fi () - 5,217 . Fi (o)

¥, ()

- 1,915
- 1.1k

1
11

6.09 X;‘(o}'
With these values, we find

| A, = 0,0198, A = 0.360
The corrected amplitude function <« (4) 1is found from

Fln

gnd-is showuiin Fig. 7.2.-

In.Fig.'T.E the vigcous correction in the critical-point region is
applied only to *the imaginary part of F . This is done quite simply
'Ey multiplying ’X(z“;' by a constant C such that CX?:’(%} 032y = F; Ly 0a32)
and thep continuing Wi beyond " : M- 0132 with c,xfy . To correct
Fv it is first necessary to separate i+ hks from F and this has
not been done, A comélete description of the correction procedure may

be found in Schlichting (1935), where the inviscid solution ihrough the

entire boundary layer is obtained from the series expansions in powers of
P
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8. Numerical Integration of Orr-Sommerfeld Equation
The asymptotic method described in the previous séctioﬂ provides

eigenvalﬁes of neutral.disturbances with reasonable accurady. However,
for the best results it is necessaryfto have available a cémputer program
for calculating exact numsrical inviscid solutions, and, in,the absence
' of‘coﬁputations of the Tietjens function for complex = ,famplified and -
damped solutions must be cobtained by.a different method which involves
a fertﬁrbation of the neutral solutions (Schlichting (1933b), Shen.(l95h)).
Because of these limitations, attention has turned in the last few years
to obtaining all numerical results from exact numerical solutions of the
0rr~Sommerfel§ equation itself. The wask of developing sultable numerical
| methods was not an easy or-, “ecause in the Orr-Sommerfeld equation the
highest-order derivat‘ive ¢ .5 multiplied by a small guantit.y, t/ ¥ R .
This circumstance, which is the source of bhe non-regular nature of the
inviseid a.nd’ WKB solutions, is also a source of great difficulties in the
numerical integration. .

| The WKB solutions clearly demonstrate the reason for this difficulty.
It can be seen from the solutions ¢y and g. , given by (6.17) and (6.18),
that reéardless of whether the integration proceeds in the ; yor -y
direction, there will‘aiways be a solubtion present which grows roughly as
exp [(qlé R, )vldnjf"] . Any eigensolution of the Orr-Sommerfeld eguation is
| of order one throughout the boundary layer, and it is the task of the
numericai integration to produce this solution in the presenée of solutions

Qa and g+ . Since every numerical integration scheme has some inherent

u

65 -



errors, and the growth of these errors will be determined by the most
rapidly growing solution, it can easily happen that after the inte-
gration proceeds a certain distance, the error will overvhelm the
solution.

| The évailable numerical integrat;on,methods 721l into three msin
types. The earliest in time (for chammel flow) was by Thomas (1953),
where the forward integration method was abandoned at the outset. Instead,
a finite~difference approach was used where the Orr-Sommerfeld equation |
was simultaneously solved at a large number of y stations, and the eigen-
values obtained by the inversion of a large matrix. This method was
~ later successfully applied by Kurtz and Crandall (1962) to the Blasius
houﬁdafy‘layer. The second approach is that of Brown (1954, 1959). He
used a stralghtforward forward 1ntegraulon method and errors were con-
trolled by restriction to low values of % Ry , or by an increases in
-the number of signifiicant figures (use of double-precision arithmetic).
The third approach was initiated by Kaplan (1964). In this method, the
integration starts in the free stream and.proceeds to‘:gzza . Two lin-
early ipdependent solutions are produced.' Thg first solution, which for
%.75 -1is equal to the viscous solution (h.l9), is integrated first., It
becomes large and offers no problem. The second solution, which for
gfr‘§ is equal to the inviscid solution (4.18), grows much less than
the first solution and is in danger of bheing contamlnatea" by it. To
avoid this, a quantity proportlonal to the first solutlon is subtracted -

from the second solution after a few integration steps, and a condition
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is applied which forces the second solution to remain small. This
TrOcess was calieﬁ "purification" by Kaplean, and a version of the
method is described in detail in Betchov and Criminale (196%). A
rigorous version of Kaplan's method was provided By Bellmah and Kalabe
(1965) and applied to the boundary layer byIWazzan, Okamu%a, and Smith
(1966). In this method, the standard Gram-Schmidt orthonormalization
technique is‘used to assure that the second solution is linearly in-
dependen® of the rapidly growing solution and of maznitude unity.
Another method along these lines that is worthy of mention is the
guasilinearization method of Radbill and Van Driest (1966 ).

The method of Kurtz end Crandall and the forward‘ integration method
with single-precision arithmetic-(B digits) are limited to growth factors
of the rapidly growing solution of about 108. Double precision in the

forward integration method extends this growth facior to ebout 1018.

.In contrast, according‘to Betchov and Criminale (1967), the growih factor
in Kaplan's method can be tho, and in Wazzan, Okamura, and Smith's method
it can be lQB . th of these methods use only single precision arithmetic.
The latter method can be considered to solve the problem of integrating

the Orr-CSommerfeld eduation under almost any conceivable cireumstances.

For example, the latter authors have computed the eigenvalues of neutral
and amplified disturbancer for the Blasius boundery layer up to R, = 2.5 %187,
where Ry is the x Reynolds number. Instability first appears at R;:z.{axoﬂ
and transition, even for a free stream of very low turbulence level, occurs
by R, = 3xte® . Therefore, this method more than covers the range of

Reynolds numbers of interest for the transition problem, and could be used

N



‘o sfudy such things as the approach of finite-Reynolds ndmbgr demped
solutions to the. inviscid limit with inercasing Reymolds number.
No debails of any of these methods will be given heres In Section

i,

14%.2, a brief description is jresented of a forward integretion method
' !
wvhich provides automatic caleulation of the eigenvalues and eigen-

functiobs of the compressible stability equations.

~68-



9. DNumerical Results

9.1 Review of existing caleuwlabions

A considerable body of numerical resulits has been ‘accumulated over
.the years from both the asymptotie method and from direct numefical inte~
gration of the Orr-Sommerfeld eqpatiﬁn. These resulﬁs, while extensive,

did not begin to:be comprehensive until the computer came into use. The‘
learlief investigators usvally contented themselves with the computation

of the.neutral-stability curve. A notable exception was the calculation

of Pretsch (1941), where amplified as well as neutral solutions were ob-
tained for a family of velocity profiles. After the development of approxi-
mate fofmnlag by Lin (l9h5), it became the somewhat unfortunate custom to
.compute only the eritical Reynolds number, i.e., the lowest Reynolds number
for instability. Such’ caleulations, as has been emphasizezd by Kaplan (1964),
are of limitéd ﬁseiulness. In order to have zn accurate picture of the
comparative instability of two different boundary-layer profiles, it is
necessary to caleulate the neutral-stability curve and the amplification
rates. In the following summary, only those calculafions are menitioned

in which at least a neutral-sﬁability curve has been obtained.

The neubtral-stability curve of the Blasius boundary layer has been
computed, using the asymptotic method, by Tollmien (1929), Schlichting
(1933a), Pretsch (1941), Lin (1945}, Lees (1947), and Shen (1954); ang,
using numerical integratioﬁ, by Brown (1959), Kurtz and Crandall (1962),
Kaplan (1964), Betchov (i965), Wazzan, Okamura and Smith (1966), and

Radbill and Van Driest (1966 ). The effect of pressure gradient was first
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considerad by Sc?licﬁting (19%0) for the waaréh ﬁrofiles‘Z(l-‘“K .
Neutral-stability curves for the Falkner-Skan family, U:~ X" ; have
_ been computed by Pretsch (19%1), Keplan (1964), and Wazzan, Okamura
and Smith (1966). Neutral-stability curve. for 6th-dezree polynOmiais
héve been computed for variéus valueé of the Pohlhausen parametér by
Schlicﬁﬁing and Ulrich (194%2) and by Timman, Zaat and Burgerhout (1956):.L
The boundary layer with suction was computed by Pretsch (1942), Bussmann
and Minz (1942), Freeman (unpublished, but seé_Chiafﬁlli and Freeman
- (12948)), and Hughes and Reid (1965). Contour lines of constant non-
zerc ¢; , from which the Qmplification rate may be obtained, have been
computed for ﬁarious Tlovs from the asymptotic theory by Schlichting
".(1933b) and Shen (1954) fog'the.Blasius boundary layer, and by Pretsch
(1941) for the Falkner-Skan family of profiles. Such calculations are
usualiy performed as a matter of course when the method of numerical
integration is used. Eigenfuncitions have been computed by Sehlichting
(1935) and Holstein (1950) from the asymptotic method, and are normelly
obtained along with the eigenvalues in the numerical integration methods.
Some results for the Blasius boundaryﬂlayer:will be found in Section
12, where the experimental confirmation of the theory is presented. The
caleulaticvi.s performed for the Falkner-Skan family of velocity profiles

. are of particular interest because these profiles provide examples vhere

1 Doubt has recently been expressed sbout the validity of calculations
made from the parallel-flow theory for the case of a Tavorable pressure
gradlant by Morkov1n and Donaldson {private communlcatlons).
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inviscid instebility is important, and thus the results serve as
background for the stability of the compressible boundary layer to
be presented later. A short discussion of these results is given in

]
. the next section. ' -

.

9.2 Falkner-Skan velocity profiles

The FalkneruSkan family of boundary-layer velocity profiles cor-

respond to free-sitream veloeity distributions of the form
u' (x) = 42 K™ ' K . : (9-1)'

The boundary-layer equations reduce to ordinary differential equations
for these profiles. These equations were solved for various values of
m by Hartree (1937), and more exactly and with more detailed results

by Smith (195%). The similarity veriable which replacés y is

; Y, Yy . - .
77 () @ - (9.2)
where
L im , ‘
v ™+ | _ (9.3)

The value p=o corresponds to the Blasius boundary layer; wiizz.h g>o0
there is a favorable pressure gradient; with § < 6 there is an adverse
prassure gradien‘b. The value (5 = 0.199% corresponds to the separation
_profile, vhere M, = 0 .

~T1- ' .



According to the thaorems presented in Sec‘t;ion 5.1, the necessary
 and sufficient condition for neutral and énplﬂied inviscid solutions

is that 2" must be zero somewhere in the boundary ‘la.yer. For ¢20 ,
U"« 0 everywhere (except at =0 for the Blé.sius bou.ndary‘layer).
However, for gt w'owill always be zero at some, M. Consequently,
for g0 the Falkner-Skan profiles have inviscid instability and the
curves of neutral stability will be of the type shown in Fig. 1.1b.
These’profiles are of inlierest bhecause they provide an example waere
théré is a steady evolution from a profile where viscous instability -

is dominant ( §=0 ) to profiles where inviscid instability becomes
iﬁcreasingly important. In Part B, we shall find that a similar evolution
tekes place with increasing Mach number for the compressible boundary
layexr. c'm an inswlated flat plate.

Table 91} gives éome numerical results for the Falkner~Skan profiles

: 1
with adverse pressure gradient. In the table, s - is the similarity

variable -as defined by (9.2) evaluated at s , which is

(3’ s £s (et (“(;,“Ci}.,,“ By . So'

0 0 0 o kAhx107 60 1.7
- 0.05 - 0.32 0.30 5.9 x 1073 - 1.8
- 0.10 1.3 0.43 0.46  1.0x 10° 6.5 2.0
- 0.1k 2. 0.49 0.6 1.6'x 1072 6.7 2.2
- 0.1988 3.3. 0.50 1.3l . 6.3x 107 7.8 3.2

Table 9.1. Numerical results for Falkner-Skan velocity profiles.
Adverse pressure gradient.

These results, and Fig. 9.1, Wwere obtained from material kindly
furnished to me by Mr. A. M. 0. Smith of MecDonnell-Douglas Corp, long
Beach, Calif. and compuied by Wazzan, Okamura, and Smith (1966).



~ the %, whé%e l;": o . .Theithigd column,lc; ; is the ﬁhase velocity
of the inyiscid neutral disturﬁance,'and is equal ?o the ﬁean veiocity
"at r?s és was shown in Section 5.1. The fourth column gives the
'coirespcnqﬁng Wave‘number'(d5+h_ refergnced here to displacement thick-

neés,'as 6?£ain¢d from the upper branch of the neutral-étabilify curve
5.a$ nigh bu% finite Reynolds number. It could be computed exactly from
(4.21) fo_r ‘ev's'¢s, cix o . The Fifth column of Table 9.1 gives
the maximum time‘ratejof aﬁplificatioh-(at finite Reynolds number except
fo;‘Q = - 0.1988), again referenced to displacement thickness. The fingl
. two columns give the boundary-layer thickness apd the displacement thickness,
bbth in the 4 coordinate. - :

It is seen from Table 9,1 that with increasing negative values of
8 ,-.the guanti’é.iés 115 s 05 4 (Sl énd (G ‘:';)m%,l increase.. Thus, insta-
_ Bility increases as the inflection point moves away from the wall. The
amplification raﬁeé of‘Table 9.1 for.Q-éo contrast strongly with the maximum
émplification rate of the Blasius boundary layer. It is evident thaf a
veloeity profile with an inflection point loéated well away.from the wall
hés much stronger instability than a profile with no infleetion point. The
| most unstable pr;file of a1l is the separation profile.
The neutral-stability curves and contours of € = const; are of great

interest.‘.Figurés 9.i and 9.2 give these résuits for @ = - 0.14 and
. = 0.1988 (separation profile), respectively. Figure 9.1 clearly shows

that in spite of the large inviscid instability, there is still a small
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" : :
destabilizing effect of viscosity. . The maximum amplificatipn rate
at & fixed Ry increases sbout 15% as Ry* decreases from iﬁfini‘by-,

3

to about 10”. DNote that the maximum pmplification rate is nearly

t
)

h' .
constant until Rg¢ is reduced below 10 . Most of the &; # consi.

bl
14

. contours are open for @ =~ 0.4, 'i.e.', ‘the upper and 10.W§r brariches
extend to infinity. Only ;bhose contours with ¢;» ¢.04 fq%m closed
loops. . In contrast, for the Blasiuu profile (Q s 0} all of thz centours
except for ¢;=¢ close at some {inite Reynolds nmnber. _

. Figure 9.2, for the separation profile, shows the final stage in
the evolution of the ¢&; = const. contours. Here none of the comsours
‘are closed, and they all extend to infinity. Also the upper branches
are a'.ll. either parsllel to the E,,'a axis or have a positive slope. As
a result, the maximum amplificaticn rate at Rew w is the highest ampli-
Tication rate, that is p;s"sible for this velocity profile., The destab-
ilizing ‘effect of viscosity has completely disappeared, and visdosity
serves énly to damp “ghe disturbances. These disturbéncgs are formed
by the inviscid instability mechanism associated with the inflection point.
Neutral-stability curves of this type are common for free-shear flows,
where the ;'Lﬁviscid amplification rates are even larger than for the
separation profile. We shall find in Part B that they are characteristic
of the compressible boundary layer at a sufficiently high Mach number even

in the absence of a pressure gradient.

vl

We use the term "destabilizing effect of viscosity" to mean that the
maximum (with respect to Ky, at a fixed R, ) emplification rate increases
with decreasing Reynolds number over some portion of the Reynolds number
ran'gé. 1 7“ . ) . a A1

a

o b . Feu -
L -75 - ” - -



10. Kinetic-Energy Equation
V Some of the earliest attempts at a sta‘bili‘by theory were carried
out on thé basis of energy methods. These methods vere aime@ primarily
-at a calcula'b:.on of the eritical Reymolds number, bub were nob very
. successful even in th:r.s limited ob,]ectlve, as the Reynolds numbers
obtained were always extremely low. This was a_ﬁirect result of the
Tact that the disturbances used in these analyses were not regquired to
be solubtions of the differentlal equations. Conséquently, the con-
ditions necessary to secure stability of all disturbances had to ’r‘)e
more severe than those necessary to insure the stability of only hydro-
ldynamically possible disturbances. For our purposes the energy method
will be useful in shedding some light on the physical basis of the
stability theory. Up to now, the discussion has,'been mainly mathég-
"matical, and ;che time has Eome to bring _01.;_.1: some of the physical !
mechanisms at work. L L
This section is devoted to a derivation of an equation for the
kinetic energy of a disturbance., The dimensional ¥-momentum equation

is, in two dimensions,

qu 'Ll N A 0’u a'u )
P T 7 QLS N | i w e [H2 s P2
1% % ! g % (azh Iy’ (1(_)'1)

When the flow quantities are spl:ﬁ.: into a steady mean component énd a
disturbance, the resulting equation is

PV IS T VRR | SV ORI A L RE V|

—

K 2% % 24 e 3k - o
o 2! 1 3P 9! A Tk )
= 7(-3&:?.—? ox +y(—-+-—~+—-) (10.2)

axt o gty
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Three mean-flov terms have been dropped by'the'boundary~lay§r approxi~
mation, but nonlinear terms have been retained. These terms can be

transformed as follows with the use of the continuity equation.:

-
!
&

:

: e 2 ' [
ul ?_L:’ . v’ 3“_, - _?__ (hlvll + 2 l\‘i ; ) (10-3)
bi % Qe T : B

The disturbance is assumed to be periodic in X and growing in time.
Thus an x average taken over & wavelength at a particular time has
& definite meaning. Since such an average of periodic terms is zero,

only nonlinear and mean-flow terms remain when the equation is averaged.

t

2(,?_.1.5_ + Vv 31& + 3(u'u’1 ._._. - ?_E 4+ s f‘f_& ©o{a0.k)
3% ?'} 9!1, ‘ ( 3 3}1-
The quantity
“U -_— _EW ' o o ’ (10'5)

is the Reynolds stress. It is a momentum transfer caused by uhe dls-
turbance, and acts in addition to the mean-£1low streSb‘/,ah/Q?, If

(10.4) is written in the form

u‘”ﬂ vk A P [ vy 10.6
? +q y gx-¥a?0‘%_" ¢n ) (10.6)

we recognize it as the mean flow boundary-layer eguation with an additional
stress term. Consequently, when nonlinear terms are included, the mean
flow in the presence of a pericdic dlSuurbance cannot be the same as the

mean flow with no dlsturbance (see Stuart {1956)).
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The next step is to subtract the mean-flow equation from (10.2),
end then to multiply the remaining equation by u’ in order to form

part of a kinetic energy equation. This equation is

10.
3 LIRS A v vu : (10.7)
J'd t

When the same procedure is applied to the y momentum equation, except

for multiplication by v' instead of u’ , and the resuliing eque:zta_‘.on is
added to (10.7), we have

2t .
I Mi)(“.____-"l hd ) RONE] A (wy') + v (wel) -
’Fl ax 1

_ _ 9? ’ %
2 - Chagye S
"'a“‘t ‘ ta‘r( hl.’ 3 L_I_F - \I” g A0
+ W .; + v ..9-:3‘- — : 9'&( ) 93“ (19.8)

= __'c.(u' ¥ 4 v'_a_‘f_’,') N A AL A
I '

(10.9)



. ThHe energy equaiion then becomes

2 (uteet) oo () L 2 )
ax X\ 2 32.\ 2

3% z

- oo 3wy 9k 'f :
“?(“ Do v = — (10.10)

Lo ¥ .
- - A (u' 3_’2' 4+ v __‘E_’) + »r(u vin' v viv)
i 3-&.
At this point we integrate (10.10) over a volume which exitends
one waveleng"ch X in the x direction and to infinity in the y direction.
The terms with a single fluctuation quantity, or an x derivative of o
fluctuation times a mean-flow quantity, are zero by periodicity. There

are two texms of the type w'36/ax + v 26/i5. Their integrals can be shown

to be zero as follows:

& e w XA th

JJ (36+V'E‘§§)4,x4? = \/;CJ'GL -~ ‘/x G%‘—‘;&x).{%
A m w 5 '
+J (ws-’e-/u Gg_;ol?)o\x

3

(10.11)

From periodicity and the boundary condition at b om0 on v' , we have

v 96 6N A d ('.)u" 'Y a4 .
—_— v o X —_ — -— X A
j/(“ * g,z(j v = flf & i 3?) . (10.12)

This integrand on the right-hand side is zero by the continuity equation.

The viscous terms of (10.10) can be transformed into

4 ! o . ,
W + v otv = w28 k)
K (10.13)
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where

= 2 U ' ' o © (20.14)

is the disturbance vorticity. The integral of (10.13) gives , after

integration by parts,

I ST O PO

7o

An alternate form of this integral, which is perhapé more easily 1denti-

fiable as the viscous dissipation, is

Jjﬁdw»’ux /J[( (’3)]»{:.{”&.
[ : ol
u ‘é‘r‘) 4
-+ h A XA
J./ (34} N 3% ‘}
With these reductions, the remaining terms ir\ the energy equation are

RMJJ@+V)4“?_-QﬁWwakMA WHUSA” (20.17)

Now,

(10.16)

P

———

\ .
— Q "i L! ht\f‘ l\’l( = - t w v = i 4 (lo.lB)
4 . .

where the bar refers to an x average, and ¥ has already been identified
as the Reynolds stress. Hence, (10.17) can be w;ritten, with asterisks

introduced again to identify dimensional quantities,
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it (20.19)
Wwhere
-
—T e
'é'ﬁ- _ % M?' N .U.dl A 5
= ¢ — "t (10.20)

[}

is the disturbance kinetic energy in the volume of fluid,

o* - J g AL s (10.21)
. 9

is the energy production term, and
. . .
v =/“'J [ A.a: | (10.22)
. [

is the energy dissipation term.
If all guantities are made dimensionless in the usual manner, with
. .
i, as the velocity scale, and § as the length scale, Then the integrated

kinetic-energy equation becomes

9E P | D -
— = - . 0.23
Qt Rb (-L J)
Where
v wE ety
E = e
o
~ W (10.24)
P — L/: v -E}—:? cl«é’
o
D = \ja 5.1 a\n&/
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and

T o= - ue . ' " (10)25)

are the dimensionless counterparts of (10.20), (10.21), (10.22) and

o {(30.18).

Equation_(10.23) is exﬁcﬁ in ‘the sense tha% ho further approximations
were maée.beyund the boundary-layer approximation. It holds for nonlinear
as weli as linear disturbances, although, as already menti&ﬁed, in the N
letter case ¥ must be intefbreted as the mean velocity ih the presence

of a disturbance and differs from the disturbaﬁce—free mean, flow. For

' & linear disturbance, as seen from (10.6), ¥ 1is the same with a dis-

turbence as withqut one. The noniinear and pressure-gradient terms of
(x0.10) contribute.nothing to the integrated energy balance. They serve
only o redis:tribtite ‘the energy within the boundary layer.

The term P of (10.23) represents the interactﬁon of the mean flow
Wﬁth the distu;bance. If-the disturbance results in & Reynolds stress
such thgt'? * 0 , then energy will pass from the mean flow into the dis-
turbancé. The dissipation term represents kinetle energy 165t by ‘the
irreversiﬁle'viscqus work and islnecessarily positive. Consequertly, the
conditions for damped, neutral, and amplifigd‘ﬁisturbances are, respec-

tively,

TP "':q— D (10.26)

ol
o

-82-



The purpose here is not to construct a stability theory based on‘

(10.23). The eigenso;utions of the Orr-Sommerfeld equation elready
proﬁide complete information about the stability characteristics.
Rather, (10.23) can serve to boint oub the direction to go in increasing
" our understanding’of thg‘physical wechanisms which are at woik to produce
instability. It is clear from (10.23) that a decisive rgie is played by
the Reyholds stress and it is to this quantity‘that we must turn our

attention.
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11, Distribution of‘Reynolds Stress

1.1l Prandtl's analysis of wall region

Prior ﬁo 1921 it had been écqepted foctrine that a flow which was
stable in the absence of.viscosity could only be made morg stable by
thé presehce of viscosity. though‘an gariier, and in this‘connection
Y eviﬁeﬁtly unnoticed, paper by Taylor 61915) poip{ed out the possible
destebilizing influencé of viscosity, it remained for Prandtl'(192l)

to clearly demonsfrafe the mechanism by which a stable invizcid flow
éan be made unstable by viscosity. It was this éiscovery which iéd to
the elaborétion of the stability theory in latér years by Prandtl's
students and colleagues. In view of the importance of this discovery,
it is of interest to guote a few lines from Préndtl’s paper (my trans-
lation).

"Previous mathematical investigations on the origin of turbulence
have led to éhe epinion that small dis£ufbanceé'of a viscous, laminar
flow between two walls are always damped...In orde£ to learn how. tur-
Sulence actually originates;, I bhad built at G8ttingen an open chahnel...
and observed the flow by the Ahlborn method (sprinkled lycopodium powder)
«vowave forms with slowly increasing amplitude were occasioﬁally observed
«vsthese ﬁaves of incfeasing amplitude -completely contradicted the dogma
of.the stability of laminar motion with respect to small disturbances,

50" that at first I tended to believe that I had not seen this infrequent

phenomenon completely right.”
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"We now applied outselves to the theoretical treatment, and, to
anticipate a liftle, we found, contrary to the dogma, an instability
of the small disturbances.” . |

Prandtl's argument was later repeated in a differeq£ form by Lin
© {195, 1955), but we shall follow essentially the original derivation
hére. The viewpoint adépted here is the same as that used in Section
6.2 tO'dérive viscous solutions near the wall, i.e., it is assumed that
1((*\: 0 . With this assﬁmption, the x-momentum eguation, from (3.1},

simplifies to

ﬁb\’ -?F’ B ! 9:«‘ —:_:' BRI
w ot TR L )

where the term V’Au/4ﬂg has also been dropped. OCutside of the wall

viscous region, (1.1} reduces further to ; ‘ i

9‘{ ! ! ' ' " - S
.éi = - %2 _ (21.2)

The velocity u' consists of two parts: an inviscid part Ld which
satisfies (11.2), and a viscous part 4 which:satisfies the difference

between:(11.1) and (21.2) and together with 4; the no-slip.boundary

condition.
) Lo
1t Ry 9y - (11.3)

The solution of (11.3) is, for ¢;=0 and hence .« real,

2 ’
-(l-;’(ﬂk) "3’ ;(“;X"CJJ{Z)
e .

ul(j\ o —~U e : (11.4)
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where the boundary conditions that u'(o) = tdco\*:uil4=a and u%%& _,u‘o}\
outside of the viscous layer have been gpplied. |

The additional longitudinal dis?iurbance velocity ui , which is
needed to satisfy fhe no~slip condition, induces an additjonal normal

distufbanée veloeity ve through the continuity equation;

] . -
Wi = -] Uy 0 (1s)
. 29 €
(O
vhich yields, upon substitution of (11.4),

"'l .

["Uh“(ﬁi@i) ”J-I] cl.(‘(ix"“*) (11.6)

tz

‘ !
V() = (=Y K: (o) -
R L (2 e Ry

Outside of the viscous region 'm; is independent of Mo

oy Ui (o) ei(dsx-u:é.\

” ©(11.7)
(2w R\™

v o L=

and ML: is zero.

The consequences of (11.7) for the Reynolds stréss.are as follows.,
We have .noted in Section 1C that the Reynolds stress is given by AN
(in dimensionless for@). Fof an-inviscid neutral disturbance w' ang «'.
are 900 out of phase and ¥V is zero.. However, for any other disturbance

' and v' are correlated and there is a Reynolds stress. Since «, is

0
zero outside of the wall viscous layer, it can contribute nothing to T
outside of the layer. However, vi/ persists for some distance outside

of the wall layer, and, since it is shifted in phase 1350 with respect:
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to u , it wi}l'préduce_a Reynoids stress. This Reynolds streéss must
equal the Reynoids stress éet up by the flow in'the vieinidy ofathe
critical layer, and which, in the absence of thé wall viseous r;gion,
wbﬁid extend to the wall. This stress is discussed in S?gtioq 2.

‘The fofmula for the ‘Reynolds stress at the edge of éhe ﬁali viscous

region can be derived from (11.7). -If we recall that it is necessary_to

teke the real parts of u; and v, before multiplying and averaging, we

find

. . i
Pde. =-"'“{ v -%: g - [u.! (ﬂ] N (11.8)
(2 & Rs) iR B

‘where © = ¢, If the ratio "def w* is formed, we have

ﬁ : : . L

Ve _ (.’_) o (11.9)
VR Ldg \wfy : i L. _

i ' g * 1 .

A.general expression for T in the wall visco;s reuion can be o%tained
frnm (11. h) and (11.6), and this expression wogid give the 1ncrease of

’V from zero at the wall to the value given by (11.9) at the edne of

the viscous region. Equation (11.9) establishes that ¥ is positive

and, accordlng to (10. 2), energy will be transferred from the mean {low -
to the disturbance. Consequentlyj the wall viscous region, which is
formed to satisfy the no~slip boundary condition, also has the effect

of creat;ng a Reynolds stress which acts to destabilize the flqw. This
mechanism must be present to éome extent for all diéturbaﬁces,ibﬁt whether

a. particular disturbance is actually amplified.or damped will depend on

the distribution of the Reynolds stress through the entire boundary layer
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and on the digsipétion term,

As a notz of caution, it musé be feeailed‘that the preceding
analysis rests on “the neglect of bﬁ.ln the wall viscous reglon.‘
'Consequently, wa can expect the results to be valid only at high i
values of o R; , where the wall viscous region will be thin compared
o uhe boundary~layer thickness, and for values of Me 1arge compared

to the thickness of the wall viscous reglon.‘ o .

11.2 Reynolds stress distribution from the irviscid theofy

The inviseid theory can also provide us with a formula for the
Reynolds stress which will zpply to all of the boundary layer except
“thé two viscous regicns, First, we need a general expressiod for the

"Reynolds stress. Since

(e xe wi . C - 2) i
W= ige (% %= &) , vi= g e:_,(ﬁ‘x “ (11.10)
. v [ ;
we find
‘ 3 ¢ ¢ 1'3“ C:t '
Teah e pple _ ceo (1m)

It is easy o verify that the quantity W defined by (5.%) is equal

0 the part of (11.11) which is in parenthéses.

| o P ! ;
W= ;(‘H’ - 9%¢') = Q- 9i- 9y, (11.12)
Therefore, the Reynolds stress can be written
. { 2“‘36;2}: . '
T 2gdsWe o . (11.13)
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We have, from (5.2), . o - o '

&ﬂJ BRA
A'gr [Z(:o]z

gt - L (ma)

_and 1t follows from (11.10) that :

2 ey &

'1;7‘_- '7«: 91" e : o - {11.15)

Consequently, the derivative of the Reynolds stress is

‘_{_'E v w"

= ——r

Art X5 |u-el

(11.16)

This equation was first derived by Foote end Lin (1950).
'For a neutrsl disturbance, Af/dq, is zero everyvwhere except at
U=¢ where, by the same derivation that led to (5.6), * has a discon-

tinuity given by

. "
;“G'Ca,}..-» o} « Tlye-o) o T it K (11.17)

s %

We can now sketch the expected Reynolds stress distribution in the boundary

layer for a neutral viscous disturbance.

4

Fig. 11.1
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The Reynolds stress builds up in the wall viscous region to the constant
value given by .(11.9.) which, for consistency, must be equal to the value
given by (11.17) with (yc+ol=o. The action of viscosity near o e
smooths oﬁ.t the discontinuity in ¥ . The inﬁégral of "C AU/ 0{!} must be
- equal to D/Rs; the integral of the dissipation terms. '

The reéults obtained :"Ln Section 5.1 concerning the ;I.mportanée of an
‘inflection point in the inviseid theory also follow directly from (11.16),
end (11.17). Since there is no dissipation in en inviscid fluid,.the
.Reynolds stress must be zero throughout the boundary layer for a neutral
Inviseid aisturbénce. Eqi'.ation (11.17) shows? immediately that I mist
-be zero. ‘For an amplified disturbance, integration of (11.16) from =0
to - and application of the bbundary conditions. on V yields the
result that U vm'ust be zero somewhere in theiboundary layer. !

: Tt g
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12, Experimental Confirmation of Stability Theogy - Schubauer-
Skramstad Experiment ‘

No accoﬁnt of the laminar stability theory is complete wiﬁhout
a menéion of the classic experiment of Schubﬁuer-Skramstgd (1947). '

Up to'the time this experiment vas performed there was * - expefimental
evidence to confirm Tollmien's theory of the stability of the Blaéius
boundary layer. Indeed what evidence there was indicated that the size
of the disturbahce was the controlling factor. The general attibude
towards the theory vas one of skepticism, and most people probably
agreed‘with Taylor (1938) in thinking that the theory had little or

no conﬁeq?ion with boundary-layer transition. Only in Germany does
there seem to have been generai acceptance of the theory.

This picture was radically changed by the Schubauer-Skramstad
experiment which proviééd a complete demonstration of the validity of
the theory, and also firmly'established the connection of the amplified
ogcillgtions with transition. This demonstration was unmistakable in
spite of the Tact that the calculations in existence at that tiﬁe wera
not very accurate. The exact numerical calculations of recent years
have only strengthened the demonstration. The experiment was perfofméd
during 1940 and 1941, but security restrictions prevented its publication
in the open literature until 1947.

Experimental technigues will be discussed elsewhere in this course

and we are only interested here in the results. It will suffice to say
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that the disturbances were produced artificially in the boundary layer
by‘means of a viBfating ribbon, which thus‘pfovided a. means of con-
trblling'the'amplitude‘and freqﬁency;of the disturbances.  A hot~wire
anemometer was used to follow the disturbance as it trgve1led doﬁn--
: stream.-.The amplitude and phase of q' vere the primary quantities
measured.

Thé three main results of the experiments were: (i) the neutral-
stability curve, {ii) the amplification rate as & function of wave
number at three Tixed Reynolds mumbers, and (iii) thé. distribution with
A . of the amplitude of u’ . 'The comparison of the experimental neutral-
stebility points with the neutral-stability curve computed by Kurtz
(1961) is showm iu Fig. 12.1. The agreement is véry good except near
the critical Reynblds nymber where There is argreat deal of scatter.

In the comparison of the amplification retes, it haé for séme
reason ‘been customary to plot ¢; rather than &¢; . Figure 12.2 gives

S va. o 8% Rg» = 2200 as measured and as computed by Kaplan.
What was actually measured is the spatial amplification rate, which ié
transformed into a temporal amplification rate vy (2.26). Schubauer-
Skramstad used the phaée velocity instead of the group velocity and
achieved the remarkasble agreement shown in Fig. 12.2, The agreement at
the other two Reynolds numbers is not as good,-and gt the lowest Reynolids
numbex thére is a factor of two difference in ?he maximum amplification
rate between theory and expe?iment (use of the éroup Qelocity would in

. every case vorsen the agreemént)..‘
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The third comparison is given in Fig., 12.3 where experimental
measurement of the amplitude of u' as a function of " is plottéd
along with an eigenfuﬁction caleulated by Kaplan. Again the agreement

is remarkable.
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PART B. COMPRESSIBLE FLOW

13. Derivation of Equations

13.1 Introdﬁétory remarks

The theory of the stability of a compressible boundary layer differs
sufficiently from‘the incompressible boundary layer to warrant being treated
as an entirely separate subject. Many of the general ideas are the same,
and for this reason thg incompressible theofy can be regarded as an indis-
Densable prelude, but there are at least three main differences. First,
the asymptotic theory, which served to give an adequate account for income
pressible flow, has had only a limited succeés for supersonic flow. Almost
all results will-have ?o_be derived from numericel integration of the sta~
bility equations. Secon&, the inviscid theory has a much greater relevance
than it had for incompressible flow, where it'served mainly as a source of
two solutions for the asymptotic theory. though we shall concentrats

entirely on the zero pressure-gradient boundary layer, the inviscid theory

‘even here will be of great usefulnsss. Third, the existence of regions of

supersonic flov relative to the phase velocity of the disturbance permits

waves of an entirely different type thén “hose found in incompzressible flow.
The compressible theory has been developed by fewer people than was

The case for the incompressible theory. Aside from an early investigation

by Kuchemann, the theory can be considered to have started with a report

by Lees and Lin (1946). 1In this work, the inviscid theoryIWaé considered

in some detail and the elements of the asymptotic theory were worked out.
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A subseqﬁent work of Lees (19&7)'carried out calculations of néuﬁr$l~
stability curves hp to Mi = 1.3, and also included t?e famous predictiog
that cocling the wall would'act‘té stabilize the boundary layer. The
next study was by Dunn (1953) and Dunn and Lin (1955), where the asymp-
totie theory was worked out in a less approximate form than by Lees and
Lin, and three-dimensional disturbances were also considered. Neutral-
stability curves vere computed at M o= 1.3, 1.6 and 2.2 by Mack {1960)
on the basis of the Dunn-Iin theory, with the iﬂviscid soluﬁions being
obtained with improved aecurééy. The next step was by Reshotko (1960)
and Lees and Reshotko (1962). The asymptoticwtheofy was rebained, but
both the inviscid and viscous solutions were obtained by numerical inte-
"gration. The viscous equations used contained higher-order termé than
'in ‘the usual appr;ximation.
Direct numerical integrétion of tHe compressible stability equations

-was first carried out by Brown (1961, 1962), first fﬁr the simplified
equations of Dunn and Lin and then for the complete linearized equations.
More recently, Brown (19675 has integrated a more complicated system of
equations which includé- the mean normal boundary-layer velocity and are
vaelid for three-dimensional disturbances. I started my own work on the
numerical integration of the stability equations‘ in 1961L. The numerical
method is described in Mack (1965a), and resﬁlﬁs for two~dimensional dis-
turbances are presented in Mack (1965b).

A13.2 Linearized, parallel flow equations

A comprehensive account of the theory must start, as it did in Part

A, with the derlvation of ths governing equations. The dimensionless
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Navier-Stokes equations for a viscous, heat~conducting perfect gas:a.'z}e

as follows '
o4 g™ P9 | -
— == §  — — - 5 __—l; o s ’-
w ¢ s
LT ——-(g“u‘) 0 e S (13.2)
it . . :
st 9T ME L 9(1:”)-:-'1’3 ' '
e’ PN W\ SEh (13.3)
t o RTT I IR ' , (13.4)
A : o ER e
where
o |' 2u; Y;
€= (= =+ =
N 1(9!} “a)
(13.5)

. .z‘ 5' ' % wt + .

The summation notabion has been adoptéd fo'r economy, 'and the asterisks'l
refer to dimensional quentities. The equations are, respectively,
momentum, continuity, energy and staue. The quantities which did not
appear in the mcompreSSihle equations are T s “l,he temperature; ,la* P
the coefficient of thermal conductivity; R , the gas constant; cy R
the SPecific heat at constant volume., vhich will be assumed constant;
and A , the coefficient of second viscosity (= 1.5% bulk viscosity
ﬁoefficient).

The stability equatlions are obtained from the Navier-Stokes eguations

by the same procedu.ré that was used for incompressible flow. Al guan-

tities are divided into meen flow and disturbance terms, the equations
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are linearized, the mean-fimsr terms are subtracted out, and, finaelly,
the parallel-flow assumption is made. The resulting equations are
then made diménsionlessvtfith respect to u,‘ ; the veloeity scale, § , ,
the length scale, and free-stream quantities serving as reference
quantities for all state variables and transport coefficients. ¢ The
exception is .h‘ s Which is referred to cp‘ /u;' « The x-momentﬁm eguation
is . - v

. s 1] N N [
Qg."_"-i-?rt.l[f-‘-z-v'ﬂ +WEE~)=...._..—-‘ e
Adx X il.né_ a2

3 L}
! ' 2! 2y 2w’ Iw )
= g — & I A -+

Ka[ TS ’u( Iyt 30y 3zt ax 92

+ E0y )(;‘u’ -+ v’ + alw') - %ﬁ“ .{E(?-‘—‘-' + _‘?_b‘_')
3/ ax" (LR2Y 9% a2 T “? 3“& RS

+ 4 (:‘f_‘_‘.'r‘+ _ﬂb_ ?_I'} 4...‘&1:.&‘?‘_:.‘“ ’H{‘T']

(13.6)
The y-momentum equation is

Q:E s U Lwl
2.

L (AN E(ﬂ ' g)} - (13.7)
+"5(_,(‘—r”#) P T " 92 o ,



The z-momentum equation is

w ¢ AW aw' Y’ = ____‘___1}_‘_ B ; ~
ﬁ(‘ﬁ}*"d?*“rﬂ*w‘aﬂ BT
f ‘alw, 31‘”_‘ . .alwt‘ . a‘-b, " a“l ) w .
4-‘_*;{1/‘7? ¥ (_5}? arT PR TIE : 4
- ' 2 s AT Aw
+.£u.-f.\_?3£_+.?;‘:_..‘.-,?._“;)+iﬂ—‘l =
3 %02 Iy a’ 47 Ay o
+ iﬂ(ﬂl.r W, Aw ATl AT vt HT')]
Sumana —— m— v—r L ' -
4 \d,,d,‘ '3% ahé,an& l{? 93 c‘n& (13.8)
‘The continuity equation is
g? o+ R(Qu' - :JE.' -+ _?_,_"E’) ‘-:v v i{_ﬁ
14 Bfa, .. 9% /. nh_a,
v 12 . wde - 0 (13.9)
X 9% ' ‘
The energy equation is
' ?.I'+ u9T+v'dT +Wﬂ‘)=-(\’ 11(3“+§_V','+0s\r)
" 7% dog L S
LY (a“r'+a"r'+ )+_o_l#_c\_j~r*27&,rr9'r‘
v Ry /u\ax" a4 TRV N T dae
t T‘L M fu 9!
o+ éﬁ. (.i....) T' -5 ‘6’(,3'-'\\ — Z/u == (.....- -+ _.-.)
th': Alal Rg, d 'ar 9xX
2 L . ,
g5 S ]
7 T A\ 92 7y AT\ dg / daT\de /] (13.10)
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The equation of state is
e T T S e

Adéitional guantities which appear in these equations are M; , the
free-stream Mach nunber; ¥ , the ratio of specific heats; end v qﬁu?/&?
is the Prandtl number and is assumed constant.

The boundary conditions =t M= g are

Wil=o, vi=0, wil=0, T'=o" (13.12)

The condition on the temperature fluctgation is suitable for a gas
flowing over 'a solid wall. For almost any frequehcy of the gas, it

is .t possible for the wall to do other than.remain at its mean

" temperature. The éond@tions at infinity are that as %-aﬁm , the
disturbances must at least be bounded.- This condition is less restrictive
than requiring that the dis£urbances go to zero. In supersonic flow,
waves may propagate to infinity and we wish to include thdse that do

50 with constant amplifude, .

13.3 Reduction of equations to near two-dimensional form

We now specialize the disturbance to a wave of the same form as in

Part A.
%Wi,ﬁ.%,t\ = %(gﬁetpli(&gx v @it - “sc-i)] (13.13)

With the disturbance in this form, we inspect (13.6)-(13.11) 0 Bee to
1

what extent they simplify in the {ilde coordinate system, i.e., the
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coordinate.system vhere the 2 axis is paralielito fhe wave front. It
is evident that with siz0 , a1l ¥ and W terms drop out of the ¥
and y momentum equetions and the continuity eqﬁation.' When, further,
the reference velocity is Ehanged to U, ces\ , where ¥ is the angle
between the wave normal and Mf ,, these three equation; are identical
to the equations for a two~dimensional disturbance in the mean flow
f{fk&\ with Mach number Ivf, = M; ¢e5¥ and Reynolds number ﬁ,g = Ryeos .
If the boundary layer in the original x, z coordinates is two~dimen510nal
then li(g\ H(?l. waever, there is an important dlfference here from

the situation in incompressible flow. In the latter case, the transformed
Tlow corresponded to a real flow. HEre; k{%\ is the boundary-layer
velocity proflle for the free-stream Mach number M,, nob Ml Consequently,
even if the energy equation can be reduced to two~dimensional form, the
tiide equations do not }épresent a :ea; flow. The tilde coordinate system
thus serves only to simplify the eéuations, not, as in the incompre;sible
case, to relate all three~dimensional disturbances to the solution of the -
sgme flow for two-dimensional disturbances.'

It is evident from an inspection of the energy equation, (13.10),
that even with 9/9%=0 all terms which include ¥ and Y do not drop out.
Two dissipation terms with ﬁfand W remain. This result, that the three-
d¢imensional stability eguation cannot be fransformed into two-dimensicnal
equations, has been known to most workers in stability theofy for a long '
time although it is rarely mentioned in the literature. I first learned '

of it from Prof. M. Finston at M,I.T, in about 1948, It is mentioned by
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Dunn and Lin (1955) in the introduction of their paper, bub the first
explicit demonstration seems to be by Reshotko (1963). This trans-
forma’ion is usually discussed by working with the equations for the o~
amplitude functions and the physical significance is obscuresd by the

manner in whieh the derivation is carried out. The tyjpe of derivation

used here was first given ’t;y Dunn and Lin (1955) s although they too

reverted to the older derivation to obtain their final equations. The
complete derivation along these lines was first carried through by Shen
(1964), but only for the simplified equations of Dumn and Lin wﬁere the

dissipation terms of the energy equation are neglected.

The dissipation terms of the energy equation are

- a2 e P ~
D*Hh’-t)ﬁ‘_ Ly "l_lf.(ﬂ_“_’ * a‘%‘)

(13.1k)
~o2 ~ L
el ]
AT ‘1-"3 clﬁz, 'J/a,

The second group of terms has a term with the mean velocity W , and this
term introduces no essential change from the two-dimensional egquations.
For a two-dimensional boundary layer, where 'Z'L(:}\ = 1&{‘3] y the second
group of terms can be written

Auf/ﬁ\u) . (Aw) T e iy -r" _

AT kﬂl"& "{"6- 4T 13 Cos ' (-13-15)
However, nothing can be done with the final term, which involves &’

the fluctuvation parallel to the wave fromt. That such a fluctuation will
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exist is evident from the %Z-momentum equation.

arf art g . ! 1 _ .312.-4 t g‘arr-‘ . 'f ’ -
LG s +~u'f£-‘_‘-’)=-?[ﬂ(__§,_-+ —-;) . -
dit. L dey 3 n Wl .

. " ‘ o . (23.16)
edp AT AW du (i o0n, AT T ﬂw)]

ATt Ay dy AT\dy g Ay By dy
We cannot have %'= o .as a solution, partly because of the source term
AW/ "’"3’ . There is alvays a source term of this type whenever a
normal-velocity fluctuation, ¥’ , is combined with a normal gradient
of a mean~flow gquantity. An example ln the Orr-Sommerfeld equation |
is v An/ c{g‘ _ , which is a ‘ﬁorticity source term (Anf ‘h&r is the mean
vorticity). | | |

With the ;-“?' term inecluded in the energy equetion, it is necessary

to use the 'E-momez_ltum equation, and, as we shall see ; the order of the
system, which is si:;c for a two-dimensional disturbance , becomes eight,
Durn and Lin (1955) used a simplified system of equations in which all
of the dissipabion terms are 'negiected. When this is done, the eigen~
values of three-dimensional disturbances can 'be found lfrom the two~
dimensional equatlons. However; it is still necessary to use the' %-
'mtﬁmentum 'equa:bion if the eigenfunctions of the velocity fluptuation
components in the x-Z plane are t0 be caiculated. An important example
of equations with no dissipation term.s a;e the :ilnvisc_id eguations.

13.4 Introduction of Fourier components

With the fluctuations in the form (13.13), the complex amplitude
funetions for 4’ , ¥ , &', &', e' and T' are defined to be + , &9
A ;W , ¢ and 0 . (Since ¥'= v'/ews¢ and Vawg, d=Ucesy .,

we have ¥#'= % 9 )e The eguations for the amplitude functions are
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(13.17)
|(f&-—c} o e o _.T.r_'_ | ‘n VB e
Q[ 9] Ul 3&';%(1‘3 " :-P-ucg)
2 A- [
+ -5:;%.(@ + it )
+'?—{l—,§[35ﬁ'.+ 2./«'37’ +-§.(x’~}u’).(g‘+ rh'f"):)
: (13.18)
pliti-ak « Wg] < £ (5= %)
+ ‘:"= [ "I' -+ (s'\“'\‘i")']
¥R L (13.19)
i(f(-c\k o+ (l?'-k"";) + p'® = 0
¢ (¢ (13.20)
X
. -~ ' ' ’ ‘ ‘ 3
Q[‘(“"W+Tcg] ="'(¥-l)(cg‘+I¥) ‘22)'%
- < ,?'

+ b. [ (H"-..&Lg) ( L | -~ %cg.%
m&'ﬁ’v# + (sT) +/Mg] a@
r(r"l\l R},\t[s i‘l il‘{$' 2 ) - 2 ~ gy,

—= M o N g rsW e 2. W4
4R / ; ~ (13.21)
U
T
£ (13.22)
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vhere

s - gn , (13.23)
AT
The subseript § has been dropped from o and R . If, whatever length .
scale, L » is used, ( ) is interpreted to mean differentiation with

respect to .é,‘/ Lk s then the corresponding wave number and Reynolds

number become « , R,2 . - In particular, if
3 x4
= Wz (13'21}')
X
where Ry is the x-Reynolds number U, x*/2:® , then
R 1 ¥ % : W,
o= ot ﬁzl&.___’f_w, (R) (13.25)
(R)"® 35 (Re) : L
and
4 I 7
oL LR =y
L* X" (13.26)

Consequenﬁly, with the y variable rerlaced by the Blasius similarity
varisble % , then % is given by (13.25) and R is simply (f\’z\vz .

This system permits boundary-layer profiles cal;ulated. in terms of the
similarity varisble to be used di‘rectly in the stability equations.
Hovever, .’che boundary-layer thickness, displacement thickness, or momentum
thickness can be used equally well as the reference length, with the proper
interpretation of & , R , and the independent varia.ble.. All of these

«'s and R's differ only by numerical factors which depend on the Mach

number (e.g., dy=7,0 , Wy = 72 3 Rg=7 R }. Since the numerical
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results are to be presented in terms of ot and\#Q y Table 13.1 is included

to give these numerical factors for the insulated flat-plate boundary layer.

My 75 e 7o ,
0 6.0 1.72 0. 66k
0.7 . 62 1,92 " 0.660
1.0 6.1 Cear 0.656
1.6 | 7.0 2.77 0.648
2.0 7.6 3.37 : 0. 644
2.2 | 8.0 3.72 0.643
3.0 9;8 5.48 0.642
3.8 12,1 7.83 0. 644
h,p | 13.5 | 9,22 0.6k45
bs 14,6 . 10.3% 0.646
1.8 ©15.8 11.55 0.646
5,8 20.0 1.3 0.636
6.2 CooaLny - 17.49 o 0.629
7.0 25,k 21.19 . 0,616
7.5 - 27.8 23.62 ' 0.607
8.0 30.3 26.13 0.598
8.5 32.9 | 28.72 6.590
9.0 | 35.5 31.38 x 0.581
9.5 38.2 ' 34.10 0.573
10.0 41,0 36.88 0.565

Table 13.1 Boundary-layer thickness (uY U} = 0.999), displacement
thickness and momentum thickness of insulated-wall boundary
layer. (Wind-tunnel temperature conditions)
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13.5 System of first~order equations

In order to carry out .the numerical integration of the compressible

stability equations, it is convenient to reduce them to a system of firste-

order equations. Following Lees and Lin (1946), we define the dependent

variables for this purpose as

{13.27)

o n L3 o~ f o~ ne TT
Tzlz T / Z, = T ; 23 = g . 2 = ;EE
"-'“ r\-— ’ t\.'hfv Emnf
Z.o=6 , Z,=06" , Z,= Ak | % = A

The fact that this choice of dependent variable leads to eight, first-order

H . o~ 7
equations demonstrates that we have an eighth~order system. The <,

’ . e

equation is cbtained from the continuity eouation; the #, equation

~ . -t ) . ' . .
comes from the X-momentum eguation; the Z, equation, aPfter a lengthy

. . . o R
manipulation, from the y-momentum vquation; the ¥; equation from the
. ot -~ ‘

energy equation; and‘zg'equation from the z-momentum equation. The

resulting eight equations can be written as'the product, of a matrix ‘

( E;j ) and a column vector # . . '

3

Ml bl - " | l |
Z, = Z a4 TN (13.28)

1t

The 3C non-zero elements of the 8 x 8 matrix (_a;é ) are listed below,

[

The 2%, equation has only one non-zero coefficient.

~
a, = l
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_ -, . |
In the #; equation, six coefficients are non~zero.

- i~
'az‘ = iﬁ‘—@ '2:&":: ."' &z <l3-30c'l)
M T
r X . -
B -1 M : (13.30p)
M AT : - -
P-4 7 F) : ' - .
Hon = SRL W T dn il XL ' (13.30¢)
AT »od 3 T
oo s SR ik v B G-y - (13.304)
ro? |
7 e :.ma‘i“ i da Lot dp (1.3.30e)
— - + ————— ay e — r— .
ap = 50 T T AT AT 3.30e
o~ ?.2.- ;;l '
Ay = .
P (13.30£)
The %; equation has four non-zero coefficients
Asi= ~ (13.31a)
" T/ :
gy = T : ' (13-31'*?>
o~ ar D
o= -0 (U-e) ¥ M (13.31e)
G = 0 Koo (13.314)
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&R

The %; equation has six non-zero coefficlents., The coefficients are

written in terms of the factor L , defined by

- 4 = JS. - i E[z+Jﬂ rﬁf(ﬁ—a}
L Lu 3 : .;

The coefficients are

. [
r&r'_.__l_“ g_j:i& -a..i{!.i-iﬂ.:r_]
L p AT 3 T
% 4
4z U
Bag = a'&"*i(z*-n{a\l‘t_{.fﬁ
43 L 3 T /U AT

Qe = -i—?;c:.q. &) v&f%[(bdl A

s f ~r At
G A 2t T .’;(1-&4:\}!:..]
LLp ar 3 T p AT Y

Ll

The E; equation has only a single non-zero coefficient.
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(13.32)

(13.33a)

(13.33b)

{(13.33¢)

(13.33d)
(13.33e)

(13.33f)
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~ ' ‘ :
The #; equation has six non-zero coefficients.

o = -2sty-nfii 7' - (13.358)
“~ o % ¢ ’ . . “'i. L e vy S T ) ,
Beg = SRS T jaeqea Mtk ~ (23.35b)
AT
A ' :
" ne y 2A
Qs = i8Ry K-¢ ra;-I,f-{é‘-_Ié&
P2 Y S M R
2 c‘ \l.?' ~ g3 '
- - LA+ W . .
v e 8L n( ) o | (13.354)
\ . _
by = -2 LA (13.35¢)
o = - e T | - (a3.350

~a

. ,
The ¥, eguation has only a single non~zero coefficient.

N

g = 1 R CER )

r~1
The #¢ equation has five non-zerc coefficients.

Qg = T | . . o (13.372)

Bgr =L S L e g | . (13.37)
AT AoaTt o o

Bog = oL S W ‘ . - (13.37¢)

| T | . S
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By = R4 %R U-e (13.374)
/;l T !
M 4T ' ~ .
In these eguations,
A _

k= y g o (23.38)
and is a constant.

The boundary conditions are

::z.(ﬂ\ =0 , £3Co} =0, %_.,-("‘ = 0 ," Zolod =0 (13.39)

and at Y -9, the ami:l‘itude functions are bounded. Just as for incom-
pressible flow, we have to deal with an elgenvalue problem and can only
satisfTy the boundary conditions for certain combinations of o , (s -

and R . r

13.6 First-order equations in free stream

In the freu-streanm, IR TR the equations reduce to the following

equations with constant coefficients.
.= 2, : (13.40)

s | ~

ZL = [i:&}é(l-c\ + Eil] ¥, +[E§T§—-J5(l'+ 2h) !'Cd':(lw.}?{l]i,,

e A kY (1) B2 |
b 3 -+ 4 { & 5 (13.,_"1)

.
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§3 =-' ~i Z, = i{i-¢) b’f\nz: g,ﬁ, + i{l=¢c} g; - - (13.42)

' -
2 =5 [¥Rs it mrW a0l o
x{-i§1-[ia?c;_¢\+ %] Z, i%{z+k1(hql§6} (13JQ)
Z e cigRe-oMa-a Z e [aRvaea e W) Z, (13.4k)
i, = 7, - S (13.45)
i; = i'&‘-.n ; 4R u-m] z, - : (13.46)
/A ‘

The generai solution of these equations is of the form

;= f: c; A N e 8 (13.47)

it '

: ThE; }‘.j are the eight characteristic values of the coefficient matrix,
(E;j} 3 the :qﬁiare the 6b componehts-of the eight charactepistic vectors
Afj‘ 3 and the 'éight Cm are ax:bi‘t‘.rary constants to be determined by
the eight boundary 'éonditions. Equations (13.&6)-(13.1;6) are simple
enough so that the X; and A?l can be obtained analytically.

A derivation of the A; and A?‘ is given By Mack {1965) for the
'fsixth-order system} The éxtension to the eigﬁth~ordef sysﬁem is obvious.
Of the four characteristic values which'satisf§.ﬁhe boundary cdnditicns as
-? — s Qﬁiy twb have simple forms. They are  - |

VA
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and are identicaﬂ. 0 ;“3 of (4.17), the characteristic value of the
.v:.scous solut:\.on for the Orr—Sommerfeld equation in- 'bhe frae stream.
In the limit of la.rge %R the four characteristic values are, with the
nunbering chosen to correspond to the inc_:ompress:.ble_casa;,

113" '

M=% [1 - M o= o) LR "“”fﬂ?“ff”"% wearg okl (13.49)
Ya 7 ) o V . : . -
-»[. 2R (-] 1 . | o {1350
S \ Uw::aiw \7‘%"- wﬂ““‘@ : |
. — . Ha w«\, Ra\ .
Ay = ~[1aRv (1l ] - ¢ (13.51)
- o : C%Ub&a% c{ﬂw‘b) ' .
A= ~[i§_Rn~c\]z : , - (13.52)

) ' A R
To the same approximation, the characteristic vector A has the com-

ponents (with Am s Am and ‘Ac';l omitted in the listings)

o APV T : : :
A = -id - | - (13.53a)
ol ~ 2 aqfe ' | '

Ay = 1= Ma-ea'] . S o (13.53b)
A‘,:} = i® (1~ ;S o o f_; i - {13.53¢)

| : I . u¢ﬂGHWAL P N

A(; = % Ly-) Mf’_cg- ’AY QF Pooa Q.‘}ﬁfn!f - {13.534)
A= 0  (13.53¢)
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The characteristic vector A nas the components

iz

A%= ciiaR - o] | (13.5ka)
6] " . N .
o ta% ) ‘ ' T :
Ay = A = Ay = 0 B | (13.54c)
The characteristic vector AY' has the components
{5 - ' . .
A =0 : ' o ' (13.55a)
5} P G-V S :
AT - (13.55b)
(izfe)
A s o - (13.55¢)
o . '
Ag = 1 . | | (13.554)
Finally; the components of the characteristic vector ‘th ara
o ) (a3 a1 o
Al = Ay = Ay = Ay = 0 (13.56a)
{ '
Ay =1 (13.56b)

The first of these véctors_is the compressible wavy-wall inﬁiscid

solution; the second is the viscous velocity solution; the third is the

-115-' .. o




viscous tempergture solution; the fourth is a second viscoug velocity
solution for the non-periodic (in ¥ ) veloeity component parallel to
the wave front. The exact counterparts of these solutions provide the’

initial values for a numerical integration which proceeds from the free

stream to the wall.
A discussion of the inviscid equations in the free stream will be
given at the end of the next section.

13.7 Inviscid equations

When all of the terms with viscosity and heat conduction are dropped

from (13.17)-(13.22), the equations reduce to

- § e Wglaotm s (23.57)
?{ ] ¥ M}

Pié‘az(ib c)'cgaf,_ra;z  (13.58)

¥ &,

g[i(ﬁ-c)l + \Kr'g] = © | (23.59)
AT Q('g‘.;. i:I‘f) + ?‘cg = 0 3 (13.60)
f'[;(ii- 6+ T'g) = -0 GE v gy  (23.61)
.n_._:_;_ . "-% (13.62)

o~

In these equations, as already indicated in Section 13.3, b and

W appear only in the 7 -momentun equation, and the other equations are
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identical to two-dimensional equations. Consequently, we can obtain

the eigenvalues of all inviscid three-dimensional waves frpm the two-
dimensional equations, although in contrast to incompressible flow,
separate eigenvalues must be obtained for each wave angle v . The
amplitude function I can be computed from (13.59) after the eigenvalues.

are known without an additional integration.

13.7.1 Various forms of inviscid eguations

We can easily derive several forms of the inviscid egquations which
will be useful for various purposes. Substitution of (13.62) into (13.60)
yields, with the use of (13.61),
TRE ¢
Cft-.

(13.63)

i o=

When this equation is differentiated and the result substituted into

(13.58), and + eliminated from (13.57) and (13.63), the result is

] {cu-c\g- “9l  wNI-o g = o (1.3.64)
Ay LT AR T |

This is the form of the invscid sSability equation derived by Lees and
Lin (1946). Since it is a second-order equation, just as for incom-

pressible Tlow, only two boundary conditions may be satisfied.

§lsy = 0 <g(’7) bovaded a3 Yoo (13.65)
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Equation (13.64) is useful for analytic developments, but it is
not suitable for numerical integration because of the denominator
~ ~ 2 .
T - hd:(lt*c\ » Which, for ¢;=0, is zero at the point in the boundary

layer whére U-¢. is equal to the loeal speed of sound, TFrom (13.57) -

and (13.63),

T- M{T-a (13.66)
Substitution of this equation into (13.63) gives
s f o~ ]
Lot e - (Uee)
T = i¥ M, g §
‘ R I (13.67)
T - M, (k"‘
L
When (13.67) is solved for @' , we find, with the Z notation,
~ 1, ~ N bn : o
23 = ",\'._'Lf""¥3 t i Iﬂ M (u < %4. (13068)
U-e 'i:f_- ¢
and the y-momentum equation (13.58) is
\ }
o~y i u&‘«‘.cﬁ— C.‘ e
2y - % | (13.69)

These equations are the counterparts of (5.1k4) and (5.15) in Part A.
When M =0 and T=1 ; they reduce to the incompressible equation.

For some purposes it is useful to think of an ob;er?er moving with
the wave, In order to write the equations in this coordinate systeﬁ, we

introduce

=N

M

Yy (13.70)

g = TY?-
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For ¢;=0 , Mp is the local Mach number of the relative flow. Then

(13.67) becomes

!

LU (j? ) (13.71)

\(Rﬁ; | - f\vn; U~c

This eguation can be recognized as the linearized pressure-area relation
of one-dimensional flow. The quantity 90/(1'2-53 is tht_a amplitude function
of the streamline slope.

The other disturbance amplitude functions can also bhe written in terms
of q/(iz—c}. However, because of the mean normal gradients, the complete
expression for the amplitude functions will also involve source terms.

We find

(13.72)

-3
1
——
¢
p2=
&
(\
9
P
=
i
o
S
t
\._,__,_’-
[ S

g = i{ '~:“?- ~ (¥-1) MilT(—;L” (13.73)
o |

lee - S5 '
©o= l[{ '}2_-:. l*f"\‘v";q 'E;'""" (13-7!4')

When the second terms of these equations are written in terms of T from
(13.71), they can be readily recognized as the linearized momentum equation,
isentropic temperature-pressure solution, and isentropic density-pressure

solution, respectively.
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We are able to derive a single second-order equation for i /ff{,-c) .

It is ‘ .'
9 u v \ g f P . _‘
(}i_;) * (la?f 14&3) (z“ic) ) M'“M“](%) = e (13.75)

A gimilar equation can be found for T .

e (log Mayw' ~ X0~ M\T = 0 (13.76)

This equation has been studied by Lighthill (1953) in another connection.

13.7.2 Inviscid equations in free stream

In the free stream, (13.76) reduces to

't ~

- & (- R )= o _ (13.77)

~ .
where Mg, 1s a constant and is given by

Mg, = (=) M, , (13.78)
The solution of (13.77) which is bounded at infinity is

~r & e ~r L ‘l’- |
o= = ¥ Mg, “?[““(“ Mg, ) "7."75’] (13.79)
- ~z M2 '
The characteristic value, ~u (1~ Mg,  , is equal to the A, of Section
13.6. In order to simplify the notation in the remainder of this section,

MR; will be replaced by M, ard & by & .



When C;=0¢ and Mg ¢! , T~ ¢ as y v, We ¢all this case
a subsonic neufral disturbance. When Mg > 1 , we have g supersonic
neutral disturbance. The coefficient of (7-—75\ iﬂ (13779) is pure
imaginary and the wave amplitude is independent of 7 ., The whole

solution is

; , v
e o ~¥ My exp {l« [x 3 (Mg~ "2(7*7“1} (13.80)

It is evident thait these waves are Mach waves. There are two cases

8 f .
depending upon the branch of the square root we choose., If (-1} ‘= + | s
we have the minus sign in (13.80) and the case shown in (a) of Fig. 13.1.

" .
If (=)' = =1 s We have the plus sign and the case shown in (b).

M;;lr

(2) | ()

Fig. 13.1 Supersonic neubral disturbances

Case (a) is an outgoing wave; case (v) is an incowming wave. Case (a)
appears more appropriate to the bLoundary-layer stebility problem. However,
a combination of the two types of waves permits the boundary comditions to

~121-



be satisTied for any « and ¢ and we no longer have an e;genvalue
problem. But if we restrict ourselves to only one kind of wave, then
we still have an eigenyalué problem. Type {a) waves hava-actually been
found, as will be seen in Section 15.6.3.

For amplified and damped waves, ¢, # ¢ and Mg will be complex.

- “MIS(-CP)M".='M!
Mo = (i=e ‘ PootE (13.81)

The resi part of M, is always positive, but the imaginary part will
change sign depending upon whether the wave is amplified (¢;»e) or

damped (¢;<¢). Ve can write

Yo 2 ,
(= M) [ - 3 M) 13-62)
- (Mal,..l

under the assumption that (Mg} << (Mg, . When (Mgz), <!, the

1
boundary condition at infinity is always satisfied. The wave fronts of
the amplified disturbances are tilted in the upstream Zirection; the
wave fronts of the damped disturbances are tilted in the downstream.
direction. (The neutral wave froﬁts are normal to the free-stream

direction.) When (Mg), > ¢ , there are again two cases to consider.

2 'fz : - -
With (~1)Y =+ 1 , we have the outgoing case {a) waves:

exp |~ “(‘flwiih57-7sﬂ

& (Mg} (Mgl
oy
'[_(Mn)\- - l]

-

= QK[’

% 2
(7~ ‘75} cxr’{""ﬁ [ (MY, 1] ‘7”75‘} (13.83)
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i .
With (=1} = =i , we have the incoming case (b) waves.
2 '
exp I_-o((l- Mp) ('7—-75\]

(23.84%)
& (MR (Mg

[ﬁhﬁn}: Tk

- e-).'P [-"

- A
iy v Lot T3]

We can classify these waves by whether they increase or decrease with

inereasing 7 .

Amplified Damped
Case (a), outgoing " decrease . increase
Case (b), incoming incraase decrease

For amplified waves, only the outgoing waves satisfy the boundary
condition at infinity. For damped waves (¢i « @) , only the incoming
waves -satisfy the boundary conditions. EHence only two of these solutions

can be accepted.
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1%, Numerical Integration of Stability Equations

1&.) Inviscid equations

Two methods have been devised for the numerical integration of the
inviscid stability equations. The first of these is by Reshotko (1960).
The second-order linear equation is transfofmed into a first~order non-
linear eguation of the Riccati type. This equation is soived by numerica.
integration except for the region around the critical point, where gener-
alizations of Tollmien's series solutlions are used. Although the numerical
integration is performed on a computer, the procedure is not completely
automatic because of the matching required between the numerical inte-
gration and the series solutions.

The second method is by Mack (1965a) and is a. generalization to com-
pressible flow of Zaat's (1958) method. The numerical integration 1is
carried out along an iﬁdented cantour in the complex plane. The compu-
tation of the eigenvalues is completely automatic provided the initial
guess is adehuate, a condition that can easily be met. The ecuations
that one uses are the two first-order equations (13.68) and (13.69). The
integration starts in the free stream and continues to the wall. In the
free streanm, the equations can be written as a second-order equation for
2, as has alrveady been dons in Section 13.7. In the fixed coordinate

system this equalion is

z - '&x[l- M- 2, = o ' - (ha2)
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The solution which satisfies the boundary condition at infinity is

Z, = -—(1-::.\ exp{-—'&[l- v (_\-c\z]%{v..?b\} ' (ll&..2)

The integration constant has been chosen to make 2, (%)= (1, 0),

The initial conditions at M= s for the numerical integration are

I!1

2,00 = = L~ &l o) (14.3)

Z, 09 = - (=& o (kb))

We must decide which of the indented contours shown in Fig. 5.1
to use. For a neutral disturbance, both contours are satisfactory.
For a damped or amplified disturbance, the choice of the correct contour
is made on the same basis as in incompressible flow for a velocity profile
with an inflection point {p. 34). Table 14.1 gives some eigenvalues for
a boundary layer on an insulated flat plate at Ml = 3.8. Contours {(a)

and (b) are those of Fig. 5.1.

Contour < c, c,
a 0.1787 0.8835 -0. 005
b 0.1058 0.8317 -0.C05
2 0.2058 0.8317 +0. 005
b | 0.1787 0.8885 +0. 005

Teble 14,1  Inviscid eigenvalues at b& = 3,8 for different
irdented contours.
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The eigenvalues of the neutral disturbance are o, = 0.11.1+21, ¢s; = 0,8523.

At finite Reyndlds numbers, the unstable region lies below the neutral-

stability curve; the stable region above it. Consequently, the criterion
that the inviscid solutions must be the R —+ « limit of corresponding
viscous solutions selects contour (a) just as it did foy Incompressible
flow.

The numerical integration yields #;(e) for specified values of o ,
C. and ¢; . To find the eigenvalues, one of the thres parameters is held
constant and the other two perturbed until the boundary condition #;()=o0
is satisfied. With a reasonable initj.al guess, a linear perturbation is
adequate. If a neutral solution is sought, then ¢; =0 , and % and ¢,
are perturbed. An initial integration, follc;wed by two more integrations

~with o +then ¢, perturbed, ylelds the following four quantities;.

A 24, (o) A 23; (o)
———tart ey )
ad Ao .
(1%.5)
A Fs, (o) , A Z3; (o)
ACV &Cp
The newv & and ¢, are found from
2
Lgl‘t-{ﬂ\ A - -é_--h—(o‘ bCy = _‘gah(o\ (111-.6)
Aol ALy
(14.7)

4 Zy, (0 AKX+ M 8¢ = =%y (0)
A Acy ‘
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This process 1is repeated until & and ¢, converge to the specified
accuracy. If & is held‘constant, then one integration cgn be saved

by taking advantage of the fact that 7, and 4, are analytic functions
of ¢ . The two deriVativés similar to those of (14.5) &hich are not
actually computed are obtained from the Cauchy-Riemann‘eéuations. Since
there is no serious problem of error buildup with the inviscid equations,
single~precision arithmetic and a standard forward-integration method
are adequate.

1%.2 Complete eauations

The numerical integration of the complete compressible stabiliﬁy
equations presents the same central difficulty as with the Orr-Sommerfeld
equation. Two methods have been succeséfully applied to this problen.
Both methods were first restricted to two-dimensional disturbances, but
have since been ektend;d to also handle three-dimensional disturbances,
Double-precision arithmetic is used in both methods to control the error
build-up. The first method to be developed, just as was the case for the
incompressible boundary layer, is by Brown (1961, 1962). In Brown's
method, three arbitirary independent solutions (for the sixth-order
system) are produced by numerical'integration'from n=o0 to %= 7s .
At %, , these solutions are matched to the analytic free-stream.solutions.
Two of 1Lhe matching conditions can be immediately satisfied, but the third
condition can only be satisfied by searching for a sultable combination
of oo , ¢ and R . Brown successfully applied his method to several
problems.

The second method, which was developed independently shortly after
Brown's method is by Mack (1965a). This method is simglar in concept to

the method described in Section 1.1 for the inviscid equations. The
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analytic free-stream solutions provide the initial conditions for four
linearly independent solutions (eighth-order system). These solutions

are produced b& performing four numerical inteérations from s to'
h=0 . Three of ‘the four houndary conditions st =0 can be im-
mediately satisfied. The remaining condition,’fj-w) =.0 , is satisfied
by the same sort of linear perturbation procedgre described in the pre-
ceding section. With « and R held constanf,‘only a single pertur-
bation integration (of each of the four independent solutions)‘is required
because the 'Eh\ are analybtic funciions of < l, To caleulate a neutral
solution (c; = o) , €, is held constant and % and R are perturbed.

As is often the case in problems of this kind,. the fact that 535{0\ is
a physical guantity leads to a rapid convergence. Oiten only a singlg
iteration is needed to give the eigenvalues fo three significant figures,
and it is rare ﬁhat more than two iterations are required. Once.the eigen-
values are known, then a subsequent integration of a single solution which
is formed from the Ffour independent solutions.in the proporition determined
during the eigenvalue compubation will produce: the eigenfunctions aqd |
whatever related quantities are desired..

| On an IBM 7094 computer, this method requires 0.25 sec to 'integrate.
the four solutions of the eighth-order system across one integration step;
0.14 sec are required for the three solutions of the sixth-order: systenm.
With 160 steps, a common number, and provided only one iteration is needed,
it takes two minutes to calculate the eigenvalues of the eighth-order system,
end 67 sec for the sixth-order system. At a computer charge of $250/hr.,

the costs are, respectively, $8.00 and $4.45 for each set of eigenvalues.
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These numbers are included here to emphasize that the economics of‘doing
research on a computer is a major consideration. '

The method Just descrﬁbed has one important drawbacg. It is limited
to maximum values of oR thch are not always adequate. Fortunutely, as
M; increases, so does (&R}, but a value‘of 300 is sbout the highest one
can achieve. The aéoption of some version of Kaplan's method, such as
the method of Wazzan, Okamura and Smith (1966), would remove tﬁis limitation.
Also since sing;e~precision arithmetic cguld then be used, thelspeed of the

program would also incresse.
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15. Inviscid Theory

15.1 General results

Iees and Lin (1946) have carried out the most complete. study to

- date of the inviscid theory, Their results which are useful for our
purposeé will be summarized here without proof. Since the equetions

for = three-dimensional' disturbance can be reduced to the two-dimensional

| equa'hiohs, 'only the lafter equations will be co.nsider'ed ih this secti-:-)n. .
Lees and Lin classified the 'disturbé.nces into three groups, depending
onlwhether the phéée veiocity C: is subsonic, sonic or supersonic'

- with respect to the free-stream velocity U, 7. In dimensionless terms,

this classification is

o

Cp ¥ | L subsor i
AL vy ..u-qor.c
Gz b - C somd s
o= b . . sonigc : .
Mg ) ) o . . ' K :
Cp < 1=~ — . supersonie o R R

S0

Lees and Lin's chief results é.ré s
(1) The necessary and sufficient cozﬁdit;lon for thé existence df 8
neutral subsonic disturbance is that there isl some poinmt %s in the
boundary layer where o | ‘ ) ‘ g o
5.7. ) " o : (15.2)
_ The phase velocity of this disturbance is Cs thé ﬁean velocity at
s (The proof of suflfi)ciency depends upon T - M, (U- ) > 0.) This
| ORIGINAL PAGE. 5
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condition is the generalization of the condiiion found in Section 5;1

for incompressible flow that there must be an inflelction point in the

velocity profile for a neutral dilsturbance to exist. The point s s

which plays the same role here as the inflection point, wil_l be called
the generalized inflection point.

(i1) A sufficient condition :E‘o.f the existence of an amplified
disturbance is that

4 (J:f_' |-
d'7 T
at some % greater than 77, s Where Yo is the point at whidﬁ ez ¢oz 1=,
The proof of tl'zis condition also depends upon T- Mj (U~ a'vo,
(1ii) A sonic neutral disturbance is |
d=0 , lCo: I'-"-‘-' (15.3) .
M' .

(iv) If T- M(Y%- Y >0 » there 1s a unique wave number olg
corresponding to ¢y for the neubtral subsonic disturbance. In other
words, as long as ther: is no region in the boundary layer where the
local Mach mumber of the mean flow relative to the wave velocity is
supersonic (Mg < 1) ., a unigue o exists.

These results are obtain‘ed by & direct exténsion of the methods of,
proof used for incompressible flow, The necessary condition for a

neutral subsonic disturbance is derived from the equation for the

discontinuity of the Reynolds stress ~ Qu"_\? at the critical point.
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This eauatlon is, for ¢;=0,

‘ 1 ' .
[ 7 ‘7‘

Since ¥ is zero at the wall and in the free stream by the bouhdary

’
conditions for a subsonic disturbance, it follows that_('l{'/ T] must

be zero at Yo + A gquantity that appears in the asymptotic viscous ﬁheory

is
U Ce) = -TTZ..(‘_‘”_E T A4 (u‘” S (15.5)
T (14 )’ A7 |
In terms of V.(2) ,
. » | .
AT =1 o J:" (lé’%u,) v, (e} | (15.6)

The discontinuity in ¥ is derived from the generalization to
compressible flow of the Tollmien series solutions for @, and 9

These solutions are

Gl = (9~4) f,u (%~ 5e | | (15.7)

ﬁ';_cv\ = %1(«7- Vel

SR 0 e e e
e
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For 17 Yo s h:r}-, 9=y = !a? l7 - 7‘.l —iT as for ihcompressible
flow. The leading terms of g, and 4. are 1. ana T/ U, s Te-
spectively:, so that tj?. and 9, are normalized here in a different ménner
than in Section 5.2.1. These solutions- have been worked out in moré
detail by Reshotko-(l960). Both ? and t bhave the same analytic behavior
as for Iincompressible flow. What is néw here is the existence of a temp-

erature fluctuation. According to Reshotko, it has the behsvior

fv—--l-—-- ofa :_Ii 4 -.L_.{'..: 0 - " I ' l-
AT n:[i"y('r)];?{"’ 7 (5:9)

§
Hence, even for a neutral disturbance, ° here CZ{.'/ T)7 = 0 and 4 and
[
+ are both regular, ¢ has a singularity at Ye -«
The inviscid solutions in powers of «* can also be extended to

compressible flow., They are, e.'ccordipg to Lees and Lin {1946),

Gotgr= (-eV ) 7 &7 Ay, )
T o (15.10)

91 tv“ = (u_ C\Z dlh hlh!-l (’71
' nzo

where

11,('7\ = |

5 9 (15.11)

2 3 i
hytgy < | T MlU-c) -ed p 4
’ }. d[ (U- oY / T w1
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and

7

)ﬂ;(Tﬂ = T~ M {22.‘- e) aQ?
A (M- )
) (15.12)
9 . . 7(25 . ’
’L‘h-h[ } =/ T- mi(it-o G( / ——-—-—cl ‘llzo.-uc \"{
ma b / oy 7 T AR

In the course of my numerical studies of £he eigénValues of the
complete stability equations, it became evident that (iv) could not
be true for T- Mi(U-c} < 6 ( Mg >1} ., The consequence of this loss
or uniqueness mekes the inviscid theo:y Lor supersonic free-stream Mach
numbers differ greatly from the incompressible theory.

Before going further, we must examine more closeiy the consequence§
of the finding that neutral and amplified inviseid disturbances can exist
whenever (1£’/'T\I‘= ¢ . For the flat plate incompressible boundary
-layer, n' is negative everyvhere except at v=0o . However, for a
compressible boundary layer on an insulated fiat plate (W' /T)  1is
always zero somevwhere in the boundary layer. Consequently, all such
boundary layers are unstable to inviscid disturbances. We have seen in
Section 9.2 for the Falkner-Skan profiles with Q < 0 , that inviscid
. instability became mére important as the inflection point moves away Trom
the wall, TFigure 15.1 shows €3 , the mean velocity at the geners. .zed
"inflection point and the phase velocity of the neutral subsonic disturbance,
as a function of M;. The wall is insulated, and the free-stream temperature,
vhich is a parameter for the exact numerical solutions of the boundary-layer

equations used here, 1s cheracteristic of wind tunnel conditions. The
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stagngtion temperature is held constant at 3ll°K until, with increasing

M, the free-strean teﬁpefature T," drops to 50°K. For higher Mach
numbers, T," is held constant at 50°K. All results to be presented for
irsulated~wall boundery layers are for this family of boundary-layér
~profiles unless otﬁerwise noted, |

Figure 15.1 also includes a plot of Co =1l- V /M, .« Fora

disturbange to be subsonic relative to the free stream, and hence have
vanighing amplitude at Y -v ®  even for a neutrel disturbance, ¢~ must

be greateir than ca‘. It is often said that only subsonic disturbances

are consider=d in stability theoxry, a statement that is not entirelylcorrect.
It is true that the neutral subsonic disturbance g only exists when

€ v 1= Y/, . However, this doesn't rule owt amplified or

damped disturbances with €. < | ~_‘/iw. , Or even neutral supersonic
disturbances with a c,.k aifferent fr(;m_ €; o We shall find examples of all
of these disturbances, all of which satisfy the boundary conditions at
infinity and lead to elgenvalue problems. For ¢€; % ¢ , the amplitudes

of outgoing amplified and incoming damped waves vanish at infiﬁity re-
gardless of the value of Cn ; for ¢;= ¢ , the amplitude will only be
bounded at infinity for ¢. < ¢, . What does turn out to be true is ¥’ st
the most unstable disturbances are always subsonic., Further, we shall find .
thet for'one class of disturbances, the amplified first-mode waves,

Co = €. = &y « This result has important consequences.,

15.2 Multiple neubtral solutions, two-dimensional disturbances

15.2.1 Neutral subsonic solutions

An important omission in the Lees-Lin inviscid theory was the failure

to recognize that for a boundary layer at supersonic free-stream Mach
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. numbers, there are multiple neutral solutions. It is rather easy to
demonstrate the. 'existence of these sc:alu‘l;:i.ons-:.L The inviécici equatilon
written in terms of T , {13.76), quite evidently has a different
character depending upon whether My is less than or greater than unity.
It is instructive to consider of large encugh 80 that the ™' term can

be 1+ gleeted. Then (13.76) reduces to

Tr!i - d\&ﬂ" M;)‘H' = O . ‘ (15.13)

When Mg « [, the solutions of (15.13) are elliptic in nature, and
it ir under this circumstance that Lees. and Lin proved the uniqﬁeness
of #;. However, whem Mg > 1 , (15.13) becomes a wave equation, and
as in all problems governed by the wave equation we can expect ‘there to
be an infinite sequencé of wave lengths thich will satisfy the bclmndary
conditions. | |

If we introduce

o= (9) (15.1k)

MR':.l

then, from (15.13),

‘ 7
) v
T = Y cos ‘a;,,j (M;-t\ .-(7] -7 <_'r7l (15-15)

7
2 M :
T = exp -«g.,,‘/ (1- Mg) 47 9 7 Y, (15.16)
i |

where (15.15) follows from (13.69) and the boundary condition on 9 at

i Not too long after I found these solutions for the boundary layer,
Gill (1965 ) independently found them during his study cof the "top~hat'
wake. ‘ .
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» = 0. We have written & as o, . The subscript s designates the
neutral subsoni¢c solution; the subseript n refers to the multiplicity
of solutions. Since we have arbitrarily made 7 positive for R/

)

i1t can have either sign at H=0 At e

] :
M2,

cos oﬂsﬂ\/(Mf‘— 1) dyto= o2 (15.17)

¢ | . ’

and
T

1 Mz .

A [ {Mg=t) dy = mw | m=E 4,2, ... (15.18)

G
Because of the approximate nature of {15.15) s the magnitude of o s9v BE
given by (15.18) is of little importance. However, the difference between

adjacent values of dog,’ , given by

Bl (25.19)

Astned ™ Agn = "
M- 1)

th.

Ao
o
turns out to be accurate under many circumstances.
When the numerical integration of (13.68) and (13.69) is carried out

with ¢.=¢s , C; = ¢ for the inswlated~wall boundary layer, the

oy, Which are found by the eigenvalue search procedure described in
Section 1lh.1l are shown in Fig. 15.2. The solutlon for each value of m
.will be referred to as a mode, with wm=t +the first mode, m =1 _ the
second mode, etc. The wave numbers of the first mode were first computed
by Reshotko (1960}, The second and higher modes appear only for M > 2.

With c,=¢, and the family of insulated-wall boundary-layer profiles, a
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point 4 at vhich Mp = 1 first occurs at My, = 2.2 vhere 7,.3 0. With
increasing Mi the point'yimoves out into the boundamy'laygru ¥o higher
mo@es could be found numerically for Ml< 2.2, in accord with the theory
given above. Also, from (15.18) «,, must be inversely prpportional to
VI the thickness of the relative supersonic layer. As Ml-w-a.e.from

above, ¥, ~0 and a,, must become infinite, again in agfeement with the
numerical results. ) ’

A curilous feature of Fig. 15.2 is thgt the upvard-sloping porition
of the first-mode curve between Ml = 2 and 4,5 1s in a sense continuous
through the other modes; i.e., there is a Mach number range for =ach mode i
where the ¢y, vs M; curve has a positive slope. The end point of this
region for one mode is close to the starting point of e similar regilon
for phe next higher mode. The approach becomes closer as Ml increases,
Thi. wpwaerd-sloping portlon of each curve has a specisl significance whiech
will be pointed out later. The same phenomenon will appesr in even more
emphatic fashion when we {take up three~dimensianal disturbances in Section
15.5.

The accuracy of the wave number spscing given by (15.19) can be checked

from the numerical results, which are given in Table 15.1 for My =5.8 and.
10.0.

M =5.8 M = 10.0
Modes A A
2-1 0.1k , 0.09
3-2 0.13 0.10
-3 0.27 0,08
5=l 0.28 0.02
6-5 0.10

-6 L.10 '
-7 0.10
(15.19) 0.28 0.10

Table 15.1 Comparisen of predicted and computed value for wave~
numbeyr spacing of adjacent modes.,
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We see that at h5-==5.8, (15.19) is satisfied starting with the difference
between the third and fourth modes; at Mi = 10 it is satisfied approximately
for the firsc three differences, and then exactly sta?ting with the aif-
ference between the fifth and sixth'modes. The upward—sioping line thus
marks an Important boundary. Above this line, the spacigg solution is
satisfied exactly; immediately adjacent to the line, it is not satisfied
at all; and below the line 1t is satisfied'approximafely at high Mach
numbers.

With the eigenvalues of the multiple neutral solutions established,
the next step is to examine the eigenfunctions. For this purpose the
magnitude of the amplitude function =2, (= w/¥M,) is sketched in
Fig.'15.3 for the first 8 modes. The first thing to note from this figure
is that the number of zeroes in Z, is one less than the mode number = .
For example, the second mode has one zero, and Z, (o) is 180° out of phase
with 24(75\ ; the third mode has two zeroes apd Z (s} is 1n phase with
E4f75\ - The number of zeroes in Z,(n) is the surest identification of
the mode under consideration. By keeping track of the phase relation
between Z,{) and Z,(7;} , it is possible to determine when there is a
change from one mode to another.

Second, the appearance of the elgenfunctions in Fig. 15.3 tends to
confirm what is suggested by the simple theory given above: +there is an
infinite sequence of wave lengths in the supersonic relative-flow region
which can satisf{y the boundary conditions. Thirﬁ,'the magnitude of 34(01
is a minimum for the fourth mode. ( 24(75\ is the same for all modes.)

Since the fourth mode at M; = 10 is on the upward-sloping line of Fig. 15.2,
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this is another indication ¢f the special nature of the neutral solutions
that make up this line. Fer other modes, wToM/VTh\ tends‘to become large
away from' this line. In particular, this ratio becomes indefinitely large
as n-=x ., This same phenomenon will reappear in =& sligﬁtly different
form for three-dimensional disturbances and is illustratah in Fig. 15.13.

15.2.2 Singular neutral solutions

A further conseguence of a region of superscnic relative flow in the
boundary layer is the existence of another c¢lass of neutral disturbances.
Although these disturbances are also subsonic, the term neutral subsonic
disturbances will always refér to the disturbances associated with the
generalized inflection point. The new class of disturbances is called
singular becaﬁse the solutions cannot be computed directly, but are‘
obtained in the limit as ¢;~0 from a family of amplified solutions. In
the limit, ¢, -1 and "T{o)/w(yy —~ o . That is, these neutral dis-
twrbances propagate with the free-streém Veiocity, and, since for a
finite w{oy the free-stream pressure fluctuation w(y) is zero, the
distwrhance is restricted to the boundary layer. The wave numbers of
these solutions are designated by on . The first subscript reférs to
€, =1 ; the second is the mode number, The smallest o, Iis called the
second mode, the next smallest the third mode, ete.

Fipwe 15.4 gives |mipy|/lweor|  and arg T(y)  as functions of
Y for alunst neutral disturbances of the second and third modes at
' Ml = 5.8, Both the amplitude ratio ind wie » nitude o7 the phase change
ere nearly independent of €, near c.= 1, but tﬂe locallon of the phase

change in the outer portion of the boundary layers varies somewuat as
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Cp —= i, This phase change is always located ilnside of the critical

point. We see that for the second amode the pressure fluctuation under-

goes only & 10° phase change, while for the third mode it‘undergoes a

42° phase change in the outer portion of the boundary layér end a 180°
) .

phase change at y = 0.135. This 180° phase change is just what is

encountered in the second-mode neutral subsonic solution.

15.3 Amplified two~dimensional disturbances

Now that we are scquainted with the main classes of neutral dis-
turbances, we can go on to the much moré important amplified cdisturbances.
With the neutral solutions known, it is easy to calculate amplifie;i 50~
lutions by letting ¢; increase from zero. It will turn out that not all

: ;
of the neutral subsonic solﬁtions lead to amplified solutions of interest,
but et least one always does, as will be seen presently.

It is convenient %o plot ihe eigenvalues of the amplified disturbances
in the form of diagrams of « V& ¢ andlcb ¥vs ¢; . Such diagrams are a
necessity in carrying out the caleulations., The complete pleture of the
inviscid solutions requires the demped solutions also, but to simpiify
the discussion, they will be deferred until Section 17.4, where the
behavior of the viscous solutioné is discussed.

Figures 15.5, 15.6, and 15.7 give examples of eigenvalue diagrams at
three Mach numbers, 3.8, k.8, and 6.2. At M = 3.8, the first two modes
are included in the range of o's shown. If the caleculations are ctarted
at both o, ,c; and o, , €y , the two curves shown in Fig.'lS.S result.

The curve vhich starts from og,,¢s leads to the sonic neutral solution
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®=0, ¢ = {~'/M, The solutions which lie onlthis curve have little
Phase shift in tﬁe pressure fluctuation and may be called first-mode
cmplified solutions. The curve which starts from oy, , ¢ leads to

the singular neutral solution . , -. <1 . The so;ﬁti'ons which lie

on this curve have a large phase shift in the pressure fluctuabion except
near the singular neutral solution. They may be called second-mode amplified
solutions. -

It can be noted in these figures that for the first mode, C, « Cr < C;5 .
This resu.ltl is always found for the firs‘c‘ mode. For the second mode, as
seen from Figs. 15.6 and 15.7, it is possible to ‘have ¢, = ¢4 « What is
of major importance is that the amplificaticn rate, o ¢; , of the second
mode is _i__eggg; than for the first mode, ‘& result which is alvays true. It
is this feature that makes supersonic boundary-layer stability so different
from incompressible flow. Not ‘only 1is ‘there moré than one mode of insta~
bility, but it is one of the additional modes which is the most unstable.

At M = L.8, Fig. 15.6 shows that o, is smaller than og, . This
condition persists until Ml = 6.0, after which _a? marked change occlrs as
shown in Fig. 15.7 for M, = 6.2. The eigenvalue curve of the first mode
Joins the eigenvalue curve of the second mode at ¢; » 0o . As a'result,
it is not possible to reach oy, by following the eigenjralue curve which
~starts at the neutral sonie solution, nor is it possible to reach the
singular neutral soluticn by following the eigenvalue curve which starts
.at o, «+ Instead, o, 15 reached by starting at o5, . By reference to

Fig. 15.2, it can be seen that ut = 6.2 oy, lies on the upwari-sloping
2 1
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portion of the «;, vs. Mi curve. though the first-mode neutral
subsonic solution still exists, it has ceased to be of importance in

the sense that fhere are no "adjacent" amplified solutions of any
consequence. At Mi = 6.2, the magnitude of the ratio 'W?u}/TN),I for
the neutrel solutidon o, , €5 18 1/8 of the magnitude of wW(o)/T ()
for the solution &, , €5 . An obvious feature of Fig. 15.7 is that
nowhere on the combined first-‘and second-mode cwrve does <€, exceed < .

As M1 inereases beyond 6.2, the eigenvalue diagrams continue to
change. At N& = 7.0, o,; 1s less than «;, , so the second- and third-
mecde eigenvalue curves cross. AL Mi = T.S,lthe combined first- and
second-mode curve does no£ lead to dy, , ¢5 , bub instead joins the
third-mode eigenvalue curve at a ¢; >0 and leads to gy, ©s5 . Hence,
a single eigenvalue curve extends from the neutral sonie solution to the
third-mode neutral subsonic solution. Neither of th2 neutral solutions

ds, ; €5 Or dg,¢s bave "adjacent” amplified solutions of importance.
It is also true that all along the combined curve, ¢, < ¢, « ¢,

When there are no longer separate elgenvalue curves for each mode,
it can be difficult to identify & particular solut’on with a definite
mode. However, the o- ¢; diagram at 31 = 6f2 still retains the appearance
of two separate modes. A close investigation shows that therg is a rapid
change in both the phase difference, _nvﬁ'w(7‘} — af%'?tfy , and in the
magritude of the ratio (s} /iy, near'fhéLﬁintersgction" of two mode
curves., These two quantities are shown in Fign:15.8 as functions of X
at M, = 8, where the first three modes_are merged.

With the elgenvalues of the amplified solutions established, the temporal

emplification rate ae; 2s a fuuction of o follows directly. When, at
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.
several Mach numhefs, odec; is plotted as a funétion of o for the first
four modes, and the maximum amplification rate of each mode is read off,
Fig. 15.9.can be constructed. This figure demonstrates th;t the second
mode is always thelmost unstable mode. For Ml:’ 6.5, thq'firsﬁ mode is
not even the second most unstable mode, and at Ml = 10, both the third

‘and foufth modes are more unstable than the first wmode. In order to get
an idea of how these amplification rates compaie to those found for in-
compressihle fiow, we recall from Section 9.2 that for the Blasivs b~urdary

layer at Mi =0, dic; =10 x 10“3 « The growth of a disturbance in a

distance equal to one boundary-layer thickness is

(z%.&) . ma a\(i‘_)  (15.20)
A Cw §
AxXo 3

where the group veloci%y has beén replaced by the phase velocity, Table

15.2 gives a few values of (AA/A)“

i ),
0, finite R . 0.05
0, p =~ 0.1988 ' 0.40
3, 2nd mode T 0.0%
5, lst mode 0.02
5, 2nd mode . 0,10
10, 2nd mode ) : 0.07

Table 15.2 Amplitude growth over one boundery-layer thickness.

Thus for 3.5 < Mi<=10, a second-mode disturbance can grow as much over

one boundary-layer thickness, according to the inviscia theory, as is
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possible in the incomﬁressible flat-plate boundary layer. It also
follows from fig. 15.9, that below about M1_='2'3 the boundary layer
is for all practical purposes stable to two-dimensional inviscid dis-
‘turbances. |

Of equal importance with the maximum amplification rate is the
frequency of the disturbance which has this amplification rate. It
is of no consequence to have a large amplification r;te for a particular
frequency if the spectrum of an actual disturbance in the boundary layer
does not include that frequency. TFigure 15.10 gives e, ( = w) as &
function of M, for the first four modes. The:dimensionless (circular)

frequency is

w oo 9X ' - (15.21)
% R :

- Thus for a fixed-frequency disturbance and a COnstant Tree stream, the
dimensionless frequency varies as x"* , and the disturbance can ex-
perience the maximum suplification rate of Fié. 15.9 only at on; par-
ticular Eoundaryulayer thickness. a N

.
As a final observation from Flg. 15, 9, We can note that the decrease

in (ede;),,, Tor Mib 4.5 is almost entirelyla result of the 1n;rea51ng
thickness of the boundary layer. If (o ¢;lm., Were plotted instead of
(i), In Fig. 15.9, the amplification rate fﬁr each mode wauld be

- but slightly dependent upon Ml past the peak values of Fig.'15,9.

Now that we are familiar with the results of the inv;scid?theory for

- two-dimensional disturbances in the insulated flat-plate boundary layer

with wind-tunnel temperature conditions, we are in a pbsition to understand

»15h -
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the changes that occur when any of these restrictions are lifted._ Only
flat-plate boundary leyers have yet been investigated, but in the next
three sections we shall find what happens when the freeFBt?eam temperature
;s different from that in ‘the wind ﬁunnel; when the distugbances BYE no
longer two-dimensional, and when the wall is n§ longer iqéulated, Wn-
- fortunately, except for the numerical results there is a%total absence
of an inviscid theory for amplified disturbances. Aé general guides, it
will be necessary to make use of two empirical observations for the first
mode, and for the higher modes, the resuli suggésted by (15.19); that the
wave numbers ere inversely proportionsl to thel thickness of the supersonic
'rglative~flow-region. , S

The two empirical results for the Pirst mode are: first, €& is
always between ¢, and §5 5 second, (& c;y,,.. 1s related to the’ difference
Cy - ¢, .+ That is, a8 ¢y —e S5 -, (o ¢;) w0 , We can see from
Fig. 15.1 that ¢, - ¢, has a minimum near Mi <1.6. This difference then
increases and finally tends to level off. If “(a;c;),,, for the First
mode were to be plotted on a much larger scale ‘than is used in Fig. 15.9,
it would be found to have a similar behavior %0 ¢; - ¢, with a maximum
near M; = 1.5. This correspondence between ¢y - ¢,  and (5¢i s
suggests that anything that changes the relative positions of ¢, and ¢,
will also have an important effect on the amplification_rate ofi'the first
mode. Both the free-stream temperature and the ratic of wall temperature
to free-stream temperature affect ¢5 . With three-dimensional disturbances,
Co wili change to E’,; = |- V/ 84, Tecause the effective Mach number is

the component in the direction of the wave normel. For a sufficiently

o o
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0] ~ 3
oblique wave ¢, is equal to zero.

15,4 Effect of free-stream temperature on two-dimensional disturbances

We shall study first the effect of changing the free—stréam temperature
wﬁile keeping the wall insulated. Plgure 15.11 %s a counterpart of Fig.
15.1. In this figure, there are three curves of ¢, (labelled:at 7s ) vs.

M, for three values of T, , 40%K, 160 K and 300°K. Tnereasing Ti' moves
the ¢; curve closer to the ¢, curve. Consequently, lncreasing T will

. e]
stebilize the f st mode. Indeed, for 1, = 300 K, Cy « ¢, Dbetween

Ml = 1.6 and 2.5, and the first mode will be completely stabilized.

In Fig. 15.12, the meximum amplification rates of the first and second
wmodes are plétted as functlons of 71i Tor three Mach nunbers, 3,3, 6.0 and
S.o. As expected from Fig. 15.11, increasing,TT]¢ has a strong stabilizing
infiuvence on the first mode. The effect on the second mode is. wmuch smaller
and can be either stabilizing or destébilizing,;depending on the Mach number,

15.5 Three-dimensional disturbances

15.5.1 Neutral solutions

To treat three~dimensional disturbances we, must use the tilde coor-
dinate system of Section 13.3 to reduce the three-dimensional equations
to two-dimensional equations. In this coordinate sysiem, Rh,z M, cos\y,
A = &/cos Y and V¥ is the angle between the wave normal and ‘the free-
stream direction. Since the boundary layers under consideration.are two-
dimensional, the boundary-layer profiles are independent of \y . First
we shall look at the variation of the neutral wave numbers, Wy, , with
> . TFigure 15.13 gives the resultis at Ml = 8 for the first three modes
(¥ is called ¢ in this.figure, and also in Fig. 15.19). We see that

~ ~ . o
with increasing Yf » %53 and oy, approach each other closely at QK= 3%,

et i
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Fig. 15.11 Mean boundary-layer veleocity v at the g'e‘ner-
alized infleciion point 4, and alse T — (1 /M),
vs free-siream Mach number M, '
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and Wy, and Sy, approach each other even more closely (to within 1%)
at ¥ = 56.5°.. |

The slightly upward-sloping line that starts from Eé_ et WY=20
forms a sort of barrier for ®;, . When the o, cu&ve reaches the
“"barrier,” it turns away from its previous direction to'form & continu~
ation of the upward-sloping line, while the ;; curve forms a contin=-
vation of 1:.h.=~..'?n'c_=,1 curve, The same thing happeqs again when the W,
curve strikes against the "barrier" formed by the &, upwérd-sloping
line. At Mi = 10, the first four modes form the same type of patiera.
There, it is the curve starting from d; at' ¥ =¢ that 1s almost
horizontal (wore so than in Fig. 15.13) except for brief interrupbions

: o L
at Vv = 320, wnere it meets og; ; at 47.2 , where it meets ®;,-; and

at 60.2°, where it meets Wy . At V¥ = 60.2';.31,5 os, is within legs than
0.1% of dg, . ‘ 4 L -

The various modes are easy to identify in these figures by the number
of 180° Phase changes in the pressure fluctuatdon. Even though the eigen-
values almost coincide at the angles listed sbove, the solutions do not.
In some limit, probably ¢3! as El-vvo ; the, eigenvalues will be truiy
degenerate, l.e., two distinet solutions will correspond to ohe!eigenvalue.
The wave-number curves will actually intersect, but the mode identity of
a given curve will still change beyond the intersection point.. On
physical grounds, it 1s necessary for the first-mode wave numbzi® to
always attain a finite value as V¥ -v'90°, and for all higher-mode wave
nubers to go te infinity, with a common asymptote at the angle where
the supersonic relative-flow regiqn diséppearsm ' i

i Ty
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It is of interest to note that Fig. 15.13 bears a resemblance to
Fig., 15.2s Thefe the upward-sloping line plays the same role as the
moie nearly horizontal line of Fig., 15,13, If the angleqiof closest
approach of Fig. 15.13 are converted into component Mach numbers, ve

can construct Table 15.3. Tt is cpparent from the table that the

M, = 5.8 8.0  10.0 2-D
dy =~ M = 3..9 h.h 5.0 Moo= b7
Rss ~ %33 - 6.5 6.8 6.7
Hes = o | 85 8.6

Table 15.3 Mach numbers in direction of wave normal at whigh
wave numb- - of adjacent modes are most nearly éequal.

ey

phenomenon is the same fu. ooth two- and three-dimensional dlsturbances.
Whatever the mechanism is that produces unese’results, it must depend
Pprimarily on the Mach nuaber and very little oh the boundary-layer
profiles. o ﬂi' .

The same two features that were noted for the upward—slopiné line
of Fig. 15.2 are also found for the related line of Fig. 15.13. TFirst,
it Is the mode which is on this line fbr whicﬁ the ratio TT{o\/'n(7;]

" has its minimum value for any particular wave angle, as is shown in
Pig. l5vlh{ Secénd, it is the wave number of {this line which is the
end point‘of the eigenvalue curve of amplified solutions whichistarts

at the neutral sonic solution. This behavior, which for two-dimensional

disturbances establishes itself clgarly only at high Mach numbers, is
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well defined for three-dimensional disturbances as will be seen in
the next section.

i5.5.2 Amplified solutions

With the neutral subsonic solutions established, the next step is
to cdnsider the amélified solutions. As ¥ increases from o“, Cop= |~ Vam
decreases, but sinee the mean velocity and temperature profiles remain
fixed, so will ¢y . Consequently, the difference c,; ¢, 1incresses
and we can expect a destabilization of the first mode. At the same time,
the thickness of the supersonic relative«flov region will decrease with
3%_ s and we shall not be surprised to find a steabilization of the second
and higher modes.

Figure 15.15 shows the time rate of amplification, oc; , of thé

first and second modes at Mi = 4.5 as & fuuction of the dimensionless
frequency, oc, , Tor several wave angles. The three-dimensional firste
mocde disturbances are indeed more unstéble'than the two-dimensional
disturbances, and the second~-mode three~dimensional disturbances are
more stable.than the corresponding two-dimensional disturbances. Con-
sequently, the most unstable second-mode disturbance is always two-
dimensional. This same result hoids for all pf the hister modes. The
most unstable first-mode disturbance is at an angle of close to 600,
with an amplification rate twice the maximum two-dimensional rate and
with a‘frequency a little over one-half of the frequency of the most
unstable two-dimensional disturbance. The maximum in o at a value of
\} between 0° and 90° comes sbout from the following circumstances, As

c;-—E, incresses, the maximum value of c; also increases. Al first this
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increase leads to a corresponding increase in (dc;),., . However, siﬁpe
% (not & ) must go to zero as i ~+ 0", the decrease in « Ieventually
outvweighs the increase in ¢; and ‘the amplification rate starts to decrease
with further increases of v and is zero at Y = 90°.

At Ml = 4.5, the first two modes are completely separ?-te at all wave
angles. At Ml = 8, the first three modes are merged for two-dimensional
disturbances. Figure 15,16 shows what happens as ¢ increases. Af
Vo= 30°, the First three modes are still merged. However, at V¥ = }4-50,
only the first two modes are merged. This result is in sccord with
Fig. 15.13, where the second-mode wave nmuber, &5‘1 s 1s on the upward-
sloping line at ¥ = 1{-50 and thus is the end point of the elgenvalue curve
for the merged amplified solutions. At VY ='50.°, the situation is'the same.
The next angle, ¥ = 560, is of interest bece;use this angle 1s very near
the angle of closest approach for 3‘(5, and Hn » The end point should be

o according to TFig. 15.13, and Fig. 15.16 confirms that it is.  However,

51

the «¢, v5. o curve in Fig. 15.16 gives no obvious evidence of the second
mode as the loecal maximum in o ¢; that has previously alweys marked the
second mode is no longer in evidence. H;ence we have an example w‘hére it

i5 necessary to examine the phase of the pressure ;f‘luct'uations in erder %o
make & positive identification of the mode. Figure 15.17 gives the ratio
W) /Timy o, and Fig. 15.18 the phase difference arg W(e) — argWin
as functions of & . These figures show that there is a rapid change from
a first-mode disturbance to a second-mode disturbance mear « = 316 even
though «¢; continues to decline monotonically. ~ At the next angle, Y= 600 ’

Fig. 15.13 indicates that o5, will be the end point of the amplified region
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which will consist entirely of £irst-mode distu:c;bancas. Fqéure 15.16
and the phase of (o) confirm this to be true. The angle st vhich
the supersonic relative-flow region disappears', and with j;t t.he: higher
modes, is just over 60°. | !

Once we have found oc¢; as & Tunction of oe,. .for several wIsrail‘.v.ens'
of V¥ at“a.. particular Mach number, we can construct Fig. 15.19. In
this figure, the maximum temporal amplifieation rate of the first“‘two
modes is plotted against V¥ for the four Mach numbers 4.5, 5.8, 8.0 and
-10.0. At all of these Mach numbers the most unstable first-mode dis-
turbance 1s at an angle of between 50° and 600,\ gnd has & maximum ‘ampli-
fication rete roughly double the amplification l‘ra.te of the most ﬁr;*stable
two-dimensional disturbance. The two-dimension'a.l seclond-mode diéthr‘bance
1s the most unsteble at all of these Mach numbers, and the decrease of
( CiYpay With :anreasing‘\y :!..s sharpest at therlower Mach numbér?s.

A summary plot of the first-mode maximum amplification rates Appears
in Fig. 15.20. The wave sngle of the most unstable disturbance (ko within
5%) 1s shown in the figure , end the meximum two+sdimensional amﬁliff'ication
rates are shown for comparison. An intereétingy.change in the rela.tionshii:)
between the two- and three~dimensional a.mplifica'tf-:ion rates tekes place for
Ml*f Lk, Above this Mach number, (i max OF tﬁelthree-dimension@ dig-
turbances is about double the two~dimensional alﬂi)lification rate. {dn
contrast, ab M’.L = 3.0 ‘the ratic of the two amplification rates is 5*.8;
at M = 2,2 it is 33; and at Ml = 1.8 it is 130.' We recall from Fig. 15.1
that it 1s near Ml = 1.6 that the difi‘ereﬂce @3~y 1is the smallebt,
Therefore, the sonic limit acts as a severe c&nstra.int on the {wo-8imensional

" ‘ 1k 1
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1} . 5191 t
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disturbances in the low Mach number range. Indeed the two-dimensional
disturbances are‘almost completely stable even though the generalized
inflection point is well out in the boundary la&er. ¥hen this constraint
is removed, a8 it is for three-dimeﬁsional distuibances, the amplification
rates increase sharpl&. We may consider the three~dimensional maximum
gmplification rate as the one that most clearly reflects the inherent
instability of a given boundary-layer profile. '

The instability of a compressible flat-~plate boundary layeriwhich is
due to the géneralized inflection point is & weéker instability ﬁhan the
inafability of an incompressible boundary-layer profile with an inflection

point. In Table 15.4 we compare the growth over one boundary-laysr thickness

M (BA7AYae s o
0, 6 = - 0.1k 70,10 T
0, ¢ =~ 0,198 L% 0,40 o=
" _ 1.6 © 10,005 T
3 2.2 - _ 0.012
3.0 I o
b5 110,036 th
K ! 10.0 ' 0.0k2 1

Table 15.4 Comparisoa of growth of most unstﬁble flrst~mode igéiscid
disturbances in insulated flat-plate boundary layers and
in Falkner~Skan boundary layers.

. S
of the most unstable three-dimensional flrst-mode disturbances at a few

Mach numbers with the growth of the most unstable inviscid disturbahces

Eo L
in two of the Falkner~-Skan boundary layers. We see that first-mode dis=-

turbances in the compressible boundary layer grow much slover than in the

i P
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two Falﬁner-Skan boundary layers. Indeed the maximum growth raté is
smaller than the maximum growth rate of 0.05 (at finite Reynolés
nunbers) in the incompressible Blasius boundary layer.

15.6 Effect of wall cooling

15.6.1 Two-dimensional disturbances f

”
g

Perhaps the most celebrated result of the stability theory for
compressible boundary layers was the prediction by ILees (l9h7) ;hat
cooling the wall stabilizes the boundary laygq; This predictio# was
made on the basis of the asymptotic theory, dnd a criterion vas provided
whereby the ratio of wall {emperature to recpﬁery temperatureimf which
the critical Reynolds number becomes infinitegcan be.computedi= Although
Lees's oriéinal caleulations contained numerigal errors, the temperature
ratio for complete staﬁilization wvas later computed correctly by = great
meny suthors. The most accurate of these ealeulations gave the result
that’comilete stability can be achiéved for_ﬁ;< R&;ﬂ Q9 by suﬁ}i;ient
cooling.! These calculations can be eriticized in two important, respects.
First, no indicatlon is given as to how the mmplification rate svaries
with wall tempersture. Second, and most important, no account i 1s taken
of the existence of tﬁe higher mddes. In thﬁs section, we shall see that
the inviscld theory can remedy both of theseA&eficienciea.

; The filrst step is to find out how the mean boundary layerschanges

with wall cooling. In Fig. 15.21, the stability funetion v, y which

is related to (W/TY vy (15.5), is giVenras a function of 7 ot

M = 5 B for several values of Bw s Wwhere @w is the enthalpm difference

raetio Uu.," AN/ Che = &) » It ls.given in terms of some common
Y t 2l
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- . i
temperature ratios at Ml = 5.8 in Table 15.5. :In this table Ty is
i - Vo

9» T\.../Tp o .T\"/‘T.l ' i i

L © 0,847 1,00 . i 6.7 '
0.50 0.65 1 b |
0,10 0.25 }!p 1.7
0.05 . 020 1 1.3
0.01 0.16 SRR 9% 1
0 0.15 L0 ;

. ~0,10 0.05 @ 0,32 i

. ' a
Table 15.5 Temperature ratios as functions of 8, at M o5 7.8

]

the recovery témperature s i.e,, the equilibrium or adiabatic wall
temperature. In Fig. '15.21 we see that for the insulated wﬁll', (u'jT]'
has e single zero located at %s. For 0.0L < 8., < 0.847, 1t has two
zeroes located at s, and Yg, ( V51 % sy Yo For 8. < 0.0L,
(1/7\' has no zeroes. The zero at hss 18 alvays below %o , the point

where U = €o =1~ '/ . The zerc at 75 ' is above %, provided

1

f. > 0.05. .

R |. |

Next we look at the relation of €5 , cbtnslidered to be the mean
o a B

velocity at %, , to ¢ . As long as %, <%, ,;there can be no
‘ _ e

neutral disturbance connected with %5, . It-.cannot -be subsomnit because
Ll '

Csq = L= Y, . It cannot be supersonic because, by (15.4), the
Reynnlds’ stress would be zero throughout the boundary layer, & tondition
‘ S

incompatible with a neutfal supersonic distutrbance as we shell 'kee in
. ’ )

R i
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Mo
Section 15.6,3. Both ¢, and ¢, are shown in Fig. 15.22, where ¢, is
plotted as a funetion of T, /T &t Ml = 5.8, 8.0 and 10.0 for
T = SOOK, and at M = 8.0 for T = 80°K.:.ﬁé see that at M - 5.8,
€. is reduced below ¢, with sufficient cooling, and the first'mode-can
be completely stabilized. However, at M) = 8 and M, =19, ¢; remains
greater than c, and the first mode cannot be completely stabilized no
matter how much the wall is cooled.

In order to find out what happens to the sécond mode as the wall is
cooled; we must look at some eigenvalue diagrams. In Fig. 15.23, « is
plotted against ¢; for five.values of 8, at M{ 5.8, In Fig. 15.24
tﬁree of the corresponding ¢, vs. ¢ diagrams'ére gifen with ?he two
remaining ‘diagrams in Fig. 15.25. Only emplified and neutral Solutions
are shown, From these diagrams we see that the first mode diseppears
when %;, moves belov %, and there can no longer be neutral subSomic so-
lutions. ' It seems to be a requiremenﬁ that arfanily of amplified solutions
can existconly if their elgenvalue curve starts at one neutral solution and
ends at enother. When Vs < Yo , or doespnct exist, there: is still
an eigenvalue curve which starts at the neubtral sonic solubtion;: but the
splutions: along this curve are all damped as ?é shall see in Sdédation 17.
When some of the modes are merged foxr the ins&iated—wall case,, a8 happens
for NH‘> 6.0, cooling will separate the modes so that there are distinct
elgenvalue curves for each mode Jjust as at lowar Macﬂ numbers df'gr the
insulated-wall case. 0 & n

The second mode always has the singular neutral solution asi one of
its necessary two neutral solutions, just as the first mode always has

) NAL oot 5 . ' _
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the peutral sonic solution. These solutions exiét regardlessg of the

temperature boundary condition. All that is reqﬁired for the singular

y
neutral solutlion is a region of supersonic 1elative flow fo; C.= 1.

As the wall is cooled and ¢g becomes smaller, the difference |- <5
increases and there is no tendency to reduce the maximum value of }c;

- for the second mode as there is for the first mode as a result of ﬁhe

decrease in ¢y~ ¢, - Indeed we see from Tig. 15.2k that ini+iall§ ¢;

incresses., Since « also increases, there is an increase of the maximum
amplification rate of the second mode with wall cooling. The inerease
in the vave number at (4 cilman 315 almost entiréﬂy a result of tﬁb;change

in the boundary-layer thickness with cooling. rﬁ B
o

When %,, moves below %, and then disappears, it is no longer
possible ror the éecond,mode elgenvalue curve t5£have s, a& an end
point, since the neutral subsonic solutions no ﬂmnger exist., Nor is
there any possibility of *4he neutral sonic solution providingiiﬁkﬁec«
essary end point as this solution has only firdte-mode solutionsliﬁ;its

neighborhood. If we look at Figs., 15.23 and 15.24, we see that for

\
B = 010 &, Where %, >y » ‘there has appeared a new neu&ral

solution together with a family of amplified somutions. Tor allnof

thése solutions, ¢, Is less thei 1-YM,, and is supersonic With respect

i [ i _W‘-I

to the freg stream. Consequently, we have a neutral supersonic Eolution

[ ] v ]

" and supersonic amplified solutions of the typeﬁddscussed in Sectimn 13.7.2.

AlY of these solutions are oubtgoing waves. It: ﬂs evident from Figs. 15.23
[ [T T B I
and 15.25 that when %, < %, Oor does nob exmét, the eigenValua-curve

i f il [

of the amplified subsonic solutions Joins the éigenValue curve of¥ the
. ‘[:lnut l|p|||.l|f .

-
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smplified supersonic solutions at a ¢; » o . “Thé'eﬁd‘pbihtléf this
combined eigenvalue curve is another neutral supersonic solutioh which
has not yet been studied, but it sppears to bé of a singilr natire.
The important result is that conditions exisﬁiﬁ& which tﬁéfe can be

second-mode amplified solutions regardliess oﬁ.uhether or not there is

& generallzed inflection point in the boundary layer. Cdbiing the wall

o i

does nothing to remove this source of amplificetion. "This same result,
TN 1 I v

vt /
of course, applies to all of the higher modes. ' /' + 'L‘ﬂ
If the maximum amplificaetion rate of the first three modes is

computed Tor several T./ T at Mi = 5.8, then Fig. 15.26 can be con-
structed. We see from this figure that as T./ T  decreases, (¥ &iln,,
of' the first mode decreases to zero monotonically. In contrast,

(C XIS N, of the sgcond mode increases by 50%, and (&ci}m,, OF the
third mode increases by a faetof of three. The amplification rate oc;
is the proper one when we wish to meke comparisons for a fixed freé stream

and at a fixed Ry . If we wish to compare disturbance growths over a

boundary-layer thickness, then we need o, c¢; . Table 15.6 gives some

Oo To/ Te Y, 7, £y €1y, * 10"
0,847 1.00 20.0 9.4 8.5
0.50 0.65 6.2 ‘ 8.3
0.25 0.40 13.2 6.0 7.7
0,10 0.25 11.2 . 1.0
-0.10 0.05 8.5 3.2 5.4

Table 15.6 Maximum second-mode amplification rate based on'boundary-
layer thickness for cooled-wall boundary layers at Ml.= 5.8.
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values of (®; Cilma, which correspond to the values of (& C;lmax
of Fig. 15.26. Also included in the table are some values of 70
the thickness of the supersonic relapive-flow region for tgé Dhase
velocity of the most unstable disturbance. We see that 7,' decreases
a bit more rapidly than %, as Tw/ T~ decreases.

As two final results conrerning the effect of cooling on two-
dimensional disturbances, we may look at Figs. 15.27 and 15.28, where
o“L¢; is plotted against o at Mi = 8 and Mi = 10 for the insulated
vall and for Tu/Tw = 0.05. At M = 8.0 and T; = 50°K, the first
three modes are merged for the insulated wall; at Mi = 10 the first
four modes are merged. In the highly cooled case, the modes are separate
at both Mach numbers. The first mode is slightly wistable at Ml = 8.0,
but the amplification rates are too small to show in the figure. Ab
Mi = 10,0, the most unsﬁable fifst-mode disturbance has an amplification
rate equal to 1/3 of its value for the insulated-wall case and a wave
number which is larger for the cooled wall than for the insulated wall.
At My = 5.8, this wave number decreases with increased cooling. The
A higher modes at both Mach numbers are destabilized and shifted to higher
wave numbers, just as at M o= 5.8, The maximum amplification rate of
each higher mode is approximately doubled as a result of the wall cooling.
Since the boundary-liayer thickness is also cut in half, (o ¢V, 1s
virtually unchanged by the cooling.

15.6.2 Three-dimensional disturbances

Cooling the wall stabilizes the first-mode itwo-dimensional &isturbances

by moving Vs toward Vo ¢ Since a three-dimensionsl disturbance at a

=185 -
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sufficiéntly large wave angle ¥ reduces 7; well below ¥; and makes
it impossible for % tc be less than v, , we may ask if;&n this case
there also exlsts a stabilizing mechanism for first-mode fhreewdimensional
disturbances. The answer is yes, and it involves the seéond generalized
inflection point, 7;1 s which we found to have no signiﬂicance for two-
dimensionel disturbences since 1t was always less wuan %, . However,
with increasing V¥ , %, can be made low emough sc that %, > %, .
As sovon as this condivion is fulfilled, there will be two neutral sub-
sonic sclutions, and the eigenvalue curve of the first-mode amplified
solutions vill be located between these two solutions. As Tw/ Tw
decreases, My = Tss and the maximum a@plification rate will decrease.
Jjust as it does for two-dimensional disturbances when Vo™ e« AL
My = 5.8, as we see from Fig. 15.21, with sufficient cooling Yo = Mgy v
Consequently, the firét mode is completely stabilized even for three-
dimensional disturbances, but at a lOWer‘value of Tw/T. than was
required to completely stabilize two-dimensional disturbances. At higher
Mach numbers, Y5, 18 greater than Vsa regardless of the amount of cooling,
and there will always be amplified three-dimensional disturbances. However,
the amplification rates of these disturbances will be much less than the
amplification rates of the insulated-wall boundary layer.

For second-mode three~dimensional disturbances, the same result holds
as Tor the insulated-wall case: the most unstable disturbance is two dim-
ensional., Complete calsuwlations have not yet been carried ocut for three-
dimensional disturbances in cooled-wall boundary layers, but there has been

enouch done to estabiish the above described behavior and also to provide =
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curve of (&€ ilmax V8. Tw/ T+ at M o= 5,8, {The maeximum here is
with respect to both « and VW .} This curve 15 included in Fig. 19.k4.

15.6.3 Neutral supersonic solutions

As already mentioned, a neutral supersonic solution %ppears in Figs.
15.23 and 15.24 f0£ 8.,=0.10 { Tw/Tv =0.25). This sqlution fits the
deseription given in Section 13.7.2. It is a purely outéoing wave, and
.in the coordinate system fixed relative to the-phase velocity it is a
Mach wave. Since the wave extends to infinity with undiminished amplitude,
it transports energy from the boundary layer to infinity. However, it is
a neutral disturbance and the net energy transfer must be zero.' The energy
carried to iqfinity is made up by energy production in the boundary layer
due to & Reynolds stress which exists in the region Ve < Y < s .
This Reynolds stress, as calculated by numerical integration, is shown
in Fig. 15.29. This figure agrees with the sketeh given by Lees and Lin
{1946) for a neutral supersonic disturbance. As noted by Lees and Lin,

¢, must be less than €5 in order that the Reymolds siress, which is
given by (15.4), is positive. A neutral supersonic solution of* this
type has slso been found at Mi = 5.8 for 6, = 0.15, but not for : &, = 0.25,

A plot of the magnitude of the pressure amplitude function, [2,]
is given in Fig. 15.36 for the neutral supersonic solution of Fig. 15.29
" and also for the second-mode neutral subsonic solution. The two smplitude
_functions are similar in cheracter, and, because of the single 1800 phase
shift, we can assign the neutral supersonic solution to the second mode.
This result is a ressonable one, In view of the: fact that the second—mode.
amplified solutions Jjoin the supersonic amplified solutions when 7,|.¢ 7°

or has disappeared.
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We may now‘ask if there are any neutral supersonic solutions which
are purely incoming waves instead of the outgoing waves jupt discussed.
No solutions of this type have yet been calculated, but aﬁ inspection of
complete eigenvalue diagrems which include the damped solutions makes
their existence probable. Diagrams of this sort for Tu/Te = 0.25
~and 0,05 { fw = 0.10 and - 0.10) at M = 5.8 are included in the figures
of Section 19.2. From these diagrams we see that when the elgenvalue curve
of the second-mode amplified solutions for 6, = 0,10 i; extendad into
the damped region, it Joins ué with the eigenvalue eurve of a family of
damped supersonic solutions. According to the results obtained in Section
13.7.2, these solutions are incoming vaves. At this value of &, , there
is a neutral supersonic solution and a family of amplified supersonic
solutions, all of which are outgoin~ waves. At 6, = -~ 0.10, the eigen-
velue curve of the second-mode amplified solutions connects up with the
previously separate amplifiéd supersonic solutions. By analogy with the
situation at f.. = 0.10, we may speculate that a neutral supersonic
solution also exists here, ?ut that it is a purely incoming wave-and is
assoclated with a family of damped incoming waves. Obviously; ﬁhis neubral
disturbance receives energy from infinity, and the energy gain must be
.- balanced by an energy loss due to & negative Reynolds stress in the region
l7, i B P . In order to have a negatiﬁe Reynolds stress,

"according to (15.4), <~ must be greater than ¢y .
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16. Review of Asymptotic Thearies

The inviscid theory as presented in the yreceding secgion Has
given us a large body of numerical resulis, the‘applicability of "which
has not yet been established. To find out vhere these regults can be
used, it is necesséry to turn to the viscous theory. 'Hi§toficélly,
the viscous theory was first attiacked by the same method; that had
proved successful for incompressible Iflow. A brief account of this
theory and its immediate successors is given in this section. On%y."j

two-dimensional disturbances are considered.

16.1 Lees-Lin theory

Bech form of the asymptotic theory depends upon reducing th? _
coumplete stability equations of Bection 13.5 to a simplified system
of equations by means of order-of-magnitude arguments, The inviscid
equation provides two of +the necessary six solutions. The simplified
equations are derived to be valid in a viscous region, and they will
provide the four additional soluticns needed to:golve the eigenvalue
problem. The reglon of validity of the Lees~Lin equations is the
immediate neighborhood of the critical point.

A new independent variable 3 is defined, where

- 177 1
$ = e | (16.2)
and
e = («rY" . (16.2)
~193~
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This varisble is essentially the same as the one used in the incom-~

pressible theory in Section 6.4. The order-of-magnitude considerations

lead to
2, = X . (16.3)
eE; = X (16.4)
LEy =% (26.5)
S, =X, | ...(16.6)
Z; = Xs (26.7).
E2, = X | (16.8)

vhere the X, are all of the same order and may be considered to be the

first terms in a power-series expansion in £ . Wken these relations

are substituted into the completelequations, the rean~flov guantities
U-c and T expanded in series about 7‘ , and only the lowest oxrder

terms kept, the equations of Lees and Iin are obtained. They are

X, =% (16.9)

X, = 1‘_&(13'3(; w X)) o Tl Xy " (26.10)
v ve

K, = -1 X (16.11)

~19h -



Ay = o : (16.12)

Ks = X (16.13)
X: = _;!;_(: U SN + T 7{3) § (16.14)

If (16.10) is differentiated, the following equation 1s obtained

for Xj

X, = o | (16.15)

22,
<

1
=

1

Since this equation is the same as (6.29), two viscous solutions are

provided by (6.32) and (6.33). From (16.14), the equation for X5 is

X, - "_}.‘;_51",3}(5 - T X (16.16)

Consequently, 7\’3 is coupled to Xy , and velocity fluctuatibns- will
bring about temperatwre filuctuations. The importent point o:f the Lees-
Lin theory is that temperature f‘luctﬁations do not similarly bring about
velocity fluctuations ( ‘X:,’ does not- occur in the egquations for X, and
X3 ). The velocity boundary conditions at the wall may be'satisfied
by the Inviscid solution and the proper viscous solution of (16.15).
"Then solutions of the homogeneous part of (16.16) are simply added %o

the temperature fluctuations associated with these solutions to satisfy
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the temperature boundary condition at the wall, The temperéture
fluctuations dec not enter the eilgenvalue problem, which is identical
in all essential respects to the elgenvalue problem in ingompressible
flow. |

This form of the theory' was used by Lees (L947) to compute neutral~
stability curves at Ml = 0.5, 0.7, 0.9, 1.1 and 1.3 for an insulated
wall, and at Ml = 0,7 for three cocled-wall cases and one heated-wall
case. In a later report, Lees (1952), he computed amplification rates
and the overall growth of constant~frequency disturbances at Ml = 0.7
for the insulated-wall case.

The Lees-Lin equations can also be written wit'hout.expanding‘ U
and T in power series. In this form, the equations for ¥ , ¢ and 6

are as follows:

§_ iaR(Um o | | - (16.17)
v : -
9 = -if (16.18)
" i R (U~ C] ] T,
g" - % “V 6 = -9 (16.19)

where the independent variable is Mo The validity of these equations
still rests on the supposition that U-c is a small quantity. However,
we m2y also do as in incompressible flow and simply regard these egquations
as an spproximation that is useful when U~ ¢ is not small, which is

the wéy' the theory is applied in any case. A further step with U - e
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not considered small is to obtain the counterparts of the Tollmien
viscous solutions of Section 6.5. In this form,'the theoqy is an
approximation to the Dunn-Lin theory which is discussed ié the next
section. Neutral-stability curves have been computed by Mack (1960)

at Mi = 1.3, 1.6 and 2.2 from this version of the theor¥. The inviscid
solutions were calculated by the same numericsl method és used by Lees
(1947 )(pover-series expansion in o ), except £hat one additional term
was used,

16.2 Dunn-Lin theory

Because the viécous solutions of the lees-Lin theory are strictly
valid only near the critical point, Dunn and ILin (1955) developed an
improved theory where the viscous solutions are of the Tollmien type
and are valid everywhgre. The viscous equations were derived by Dunn
(1953) from careful order-of-megnitude arguments applicable in the wall
viscous region. In this viscous region, the ordering parameter is

£ = CdF{in , the same quantity which appeared in Section 6.2.
With K-<¢ no longer considered a smell quantity, the viscous equations

are

.{:m‘_ idR(u") "Y" - 0

(16.20)
r
b e o e LHZe) '
9 = | (16.21)
gt igRe(U-Vp = g (16.22)
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When W-c 1s small, (16.21) reduces to (16.18), and when U-c¢ is not
small, (16.19) reduces to (16.22), Equation (16.20) is the same in
both the ILees-Lin and Dunn-Lin theories.

There is an important difference between the Dunn-Lin and the Lees-
Lin viscous eguations. In the Lees-Lin theory, velocity fluctuations
induce temperature fluctuations, but temperature fluctuations do not
induce velocity fluctuations.‘ In the Dunn-Lin theory.the contrary is
true., Velocity fluctuations do not induce temperature fluctuations, but
temperature fluctuations induce velocity fluctuations. In other words,

the Lees-Lin egquations bave the four viscous solutions

(ﬁl(y:‘fs}) ' ('F+.- 9’4:9‘”

' (16.23)
(0, 0, 9;) , | (O ;0 g
end the Dunn-Lin equations have the‘solutions
({'3 : 93, 0) , ('FJ]- ; ?1‘ ’ D)‘
(16.24)

(0, 95,8 , (0. 9., 6)

Consequently, in the Dunn~Lin theory the velocity and temperature boundary
conditions must be satisfied simultaneously, and as a resuli the temperature

fluctuations enter into the eigenvalue problem,
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If we de31gnate the inviscid solution that satisfies the boundary
" conditions at infinity by ( F , 8 ,©), and eliminate the viscous
. !

solutions which become large as v~ w (subscripts four qnd 8ix

according to the conventional notation), we can write the' boundary

conditions ai m =0 as

Fo. =+ A ‘F';h, + B -F.ﬂ-u- = 0

. + AgQw * Bgs = 0 (16.25)

@\v * A eaw e 8 e.fw = 0

In order to have a non~trivial solution of these homogeneous eqguations
for A and B, the determinant must be zero. Wlth 0, end Ty zero from

the Dunn~Lin theory, the expan51on of the determinant gives

O - (16.26)
F +3lv B.fw F

The inviscid equations given in Section 13.7.1 can be manipulated to

yield
o .
9:'_ - (¥~Ye M, 4 [w-n M; U, - TE’-] '-S—‘-"— 116.27)

Fw

‘With (16.27) substituted into (16.26), the eigenvalue equation is found

to be _
.?3_‘: " (¥~ c M: g 5'.‘”_..
éw - -f-'}w g.s'w
Fo , o : (16.28)
v { - [cm\m.‘uw - EJ.‘_?_’"L
. i ¢ gfw
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This equation was first obtained by Reshotho (1960), but another

eguation which reduces to'the above for Tw = ¢ was derived earlier
by Dunn and Lin (private communication). The inviscid terps are on
the left-hand side, and the viscous terms are on the righﬁihand side
just as for incomp¥essible flow. In the Lees-Lin theory, (16.28) is

replaced by

§§i N ?ﬂ: (16.29)
Fw 'f‘a (™

which 1s identical to (6.2) in the incompressible theory.

When the temperature fiuctuations are unimportant in the sense
that the associated velocity fluctuations given by.E?f are small,
(16.28) also reduces to (16.29). For the insulated-wall case, the
neutral-stability curve is not influenced by tbé temperature flucfuatioﬁs
up to ebout M = 1.6, At M = 2.2, the neutral—étahility curve with
temperature fluctuations included is outside of the neuitral curve
obtained from (16.29). Unfortunately, the neutral-stability curve
obtained from numerical integration of the complete stability ecuations
is inside of the neutral curve obtained from (16.29) as will be shown
in Section 17.1. -

16.3 Lees-Reshotko theory

A further attempt to improve the asymptotic theory was made by Lees
and Reshotko (1962), reported first by Reshotko (1960). The separation
into inviscid and viscous solubions was retained, but all solutions were
calculated by numerical integration of the appropriate equations. Because

the viscous solutions were to be obtained by numerical integration, a
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more cdmplete system of viscous equations could be used than in the
normal asymptotic method. The viscous equations, derived from order-

of -magnitude arguments, are

u 7 A‘u NI U . 1 4'& s
'P F I'l_'T 'F A AT e
i«R(U-¢) (T'g _ 3 W) o
+ ‘__.;___‘:. (:F § ‘E_ = 9) 0 o (16.30)
¢ « if - 2_;.. 9 - "(u_r-f-\ § = o ‘(16.31)

6" *.:%: :;%-T'H' . J_Ch’-—i)‘g‘ M:- u’;{‘r
(aRe(U-¢) g c&R&rT'? (16.32)

L r

—

A neutral-stability curve was computed by Lees and Reshotko st
Ml = 2.2, It agreed with the Dunn-Lin theory ot the upper branch,
and on the lower branch was shifted somewhat to the right. Hence
there was an improvement over the Dunn-Lin theory, although a small
one. An attempt was also méde to compute neutral-stability curvés
at M; = 3.2 and 5.6, but at these Mach numbers the neutral curve was
found to break up into multiple loops of a puzzling nature. These
loops have not been explained, buti it does appear that they are funda-
mentally different from the multiple loops to be discussed in the next
section, and which can be identified with the multiple inviscid modes

already discussed.
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17. Viscous Theory - Two-Dimensional Dlsturbances, Insulated Wall

We now také up the viscous theory to the extent 1t can be developed
from the results obtained from numerical integration of the complete
stability equations. With these results, we can assess the accuracy
of the asymptotic theories and also find under which cipcumstances it
is possible to make use of the inviscid theory. Further, we can study
such things as the influence of the Reynclds number 6n amplification
rates and frequencies of the most unstable disturbances. Finally, we
éan compute the growth of disturbances of constant freguency as they
travel through the boundary layer, and thus be in a position to Jjudge
the response of the boundary layer to any particula} disturbance spectrum.

17.1 Neutral-stability curves

" 17.1.1 Comparison with asvmptotic theory

-Figure 17.1 gives a comparison of three neutral-stability ecurves

for two-dimensional disturbances at Ml = 2.2.  The dimensionless frequency,

wrut/ u?’“ , is plotted against R = R:z (w® is referred to as ¢
in the figure). The outermost curve is from Mack (1960) =nd was obtained
from (16.28), the eigenvalue equation of the Dunn-Lin theory which includes
the temperature fluctuations. The innermost curve is from the numerilecal
integration of the equations of Section 13.5 according to the method of
Mack (1965a). There is seen to be a large discrepancy in the two results.
Somewhat better agreement is f¢uund by omitting the temperature fluctuations.
The intermediate curve was cbtained by direct numerical integration of the
simplified system of equations given by Dunn and Lin (1955). These equations

include, in addition to the inviscid terms, the leading viscous terms
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according to Duﬁn’s order-of-magnitude analysis. There are no dis-
sipation terms in the simplified energy equation.

The asymptotic method is supposed to solve the simplified equations
with an error no larger than the error involved in dropp}ng the missing
viscous terms. It is obvious from Fig. 17.1 that the equations are
better than the method used to solve them. The fact that the Lees-
‘Reshotko neutral-stability curve is in gooa agreement with the Dunn-ILdin
neutral curve also indicates that the main source of the failure of the
asymptotic theory is not to be found in the eguations used. Calculations
at lower Mach numbers give good agreement of the three neutral curves at
M, = 1.3, and fair agreiient at M = 1.6. Tt can be concluded that the
asymptotin method is adequate for two-dimensional disturbances up tc
Mi = 1.6, and that thg refinement of including the temperature fluctuations
adds pnothing wo the adeqﬁacy of" the theory.

The experimental pointé shown in Fig. 17.1 vere measured by Laufer
and Vrebalovich (1960 ). They are not important in the present contexty
and will be discussed in Section 20.1.

17.1.2 Effect of Mach number

The evolution of the neutral~stability curve with increasing Mach
number is of considerable interest. Figure 17.2 gives neutral curves at
five Mach numbers from 1.6 to 3.8, The wave number is plotied against
1/R to emphasize the high Reynolds number region. At Ml = 1.6, the heutral
curve still has the same character as in incompressible fiow. There is
& weak inviscid instability, and « appfoaches the inviscid neutral sub-

sonic wave number oy, from above as R--o , In the sense of 'the
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definition given in the footnote on p. 75, viscosity hgs a destabilizing
effect with this type of neutral curve.

At Ml = 2,2, a local minimum appears iu the upper branch of the
neubral curve. This minimum indicates that the effect of viscosity has
become stabilizing. over a range of higl.l Reynolds numbers, At M; = 2.6,
this minimum is more pronounced and & gppears to approach o from
' below. If this supposition is correct, then wviscosity bhas a stabilizing
effect from R -« up to the locsl minimum. At Ml = 3,0, the minimum
has virtually disappeared and « clearly approaches o, Irom below.

The effect of viscosity is stabilizing, or slmost so, over the entire
range of Reynolds numbers. At M, = 3.8, the minimum has definitely

. disappeared a;nd the wave number decreases monotonically along the: neubral
curve from o3 to o = Q. This neutral curve ls of the same general type
as the one in Fig. 9.2 (p. T4) for the Falkner-Skan separation profile.
The maximum instability is inviscid(at R -- w), and the effect of: vis~
cosity 1s only stabilizing. These statements can all be Vei-ified by
studying the amplification rate as a function of Reynolds number, as will
be done in Section 17.2.1.

The neutral-stability curve at M, = 4,2, plotted as o vs R, €, vs R
end &'/ 1 vs R, is shown in Fig. 17.3. At this Mach number there
are two separate loops, and it is to be expected that the first » or lower,
1loop is the finite Heynolds number counterpart of the inviscid firs:t mode
and the second, or upper, loop is the counterpart of the inviscid second
mode, The upper brarnch of the first loop tends to og,; €3 as R —+

while the upper branch of the sescond loop tends to s: . ¢s . The lower
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branch of the first loop tends to ®=¢,¢c, as R— , and on the
upper loop it is not possible to assign a definite limit. These limits
it the identificgtion of the two loops with the first anﬂ second modes.
If the eigenfunctions of the neutral disturbances are examined, it is
found that there is little phase change on the first loop, and & large
phase change on the second loop.

The shape of “she neutral-stability curve of the second mode indicstes
that here too viscosity has only a stabilizing influence. The ruch greater
laviscld instability of the second mode as compared to the first mode is
reflected in the smaller eritical Reynolds number of the second mode.

The lowest Mach number at which the second mode has been calculated
(because of the o R limitation of the method of numerical integration)
1s My = 3.8, where the-critical Reynolds number is R = 830, and the wave
number is o« = 0,306 and the phase velocity is ¢,.= 0.904.

Figure 17.k. shows the o vs R néutral curves at M; = 4.5 and k.8.
At M) = h.5 there are still two separate loops as at M; = 4.2, but at
Mi = 4.8 an important change has taken place. The two separate unstable
reglons have merged into a singlé unstable reglon enclosed by a single
neutral curve. This single curve starts at the inviscid neutral sonic
solution and ends at the inviscid neutral subsonic solution of the second
mode. The factor which controls whether there are individual ox separate

neutral curves 1s whether «,; is greater than or less than os . At

My = k.5, o; > ®5  and there are two separate loops. At M o= 4.8,

dig = s and there 1s a single loop.
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At every o,R in the interior of the single neutral‘curve there
is an amplified ;olution. However, there are multiple viscous solutions,
l.e., more than one ¢ for a given &, R , just as there are multiple
inviscid solutions, i.e.,‘more then one ¢ for a given o . Hence at
the same ¢, R where there is an amplified solution of one family, there
can be a damped or neutral solution of another family. Some examples of
multiple viscous solutions are shown in Figs. 19.4 and 19.5.

The neutral-stability curves of ®« vs R and &. vs R at M1 = 5,8 are
given in Fig. 17.5 together with a few contours of ¢; = const. Altﬁough
" the merger of the two unstable regions is further advanced that 'at
M, = 4.8, it is seen that these contours still form two distinet Families.
Conseqpently,.it is still possible to identify disturbances as belonging
to the first and second modes even alter the merger. There is a‘rapid
change from first-mode to second-mode character .at the apparent Juncture
of the two regions. The fact that botﬁ families of contours are:open to
- infinity is ancther indication that the effect of viscosity is purely

destabilizing. b o
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6th order 8th order
My R o v «c; x 103 xc; x 102 % difference
1.3 500  0.075  k5° 0.883 0.82k 7.2
1.3 1500 0.060  U45° 1.467 1.445 1.5
1.6 500  0.070  55° 0.97k 0.87k 11.4
1.6 1500 0.050 552 1.38k4 1.346 2.8
2.2 500 0.055 60° 1.198 1.066 12.4
2.2 800 C.0kS 60° 1.391 1.300 7.0
2.2 1500 0.035 60° 1.325 1.273 k.1
k.5 500 0.0k5 60° LB 1.039 7.5
4.5 1500 0.050 60° 1.641 1.613 W77
5.8 500 0.050 55° 0.790 0.736 7.3
5.8 1500 0.060 55° 1.403 1.384 1.4
10.0 1500 0.040 55 0.ubk 0.43k 2.3

Table 18.1 Comparison of amplification rates for three-dimensional
disturbances as computed from sixth-order and eighth-
order systems of equations at several Mach numbers.



% change in «c;

zero term M - 2.2 5.8 10.0
1 4% W | + 1.k +0.7 + 0.9
o
2 4U 3V 0 - 0.1 - 0.k
o!f? 2%
2 [}
L (‘,’_7"_) e ok - 1.2 - 2.4
4T Ana, cos* :
2p AU & sy _ + 4.1 + 1L +.2.3
A% oy
All zero + 5.3 + 0.8 + 0.4

~ |

Table 18.2 Comparison of individual energy-eguation
dissipation terms on amplification rate at
R = 1500 for three Mach numbers.
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