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SUMMARY

A method for analyzing the nonadiabatic viscous flow through
turbomachine rotors is presented. The field analysis is based
upon the numerical integration of the full incompressible stream
function-vorticity form of the Navier-Stokes egquations, together
with the energy equation, over the rotor blade-~to-blade stream

channels. The numerical code used to solve the governing equations,

employs a nbnorthogonal boundary-fitted coordinate system that
suits the most complicated blade geometries. The effects of
turbulence are modelled with the two equations which will be
reported in the second volume of this contract. A numerical
scheme is used to carry out the necessary integration of the
elliptic governing equations.

The method of analysis is applied to various types of turbo-
machine rotors. First, the flow characteristics within the rotor
of a radial inflow turbine are investigated over a wide ranje
of operating conditions. The calculated results are successfully
compared to existing experimental data. Second, the flcw in a
radial compressor is analyzed in order to study the behavior of
viscous f£low in diffusing cascades. The results are compared
qualitatively to known experimental trends. The solution obtained
provides a great insight into the flow phenomena that takes place
in this type of turbomachines. Comparison with nonviscous £low

- -solutions tend to justify strongly the inadeqguacy of using these

solutions with standard boundary layver techniques to obtain
viscous flow details within turbomachine rotors. It is concluded
that the method of analysis is quite general and gives a good
representation of the actual flow behavior within turbomachine
passages.

The computer used in this work is an AMDAHI. 470. The flow
domain has been divided into 30 step sizes in n direction and
40 in the ¢ direction. Typical CPU time was 120 seconds.




INTRODUCTION

For many years it has been recognized that the flow in turbo-
machines is characterized by the presence of three~dimensional,
viscous, and compressible effects occurring in a complex
geometrical configuration. The basiec understanding of the physical
phenomena in this flow requires, therefore, an analysis involving
the solution of the unsteady three-dimensional, compressible viscous
flow equations within the rotating and stationary blades
comprising the machine. Such an analysis is clearly a formidable
task. The complexiiy of the entire problem requires some kind of
simplificatibn for one or more of the important factors affecting
the flow. These simplifications must cover the essential physical
process with sufficient quantitative accuracy and still permit a
clear and rational calculation of different f£low processes. Most
efforts have been concentrated fregquently on the solution of the
steady and inviscid version of the flow governing equations.

These solutions have been marked by increased versatility in the
ability to deal with subsonic [1, 2, 3 and 4] as well as transonic
flow regimes [5 and 6]. In order to give a more accurate repre-
sentation of the actual flow processes, approaches [7 and 8] have
been devised to account for viscous effects. Most of these
approaches are based on the assumption that a two layer model is
representative, i.e. an inviscid flow solution which interacts with
an end wall boundary layer solution. Important contributions to
viscous flow analyses in turbomachinery have been made more
recently in References [9, 10 and 11]1. The important features bf
these are the attempts to solve the parabolized version of the
complete three-dimensional viscous flow equations with special
techniques.

Although the above remarks are not intended to be a complete
survey of all the available methods, it is evident chat the inviscid
analysis is useful for providing a considerable insight into the
character of the flow. However, the neglect of viscous effects is
a serious shortcoming if detailed guantitative information is

desired to calculate viscous losses or heat transfer. The approach
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used to account for viscous losses effects by using the boundary
layer technique proves to have a number of drawbacks. First, the
correct means for matching boundary layer and inviscid solution
has not been established if the inviscid flow is rotational, such
as in the case of a curved or a rotating passage. Second, most

of the existing interacting boundary layer analyses are not capable
of handling strong interaction mechanisms of the types present in
turbomachine rotors. The parabolic flow approximations, on the
other hand, neglect completely the downstream influences. Con-~
sequently, important effects such as surface curvature, downstream
blockage and reversed flow regions are totally ignored in these
type of approximations. To circumvent this deficiency, a procedure
based on the solution of the full elliptic Navier Stokes egquations
is required. Unfortunately, such direct procedures have defied
accurate numerical solutions due to the limitations imposed on

the core size and speed of present computers. Moreover, the lack
of powerful numerical schemes capable of achieving a rapid con-
vergence for three-dimensional elliptic equation renders the
solution to be costly.

In the present study, an attempt is made to demonstrate the
feasibility of obtaining viscous flow details within turbomachine
passages by appropriately combining several blade-to-blade viscous
flow solutions. Each of these solutions is obtained through the
numerical integration of the full Navier-Stokes equations over
a predetermined computational surface that extends between the
blades. The set of computational surfaces required for the analysis
are themselves generated from the solution of the nonviscous
version of the Navier-Stokes equations, as suggested by Wu [1].
Because of the constraints implied by the use of these computa-
tional surfaces the resulting viscous flow details are regarded
as a quasi-three-dimensional description of the flow field. fThe
use of a non-viscous flow solution tc generate a wviscous solution
in the manner outlined is anticipatéd to overcome some of the
drawbacks ¢f the methocd discussad earlier. For example, the
inclusion of the full Navier-Stokes equations in the solution

procedure makes it possible to account, in an effective manner,
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for the interaction between the viscous and inviscid regions.
Moreover, preserving the ellipticity of the problem by working
with the full equations, besides offering an accurate repre-
sentation of the flow field, allows for the recognition of down-
stream influences. '

The study will be presented in two parts. The first part
which is reported in the present volume deals with the general
formulation of the viscous flow equations, and presents the
results for laminar f£low cases. Turbulent flow cases considered
in this investigation will be reported in the second volume.

The present volume consists of four sections described
as follows. The equations that govern the flow of viscous
fluid within turbomachine passages are presented along with a
closure model that accounts for turbulence effects in section 1.
A rigorous discussion regarding the accurate representation of
the different boundary conditions is also given with special
emphasis placed on the determination of the downstream boundary
conditions that are reguired to preserve the ellipticity of the

problem. A transformation of the flow equations using a non-

orthogonal boundary fitted coordinate system which is numerically

generated using Thompson Code [12] is presented in section 2,
The overall effect of this transformation is to produce a domain
in which the arbitrary blades shapes of the turbomachine become
straight and parallel, The details of the numerical scheme used
to integrate the flow governing equations as well as the pro-
cedures employved to handle the nonlinearities in these eguaticns

are given in section 3. Finally, the results of the application

of the present method of analysis to various types of turbomachine

rotors are presented in section 4.
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1. FLOW ANALYSIS

This section presents the detailed development of a method
for analyzing the viscous nonadiabafic flow of gas through
turbomachine rotors. The partial differential equations that
govern the flow behavior within the machine passages are presented
first. & transformation of the general eguations from the
three dimensional form to several particular two dimensional
forms, on predetermined stream surfaces, is then outlined.

The resulting flow equations are further expressed in the con-
servation law form using the vorticity-stream function formulation.
This is followed by a discussion of the necessary boundary condi-
tions that lead to a unique solution to the problem.

Fundamental Aerothermodynamic Relations

The three dimensional viscous, compressible £low within
turbomachine rotors is governed by the following set of laws.

Conservation of Mass:

22+ v (o) = 0 | (1)

Conservation of Momentum:

Newton's gecond law of motion when combined with Stokes
hypothesis can be written as

AW - S T x W
plip +(W-OW+ 20xW - 5= vr) = - Vp - vx[u(v x W1
. 3 ,
+ 3 V(7R (2)

where @ is the rotor angular velocity.

Conservation of Enerqgy:

In the absence of heat sources or sinks, the first law of
thermodynamics for a f£luid with a thermal conductivity, K, can
be written as:

3h

p(32 + fevn) = 2B + (@m)p + D + V- (RVT) (33

ks
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In the previous equations, p, ¢, T, and h denote the static
pressure, density, temperature and enthalpy, respectively.

While, p represeni:s the kinematic viscosity coefficient and

D is the viscous dissipation function. W is the relative velocity
vector at any point, whose location is defined by the relative
position vector r, in the rotating frame of reference. The
relations among the flow state variables are those of the ideal
gas

» = pRT (4)
and dh = cp aT (5)

The mass-averaged variables principle is utilized in the above
equations in order to describe the behavior of a turbulent flow.
According to this principle, the components of the velocity
rector W, and the temperature T, are expressed on a mass—-averaged
basis, while the pressure p and tne density p are expressed by
their mean values only. For any flow variable Q(Xl’xz’XB’t)’

its mass-averaged value, g, is given by:

alxy,x,,%5) = Q(x)/%ys%q,t) p*(xl,x2,x3,t)/p

where p*(xl,xz,x3,t) is the instantaneous value of the density
at any point whose location is defined by the coordinate (xl,xz,XB).
The over bar in the above equation represents the conventional

§ time average, thus 0% 5 p. An effective viscosity e is also
used instead of the kinematic viscosity u. This effective
viscosity is assumed to describe the effects of Reynolds stress.
In the present work, a two equation turbulence model will be
employed to calculate Bao The complete details of the model

and its implication is outlined in Volume 2 of this study.

Stream Surface Equations

An approach will be taken to reduce the spatial dimensions
of the problem from the general three dimensional form to seaveral

particular two dimensional forms. The objective is to obtain a



solution to the flow governed by the equations (1) to (5) through
an appropriate combination of two dimensional f£low solutions.

The reduction in sgatial dimension is achieved through the
consideration of the blade-to-blade stream surface concept. .
The blade-to-blade stream surface, Sl, may be described by the %j
annulus that would extend from the pressure surface of a blade

to the suction surface of the next blade, as shown in Figure 1. :
This annulus is characterized by the variation of its filament -
thickness, b, and the radius, r. For the purpose of the present i

discussion, the stream surface S, will be considered to represent

the mean geometric properties oflthe annulus. It is possible
to trace out the shapes and the filament thicknesses for a finite
number of these blade-to-blade stream surfaces (annuli) in any
turbomachine passage, using a meridional flow analysis as that i
indicated in reference [1]. On these stream surfaces the flow ;
equations (1), (2) and (3) are transformed to several two
dimensional mathematical expressions. This is possible since
each stream surface provides relations among the coordinates,
such that the variation of flow properties over each surface may
be described in terms of two space variables only. If a solution
to the resulting two dimensional eguations is obtained for each
stream surface, then the flow properties throughout the three
dimensional field may be readily evaluated.

Considering the flow annulus shown in Figure 1. The
curvilinear distance along the intersection of the mid-surface ®
of the annulus with a meridional plane is denoted by m. The
distance normal to the mid-surface is represented by n. The -
circumferential coordinate ¢ is considered positive in the,
counterclockwise direction when viewed down the positive z axis.
The thickness of the annulus, b, is assumed to be small compared
to the radius r. Hence, the n component of the velocity vector
and all variations in the n direction are neglected. The trans-
formation of the flow governing equations (1) and (2} to the
stream surface (annulus) coordinate system (m-¢-n) is outlined _

in Appendix A with the following results.
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Continuity:

O

.a_p. : E._. . g.._ = 0 (6)

Meridional Momentums: .

W ¥ ina- Q°r sine -20W, sina)
p §E4r+ p(Wm T + sina—- Q7r sing LA

W ay
3 2 3 R L. _9

"
azx
g e
= Hl

oW oW W oW
p b _ o . I _m
—_—) -a—cb[ue(a—m—- = sino + r 39 )]

— EE sina] sina (7)

Tangential Momentum:

pxr ;zg + p(rwm ;;9 + W¢ ;;g + Wﬁw¢ sina + 20r Wmsina)
= = %%-%— %‘5 {“e(:_znl“L;@ sina+il.- -;g-@-)]
+ gem[ue(r zL;——W¢sina+z—t:E)]+ %[Zue(%— —2—294-‘;" sina) ]
+ u sina {ggi - gﬂ sina + = %3 W] (8)

where Wm’ W¢ are the components of the mean relative velocity

vector W in the meridional and tangential directions, respectively,

and o is the angle between the mid-line of the annulus, m, and
the axis of rotation, =z.

The system of the differential equations (6), (7) and (8),
can be written alternatively in terms of a stream function ¥
and a vorticity w. In the present study, the stream function-
vorticity formulation is considered for the purpose of reducing

the difficulties of the coupling and nonlinearities associated

=4




with the presence of pressure in the flow equations (7) and (8).
In addition, this formulation cffers the possibility to express’
the governing eguation in their conservative law form. Con-
sequently, no excessive accumulation of errors in the fluxes of
the conserved guantities will result in the finite difference
approximation of the governing equations. Roache [13]
illustrated this by showing how the Gauss divergence theorem is
satisfied for the finite difference equations,

For steady state flow, the continuity eguation (6) is satisfied
by introducing a stream function ¥, which 1s related to the flow
velocity components by:

1 9y
pr 3¢ and ¢ b p am (2

ol

W =
113

where M is the mass flow rate passing through the annulus, Sl’
of Figure 1. If the pressure terms are eliminated from eguations
(7) and (8) by cross differentiation and the mean vorticity

variable w is introduced, one obtains the vorticity transport

equation:

IS - R S S LN S I
w530 "3 EmY T (r x5 (o) ]
E_ .l. g.._. = 0
+ 3% [r 5% (ueml + Gy 0 (10)
where WZ = W2 + W2 (11)
m é
o8 M . 30,3 M _. 3y
Gl = 29[35 (E sina ¢) 53 (b sina am)]
20 3W2/2 30 AW/2 4 g2 o g B0 (12
3m 3¢ 3¢ am 50
and w is defined by:
- 3 -3 13
w = Z [am (rW¢) 30 (Wm)l (13)
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When the velocities W and W, in equation (13) are expressed in
terms of the stream function variable, as defined in eguation (9),
equation (13) would reduce to the stream function equation:

i
i
;
|

)] (14)

!w
=2
g

Energy Equation

For a turbomachine rotor it is convenient to express the
energy equation in terms of the total enthalpy (H) of the gas,
besides its velocity components. The total enthalpy for
turbulent flow is expressed as follows:

2 2.2
W Q7
+ 5 + QW¢_ - 5

3]
Il
@
H

+ B (15)

where E is the kinetic energy of turbulence. Thus, the energy
equation (3), when transformed to the stream annulus coordinate

system, as given in Appendix A, can be written as:

M3 ap, 2 au,, 3 Me _ am 1a”eaH

= [2=(H 2 - =—(H 22)}] - S (= r &) = (& &

b B 3" % ) T 3mEE T ST T 53(5E 35

+ 2 {p.x [L' aw2/2 (l - l—) EEJ}
om e Pr 3m SCE Pr’ am

+ 9 {EE [l_ 3W2/2 - (l - L QEI} W (1 _w)
36 ‘T 'Pr 3¢ S.g Pr 30 6 3m ‘Fe

(16)

oo

T Eogg M) - DT+ Gy =0

where Pr is the turbulent Prandtl number and SCE is the turbulent
Schmidt number for the kinetic enexgy of turbulence, E. The
source term G, in the above eguation represents the generation

or decay in energy, due to the effect of rotation. It is given

by:

10
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The dissipation function, D, can be written as

3W_ 2 3W W
D= 2u, (= + (;}ﬁﬂ + I sina)?)
W Y W
] 1 "'m d . 2 {(17h)
+oug {Bm + = 55 " T sinc}

The properties of flow passing through the stream annulus Sl'
are completely defined by equations (4), (9), (10), (14) and (16)
together with the known variations of Mg s Pr and the given boundary
conditions. The effective viscosity, Hgr is calculated from a
two equation model, one expressing the development of the turbulent
kinetic energy, E, and the other its dissipation rate, €. These
equations may be expressed in terms of the stream annulus system

of coordinates (m,9,n) as follows:

Turbulent Kinetic Energy Equation:

M3 3 H
b BrE 39~ 5@ 301 - &= 3

36~ 3 om ‘Sog © am
#2 le BE L | oL ooer=o (18)
5¢ ‘Sog rad T oper =
Dissipation Rate Equation:
M3 . 303 . 3 3 Fe 2e
b loml® 590" 35(C ] wm 5. T
d He 1 3e = E = = 52
+ % = =) - = = =
57 § 3 " CLg TR+ CyEer=0 (19)

P e

i
i
i
¢

N L gt T T b gl e 1



where SCE is the turbulent Schmidt number for the dissipation of
kinetic energy of turbulence, €. The values of the constants
El,'ﬁz, Cyr Sop a@nd S, in the turbulence model are given in

“CE Ce
Table 1. ' :

TABLE 1. VALUES OF THE EMPIRICAL CONSTANTS FOR THE
k—-¢ MODEL OF TURBULENCE

cD Cl c2 SCE SCE‘.

0.09 l.42 1.92 1.0 1.3

The expession for the effective viscosity ue'is given by

g =u, +cp B (20)
where the laminar viscosity, Moo is considered in the present
study to be uniform and known.

In general, equations (4) through (20) are valid for any turbo-
machine geometry or any number of stream annuli except for the two
stream annuli Sig and 51 shown in Figure 2, which contain the
hub and shroud contours. This exception may be attributed to the
existence of a large variation in flow properties along the nor-
mal, n, to these two annuli resulting from the presence of the
solid boundaries. The determination of the flow properties within
these stream annuli constitute a study by itself and is not
intended for inclusion in the present work.

The solution of the above system of equations within the
turbomachine passages is carried out numerically. One can observe
that equations (10), (14), (16), (18) and (19), constitute a
system of coupled elliptic partiai differential equations, involving
second order derivatives of ¥, w, H, B, and € which are the dependent
variables. From the nature of the problem, none of the terms are

negligible in the governing equations. The convective terms

12




introduce nonlinearity and also instability if, the proper dif-
ferences are not taken into account. Once a solution for these
variables has been obtained, the velocity distribution can be
determined from equation (9). The pressure distribution can
then be evaluated from either equations (7) or (8).

Description of the Computational Domain in the Physical Space

In order to solve the elliptic equations by the usual numeri-
cal methods, it is necessary to define a region in the physical
domain with boundary conditions specified for the different
dependent variables on all boundaries. The flow region of interest,
as shown in Figure 3, contains the blade row and seaments of the
stream surface, Sl’ extending upstream and downstream of the row,
Due to the circumferential periodicity in the turbomachine
passages, the selected domain need to encompass only a fraction
of the flow annulus containing a single blade to blade passage.
The shape and location of the periodic boundaries (AB, NM, IH
and FG) may be defing& arbitrarily as long as their spacing
corresponds to the blade pitch. The upstream and downstream
boundaries (AN, GH) are located sufficiently far £from the blade
so that the tangential variation in flow properties along them
is negligible. The flow properties are conseguently considered
to be uniform along the boundary AN and GH.

Roundary Conditions

In specifying the boundary conditions, two flow cases are
investigated. Preliminarily, only the case of the laminar flow
is considered in this report. The turbulent flow case will be
reported in a second report. Accordingly, in the following
specification of boundary conditions, no assignment Ffor the boundary
values of E and £ in equations (18) and (18) is needed. Moreover,
the flow properties within the turbomachine channels will be
completely defined through the simultaneous solution of equations
(10), (l4) and (l6).

13

e e P —————

S L A

.

P
.
i
:
¥
s
4
i
i
i
i




e s e < e

B e e < e

a. The Upstream Boundary AN:

It is a common practice in turbomachine f£low calculations that
the magnitude and direction of the flow velocities, the total
teméérature, and the total pressure or density are defined at
the turbomachine inlet. Therefore, along the boundary 2N, the
values of ¥, w, H or their derivatives can be evaluated using
the defined flow properties. The known magnitude of the inlet
relative velocity and its direction, as shown in Figure 3,
specify the values of 3¢/3m and 3Y/3¢ according to the following
relations:

v _ _be S 1)

om M W¢ T r 3d tanf;iet

sb _ bpr = _*

% ~ 5 'm Zn/Z (21)

where Z is the number of blades. Since the inlet stream of gas

iz considered to be uniform, the absolute value of the vorticity u
has to be zero along the boundary AN. In a rotating frame of
reference, the relative value of w is given by the following

expression:

w = - [2Q sinu]inlet (22)

The value for the total enthalpy, H, can be defined using the
specified flow properties.

b. The Periodic Boundaries AB, NM and ¥FG, IH:

The periodicity condition reguires that the direction and
magnitude of the flow velocity as well as other £luid properties
be equal at every two corresponding points along AB and MN.
Similarly, the same conditions should apply at every two corre-
sponding points along PG and IH. In terms of the present
dependent variables, the periodicity requirements are satisfied
through the following conditions. First by equating w, 3w/2¢,

14




3v/8d, H and BH/3¢; values at each two corresponding points.
Second, ensuring that the ¥ values differ by unity between the
corresponding points.

c¢. The Blades Surfaces Boundaries MIT and BF:

For the laminar flow case, two boundary conditions over
the blade surfaces are usually specified. These are the non~slip i
condition and the impermeability of the surface in the case of
blades with no injection. The non-slip condition reguires that

U _ ;
5%~ O (23) ;
where ¥ is the normal to the blade surface. On the other hand

the impermeability condition reguires the component of velocity
in the direction normal to the blade surface to vanish. Therefore,

AR LB At AR e s

the blade surfaces are treated as streamlines with the ¢ values
specified as zero on the MI surface and unity on the BF surface.
On either MI or BF surfaces, one has therefore, two boundary

conditions for ¢ but none for w. It is a well accepted fact in

computational £luid mechanics to rely on a modified ewvaluation
of equation (14} to determine the ﬁéundary condition for w.
The modification is introduced in an attempt to insure that
equation (23) holds, that is, to satisfy the no slip condition.
This approach is utilized in the current study to determine the
value of the vorticity, w, over the blade surfaces. The details 0 .
of the procedures used will be presented in the next section.

In regard to the thermal boundary conditions either the
blade surface temperature is known or the normal derivative 3T/93n
is specified as zero for the adiabatic wall conditions. In
either case, equation (15) is used to determine the value of H

or its derivative along the blades surfaces.

d. The Downstream Boundaxy GH:
A few basic problems arise in the specification of the

boundary functions for the dependent wvariables along GH. The




;
i
L
3
f
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first concerns the bheavior of the dependent variables H and w.
The nature of the problem is that, physically, these are known
only if the boundary CGH is located at an arbitrarily large
distance from the blade surface. In this case the value of H
andd w is that of the corresponding surroundings. The placement
of GH at exceedingly large distances from the blade bhoundary is
guite obviously not possible for numerical considerations.
Therefore, one has to employ some auxiliary conditions, usually
obtained by experience, to define H and w implicitly. The
conditions of zero gradients in the meridional direction, m,

is employed in the current work.

9H _ .
5= = 0 (24a)

For the vorticity, w, the absolute value is taken to be zero,
hence,

w = — [20s5inal {24Db)

exit

More important than the specification of the remote boundary
functions of w and H along GH is the determination of the Y values
at the same boundary. The downstream flow velocities, which may

be used to determine the stream function derivatives along GH,

and that guarantee a unigue solution to the problem are not

known in general apriori. Therefore, one has to introduce a
supplementary condition, generally resulting from physical
intuition, to define the stream function derivatives. Investigators
working in the inviscid flow area dealt with this problem by

using an iteration procedure, through which the Kutta condition

for tangency of the flow at the blade trailing edge is satisfied.
This is equivalent to specifying a unique solution to the problem.
Unfortunately, the Kutta condition cannot be applied realis~

tically to sclve the present flow problem due to the viscosity
effects. The conservation of angular momentum principle [14]

is emploved as an alternative supplementary condiition that results
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in the reguired unigue solution. The iterative procedure used
to implement this condition is as follows.

Estimated exit flow angles, B along GH are used to

exit’
specify the values of stream function derivatives in the m

direction through the following relation:

.B_l]i 1 tansexit : (25)

am  2%/%

r o .
exit

The flow field equations are then solved for the boundary function
of ¥ given by equation (25) to obtain the wvelocity and the
pressure distribution throughout the stream annulus Sl of FPig. 1.
An evaluation of the torque developed by the annulus is obtained
through the integration of the pressure and shear forces acting
on the blade surfaces. The change in the angular momentum
between the known inlet and the estimated exit flow conditdons
is determined., If the value of the predicted torque was not
eqgqual to the rate of change of the angular momentum, then the
direction of the exit flow velocity is altered. The whole pro-
cedure is repeated until a satisfactory result is obtained.

The solution of eguations (10), (14) and (16), subjected
to the above boundary conditions within the blade rows and in
the near field, are carried out numerically. In this connection,
it is necessary to reduce the complexity of handling the £inite
difference representation of the governing equations and the
associated boundary condition near the curved boundaries of the
blade surfaces. This is best accomplished by introducing a
coordinate transformation from the (m—-é-n) system of coordinate
to a contracted body-fitted ccordinate system. The overall effect
of this transformation is to produce a square field in which the
arbitrary blade shapes become straight and parallel. The
development of suchk a coordinate transformation is presented in
the next section.
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2. BOUNDARY~FITTED COORDINATE SYSTEM

In all fields conc.rned with the numerical solution of partial
differential equations, the physical region in which the solution
is desired is overlayed with a grid. In constructing a grid over
the blade-to-blade configuration of Fig. 4, the points on the
blade surfaces do not generally correspond to grid points.
Interpolation must therefore be used to determine the Function
values immediately adjacent to the boundary points, for the given
boundary conditions. Moreover, if Neumann type boundary conditions
are present, interpolation is also required to determine the
boundary values themselves. Interpolation between grid points
not coincident with the boundaries is particularly inaccurate
in the case of field equations that produce large gradients
in the vicinity of the boundaries [13]. This inaccuracy in
representing the boundary conditions is known to impair the
success of any numerical scheme in achieving an accurate con-
vergent solution [15]. It is therefore desirable to use a
coordinate system such that the problem boundaries lie along the
coordinate directions. Such coordinate is commonly defined as
a boundary-£fitted coordinate system.

In this chapter, the available methods for developing
boundary fitted coordinate systems for general shaped bodies
are briefly discussed in the first section. The procedure used
to transform the physical domain of Fig. 3, to a unit square
using the boundary-fitted coordinate system is then outlined in
section ii. The flow governing equations with their associated g
boundary conditions in the transformed domain are presented in
the third section. The line integral method employed to obtain
the pressure distribution within the flow field is covered in

section iv.

i. PRasic Transformation Methods

The importance of generating a boundary fitted coordinate
system in viscous flow problems is evidenced by tne fact that
|
the only successful Navier-Stokes solutions to date have been for

those hodies f£or which such coordinates is available. For

i8
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simple geometric shapes, it is usually possible to employ simple
algebraic transformation to place one of the coordinates along
the boundary surfaces. However, for more complex boundaries
such as those involved in turbomachinery applications, it is
extremely difficult if not impossible to use an analytical
treatment to generate a boundary-fitted coordinate system. In
these cases the boundary fitted coordinate system is generated
numerically.

In reference [16], 8tanitz takes the boundary~fitted coor-
dinate to be the stream lines and equipotential lines that
result from the solution of Laplace equation for the ideal two
dimensional £low over the area of interest. Although this
approach is straightforward and simple, it is strictly limited
to two dimensions and is not particularly flexible in terms of
coordinate spacing. A much more general method is to generate
the boundary fitted coordinates by solving a pair of Poisson
elliptic partial differential equations with Dirichlet boundary
conditions., The boundary conditions specify one of the coor-
dinates to be constant on each of the physical boundaries. A
chosen distribution of the other ccordinate is specified around
the boundary contours. This procedi.ce causes some coordinate
lines to be coincident with each boundary of the physical domain
regardless of its shape. The basic concept of such procedure
has been employed in varied form by several investigators [18,
19,20]. Thompson [12] has extended this technigue recently 3
to be applied to multiconnected regions with any number of
arbitrary shaped bodies. His method offers also the advantage
of a provision for controlling the spacing of coordinate lines
near any designated surface. These factors led to choose
Thompsen's approach to generate a boundary fitted coordinate
system for the blade-to-blade domain of Fig. 3. 1:

19




ii. Mathematical Formulation

Two transformations are employed in the present study to
implement the generation of the boundary-fitted coordinate
system for the blade-to-blade domain of Fig. 3. The first one
is obtained by defining a stretched meridional coordinate, X%,
given by:

(26)

g

dx =

This coordinate stretching maps the physical space of Fig. 5a
onto the domain shown in Fig. 5b with (x, ¢) as coordinate
system.

The second transformation [12] generates the boundary
fitted coordinates £ and n through the numerical solution of
the following equations for x{&,n) and ¢(&,n).

2 2 2
a"x a .3
6 =5 - 28 g + 5 = Q(&,n)
g an
2 2 2
6 2% - 28 e+ v 2L - pign) (27)
3& an
Subjected to the following boundary conditions:
X = a, (E,nl) on ABFG
¢ = g; (E/ny) on ABFG
X = q, (E,nz) ~ on NMIH
$ =g, (&,n,) on NMIH (28)

where

20




an 3n
_ 3x 3x , 3¢ 30
B =9 3g * 3¢
2 2

- 2= 20

(29)

The functions Q and P in the above equations are appropriately
chosen to provide control over the spacing of the coordinate
lines in the field. On the other hahd, the functions dyr dyr
g1 and g, are usually specified by the known shape of the
contours ABFG and MMTH in the (x,¢) domain.

Mapping the region of interest in Fig. 5b in terms of the
new boundary-fitted system of coordinates (&,n) yields a fixed
sguare field in the final transformed domain as shown in
Fig. 5c. Note that the blade surfaces in this transformed
domain become straight and parallel. With this procedure
the numerical solution of the flow equations developed in
Section 1, is carried out on the f£ixed square field of Fig. 5c,
using a uniform grid with no interpolation required regardless
of the blades shape in the physical space. The transformation
of the governing flow equations from the physical space to the
transformed domain is outlined in the following section.

iii. Transformed Governing Equations

The general transformation from the physical space (m,d)
to the transformed f£ield of (&,n) is‘given by equation (26)
together with the following vector function:

g El(x,¢)

(30)
N nix,b)

T
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| This vector function as well as its inverse transformation are
defined Once-the'(g,ﬁ) system has been obtained. Partial
derivatives of any scalar function, £, are transformed utilizing
the chain rule as follows:

3£ _ L (3% 3£ _ 3¢ 3

5m - r ‘an 3 ~ 3€ an /7

3F _ ,3x 3f _ 8x Of

3¢ = 9% 3 " on 35/ | (33

where J is the Jacobian of transformation, given by:

]
R
3]

7= 3% 3¢ _ 3x 3¢
dE 2n n 9

Higher order derivatives as well as the derivatives noxrmal to
the different boundaries are presented in details in Appendix B.
Using the sxpressions providing by the relations (31) and (B4)
through (B10), the governing flow equations can be written as
follows in terms of the new variables (E,n):

Vorticity Transport Equation

. . 2 2
3 M Y 3 M 3y 1 3 2
3T & I w}= I 5 3 wi- 5 I8 ;Ei' (n w) - 2B SEET (# w)
52 3 3
+ ¥ —5 (p_w) +G§ﬁ(um)+'r§g(uem)] + Gy =0
on (32)

where the source term, G3, is given by:

2 2
e - 20 9W/2 _ 3p AWH/2 , o3 M i %, 3 M_. 3w
€3 = 3% I 5q 3E - T 28Iy (7 sine 30 - oo(gsina 77 ]

2.2 .. ’
+ Q7r" sina (§E EE gﬁ_gzd (32a)




And the coordinate transformation parameters ¢ and T are given
by the following expressions: ' '

2 2 | 2 ' 2 2 2
3¢ . 8°x 3" x 3°x,_ 9X,, O og 20 2 é]}/J
o = {§7l6 =5 ~ 28 555 + ¥ 31— 3gle 28 Spat Y
37 42 32006 an2 3EHT g2 35an a2
' 2 2 2 2 2 52
_ rOXc. 876 3" o 3%, B8, 37X _,, X . X1} /3
T = {318 122 28 3gsn T _-an_zl T 2e2 2B 3F36 Y a2
(32Db)

It is not difficnlt to show that the xight hand sides of the last
two equations reduce to zero if a uniform mesh size is used
along the ¢ direction. In this case, the coordinate system
will be referred to as a non-contracting coordinate system,

Stream Function Equation

3 M 3y 3 M 3y 3 M 3y 3 M 3
5 ¥ _ g 9_ M ¥, .3 M U W
5 Bp 38" B 3 By 3g)— B an Bp 36 Y TlGF an)
i 3
+ 55 (O —% + T %%) = - uw r23° (33)

Energy Equation

M 3 dw, 3 T M u
plir @sh-5 @mdi-Ts d 2 ) (2

an 3E aE
_Bg__(f‘_g_qg_H 3 e am e 3 3
am P T Y am EE T er (0 gp f T3]
D -
246, =0 (34)
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[(W.r + r ma““]— §-—[(w¢r+r 2)2 ]}

¢

Q P 2
+ = {8 5T 2378 3% Q4—-B 5 Q3*Y a Q,+ 00, + TQ5}
. " oty e 8 (k w) ) B[E-lﬂ 3 (u w) +'% 3 (u )
. pJ a T 9E 2& an an Bl
‘ 3 (u_w)
3y 1 8 g 8_ g g 3_
Y g T 3 P F O U e PR
3 _ (34a)
+ ¥ a Q, + 0Q, + TQl)
and .
2
1 9w /2 1 3B
Q, = u, I5z - - 52 37]
1l e "Pr 23§ SCE Pr’ 3¢
NG 1 1, 3
0, = u, [g= T2 z— -0 2
2 e "Pr an SCE Pr’ 9n
H 2
- .8 8 r'e
Q3 = 57 37 (WeF + =57
u 2
. .8 3 PR 1! :
Q = 57 3y (Wf + 35 (34b)
AW IW_ 2 W AW '
_ 3¢ m L] m ax ¢ 3X ~ ¢
D = o AN ! - E S, L
cn 122 M a9 Mo 2 ax M ax My 2
e ~'3n 9E 3¢ 3an 3E an an 3& WthSlna) } (34c)




i Turbulent Kinetic Energy Equation

]\ »
M .8 3y, _ 3 3y 1..8 e 3E 3 ,Fe 2E
. T [EF(E 32 - ==(E =P ] ~ =[§ 2 (= 25y-p L (_&_9°E
| b 92 30" 5 (E 3 7% 3% (55 3878 selsg o
3 ,Me 3E 3 He 3m, . Me 3E 3E
"B arlg— 9Pt Y plg— 5t 57— (0 5= + © 2}
an SCE ag an SCE an SCE an an
| -2+ 3017 =0 (35)
Dissipation Rate Eguation
M 3 B, _ 8 .3, _1..3 e e, .3 Me 3
5 37 (8 57)- 500 3PV 1 = 208 &= (35 S5 -B ox(z2- 35
b '3 2 3
£ 1 N 3E g 8¢ 'S, 9k 36 'S, an
I u . u -
a 2 9dE d e J¢ e JE Je
- B g sl Y =l )+ —— (0 5= + 7 ) |
an 'S c af an SCE an SCE an an ;
. f
-o. £ED 5, E” 2 _ (36) |
: Co gF+CppgJr =0 i

The above system of equations (32) - (36) are somewhat more com-
plicated by the extra terms added by the transformation. The
disadvantage of having these terms, however, is far outweighed

by the computational advantages of the simple square flow region.
In general, one can demonstrate that the transformed flow eguations
are still elliptic in spite of the appearance of the cross deri-
vative terms %f %ﬁ . The numerical sclution of these equations
using a uniform rectangular gird in the (&,n) domain, provides

the required distribution of the flow variables, ¥, w, H, etc.

in the physical space. The velocity components Wm’ W¢ in the § ;
physical space can be related to the transformed ¥ derivatives

using equations (9) and (31) with the following result:

-

M 3x ay 4x 3y

- "w = Bor 3¢ an " an 35 /7
_-H (3 3y _ 39 3w
3 s = bpr ‘an 3¢ ~ 3¢ /Y (37) |
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Boundary Conditions in the Trausformed Domain

The boundary conditions for equations (32) to (34) are
obtained by a proper transformation of the boundary conditions
stated earlier in Section 1 to the new system of coordinate (&,n).
This procedure yields the following relations.

a. The Upstream Boundary AN

%% = 5%75'(%% B %% tand) i niet (382)
LA

1

w = ~{2Q sinu)inlet {38b)
H = (Cp Ttotal)inlet (38c)

b. The Periodic Plow Boundaries AB, NM and FG, IH:

Figure 6 shows the grid ordering system in the transformed
domain. The grid rows along j=1 and j=p correspond to the
circumferential boundary of the blade-to-blade passage AB, NM,
and FG, IH., The gr.d rows along j =-~1 and j = p+ 1 are
exterior to the blade rows and are reserved in the computational
procedure for the enforcement of the periodicity condition.
Accordingly, along j=1 and j=p, the following conditions apply

bi,o1 T ¥yp-atl e ¥y T T ¥y g Sy gt (399)
By o1 S8 a1 v Wy 7 T Ug o Gy o T 05 a4 (33b)
Hi,—l = Hi,p-l ’ Hi,l = HirP 7 Hi,z = Hi,p+l {39c)
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where i, is the finite difference grid counter in the & direction.

Similar relations are used for the grid points along FG and IH.

¢. The Blade Surfaces MI and BF:

Laminar flow casa

v =0 (Along MI) (40za)
¥ = 1 (Along BF) - (40b)
= - - L1 .
mw - [A(¢w+l 1‘UW)+2 ww+l'+B] c (40c)
(For both Mi, BF)
erz
HW = CP tw + 5 {for both MI, BF) {(404)
where
3 ﬁ v
A= 5 [F= —15]
Anz be J2r2 w
y 2_2
B = [p- —5 &0 gp (5] (40e)
I o YyM/bp W
4 _Bbn 3y , 2ybp 8 M, _ Bbp B_ M

In the above equations the subscript (w) denotes a blade boundary
point and the subscript (w+l) denotes a point in the flow field at
a distance An away from w. The vorticity boundary condition given
by equation (40c) is derived using a Taylor's series expansion

for the stream function about the blade surface, the boundary
conditions given by eguation (23) and the stream Zfunction

eqgquation (33). The formulation of the vorticity boundary condition
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as given by this equation is second order accurate and allows

 implicit treatment in the sclution technique.

d. The Downstream Boundary GH:

8 _ 1 26 _ 8K oy
5t~ In/Z 3 T Be Blayie (41a)
o = - [20 sinal__,, (41p)

iv. Pressure Distribution

In the stream function-vorticity formulation of the flow
equation, the pressure does not appear explicitly in the problem.
Therefore, indirect methods must se used to evaluate the pressure
distribution through the flow fiel_d. An accurate approach
consists of forming a Poisson egu:tion for the pressure using
equations (7) and (8). The Pois:son equation is then solved to
determine the pressure, subject —o Neumann-type boundary conditions
provided by the momentum eguations. A variety of numerical
procedures for this type of solution are given in reference [13].
The principal problem encounterad with such an approach is that
the Neumann boundary conditions should be formulated carefully
such that they are compatible with the source term in Poisson
equation. Because of the trunc-tion errors, the boundary values
fail usually to meet this construint, resulting in a slow divergence
of the numerical solution. An =lternative approach to obtain a
pressure distribution is to perform a line integral for the
pressure gradients %%, %% aloag a contour in the flow field.
This approach usually yields rezasonably accurate values for the
pressure along the surface of & smooth body without sharp corners
as is the case in the present flow configuration. |

The pressure gradients %% ~d %% are related to the velocity
components Wm, W¢, the vorticity s and their Qerivatives by the

following relations:




3 1., 8 Wy My
= — - LS
gg- S [B g7 (ugw) w (rg) 1~ plW_ 37— + Wy 37
§ CLA. 3%y q2rs3 .i inc x
+ m:(Wm TE W¢ ag) (@ singe + 29E¢r s ) 5E
+ 20r W_ sina %g} + % %E
(422)
and
' 3 (1 _w) W W
dp_ Ll s & o3 - _m _4
. 3 _ g 3% 2 ax
+ mr(Wm 5T W¢ n {Q r sino + 20r W¢51na) ﬂ
+ 29r W_sinc ———~} + 2 gf{ ‘ (42Db)
? where
1
; M, 196 Mn as n . oax M ax Mo )
1 - ___‘:. : = y¥ A oY gL ¥ HEee W ‘2
F = w_ sina + 5 (Bn Y; 3t 3t 5E 37 Sn 3E )1 (42c)

In deriving these relations, use has been made of the momentum
equations (7) and (8), together with the transformation rela-
tions (1b) through (10b), as well as the definition of w

given by equation (14).

Once a solution to the transformed f£low equations has been
obtained, the right hand side of egquation (42a) and (42b) can
be evaluated using second order central difference for the
g and n derivatives. From a mathematical view point, equations
(42a) and (42b) represent algebraic expressions for the various
pressure gradients. The pressure distribution over the whole
field can therefore be obtained by performing a line integral
for these algebraic expressions. Starting from the upstream
inlet boundary (AN) of Pigure 6 where the pressure level is
known, the pressure distribution along the mid channel line (IL-L)

.
/
G bt e e < e+ 5

is obtained using the following integration formula:
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[ age-p,_, +35 (2
d L

}.
-1 %% 98 i1
A similar expression is used to integrate equation (23) in the n
direction. In this case the integration starts with the predicted
pressure values along the mid channel line (L-IL) and proceeds
towards both the suction and pressure surface of the blades.

3. SOLUTION PROCEDURE

The flow governing équations introduced earlier as equations
(32) through (34) comprise a system of coupled nonlinear elliptic
partial differential equations that must be solved, subject to
the boundary conditions (38) - (41), to provide the details of
the flow pattern within the blade-to-blade channels. Since the
flow equations are not tractable to analytical solutions, a
numerical solution which is based on the finite difference method
is used. The following simplifications are made in order to

reduce the complexity of handling the numerics of the problem.

First, the flow is considered to be incompressible. This decouples

the energy equation from the momentum equations. Thus, it is

possible to solve the ¢ and & equations to obtain the velocity

distribution which are then used in the energy eguation to determine

the enthalpy distribution throughout the flow field. This
assumption is mandatory in order to develop a method of solution
which could be later expanded to take into account the density
variation within the flow. Second, a non-contracting body fitted
coordinate system is employed during the numerical solutions.
Consequently, all first order terms containing the transformation
parameters ¢, 7, in egquations (32) - (34) vanished as pointed out
in Section 2. It should also be remarked that using non-
contracting body fitted coordinates implies that the spacing

of the coordinate lines, in ¢ direction, in the physical domain,

iz uniform.
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Before writing the governing equations in finite difference
form, it is found more convenient to express the flow variables in
the following dimensionless form:

0= ? ' H = g r = %— ' b = %— '
m e (W) t t
m o
pr : plr ;
Re = (W) —%, R =——=% (44) E
™o g © Ve <

~ Where the subscripts o, t denote the condition at the upstream
boundaries (A-N) and M-B) respectively (see Fig. 3). Using the
above equation, one can express the flow governing eqguations in

nondimensional for as follows:

Stream Function Equation

r b
o "o 27 3 1 3w 3,1 3 3,1 a3y
—— — {oe o (= %) + v o (x5 - B o ()
T bt Z 3K b* ag an b* amn SE B¥ an
_ .3 L1 3w _ % %2 3 ;
Vorticity Transport Equation 2
3 w* R ] m* 3 Ro 3 gsine 3¢ A ;
T lay ) T el t W e Ly Gy |
b b b
* 3 T
~ 2_ (sine 3, _ Tt EE Z_ 15 EE_ By o+ oy 33_ (2 |
an b* °E ro bo 2% 352 Re an2 Re %
;
2w
I _ )
- 28 TEn (f{-e—)] = 0 (46) ]
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Energy Equation

&

b Tr &

~o 3 * 30, _ 3 * 3 _ ta P 1 1 B2H

Jb* 5 (B 3 ~ 37 (H 391 r_ 2% [8 37 (&g 57 3¢
) *

_gd (A Ll 2, .3 1 1 3m 2 (Ll 1 3m
3E ‘Re Pr an 21 ‘Re Pr 9n vy an ‘Re Pr on
* *

~-D +@, =0 , (47)

% *
where 2z is the number of blades, D and G4 are the nondimensional

equivalent of the source terms D, G, in equations (34a) and (34b).

Numerical Solution

The derivations of the finite difference equations is followed
by a description of the iterative procedure used to obtain the
numerical solution.

The Finite Difference Equations

A noteworthy comment is to be made before expressing eguations
(45) - (47) totally in a finite difference form. This relates to
the effective handling of the first order convective terms in
the above eqguations. As pointed out by Roache [13], these terms
can destroy the diagonal dominance of the matrix of the finite
difference equations to be solved at high Reynolds numbers. This
in turn causes inversion instabilities that produce spatial
oscillation "wiggles" in the final solution for the flow variables.
To eliminate these instabilities, a windward difference technique
is used to model the longitudinal convective terms. Thus, wig:n
the local value of the £ compogent gf*velocity is positive, the
2w H

TE- or 3E are evaluated with a

backward difference. On the other hand, when the velocity is

convective terms including

negative, a forward difference approximation is used for either

* * * 3 ~ » . » Lad 1]
2w or g? . In a similar fashion, the windward differencing

dE

technigue is used to control the difference representation of the
% *

normal convective terms containing %%— and %%— in equations

(46) and (47).
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Referring now to Fig. 6, it can be shown that the
finite difference representation of eguations {415) - (47) may
be written as

Pi,9 T B1 Vier,g TR Vi, t Ba Vi, g4 T By Y5 9
+ B (48)
and
® - B *® + B & B w® + B 3
“i,5 1 “1+1,7 2 Yi-1,o 3 %i, g4l 4 ¥i,5-1
+ B5 (43)
and
H* - H* + * W F3
1,9 7 C Hian,g T8 Biog,3 O3 By 441 T O By 40
+ Cg (50)

57 B5 and CS’

serve as the explicitly known source terms. The value of these

Where the coefficients A in the above equations

coefficients as well as the cofficients Al through Ay, Bl
through Byr and Dl through D,, are given in Table 2.

Iterative Procedure

For the numerical solution of our system of coupled finite
difference equations (48) - (50), a wide variety of classical
matrix iteration techniques are available. The point SOR method
of solution has generally been acknowledged as being the best
of these iterative techniqgues, because of its effectiveness
and simplicity of application. Within the category of the point
iterative method, there is a choice of alternate methods.

In the present report, the Gauss~Seidel method is used, for it
is known to yield more rapid convergence solution and places less

demands on computer storage.
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TABLE 2. COEFFICTENTS OF THE FINITE DIFFERENCE EQUATIONS'

=
Il

L = 28 AN/AE/A_/ (b 1 + b))

i
I

* *
, = 288n/AE/A /(b 4 +b,)

A, =y AE/An/A /D]

-
i

*
4 Y [\E/ATI/AO/bl

¥, b
£ Pt %22 3 1 B¢ a1 2y
- = = — —_ . Yy . —— Pl
o o b b
where
A =34 + A, + A, + A

o 1 2 3 4

t All unsubscript quantities in this table are evaluated at the grid

node (i,j). Note that the stream channel thickness b* is constant
for all j. 1
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TABLE 2 ~ CONTINUED
Cyp = (Cpy + Cyp)/Cy
Cy = (Cyy *+ Cyp)/Cy
3 = {C3p + C3,)/C,
Cyp = (Cyp * Cyy)/C,

where

_ ® *
Cyy =3 by (W3 + [¥1;1)/8b

0
ll

12 = & An/AE/Pr/I(Re) + (Re); .1

i+l,] |

3 *
21 = I by (g, + [¥y5])/8b

]
|

O
i

§ An/AE/Pr/[(ﬁe)i_l 5 % (ﬁe)i .1

22 r]

# The Prandtl Number is assumed to be constant in this table.
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In using the Gauss-Seidel method, two c¢ycles of iterations
are required to obtain a complete solution to eguations (48) - (50).

The first cycle ccnsists of the iterative solution of the stream
| function and vorticity equations. When a converged solution is
} reached for these two eguations, the energy equation is then
? solved in the f£inal cycle. During the first cycle of iterations,
: a successive over-relaxation, using an optimum over-relaxation j

. factorx, Rf, is used. The iterative procedure is given by

n+1l en (51)

g = R. @& + {1 -~ R

£ £

where 6 dencotes a general flow property and includes ¢ and w.
The superscripts (n+l), and n represent an iteration counter.
For the final cycle of iterations it is found that using

an under relaxation factor, U, improved the convergence character-

istics. The under relaxation relation used is

g=ua*tl + (1-0) 5B (52)

f In the present solution the optimum values for the different
relaxation factors are determined by trial and error.

Boundary Conditions in the Iterative Scheme

The general recursive formulae for the iterative solution
as given by equations (48) -~ (50) are only appliad at the interior
nodes of the flow domain. Near the various boundaries equations
similar to (38) - (41l) are used. Along the upstream and downstream
boundaries, equations (38) and (41) are introduced in the solution
procedure in a straightforward manndr with minimum compu-
tational effort. However, along the periodic boundaries AB, NM,

? FG and TH, the boundary conditions provided by equation (39)
have a unique feature. Specifically, neither the boundary values
nor the derivatives of any of the flow properties are specified

apriori along these boundaries. The only information supplied
by equation (39) are the eguality of the function values and
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their derivatives at every two corresponding points. Therefore, ,

a special approach is required to determine the values of the if‘

dependent variables ¥, v, and H, along the periodic boundaries.

The approach to be taken here relies on a modified evaluation

of the governing equation for each flow property to determine

the boundary condition for the flow property in guestion. The

modification is introduced in an attempt to insure that equation

(39) holds, that is to satisfy the periodicity condition. The .

numerical procedure is as follows. °§
Let the generalized finite-difference form of any of the flow

governing equations (45) - (47) be represented by, (see FPig. 6

for subscript notation): |

B, ., = a + a 4+ a, 8 + a, 8

2 ¥i-1,3 1,341

(53) L

+ as L

where 6 denotes a general flow property (¢, w, and H). The

coefficients ay through ag depend on the particular eguation -
used, and are obtained by a proper combination of the coeffi-

cients Ay through Cs given in Table 2. Foxr the grid points

along the boundary AB of Pig. 6, the above eguatlion 1s modified,

using the periodic boundary conditions given by equation (39)

to the following form:

- s
5,1 T8y B443,1 T3 83,1 PR30 o T8 5 {
4 - i
+ ar + X1 (54) f
gm
where Xy = 0 for w and H; ;
E
X, = - @ for . (54a) 5
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The points along NM are not part of the solution regions, since

the value of the dependent wvariables at each of them is just

egual to the corresponding point along AB. The equation for

the first mesh line below NM must be modified hy substituting

the periodicity condition given by equation (39) into equation (53).

Bi,0-1 = %1 Oi41,p-1 t B3 Oy ,pe1 B30 1 T AL 8 p
+ ag + Xq (55)
where -xz =0 for w and H;
Xy = 83 for 1 . (55a)

A siwmilar approach can be applied along the other boundaries

(FG and IH) where a periodic condition exists.

4., RESULTS AND DISCUSSION

The equations formulated in Section 2 are programmed for
numerical solution using the finite difference technigue discussed
in Section 3. The program is arranged to handle general flow
within turbomachinery, which may be of the axial, radial or
mixed flow type. In general, the program reqguires as an input
the configuration of the stream channel annulus Sqv the inlet
flow conditions, the rotational speed of the machine, and the
blads geometry. Recalling that all the flow calculations are
carried out in the unit sguare of the transformed domain, there-
fore the blade input geometry is supplied to the program in the
form of the transformation parameters §, B, y and J. As pointed
out in Section 2, these parameters may be specified for any blade
geometry using Thompson code for the automatic numerical generation

of boundary fitted coordinate system [12].
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The program output consists of the distribution of the
stream function, the vorticity, and the static pressures within
the blade passages. The variation of meridional and tangential
velocity components from blade-to-blade and from the inlet of
the machine to its exit are also generated. In cases where
blade cooling is considered, the program has the capability to
generate the temperature distribution within the blade passages. ’;
In oxder to keep the computer time within reasonable limits,
(usually less than 5 minutes on an AMDAHL 470), the flow domain
has been diwvided, for all calculations, into 30 step sizes in n
direction and 40 in the ¢ direction, with the greater number of
nodes. distributed in the meridional direction.

Five flow cases are investigated using the developed program.
The main purpose was to check the accuracy of the present method
¢f analysis in predicting the actual flow behavior within
turbomachine channels, The accuracy of the method was confirmed
by a comparison with available experimental data. Four of those
investigated cases were concerned with inward flow situations,
while the fifth one dealt with an outward flow case. In all
cases investigated, the flow was considered to be incompressible
and having a constant effective wviscosity, Mg The blade surfaces

are agsumed to be adiabatic with no heat sources or sinks.

Inward Flow Cases

These f£low cases are those of a radial inflow turbine whose
rotor congists of eight radial straight blades. A full description
of the rotor geometry is given in Fig. 7. The primary reason for o
the selection of this specific rotor is that a substantial

v v

amount of experimental data is available for it (reference [20]).
Thus, besides providing a basis for comparison with the theoretical
predictions, the experimental evidence 1isg used to show avenues for
future development in the present method of analysis.

The flow patterns are investigated on a blade-to-blade stream
channel, Sl, located midway the passage depth ¢f the rotor as
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shown in Fig. 7. The results are presented over a wide range
of operating conditions, which are summarized in Table 3. The .
coardinate syétém used in the solution is illustrated in Fig. 8.
The results presented include stream function contour plots,
velocity profiles across the rotor passages together with some
information concerning the pressure distribution within these
passages. '

The streamlihe contours for the four inward f£flow cases of
Table 3 are: shown in Figs. 9a and 9b. The streamlines are plotted
for the region between a pair of blades, represented by the
heavy thick lines. 'The‘streamlines are designated by a stream
function ratio ¢/wtotal such that the value on a streamline
indicates the ratio of flow through the passage between the
stfeamline and the pressure surface of the blade. Thus, for the
given channel configuration, the streamline spacing is indicative
of the velocity relative to the rotor, with close spacing indi-
cating high velocities and wide spacing indicating low velocities.
For the operating conditions corresponding to case 1, as shown
in Fig. 9a, it is observed that a recirculating -4dy began to
form near the pressure surface of the blades. As the rotating
speed increases, the recirculating zone grows much larger, as
shown for cass 3 in Fig. 9b. The relative velocity near the
suction side of the blades increases in the later case., This
effect may be attributed to the fact that the effective sectional
area of the rotor decreases with the growth of the recirculating
zone. Since large recirculatory zones cause higher losses in ;
total pressure, it is desirable to avoid them through efficient
rotor design and proper selection of the oeprating conditions. g
From the inspection of Fig. 9, it can be concluded that the size ;
of the recirculating eddy depends upon the relative magnitude of
the flow rate (ﬁﬁfzypt) and on the rotor speed, N//T;. These <
zones generally can be reduced by increasing the mass flow rate
and/or decreasing the rotor tip speed. | i

The most remarkable feature of the present results is the
good agreement obtained between the predicted flow behavior and
the experimental evidence taken from reference [20]. 1In all
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cases studied, the size and the extent to which the recirculating
zoné grows compares favorably well with the experimental data,
as indicated in Fig. 9. '
Figures l0a and l10b show the ﬁredicted meridional wvelocity
distribution across the blade passages at three different radial
locations. These locations are selected to correspond to a ’
radius of 23.2, 15 and 6.8 cms, respectively. The dotted line ‘?
shown on each figure represents the velocity distribution fox :
an inviscid solution. The results of the viscous flow analysis
show a large variation in the meridional wvelocity profiles as
the flow travels downstream. The profile digtribution, at
stations located away from the turbine inlet, indicate that
regions of high meridional velocities are shifted towards the
blades suction surface as shown in Figs. 1l0a and 10b. While,
regions of high relative meridional velocities are gbserved to
exist near the blades pressure surface at subsequent downstream
stations. Compared with the viscous calculations, the inviscid
flow solution predicts a completely different flow behavior, in
this respect. Moreover, in some flow situations where severe :
changes take place near the rotor tip as in case 4 in Fig. 1l0b, !
the inviscid flow solution fails completely even in predicting
the flow characteristics. All these factors, in addition to the
existance of reversed flow regions near the blades pressure
surface make it clear why the inviscid solutions always fail to
produce a realistic prediction of boundary layer characteristic
parameters in rotating machines when used in conjunction with
standard boundary layer analysis. o
Figures lla,b,c show the pressure variation between blades at

-
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four radial locations corresponding to radius, r = 13.1, 16.3, ,
19.5 and 22.7 cms. The static pressure, p, is plotted in these

2
o . : plgzxgip
figures using the nondimensional gquantity, Cp = (pl—p)/—~—3§—~=

where Py ¢ pi are the mean static pressure and density at rotor

r

inlet respectively. The experimental measurements of reference [20]
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are also shown in the same figures. A&As with the stream function
and velocity results, the present method of analysis provides a
goocd prediction of the pfessure distribution over a wide range
of operating conditions. On the whole, the value of cp is
observed to be larger on the suction side of the blades and
decreases near the pressure surface, with smaller changes in CP
values at higher rotational speeds. In the region lying between
the center of the paésage and the pressure surface, the CP
values become smaller as the rotational speeds decrease. These
observations imply that the static pressure drop from the rotor
inlet increases with increased rotational speed. Near the

suction surface, the pressure drop increases with the decrease

of rotational speed. Such a tendency is remarkable, particularly
near the rotor inlet.

Some comments might also be made concerning the discrepancies
observed between the predicted and experimental values of pressure
distribution in case 4 near the rotor exit (i.e. at r = 13.1). As
reported in the experimental work of reference [20], the operating
conditions for this case cause the flow to be heavily separated+.
The existance of large separation zone within the rotor is
believed to modify the channel shape in such a way as if the
zone acts as a pseudo bhlade. This in turn affects the pressure
distribution in the manner shown in Fig. llc. Therefore, it
appears that in order to deal with flow cases where heavy
separation is encountered within the rotor channel, one has to
incorporate a zonal model for such separation in the present method
of analysis. BSuch developmeht in the method of solution is
undoubtably essential for further use of this method of analysis
in aerodynamic improvement and performance prediction of
turbomachines.

+ It is to be noted that this type of separation is not a regular
two dimensional one, but rather a three dimensionzl type.
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Flow in Radial Cdmpressor

The capability of the present method to analyze the flow in
diffusion cascades is examined by studying the flow behavior
within the rotor of a radial bladed compressor. The rotor
profile is shown in Fig. 12. The rotor has 12 straight radial
blades. The blade-~to-blade shape in the physical domain as well

as the coordinate system used in the solution are shown in . ?
Pig. 13. Additional summary data for the solution appear in :
Table 3 (as case number 5). A typical distribution of the ilow o )

properties on the blade-to-blade computational surface, Sl’ of
Fig. 12 are calculated and the corresponding results are cal-
culated and the corresponding results are presented in Figs. 14
and 15.

Figure 14 shows a comparison between the predicted stream-
line contours and those determined experimentally in reference [21].
The experimental evidence was obtained by tracing photographs of

streak lines from the rotor segments under the same operating
conditions reported here. Good agreement is generally observed
and it should be particularly noted that the shape and the size
of the recirculating eddy compare favorably well in both cases.
The predicted meridional velocity profiles across the rotor
passage at three different radial locations are illustrated in
FPig. 15. Shown also in the same figure, the calculated velocity
distribution using an inviscid blade~to-~-blade analysis. The
inviscid solution, although showing the existance of negative flow
reglons as exemplified in Fig. 15b, over estimates the size
of the recirculating eddy noted in Fig. 1l4. This overestimation L
is supported by the existance of large negative meridional j
velocities near the blade suction surface. In an actual case, '
boundary layer phenomena are expected to reduce the effective
flow area of the passage, thus increasing the volume f£low rate
per unit area through the effective area and thereby reducing
the size of the eddy. This is exactly the same result obtained ;

using the present viscous flow solution. {
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PARAMETER ¥FOR THE NUMERICAL SOLUTIONS

TABLE 3.
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* TIno all cases studied, the upstream boundary AN of Figures 8 and 13 i1s located at
radius ratio r/r of 1.35, while the downstream boundary HG is located at
radius ratio r/rtiz of 0.235,

** N designates

T

For all cases, the bhlade surfaces are considered to be adiabatic

the rotatiomal speed (r.p.m.)

asstmed teo be laminar with constant viscosity, LI

and the Elow is




On the whole, the present method of analysis provides a
good prediction of the actual flow behavior within the passage
of turbomachine rotors. The preservation of the ellipticity
0of the flow problem is believed to be the major element that
results in such good prediction. The ellipticity is preserved
through the consideration of all the diffusion terms of the
governing equations during the solution procedures. The method
of analysis proves also to be of acceptable accuracy and
provides invaluable information on the rotor flow characteristics.
This is evidenced by the good agreement obhtained between the
predicted results and the available experimental data.
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NOMENCLATURE

Al,AE,AS Coefficients of the finite difference equations.

Bl,Bz,B5 . Coefficients of the finite difference equations.

b Normal stream annulus thickness, m.

Cl'CZ’CS Coefficients of the finite difference equations.

El;az,cn - Constants in the turbulence model.

CP Specific heat at constant pressure, J/(Kg) (°X).

D Dissipation functiom.

e, Unit vector in m-direction.

E¢ Unit vector in ¢~direction.

(én)C Unit vector normal to a constant {-line.

(én}n . Unit vec#or normal to a constant n-line.

(Eﬁ); Unit vector tangent to a constant g-line.

(Et)n Unit vector tangent to-a constant n-line.

B Kinetic energy of turbulence, J/Kg.

CyrGyrCs3s . L . .

G4'Gs Donoting source terms in the flow governing equations.

h Static enthalpy, J/Kg.

hl’hZ’hS Scale factor for the orthogonal curvilinear ~-oordinates.

H Total enthalpy, J/Kg.

J Jacobian matrix, B. (B.2).

2 Mixing length, m.

m Meridional distance, m.

v Mass flow per blade flowing through the stream
annulus, Kg/sec.

n Outward unit normal to the stream surface, S see Fig. 2.

1 r
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N Outward unit normal to blade surface.

; Nl’Nz Components of N in m, ¢ directions respectively.
| AN Distance of the near-wall grid point (w+l) from the
' blade surface, see Fig. 5.
P Static pressure, N/m2 or blade pitch.
Pr Effective turbulent Prandil number.
Prg Molecular Prandtl number. .
r Radius from axis of rotation, m.
R Universal gas constant, U/(Kg) (°K).
Re Reynolds number.
SCE Schmidt number for kinetic energy of turbulence.
§ SCE Schmidt number for dissipation of kinetic energy of
_; turbulence.
é t Time.
;% T Temperature, °K.
‘E v Absolute velocity vector, m/sec.
5 2 Magnitude of V, m/sec.
i W Relative velocity vector, m/sac.
‘E W Magnitude of W, m/sec.
2 Wy, Wy Wy Components of W in X{r X, and x, directions,
respectively.
Wﬁ Meridional component of the relative velocity vector, ;
m/sec.
W¢ Tangential component of the relative velocity vector,
m/sec.
’%é X Stretched meridional coordinate, Eg. (26).
g Xy ¥y ¥y General orthogonal curvilinear coordinate.

51




+

Z Axial coordinate, m.

7 Number of blades,

o

Angle between m and z, rad., see Fig. 2.

B Coordinate transformation parameter, Eq. (29),

or angle between relative wvelocity wvector and
meridional plane, rad., see Fig. 2.

e L

v Y Coordinate transformation parameter, Eg. (29).
8 , Coordinate transformation parameter, Eqg. (29).
o Fluid density, Kg/mg.
T ﬁ Coordinate transformation parameter, Eg. (32b).
o Coordinate transformation parameter, Eg. (32b).
U Kinematic viécosity, mz/sec.
| He Effective viscosity, mz/sec.
H, Laminar viscosity, mz/sec.
Q Rotational speed, rad/sec.
i e Denotes general flow property and includes ¢, w, and H.
| o) | Relative angular coordinate, rad., see Fig. 2.
U Stream function.
§ . W Vorticity, l/sec.
ké ‘ £ Dissipation of Kinetic energy of turbulence, J/Kg.
i £ Boundary £itted coordinate, see Fig. 6.
: N Boundary fitted coordinate, see Fig. 6.
| At Time step counter.
- Superscripts
j - Mean value
& * Denotes nondimensional guantity.
n Iteration counter.
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Subscfipts
e Effective
f A Laminar.
m Meridional component..
w Wall value. \
w+l Pertaining to points in the flow field at a i
distance An away from w, see Fig. 6. .
) Tangential component.
i,3 Denotes field poistion in (&,n) domain, see Fig. 7.
inlet Inlet or upstream.
j exit Exit or downstﬁeam.
total Total conditions.
tip Rotor tip.
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APPENDIX A

DERIVATION OF STREAM SURFACE EQUATIONS

The detailed derivation of the equations governing the
fluid flow on the blade-to-blade computational surface, 81+
of Fig. 2 is presented in this appendix. The complete equations
of motion that describe the flow behavior in a turbomachine
passage, are first written for ageneral orthogonal curvilinear
coordinate system. A transformation of the resulting equations
‘to the computational coordinates sysitem is then outlined.

Principle Equations in Orthogonal Curvilinear Coordinate

For a general orthogonal curvilinear coordinate svstem
(xl,xz,xs) with scale factors hl’ hz, h3, the Navier Stokes
equations given as egquations (1) and (2) in Section 1L may be
written in the following form:

Conservation of Mass:

3 (pW.,)
ap 1L 3 . 1 2 1 3 :
28 ¢ = S {pW.) + == —E— + — — (pW,) :
3t hl axl 1 h2 axz h3 8x3 3 :

N ;
+ Eﬁ_ (l_ EEE + i_.ah3} + Py (l_ Eil s 1 Eil) T
hl h2 Bxl h3 axl h2 hy 3x2 h3 ax2 . }3
+ DW3 (.l_. 3.111'. € .l__ th) = {) (A l) 5
h3 hl Bx3 h2 ax3 - )

where Wl’ WZ’ WB are the components of the velocity vector W

in the Xqir X and x., directions respectively.

3
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T

Conservation of Momentum in x1 Direction

ol ¢ o1 My Wp 3y | Wy BW, W Wp 3, W 3,
ot hl xl h2 x2 3 x3 hl hz axl h2 ax2
W. W. 8h W. ah 2 2
Sl Tl B o) * 202,95 - Q3W,)~ G- £ 2]
1 B3 9%; 3 9% 1 9%y
1 ap 21 3
== 88 2Ll 3 4 g.@
by 9%, ~ 3 by 3%, e
g hlh {g [2u _hyhg %-':Zi + hWE 2:1 + hwg zzl)l
1723 9% 1 %1 RByftp 9%, 31 9%3
h, W, hy W

* g [”ehlhz (gi gx (gi) + ;l gx (gé))]}
x3 3 9%3 g 1 °%1 I3
0 h W h W sh
b (2 ) + 23 1y, T 1 -RODUCIBILITY OF THE
hiBy "By 8% "hy" U By 8%y "R 3%, roquAL PAGE IS POOP
hihy "Hy 8%, 'n hy 9x; By 3% 5
i 2 {;;.3Wz . W, 3h, LW ahz} _ 3h, %
hth h2 ax h2h3 ax hlh2 Bxl axl ?
) 2u, L 3w . W, 3h, . Wy 3h3} _ any 3. 2) f
hihy "hy 3% T Bjhj ax, B hg 9% 3% i
where f
V.ﬁ:é_.?w_l?}__ﬂ+l_.%+ﬁ(l_ah2+l_iﬂ) ,
hl axl h2 sz h3 8x3 hl h2 oxl h3 axl
W, 1 9, ; @hg Wy ; ®hy; 4 3h,
YR, Wy, T h; 3w, TR, G oaE. f Ry ang)  (B-2a)
2 11 9% 3 %3 3 M1 9%3 2 95



Y

Conservation of Momentum in %, Direction:

p[awz . ?E.BWQ N ?g_awz ﬁé 8W2 _ fl (f_ eh _ ﬁg th)
ot hl Bxl h2 axz 3 8x3 h2 h, °ox h3 3x3
* gé (:-"g :22 - :; :Zl) T 2000, ~ 2.Wy) 5 ari]
2 i 1 1 2 2 9x
1 3dp 21 3
= - = - = 50— (p VW)
h2 sz 3h sz e
* g 5 [hyh cli% ¢ - (W—Z) L - gim
1%2%3 1 & By 7% 8y 2 1
3w W ah W
] 1 2 1 2
+ = [20 _h. k. { + + 'R
sz e’1"3 h2 ax h2 3 ax3 hlh2
h W h w
.} 3 9 3 2 3 2
+ 2 [u h.h, (= 35— (=) + == =— (=5))1}
dXB e 172 2 sz h3 n3 ax3 h2
+ e {Eé G (fi) + E& 9 (ﬁ%)]- EE%
h2h3 h2 axz h3 h3 ax hs BxB
+ Me [EE 3 _ (TZ) + El C (?l)]. 3&3
hzhl hl Bxl h2 5 Ix hl axl
~ 2ue {l— 8W3 . Wl 3h3 . W2 3h3]. dh
h2h3 h3 ax h3hl axl h2h3 axz ax
_ 2ue [;_ BWl . W2 ahl . W3 ahl]. ah
h2hl hl Bxl hth ax2 h3hl Bx3 ax
(A.3)
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Conservaticon of Momentum in X4 Dlrectlon-ORRHNAT Paﬂ

REPRODYC

3W3

3x2

=

o=
h3

th

3 3Wy

3x

Jraonn LN S —

3

== (7)1

-

17 Rgr 93

angular velocity, Q, in the Xyr Xor X

In the above equations @
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are the components of the rotor

directions respectively.




Flow Equations on Blade-to-Blade Computational Surface Si:

Starting from equations (A.1), (A.2) and (A.3), the flow
equations over a blade-to-blade computational surface is formu-
lated. 1In deriving the required equations, one has to describe
the computationsl surface Sl in terms of the orxrthogonal curwvi-
linear coordinates i1 X, and Xqr

Sl(xl, X1 x3) = 0 {A.3)

Equation (A.5) 1s used to relate any flow property g of the three
dimensional flow field with the same flow property q on the
surface Sl' In general

EI = q(xlf xzr XB) (A.G)

Since X, on the surface 8, 1s not an independent variable,

1
therefore,

q = alx), %, X%y, %01 = qlxy, %) (3.7)

The relation between the partial derivatives of the flow property g
in the three-dimensional field with those on the surface Sl can
be written as:

53 _ g _ "1 M aq
axl axl n, h3 ax3
g _ 3q | EE.EZ g (A.8)
8%y ¥y D3 By 9xy

where Ny, Doy and n, are the components of a unit vector n that
is normal to the prescribed surface in the Xyr %y and Xy
directions, respectively.
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The previous derivation is valid for any generalized curvi-
linear coordinate system. Following Wu [1], the best coordinate
choice for the surface Sl are the meridional distance m, the
tangential angle ¢ and the normal distance n to the surface
(see Fig., 1).

The following relations apply for the (m-dé-n) coordinate
system

n, =n, = o, n, =1 (A.9)
and the metric or Lamie coefficients hl’ hy» h3 are given by:

hy, = 1, h2 =xr , h, =1 (A.10)
In the present study, the number of the surfaces, to which the
passade is divided, is chosen to be large. Therefore, the
fiZament thickness b or each surface is considered to be small
comnpared to the radius r. Consequently, for those surfaces which
are located away from the hub and shroud boundaries (Fig. 3),

one can consider that the ¢hange of flow properties across the
filament thickness, b, is neglected. Thus

g . 8 _
5%; 5y 0 (.11)

Using eguations (A.9), (A.10) and (A.ll) to rewrite the right
hand side of equation (A.9), we obtain »

g% - %g__ - g_g (A.12)
g Xy m N _ O THE

) REPBODUCIBILITY OF

3G _ 2 2g  ORMEAT PAGE BT (A.13)
X,  3x, 99

Sombstituting the expressions in equations (A.1l), (A.12) and (A.13)
for the derivatives of all guantities in the equations of motion
(A.1), (A.2) and (A.3), we obtain:
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Conservation of Mass

8p ., 9 /.y La_ B 8x _
=5 7 am (,..«'Jm) + 2 5% (pfﬂId)) oW e 0 (a.14)

where Wm and W b are the components of relative velocity vector
in the meridional and tangential direction respectively.

Conservation of Momentum in the Meridional Direction

SWm m ¢ m_W ; : si
o g oM gt g5 - p sinas Q7r sino -2QW, sina)
= o %% - %g_.m [uecg-g—“l-i- ;__?—“l sina -r-g-__',-::['b)]
- 2 ;e_ [%- z:‘f’ + Z—Q sinx] sina (A.15)

where ¢ is the angle between the meridional streamline and the

axis of rotation (2), as shown in Fig. 1, such that sine = d—-;: .
Conservation of Momentum in the Tangential Direction
aW awW oW
o) ) d . .
e . -
T 3% plxW g+ Wy 33 * W, sine + 20r W sinc)
=—§_E._._2_,.a._ [u (.a_.'qj.n}._;.v_qln_ sina.{._a_wc;b.)]
g 3 34 e 'am r r 3¢
oW 3W W W
3 & _ : . m 3 1L "o mo_ .
+ am[uefr 5 W¢31.na s re Y1+ _Bcb[zue(f W—-!—; sina) ]
aW W
o ad d _ ¢ _. L3
+ p sina [am 7 sine + Z 39 Wm] (A.16)

79

!
!
i




i o gmmem e g g

e e e A £ AR 8 e o L b e ot o . . e, et e g

Adopting eguations (A.14), (A.15) and (A.16) leads to a system ‘
that contains derivatives with respect to two space variables ‘
only, namely m and ¢. Ccnsequently, the flow over the surface S
may be treated in a two dimensional manner.

1

In order to obtain an equation for a stream function,
reference [1] dintroduces the concept of an integrating factor, b,
such that the equation of continuity becomes:

2p , B 2 _
br = + 3 {br p Wm) + oY) (b p W =90 (a.17)

€ s

where the factor, b, satisfies the following relation,

mdb 83 g (A.18)

I
r

ol .
©

_g_:% ;W= -2L130 (A.19)

The previous equations indicate that the integrating factor, b,

is nothing more than the filament thickness of the surface Sy
It is worth noting that the above system of equations are

. valid for anv computational surface providing that its geometry
has been defined. The system can be applied in the rotating frame

PLIN S

as stated, or in the absciute stationary frame by setting 9 = 0. ‘_
When g—fﬁ = 1L or o = 90°, the equations represent the flow in a pure
radial machine. Also, when -g% =0 or o« = 0°, th‘é; eguations

represent the flow in an axial machine.’ i

-
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Energy Equation

For steady relative flow through a turbomachine rotor, the
conservation of energy given as equation (3) in Section 1, can
be rewritten in the following form:

- _ ji
pW*Vh = Wevp + D + v+ (ﬁ? vh) (A.20)

where Pr is the Prandtl number and D is the energy dissipation
function. '

It is more convenient to express the energy equation {A.20)
in terms of the total enthalpy H of the gas, and its velocity
components. The total enthalpy for turbulent flow is

expressed as follows.

H=h+W/2 + oW,z + 22?2 + E (A.21)
where E is the kinetic energy of turbulence.
Using the above equation, the energy equation (A.20) reduces

to:
7 = Wz erz =
pPW-VH = pW'V[-—-—I-z de)r + 5 + E] + W-9p
U 2 ' 2.2
e W Q
+ Ve lgz VH-Z- - awr - ZE - 7)) + p (A.22)

Equation (A.22) may be expressed in a slightly different form by
eliminating the pressure term in the right hand side using the
momentum equation (l} of Section 1, with the following result

PW+VH = pﬁ-vmwdjr + %22 & E]
1 2 2.2
* T lz2 vE- I - ayr - S5 - )]
4

- e o 2 =, .57 (A.23
W-v (uem) + 3 W V(uev W) + D )
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It is to be noted that in formulating the above relation, use
has been made of the following vector identities:
2 B

= = - - = = oW
W-8xF = 0 ; WeW W o= Wev

i
I
S

We Wev %— ,  UXW = w
where o is the vorticity vector.

In order to preserve simplicity of concept and for better
organization, it would be very advantageous, as pointed out in ref.
[22], to replace the kinetic energy of turbulence convective term,
pW+VE, that appear in the above equation by its equivalent diffusion
expraession. The exact form can be expressed, using the transport
equation of the kinetic energy of turbulence, as follows:

H
_& yE) (A.24)

v
Scr

pﬁ' VE

1]

#here SCE has the significance of Schmidt number for the kinetic
energy of turbulence. It is worth noting +that the adoption of
equation (A.24) implies that the generation and decay terms in the

full kinetic energy of turbulence equation are in balance.

Substituting now equation (A.24) in (A.23), we obtain:

W-VH = pW-VI[Q + ol e - el
o} pW-VI W¢r _Q r“l + v_[Pr v {H 3 Qw¢r
2.2 u '
QT e = -
- m - E) o — VE] - W-Tx (u w)
2 SCE a
f 2 Rev(n o) +
. 3 I-ie ) D (A-25)
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For the (m,¢,n) coordinate system, associated with the computa-

tional surface 8, of Fig. 1, the V operator can be expressed as

=

8

v = e, Im (A.26)

Hl—e-l

]
+ -é"ab-
where Em and e, denote unit vectors in the meridional and
tangential directions respectively. The velocity vector W, and
the vorticity vector w, may be written as follows in this

svstem of coordinates:

Few 5 +ws ML 12 _2g
W=W,eq t W¢e¢ " bo IF %6 % ~ m e¢]
W = on (A.27)

When the relations (A.26) and (A.27) are used to fully expand the
energy equation (A.25), the following result is obtained.

u n
)3 53y, _ 3 Pe 3w, 13 Me sm
TR A T R T
A T S | S L1, 3E
dm ‘e~ 'BSr T3m Scg Pr Eil}
3 e 1 awls2 1
+ 2= L - 5—-50 By ooy 2
3% ‘T 5% T 5s S BT aelt - Wy am (mow
W
o 3 _ (A.28)
+ = 33 (uem) - Dr + G2 = (
where
== g é (21w, rerla) 8vy_ 2w r+riay 2491
G, = - & g iaglthy ap° 34 om
2
u 2 1 H Qr
3 e 3 Qr 128 223 iy o+ 2591}
* laz 5o 7 55 (Weo+ 501+ ¢ 35ler 35 (Me™F 2

(A.29)
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and the dissipation function, D, is given by

aW_ 2 aw, o,
D= 2u, {(Eﬁﬂ) + (T 35 * sina)}

aW

_mo_ (2.30)
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APPENDIX B

DERIVATIVE TRANSFORMATION

This appendix presents the mathematical expressions used to

transform the partial derivatives from the physical space of

(m,d) coordinates to the computational domain of (£,n) coor-
dinates, A few relations involving directional derivatives

either normal or tangent to a line of constant § as well as a
line of constant n are also included. Since the purpose of

this appendix is to provide a quick reference only, most of

the algebraic development is omitted.

Partial Derivative Transformation

As pointed out earlier in Section 2, two transformations are
employed to transform the physical space of Fig. 5a into the
unit sguare of Fig. 5c. These transformations are given by
eguations (31) and (35). The partial derivatives of any scalar
function, f, are transformed utilizing the chain rule as
follows:

_ L (20 2f _ 29 af
=7 9% 5% © 3F 3 (B.1)
af _ 2% 98 , 3% Bn
56 ~ 3 3t T 30 3
ax 3f dx af
(32 o0 ~ an 580 /° (B.2)
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where J is the Jacobian of transformation given by:

ax D¢ 9% 94 (®. 3]

T.ikewise, higher order éerivatives, which appear in the f£low
governing equations, are transformed using the following

relations:
. 2
3, 3F, _ 3%
r gy (T 553 Tz
ax
2 2 2
1, .86.2 3% 36 90 3°F 36.2 3°f
=L @22, 3028 + (24221
I an g d n a&an 35} arl2]
9 .2 2 2
1 36, % 3% 36 36 %4 36, 2
Iy 2P -3 % + e
J3 an 3&:2 3 n a&aen (35) an}
2 .2 2
3% 3f _ 3x af 34, % 2% 36 96 9%x
GGn 3% " 32 30 * LG 2e2 2 3¢ 57 3Ean
2 .2
B.4
F (34 A (3¢ 3F 3¢ 3%, B8
3 an 3& 91 an 9§ :
2
o7f _ 1 [2x,° 3% _, ax ax 2% | 2,2 o%s,
3¢2 J2 an 352 9 T 8&an 2& anz
2 2 2.
1
PG LE oA, (A2 00y,
N 3 n 8¢an 95 8n2
. (3% 8f _ 3x gg) + (3% 2%x - o 2% 3x 3%x
3n 3 ~ 3E an g2 32 3n 3E3n T
(9_8_)23_34](.3_@32_.@222
3¢’ ;238 an w3 (B.5)
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B3| Hh

. 3% 3¢ 9%, , 2F (fo (3% 2¢ 37 _ 3x 3¢ 3J
noan.,.2 n "33 '8E 3E 8n  &n 9% 3E)
1 8% 3% 2
+ (X 8 ¢ 3x 37¢ y] + 3£ (L. (3% 3¢ 37 _ 3x 3¢ 3d,
g2 81 3.2 7 B 3Tan 3 '23 'Bn ®n 3L T 3E an an

(B.6)

Directional Derivatives'

In most fluid flow analyses, the directional derivatives of
the flow properties, along or normal to the boundaries, are
often needed to evaluate various boundary conditions. These
guantities can be easily obtained if the unit vectors tangent
or normal to a line of constant £ or n, that coincide with the
physical boundaries, are specified. As pointed out in refer-
ence [l12], these vectors can be expressed in terms of the

transformation parameters g—}g, %1-;-, -g—%, etc. as follows:

(et)E

T Some of the relations given in this appendix can be found in
reference [l2]. They are repeated here howver for completeness
and easy referance for the development of the governing
equations.
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y &a

z — (3% - _ 3x /5
(en)g = { 7 Sm n e¢)/ )
(en)n - ("' 3 em + ag e(b)/"‘(

Where (ét)g and (Et)n represent the unit vectors tangent to
constant £ and constant n lines respectively. While, (én)i

(B8.7)

and (En)n denote the unit wvectors normal to the constant £ and

the constant n lines. The above mentioned unit wvectors are
shown in Fig. B-l1 as they appear in the physical domain.

The transformation parameters § and ¥y
are given by

The directional derivative of any scalar function, £, in any

direction e is given by

= (e * V)F

b

where Vf can be written as

d0¢ 9f 3¢ 9f

1
Vi = =5 [(gﬁ 3 T IE gﬁ) e, + (gg T

in equation (B.7)

(B.7a)

{B.8)

Associating the direction e with the unit vectors normal and

tangent to lines of constant £ or n, we have

of -
—— = [(e,),.*V]f = - 2£ , =
£ /v3
B(et)E 5 an
af -
2 -G vie s 2
a(et)n Et)n = 13 441
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FIG. B-1, UNIT TANGENT AND NORMAL VECTORS.
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T e e e e e s i mimin R T R2 7 25

af - of o f
- = [(e ),-VIE = (¢ 25 ~ B =) /JI/8
n'g E]3 3
(aan)g n
3 _ [(3) -vif = (v 3E . g 3
(33) [(en)n Vit (v n 2] BE)/JN (B.9)
n'r
where
/ B =.a_}._{..a_x.+§£.a_¢'.
3E 3n ¢ on (B.10)

With these relations th=> different derivative boundary conditions
associated with the flow governing egquations may be evalunated
in a straightforward manner, providing that the values of the

different transformation parameters are available.
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