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SUMMARY

A method for analyzing the nonad.iabatic viscous flow through

turbomachine rotors is presented. The field analysis is based

iupon the numerical integration of the full incom pressible stream

function-vorticity form of the Navier--Stokes e quations, together

!	 with the energy equation, over the rotor blade-to-blade stream

channels. The numerical code used to solve the governing equations,

employs a nonorthogonal boundary-fitted coordinate system that

suits the most complicated blade geometries. The effects of

turbulence are modelled with the two equations which will be

reported in the second volume of this contract. A numerical

scheme is used to carry out the necessary integration of the

elliptic governing equations.

The method of analysis is applied to various types of turbo-

machine rotors. First, the flow characteristics wit'.zin the rotor

of a radial inflow turbine are investigated over a wide ran3e

of operating conditions. The calculated results are successfully

compared to existing experimental data. Second, the f1cw in a

radial compressor is analyzed in order to study the behavior of

viscous flow in diffusing cascades. The results are compared

qualitatively to known experimental trends. The solution obtained

provides a great insight into the flow phenomena that takes place

in this type of turbomachines. Comparison with nonviscous flow

solutions tend to justify strongly the inadequacy of using these

solutions with standard boundary layer techn-ques to obtain

viscous flow details within turbomachine rotors. It is concluded

that the method of analysis is quite general and gives a good

representation of the actual flow behavior within turbomachine

passages.

The computer used in this work is an AMDAHL 470. The flow

domain has been divided into 30 step sizes in n direction and

"	 a0 in the	 direction. Typical CPU time was 120 seconds.
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^I

For many years it has been recognized that the flow in turbo--

machines is characterized by the presence of three-dimensional,

viscous, and compressible effects occurring in a complex

geometrical configuration. The basic understanding of the physical

phenomena in this flow requires, therefore, an analysis involving

the solution of the unsteady three-dimensional, compressible viscous

flow equations within the rotating and stationary blades

comprising the machine. Such an analysis is clearly a formidable

task. The complexity of the entire problem requires some kind of

simplification for one or more of the important factors affecting

the flow. These simplifications must cover the essential physical

process with sufficient quantitative accuracy and still permit a

clear and rational calculation of different flow processes. Most

efforts have been concentrated frequently on the solution of the

steady and inviscid version of the flow governing equations.

These solutions have been marked by .increased versatility in the

ability to" deal with subsonic [1, 2, 3 and a] as well as transonic

flow regimes [5 and 61. In order to give a more accurate repre-

sentation of the actual flow processes, approaches [7 and 81 have

been devised to account for viscous effects. Most of these

approaches are based on the assumption that a two layer model is

representative, i.e. an invis.cid flow solution which interacts with

an end wall boundary layer solution. Important contributions to

viscous flow analyses in turbomachinery have been made more

recently'in References [9, 10 and 11]. The important features of

these are the attempts to solve the parabolized version of the

complete three-dimensional viscous flow equations with special

techniques.

Although the above remarks are not intended to be a complete

survey of all the available methods, it is evident that the inviscid

analysis is useful fox providing a considerable insight into the

character of the flow. However, the neglect o viscous effects is

a serious shortcoming if detailed quantitative information is

desired to calculate viscous losses or heat transfer. The approach

2
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used to account for viscous losses effects by using the boundary

layer technique proves to have a number of drawbacks. First, the

correct means for matching boundary layer and inviscid solution

has not been established if the inviscid flow is rotational, such

as in the case of a curved or a rotating passage. Second, most

of the existing interacting boundary layer analyses are not capable

3	 of handling strong interaction mechanisms of the types present in

turbomachine rotors. The parabolic flow approximations, on the

other hand, neglect completely the downstream influences. Con-

sequently, important effects such as surface curvature, downstream

blockage and reversed flow regions are totally ignored in these

type of approximations. To circumvent this deficiency, a procedure

based on the solution of the full elliptic Navier Stokes equations

is required. Unfortunately, such direct procedures have defied

accurate numerical solutions due to the limitations imposed on

the core size and speed of present computers. Moreover, the lack

of powerful numerical schemes capable of achieving a rapid con-

vergence for three-dimensional elliptic e quation renders the

solution to be costly.

E

	

	

In the present study, an attempt is made to demonstrate the

feasibility of obtaining viscous flow details within turbomachine

passages by appropriately combining several blade--to-blade viscous

flow solutions. Each of these solutions is obtained through the

numerical integration of the full Navier--Stokes equations over

a predetermined computational surface that extends between the

blades. The set of computational surfaces required for the analysis

are themselves generated from the solution of the nonviscous

version of the Navier-Stokes equations, as suggested by Wu [1].

Because of the constraints implied by the use of these computa-

tional surfaces the resulting viscous flow details are regarded

as a quasi-three--dimensional description of the flow field. The

use of a non-viscous flow solution to generate a viscous solution

in the manner outlined is anticipated to overcome some of the

drawbacks of the method discussed earlier. For example, the

inclusion of the full Navier-Stokes equations in the solution

procedure makes it possible to account, in an effective manner,

i
	 3
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for the interaction between the viscous and inviscid regions.

Moreover, preserving the ellipticity of the problem by working

with the full equations, besides offering an accurate repre-

sentation of the Mow field, allows for the recognition of down-

stream influences.

The study will be presented in two parts. The first part

which is reported in the present volume deals with the general

formulation of the viscous flow equations, and presents the

results for laminar flow cases. Turbulent flow cases considered

in this investigation will be reported in the second volume.

The present volume consists of four sections described

as follows. The equations that govern the flow of viscous

fluid within turbomachine passages are presented along with a

closure model that accounts for turbulence effects in section 1.

A rigorous discussion regarding the accurate: representation of

the different boundary conditions is also given with special

emphasis placed on the determination of the downstream boundary

conditions that are required to preserve the ellipticity of the

problem. A transformation of the flow equations using a non-

orthogonal boundary fitted coordinate system which is numerically

generated using Thompson Code [121 is presented in section 2.

The overall effect of this transformation is to produce a domain

in which the arbitrary blades shapes of the turbomachine become

straight and parallel. The details of the numerical scheme used

to integrate the flow governing equations as well as the pro-

cedures employed to handle the nonl.inearities in these equations

are given in section 3. Finally, the results of the application

of the present method of analysis to various types of turbomachine

rotors are presented in section a.

A	 ,:



1. FLOW ANALYSIS

This section presents the detailed development of a method

for analyzing the viscous nonadiabatic flow of gas through

turbomachine rotors. The partial differential equations that

govern the flow behavior within the machine passages are presented

first. A transformation of the general equations from the

three dimensional form to several particular two dimensional

forms, on predetermined stream surfaces, is then outlined.

The resulting flow equations are further expressed in the con-

servation.law form using the vorticity-stream function formulation.

This is followed by a discussion of the necessary boundary condi-

tions that lead to a unique solution to the problem.

Fundamental Aerothermodynamic Relations

The three dimensional viscous, compressible flow within

turbomachine rotors is governed by the following set of laws.

Conservation of Mass:

ap
at + V- (A) = 0	 {1)

Conservation of Momentum:

Newton's second law of motion when combined with Stokes

hypothesis can be written as

2
P (ate +( F9•v)T4+ 2s xw - z vr z ) = -- vp -- Vxtu (a x w) 7

+ ^ v(vv-w)
	

(Z)

where i is the rotor angular velocity.

Conservation of Energy:

in the absence of heat sources or sinks, the first law of

thermodynamics for a fluid with a thermal conductivity, K, can

be written as:

p (2—h + W • Vh) = 2t + (W • V)p + D + V - (K VT)	 (3)

5
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in the previous equation,, p, p, T, and h denote the static

pressure, density, temperature and enthalpy, respectively. 	
4

While, p represents the kinematic viscosity coefficient and

D is the viscous dissipation function. W is the relative velocity

vector at any point, whose location is defined by the relative

position vector r-, in the rotating frame of reference. The
b

relations among the flow state variables are those of the ideal

gas

p - pRT	 (a)

and dh = C dT	 ( 5 )
P

The mass-averaged variables principle is utilized in the above

equations in order to describe the behavior of a turbulent :low.

According to this principle, the components of the velocity

vector W, and the temperature T, are expressed on a mass-averaged

basis, while the pressure p and tae density p are expressed by

their mean values only. For any flow variable n(xl,x2,x3,.

its mass-averaged value, q, is given by:

q_(xl ,x2 ,x3 ) = Q(xl ,x2 ,x3 ,t) p*(xl,x2,x3.t)/p

where p*(xl ,x2 ,x3 ,t) is the instantaneous value of the density

at any point whose location is defined by the coordinate (xi,x2,x3}.

The over bar in the above equation represents the conventional

time average, thus p* ; p. An effective viscosity 4e is also

used instead of the kinematic viscosity u. This effective

viscosity is assumed to describe the effects of Reynolds stress.

In the present work, a two equation turbulence model will be

employed to calculate pe . The complete details of the model

and its implication is outlined in Volume 2 of this study.

Stream Surface Equations

An approach will be taken to reduce the spatial dimensions

of the problem from the general three dimensional fora to several

particular two dimensional forms. The objective is to obtain a

-a
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solution to the flow governed by the equations (I) to (5) through

an appropriate combination of two dimensional flow solutions.

The reduction in spatial dimension is achieved through the

consideration of the blade--to--blade stream surface concept.

The blade-to-blade stream surface, S l , may be described by the

annulus that would extend from the pressure surface of a blade

to the suction surface of the next blade, as shown in Figure 1.

This annulus is characterized by the variation of its filament

thickness, b, and the radius, r. For the purpose of the present

discussion, the stream surface S1 will be considered to represent

the mean geometric properties of the annulus. it is possible

to trace out the shapes and the filament thicknesses for a finite

number of these blade-to-blade stream surfaces (annuli) in any

turbomachine passage, using a meridional flow analysis as that

indicated in reference [1].	 On these stream surfaces the flow

equations (1) , (2) and (3) are transformed to several two
dimensional mathematical expressions. This is possible since

each stream surface provides relations among the coordinates,

such that the variation of flow properties over each surface. may

be described in terms of two space variables only. if a solution

to the resulting two dimensional e quations is obtained for each

stream surface, then the flow properties throughout the three

dimensional field may be readily evaluated.

Considering the flow annulus shown in Figure 1. The

curvilinear distance along the intersection of the mid--surface

of the annulus with a meridional plane is denoted by m. The

distance normal to the mid-surface is represented by n. The

circumferential coordinate ^ is considered positive in the,

counterclockwise direction when viewed down the positive z axis.

The thickness of the annulus, b, is assumed to be small compared

to the radius r. Hence, the n component of the velocity vector

and all variations in the n direction are neglected. The trans-

formation of the flow governing equations (1) and (2)  to the
stream surface (annulus) coordinate system (m--^--n) is outlined
in Appendix A with the following results.

7
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br
at 

+ 2m (brpWm] + a (bpW) = 0	 (6)

Meridional Momentum: .

Ir
P 

awe, 
+ p (W aw

 + 
W^ @W - 

w2^ sina- S1
am

sina -20W sina)
at	 am	 r ao	 r

aTq	 w	 a t^
_	 -	 e3 ant 111(- m + r m 

s ina + = a ^^} ]
am 3

aw	 aw w	 aw

+ r { am
(2 er amm}+ a1u e (am^ - r sina +	 aim}]

LW w.. 2 r^ 1r 
a	 + rm sina] sina	 {7}

Tangential Momentum:

3W	 awe	 ajv^
Pr at + P (rWm am 

+ W 
aw 

+ W W sina + 2Qr Wm 
sina)

aw Waw

	

ate_ 2 a 
Cu ( m + m sina +	 `^} ]

a¢ 3 a0 e am r	 r ao

aw	 aca	 aw w
+ a 111 (r	 - W sina + m ) ]+ a 1211 (^	 ^' + m sina) 3

am a	 am	 ¢^	 ac	 a	 e r	 r

aw	 w	 a
+u esina 1am^' - r# sina + r a m]

where Wm , W are the components of the mean relative velocity
z

vector W in the meridional and tangential directions, respectively,

and a is the angle between the mid- line of the annulus, m, and
r

the axis of rotation, z.
4.

The system of the differential e quations (6) , (7) and (8),
can be written alternatively in terms of a stream function y

and a vorticity w. In the present study, the stream function-

vorticity formulation is considered for the purpose of reducing

the difficulties of the coupling and nonlinearities associated

(g)
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with the presence of pressure in the flow equations (7) and (8).

In addition, this formulation offers the possibility to express

the governing equation in their conservative law form. Con-

sequently, no excessive accumulation of errors in the fluxes of

the conserved quantities will result in the finite difference

approximation of the governing equations. Roache [131

illustrated this by showing how the Gauss divergence theorem is

satisfied for the finite difference equations.
For steady state flow, the continuity equation (6) is satisfied

by introducing a stream function ^, which is related to the flow

velocity components by:

M
Ml	 a$	 M1 a^ {9}and	 W¢ = -b pr a^	

b p am

where M is the mass flow rate passing through the annulus, 51,

of Figure 1.	 If the pressure terms are eliminated from e quations	 f

(7) and (8) by cross differentiation and the mean vorticity	 ',I

variable w is introduced, one obtains the vorticity transport

equation:

( b	 w)-
	

( b	 w)	
-	 (r am (w) 1

act	 a¢	 ail	 3m
am

+r 2	 (u ew) 1 + Gl	 0 (10)

where W2 = W^ + W (l.l )

Gl

.

= 2R[ am (b sina 2 } - 
a	

(b sina ate) ]
r

3

` ap aW2/2	 ap aW2/2 + Q2	 a--Ar sina (12)

+ am	 a	 a^	 am	 a^

and w is defined by:

w- [am (rW}	 - a
	

(W
m

) 1 (13)	
i
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When the velocities Wm and W(b in equation (13) are expressed in

terms of the stream function variable, as defined in equation (9),

equation (13) would reduce to the stream function equation:

Energy Equation

For a turbomachine rotor it is convenient to express the

energy equation in terms of the total enthalpy (H) of the gas,

besides its velocity components. The total enthalpy for

turbulent flow is expressed as follows:

W2	 SZ^'r2
H = CpT +	 + SZW^r + 2 + E

where E is the kinetic energy of turbulence. Thus, the energy

equation (3), when transformed to the stream annulus coordinate

system, as given in Appendix A, can be written as:

M^--(H 
a ) _ a 

(H au} 
l -- a ue	 a H 	 1 a	 e aH

b am ` aQ	 a	 am	 ai(Pr r ant)- r a ( Pr a^)

+ a {v r ( 1 aW
2/2 _ ( 1	 - 1 } aE1}

am a Pr am	 S CE P?- a

u
+ a { e [	

aW ^/2 _ ( 1 	 .^ 1 ? aE^ } - W 
a m (V e `^ )a¢ r Pr a^	 SCE Pr am

(16)

-!-
rte 20 

(u ew) -Dr + G2=0

where Pr is the turbulent Prandtl number and S CE is the turbulent

Schmidt number for the kinetic energy of turbulence, E. The

source term G2 in the above equation represents the generation

or decay in energy, due to the effect of rotation. It is given

by:

10

^	
3

(15)
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of	 Cli r 
a	 (w r+ ^r2 ) l+ 1	 C^'e	

(w r+ Qr2 ) 1 } (17a)
a	 Pr	 3	 ¢	 2	 r	 Pr D O 	2

The dissipation function, D, can be written as

f i

S	 ^	 ,

4

s

1,.

tl

3TV 2	 aw	 w
D = 2u e { 

( ant ) + (r 	 + rm sina) 2

+

DWG 
+1 

3Wm
 WA sins}2e d am	 r a¢ - r 

(17b)

iThe properties of flow passing through the stream annulus S1,

are completely defined by equations (4) , (9) , (10) , (14) and (16)

together with the known variations of tie, Pr and the given boundary

conditions. The effective viscosity, at e , is calculated from a

two equation model, one expressing the development of the turbulent

kinetic energy, E, and the other its dissipation rate, e. These

equations may be expressed in terms of the stream annulus system

of coordinates (m,^,n) as follows

Turbulent Kinetic Energy Equation:

M_	 a
b	 Cam (E

a^ _ D

a )	 acp (E
D^,
am))

3	 ue	 aE

(SCE 
ram	 am)

(l8)
CE

Dissipation Rate Equation:

b C am(=) — a0 ( am)) 	 air 
(SCE 

r am)

+ —e r ate)- C1 E rD + C2 E2 pr — 0	 l9o	
CE	

( 19)
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where SCE is the turbulent Schmidt number for the dissipation of

kinetic energy of turbulence, E. The values of the constants

C1 1 C21 CD r SCE and SCE in the turbulence model are given in

Table 1.

TABLE 1. VALUES OF THE EA4PIRICAL CONSTANTS FOR THE

k--E MODEL OF TURBULENCE

CD Cl C2 S	 SCE	 CE

0.09 1.42. 1.92 1.0	 1.3

The expession for the effective viscosity p 
e is given by

2
1e = P + CD PE	 (20)

where the laminar viscosity, p., is considered in the present

study to be uniform and known.

In general, equations (4) through (20) are valid for any turbo--

machine geometry or any number of stream annuli except for the two

stream annuli S10 and S1N shown in Figure 2, which contain the

hub and shroud contours. This exception may be attributed to the

existence of a large variation in flow properties along the nor-

mal, n, to these two annuli resulting from the presence of the

solid boundaries. The determination of the flow properties within

these stream annuli constitute a study by itself and is not

intended for inclusion in the present work.

The solution of the above system of equations within the

turbomach.ine passages is carried out numerically. One can observe

that equations (10) , (14) , (16) , (18) and (19) , constitute a
system of coupled elliptic partial differential equations, involving

second order derivatives of ^, w, H, E, and E which are the dependent

variables. -From the nature of the problem, none of the terms are

negligible in the governing equations. The convective terms

I
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introduce nonlinearity and also instability if.the proper dif-

ferences are not taken into account. Once a solution for these

variabl hs I'm bt	 d 4-U
7 

1	 d'	 'bes a	 en o aa.ne ,	 o ce ve aty a.str . cation can be

determined from equation (9). The pressure distribution can

then be evaluated from either equations ( 7) or ( 8) .

E	 Description of the Computational Domain in the Physical Space

1 In order to solve the elliptic equations by the usual numeri-

cal methods, it is necessary to define a region in the physical

domain with boundary conditions specified for the different

dependent variables on all boundaries. The flow region of interest,

as shown in.Figure 3, contains the blade row and se gments of the

stream surface, S l , extending upstream and downstream of the row,

Due to the circumferential periodicity in the turbomachine

passages, the selected domain need to encompass only a fraction

of the flow annulus con_'taining a single blade to blade passage.

The shape and location , of the periodic boundaries (AB, Nkl, IH

and FG) may be defined arbitrarily as long as their spacing

i corresponds to the blade pitch. The upstream and downstream

1

	

	 boundaries (AN, GH) are located sufficiently far from the blade

so that the tangential variation in flow properties along them

is negligible. The flow properties are consequently considered

to be uniform along the boundary AN and GH°

Boundary Conditions

In specifying the boundary conditions, two flow cases are

investigated. Preliminarily, only the case of the laminar flow;

is considered in this report. The turbulent flow case will be j.
reported in a second report. Accordingly, in the following

specification of boundary conditions, no assignment for the boundary

values of E and s in equations (18) and (19) is needed. Moreover,

the flow properties within the turbomachine channels will be

completely defined through the simultaneous solution of equations	 F

(10) , (14) and (16) .

13
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a. The Upstream Boundary AN:

It is a common practice in turbomachine flow calculations that

the magnitude and direction of the flow velocities, the total

temperature, and the total pressure or density are defined at

the turbomachine inlet. Therefore, along the boundary AN, the

values of *, w, H or their derivatives can be evaluated using

the defined flow properties. The known magnitude of the inlet

relative velocity and its direction, as shown in Figure 3,

specify the values of D^/am and a^/a^ according to the following

relations:

al _ by 
W - -- 121 tans .am _ .. M

	
r a^	 inlet

D^_ bpr	 la¢	
M Wm ° 27r/Z
	 (21)

where Z is the number of blades. since the inlet stream of gas

is considered to be uniform, the absolute value of the vorticity w

has to be zero along the boundary AN. In a rotating frame of

reference, the relative value of w is given by the following

expression:

w = - [20 sinal inlet
	 (22)

The value for the total enthalpy, H, can be defined using the

specified flow properties.

b. The Periodic Boundaries AB, NM and FG, IH:

The periodicity condition requires that the direction. and

y	 magnitude of the flow velocity as well as other fluid properties
t

be equal at every two corresponding points along AB and MN.

Similarly, the same conditions should apply at every two corre-

sponding points along FG and IH. In terms of the present

dependent variables, the periodicity requirements are satisfied

through the following conditions. First by equating w, aw/a(.b,

14
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a^/30, H and aH/B^; values at each two corresponding points.

Second, ensuring that the ib values differ by unity between the

corresponding points.

C. The Blades Surfaces Boundaries M1 - and BF:

For the laminar flow case, two boundary conditions over

the blade surfaces are usually specified. These are the non--slip

condition and the impermeability of the surface in the case of

blades with no injection. The non-slip condition requires that

a
	

(23)

where N is the normal to the blade surface. on the other hand

the impermeability condition requires the component of velocity

in the direction normal to the blade surface to vanish. Therefore,

the blade surfaces are treated as streamlines with the qj values

specified as zero on the MI surface and unity on the BF surface.

On either Ml or BF surfaces, one has therefore, two boundary

conditions for ^ but none for w. It is a well accepted fact in

computational fluid mechanics to rely on a modified evaluation_

of equation (la) to determine the boundary condition for w.

The modification is introduced in an attempt to insure that

equation (23) holds, that is, to satisfy the no slip condition.

This approach is utilized in the current study to determine the

value of the vorticity, w, over the blade surfaces. The details

of the procedures used will be presented in the next section.

In regard to the thermal boundary conditions either the

blade surface temperature is known or the normal derivative 2T/3rk

is specified as zero for the adiabatic wall conditions. In

either case, equation (15) is used to determine the value of H	 J :

or its derivative along the blades surfaces.
^^	 I

d. The Downstream Boundary GH:

A few basic problems arise in the specification of the

boundary functions for the dependent variables along GH. The 	 j

l J

z	 _	 `
<	

V `^^-

ry^^

1

f

i

}
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9H = 08m ( 24a)

first concerns the bheavior of the dependent variables H and w.

The nature of the problem is that, physically, these are known

only if the boundary GH is located at an arbitrarily large

distance from the blade surface. In this case the value of H
and m is that of the corresponding surroundings. The placement
of GH at exceedingly Large distances from the blade boundar y is

quite obviously not possible for numerical considerations.

Therefore, one has to employ some auxiliary conditions, usually

obtained by experience, to define H and w implicitly. The

conditions of zero gradients in the meridional direction, m,

is employed in the current work.

For the vorticity, w, the absolute value is taken to be zero,

hence,

w = - 12Qsinal exit
	 (24b)

More important than the specification of the remote boundary

functions of m and H along GH is the determination of the ip values

at the sane boundary. The downstream flow velocities, which may
be used to determine the stream function derivatives along GH,

and that guarantee a unique solution to the problem are not
known in general apriori. Therefore, one has to introduce a

supplementary condition, generally resulting from physical

intuition, to define the stream function derivatives. Investigators
working in the inviscid flow area dealt with this problem by
using an iteration procedure, through which the Kutta condition

for tangency of the flow at the blade trailing edge is satisfied.

This is equivalent to specifying a unique solution to the problem.

Unfortunately, the Kutta condition cannot be applied realis-

tically to solve the present flow problem due to the viscosity
effects. The conservation of angular momentum principle [14]

is employed as an alternative supplementary condition that results

16
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in the required unique solution. The iterative procedure used

to implement this condition is as follows.

Estimated exit flow angles, S exit" along GH are used to

specify the values of stream function derivatives in the m

direction through the following relation:

ao _ 1	
tanR exit

am 27r/Z	
rexit

The flow -field equations are then solved for the boundary function

`	 of 0 given by equation (25) to obtain the velocity and the

pressure distribution throughout the stream annulus S 1 of Fig. 1.
t	 An evaluation of the torque developed by the annulus is obtained

f	 through the integration of the pressure and shear forces acting

}	 on the blade surfaces. The change in the angular momentum

between the ]mown inlet and the estimated exit flow conditions

jis determined. If the value of the predicted torque was not

equal to the rate of change of the angular momentum, then the

f
direction of the exit flow velocity is altered. The whole pro-

cedure is repeated until a satisfactory result is obtained.

The solution of equations (10) , (14) and (16) , subjected
to the above boundary conditions within the blade rows and in

the near field, are carried out numerically. In this connection,

it is necessary to reduce the complexity of handling the finite

difference representation of the governing equations and the

associated boundary condition near the curved boundaries of the

blade surfaces. This is best accomplished by introducing a

coordinate transformation from the (m-c-n) system of coordinate

to a contracted body-fitted coordinate system. The overall effect

of this transformation is to produce a square field in which the
:a

arbitrary blade shapes become straight and parallel. The

development of such a coordinate transformation is presented in

''.'	 the next section.

(25)



2. BOUNDARY-FITTED COORDINATE SYSTEM

In all fields cone rned with the numerical solution of partial

differential equations, the physical region in which the solution

is desired is overlayed with a grid. in constructing a grid over

the blade-to-blade configuration of Fig. 4, the points on the

blade surfaces do not generally correspond to grid points.

Interpolation must therefore be used to determine the function

values immediately adjacent to the boundary points, for the given

boundary conditions. Moreover, if Neumann type boundary conditions

are present, interpolation is also re quired to determine the

boundary values themselves. Interpolation between grid points

not coincident with the boundaries is particularly inaccurate

in the case of field equations that produce larr,e gradients

in the vicinity of the boundaries [131. This inaccuracy in

representing the boundary conditions is known to impair the

success of any numerical scheme in achieving an accurate con-

vergent solution [15]. it is therefore desirable to use a

coordinate system such that the problem boundaries lie along the

coordinate directions. Such coordinate is commonly defined as

a boundary-fitted coordinate system.

In this chapter, the available methods for developing

boundary fitted coordinate systems for general shaped bodies

are briefly discussed in the first section. The procedure used

to transform the physical domain of Fig. 3, to a unit square

using the boundary--fitted coordinate system is then outlined in
section ii. The flow governing equations with their associated
boundary conditions in the transformed domain are presented in

the third section. The line integral method employed to obtain

the pressure distribution within the flow field is covered in

section iv.

i• Basic Transformation Methods

The importance of generating a boundary fitted coordinate

system in viscous flow problems is evidenced by the fact that
Ithe only successful Navier-Stokes solutions to date have been for

those bodies for which such coordinates is available. For

18



simple geometric shapes, it is usually possible to employ simple

algebraic transformation to place one of the coordinates along

the boundary surfaces. However, for more complex boundaries

such as those involved in turbomachinery applications; it is

extremely difficult if not impossible to use an analytical
treatment to generate a boundary--fitted coordinate system. In

these cases the boundary fitted coordinate system is generated

numerically.

In reference [16], Htanitz takes the boundary-fitted coor-

dinate to be the stream lines and equipotential lines that

result from the solution of Laplace equation for the ideal two

dimensional flow over the area of interest. Although this

approach is straightforward and simple, it is strictly limited

to two dimensions and is not particularly flexible in terms of

coordinate spacing. A much more general method is to generate

the boundary fitted coordinates by solving a pair of Poisson

elliptic partial differential equations with Dirichlet boundary

conditions. The boundary conditions specify one of the coor-

dinates to be constant on each of the physical boundaries. A
chosen distribution of the other coordinate is s pecified around

the boundary contours. This procec't.:.-e causes some coordinate

lines to be coincident with each boundary of the ph ysical domain

regardless of its shape. The basic concept of such procedure

has been employed in varied form by several investigators [18,

19,20]. Thompson 1121 has extended this technique recently

to be applied to multiconnected regions with any number of

arbitrary shaped bodies. His method offers also the advantage

of a provision for controlling the spacing of coordinate lines

near any designated surface. These factors led to choose

Thompson's approach to generate a boundary fitted coordinate

system for the blade-to--blade domain of Fig. 3.

y



ii. Mathematical Formulation

Two transformations are employed in the present study to

implement the generation of the boundary-fitted coordinate

system for the blade-to-blade domain of Fig. 3. The first one

is obtained by defining a stretched meridional coordinate, x,

given by:

dx - dmr

This coordinate stretching maps the physical space of Fig. 5a

onto the domain shown in Fig. 5b with (x, 0) as coordinate

system.

The second transformation [12] generates the boundary

fitted coordinates ^ and n through the numerical solution of

the following equations for x (E , n) and ( , n) .

(26)

22x— -
 z  z

^S
a

2S 
a^an

^-^ Y	 ^ =	 9(^ rn)
an

z 2 z

a an

Subjected to the following boundary conditions:

X = ql (^,n l ) on	 ABFG

¢ = gi (,nl) on	 A.BFG

x = q2 (,^2 } on NMIH

0 = 9 2 (^192) on NMIH

where

(27)

(28)
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2	 2

— an +aa^a^
2	 2^ ^: (ate} + (a^}

(29)

The functions Q and P in the above equations are appropriately

chosen to provide control over the spacing of the coordinate

lines in the field. On the other hand, the functions q l , q2,
gl and g2 are usually specified by the known shape of the
contours ABFG and NMTH in the (x, ^ ) domain.

Mapping the region of interest in Fig. 5b in terms of the
new boundary-fitted system of coordinates (E,n) yields a fixed

square field in the final transformed domain as shown in

Fig. 5c. Note that the blade surfaces in this transformed
domain become straight and parallel. With this procedure

the numerical solution of the flow equations developed in

section 1, is carried out on the fixed square field of . Fig. 5c,
using a uniform grid with no interpolation required regardless

of the blades shape in the physical space. The transformation

of the governing flow equations from the physical space to the

transformed domain is outlined in the following section.

iii. Transformed Governing Equations

The general transformation from the physical space (m,f)

to the transformed field of (^,n) is given by equation (26)

together with the following vector function!

( x ^ ^)
_	 (30)

n	 n (x.^)
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This vector function as well as its inverse transformation are

defined once the (g,n) system has been obtained. Partial

derivatives of any scalar function, f, are transformed utilizing

the chain rule as follows:

of	 1 3^ of	 B o f
am	 (an 3 - a an} ^'^r 

!	 of	 3x f	 ax of
a - (ate an -- an ate) /s

where J is the Jacobian of transformation, given by:

ax B	 ax B^
B^ an an a^

Higher order derivatives as well as the derivatives normal to

the different boundaries are presented in details in Appendix B.

Using the expressions providing by the relations (31) and (B4)

through (B10), the governing flow equations can be written as

follows in terms of the new variables (^,n):

Vorticity Transport Equation

a ( M a	 - a { M ate, 
w)- 1 [ a 22 (u w) - 2^ B2 to W)n	 anas b a^an e

+ Y B 2 (3^ e cu) + G 3n 'I w)+ ti 
a	

(d ew) j + G^ = a
an	

(32)

where the source term, G 3 , is given by:

as awe /2	 ap Bwz/2	 B	 M	 B	 B M	 aG3 = BE an	 - 
an @^ 

+ 2S2 (
aE (b sins an) — an (b since ag) 1

(31.

+ f2 2r2 sina ( ax Bp - ax BQ)
a an	 an- ac (32a)

-
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And the coordinate transformation parameters a and T are given

by the following expressions

E

a = 
{ate [o a2x _ 2S a2X + Y a 2zl -	 is a22 

—2S asa
p + Y 

az) 
}/J^

a	 a 2	
aUo	

an	 a^	 a^

ax	 a2^ - 
2 B 32d) + 	 a2 ^ a Ea a2X _2$ a2 	 +Y a2X ] }/s	!

T	 a^ ^a a 2	 a art	 ant	 an	 a E 2	
3Ua	 3T,2

E r(32b)

It is not difficult to show that the right hand sides of the last

two equations reduce to zero if a uniform mesh size is used

along the 0 direction. In this case, the coordinate system
will be :referred to as a non--contracting coordinate system,

Stream Function Equation

d a (
M a ^'} — s a ( M a ) _ s a (

	
a, } } Y a 

(M ate'}a ^p a	 a by an	 an by a^	 ^rI by a^

+ by (a an + T a) = -	 r2J^	 (33)

Energy Equation

M a 
(x a') _ a (x ate'} ^- l Is a ( fie ax} - a a ^e ax)

F a	 are	 a -n	 a	 a	 Pr a^	 a^ Pr 2r^

a^ ax	 a	 lie ax	 ue 	 ax	 aH
@T1 ( Pr a }+ Y an (pr a^

}+ Pr ( cr art + T ate)

	

J+G¢ =0
	

(34)
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A ^,

..1

f^

C

^I

•

G4 = .- n b 
{ ate [ (W r + re st} Vin]- 3n I { W^r+r2S^} ^] }

+	 {d a Q3_B a Q4_B 2n 
Q3+^y 

an 
Q4+ aQ4 + rQ3}

a

a	 a

	

(li
e

 W)
a	 a (lie W)	 'alp a New)

+ bpJ 
{s a
	 a	

— 
^a	 an	

+ an a	 ]

-	 a (u
+ '^^ a^

w9 
} + s (s	 21- 5 a 42- ^ an Q1

+ -y 
an 

Q2 + 6Q2 + TQ1}

and

Q = 
ue Ir 

aa'2 /^ 
—(s	

--t--) a-]
^"	 CE

(34a)

1	 all 2 /2
42	

e	 E Pr 	 ail
1

- ( S CE

1
- Pr )

a E
aTj

-Q	
e a	

(w r +
3	 Pr a

r2^}
2 

4	 Pr

2
( 3 4b)

i

a^ aWm 	 as
= Zu e { (ate a	 - a

aWm

a^,	 )
2	

ax
+( a

awe	
ax 

awl	 2
a,^	 - ark	 a	 + Wmsina}	 }

a W
+	

{
(ate	 - a^

e	 3 T a	 a
aw

d)

2Tj

2
+( ax

aT

aw	 3147
m _ ax	 m _ W.s^na)2}a^	 a,^	 a	 (p(3 _c)
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(35)

(36)

M	 ax aV	
ax alpwm - 	 b0 (a an 	 ar1 aT)/J

— M	 a^ a	 a^ aW = 
bpr 

(an 3^ - aE a11)/s

Turbulent Kinetic Energy Equation

M r a 	 aV	 a	 aV	 ^.	 a	 ^e aE	 a ue aE
b tai (E a^}- ^ n (E a) "' J[$ a9 

(SCE a9}~ ^ ag(SCE 
an)

	

a Ile aE	 a lie a 	 1e 	 DE	 aE
— 

s an (SCE a}+ Y an (SCE an) 
SCE ^^ an + an) I

-- D + Jp r2 E = 0

Dissipation Rate Equation

M a	 aV	 a	 aV	 1	 a	 ue aE	 a ^'e 
DEb (a (E al, )- a, ( ate) I - sIa a (SCE a)'s a 

(SCE an)

ae aE	 'Je aE	 ^e	 aE	 aE

M	 an (SCE a^	 Y an (SCE an)+ SCE (6 an +	 an)

2
Cl E J+ C2R E J r2 = 0

The above system of equations (32) -(36) are somewhat more com-

plicated by the extra terms added by the transformation. The

disadvantage of having these terms, however, is far outweighed

by the computational advantages of the simple square flow region.

In general, one can demonstrate that the transformed flow equations

are still elliptic in spite of the appearance of the cross deri-

vative terms a a	 The numerical solution of these equations
a^ an

using a uniform rectangular gird in the (E,n) domain, provides

the required distribution of the flow variables, , w, H, etc.

in the physical. space. The velocity components Wm , W¢ in the	 B

physical space can be related to the transformed derivatives	 s

using equations (9) and (31) with the following result:
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Boundary Conditions in the Transformed Domain

The boundary conditions for equations (32) to (34) are

obtained by a proper transformation of the boundary conditions

stated earlier in Section l to the new system of coordinate

This procedure yields the following relations.

a. The Upstream Boundary AN

aE - 2v/Z ( 9^ - a E tan ) inlet	 (38a)

w = -(20 sins) inlet	
(38b)

H = (Cp Ttotal ) inlet
(38c)

b. The Periodic Flow Boundaries AB, NM and FG, IH:

Figure 6 shows the grid ordering system in the transformed

domain. The grid rows along j= 1 and j= p correspond to the

circumferential boundary of the blade-to-blade passage AB, NM,

and FG, xH . The gr_'.d rows along j = -- 1 and j = p + 1 are
exterior to the blade rows and are reserved in the computational

procedure for the enforcement of the periodicity condition.

Accordingly, along j= 1 and j= p, the following conditions apply

^ i'1 = * irp-1 ,	 ^ ir2 = * i,P+l -1 	 (39a)

W	 = w.	 ,	 w.	 = I	 ,	 w.	 = m.	 (39b)i f -1 ^,p-1	 i,l	 i,p	 ^.,2	 z,p+l

Hi,-1 -- 
Hi,

P-1	 '	 Hirl - 
HirP	 ,	 Hi^2 - Hi,p+l	 (39c)
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where i, is the finite difference grid counter in the direction.

Similar relations are used for the grid points along FG and SH.

f

e.
* = 0	 (Along MI)

t	 ^, = 1	 (Along BF)

r	 _

[ w+l w ) + 2 ^w+1 + B C

{	 (For both Mi, BF)

2 2
Hw = Cp tw + ^2r	 (for both MS, BF)

(40a)

(40b)

(40c)

(40d)

c. The Blade Surfaces MI and BF:

Laminar flow case

where

3 M	 Y
A -	 2 

[bp J2r2 
7 w

B = [	 on a	 ( `^' J2r2 ) l	 (40e)
=	

by ^2r2	 3	 YM/bP w
i

	

An 3y	 2yba a	 M	 abp 2	 M

	

2y 3n	 3 Tj bp	 aE bp
M	 M	 w

in the above equations the subscript (w) denotes a blade boundary

point and the subscript (w+l) denotes a point in the flow field at i.'
a distance An away from w. The vorticity boundary condition given 	 1`,fl

by equation ( 40c) is derived using a Taylor ' s series expansion
t^ ±

for the stream function about the blade surface, the boundary

conditions giver_ by equation (23) and the stream function

equation (33). The formulation of the vorticity boundary condition
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as given by this equation is second order accurate and allows
implicit treatment in the salution technique.

d. The Downstream Boundary GH:

a^	 TTr/z 5E	 De	 exit	
(41a)

[20 sinal exit 	 (41b)

aH
0	 (41c)

iv. Pressure Distribution

In the stream function-vorticity formulation of the flow
equation, the pressure does not appear explicitly in the problem.
Therefore, indirect methods must, --ie used to evaluate the pressure
distribution through the flow field. An accurate approach
consists of forming a Poisson equation for the pressure using
equations (7) and (8). The Pois-s on equation is then solved to
determine the pressure, subject -zo Neumann-type boundary conditions
provided by the momentum equati ons. A variety of numerical
procedures for this type of solution are given in reference [13].
The principal problem encountered vxzi lCh such an approach is that
the Neumann boundary conditions should be formulated carefully
such that they are compatible with. the source term in Poisson
equation. Because of the trun,_-tion errors, the boundary values
fail usually to meet this constraint, resulting in a slow divergence
of the numerical solution. An Fiternative approach to obtain a
pressure distribution is to perform a line integral for the
pressure gradie.Lnts 2-p along a contour in the flow field.
This approach usually yields re=-sonably accurate values for the
pressure along the surface of a smooth body without sharp corners

ow configuration.-1as is the case in the present f^.
The pressure gradients	 nd ' P- are related to the velocity

T)

components Wm 	 yr W^f the vorticity and their derivatives b the
following relations:
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aW2 -J	 [6 a^ (U W)- Y ^r^ (11 W) J_ P {W 
a

m  aim + T1 a

+ r^r (W a - W ax ) _ (S2 2r2sina + 2QW r sina)
ni a	 a

+ 2"r Wm sina ^ } + 3 O
(42a)

a (Il e W)	 aw	 awl
1 [^	 — s	 N W)]— PIw	 m+ wan	 s	 a^	 an	 e	 m an	 0 art

+ car ( Wm 
2A
n -  Wi n) - M 2r2sina + Mr W sina) an

+ 20r WmSina an} 
+ 3 art	

(42b)

where

u all	
a^ 

aT m	 a x aW0	 ax aw4)
F =	

-	 {	 -	 ))	
( 42c)

[Wm sina + 
J (^

r`^
a	 a	 ari	 a	 an	 a	 a

'
In deriving these relations, use has been made of the momentum

equations (7) and (8), together with the transformation rela-

tions (lb) through (10b), as well as the definition of m

given by equation (14).

Once a solution to the transformed flow equations has been

obtained, the right hand side of equation (42a) and (42b) can

be evaluated using second order central difference for the

and n derivatives. 	 From a mathematical view point, equations

(42a) and (42b) represent algebraic expressions for the various l

pressure gradients.	 The pressure distribution over the whole !'

field can therefore be obtained by performing a Tine integral i.l

i	 for these algebraic expressions.	 Starting from the upstream
.j inlet boundary	 (AN) of Figure 6 where the pressure level is

_ known, the pressure distribution along the mid channel line (L-L)

is obtained using the following integration formula:
-	 F
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j	 ap d9	 pi-1 + Z C (}	 + (} ] • ( i- i- }	 (43)
i

A similar expression is used to integrate equation (43) in the n

direction. in this case the integration starts with the predicted

pressure values along the mid channel line (L-L) and proceeds

towards both the suction and pressure surface of the blades.

3. SOLUTION PROCEDURE

The flow governing equations introduced earlier as equations

(32) through (34) comprise a system of coupled nonlinear elliptic

partial differential equations that must be solved, subject to

the boundary conditions (38) °-(41), to provide the details of

the flow pattern within the blade--to-blade channels. Since the

flow equations are not tractable to analytical solutions, a

numerical solution which is based on the finite difference method

is used. The following simplifications are made in order to
reduce the complexity of handling the numerics of the problem.

First, the flow is considered to be incompressible. This decouples

the energy equation from the momentum equations. Thus, it is

possible to solve the ^ and w equations to obtain the velocity

distribution which are then used in the energy equation to determine

the enthalpy distribution throughout the flow field. This

assumption is mandatory in order to develop a method of solution

which could be later expanded to take into account the density

variation within the flow. Second, a non-contracting body fitted

coordinate system is employed during the numerical solutions.

Consequently, all first order terms containing the transformation

parameters a, T,.in equations (32) - (34) vanished as pointed out

in Section 2. it should also be remarked that using non-

contracting body fitted coordinates implies that the spacing

of the coordinate lines, in b direction, in the physical domain,

i s uniform.
vPRODUCIBILITY OF TIIV
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Before writing the governing e quations in finite difference
form, it is found more convenient to express the flow variables in

the following -dimensionless form:

i^
i,3rt	 H	

r

m o

Art 	P SIr
Re — (W )	 ,	 R

M o 1 e 	 o	 ue

b = b
t

(44)

Where the subscripts or t denote the condition at the upstream

e
boundaries (A-N) and M-B) respectively (see Fig. 3). Using the

above equation, one can express the flow governing equations in

nondimensional for as follows:

Stream Function Equation

ro bo 2,r { a (1- ate) + 
Y 

a (	 a`') - a (1 ate')
rt b z	 a an b aE	

an 
b 

an 	 b* a n

an ( ate)	 - - +^ r 2 J2	 (45)
b

vortici.ty Transport Equation

J [^ (' ate') - a (^' a'^') ] + 2s R° 
t-a (

sins ate,)
a	

b* 
an	 an b 

ag	 Re	 T	 b	 an

a	 sins D*	
rt bt z	 a2	 w	 a2	 c^

an ( b	 ^) 1
	

b 2w LS a 2 ( Re) + Y a ^2 (Re)

2
2$a8p (R

e } ] = 0	 (46)
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Energy ES2ation

s 
bo C

8 (H 
an^ 

W 
a (H ate} - 

rt 2^7r Cs a ( Re	 a}b	 o

a H.
S a ( Re Pr an )

- D + G4 = 0

(^.	 aH )	
Y	

(^ ]^ aF)
an Re Pr aTJ	 an Re Pr a fl

(47)

where z is the number of blades, D and G 4 are the nondimensional

equivalent of the source terms D, G4 in equations (34a) and (34b).

Numerscal Solution

The derivations of the finite difference equations is followed

by a description of the iterative procedure used to obtain the

numerical solution_.

The Finite Difference Equations

A noteworthy comment is to be made before expressing equations

(45)- (47) totally in a finite difference form. This relates to

the effective handling of the first order convective terms in

the above equations. As pointed out by Roache [13], these terms

can destroy the diagonal dominance of the matrix of the finite

difference equations to be solved at high Reynolds numbers. This

in turn causes inversion instabilities that produce spatial.

oscillation "wiggles" in the final solution for the flow variables.

To eliminate these instabilities, a windward difference technique

is used to model the longitudinal convective terms. Thus, wltA.;..i

the local value of the C component of velocity is positive, the

convective terms .including 2 or ^C are evaluated with a

backward difference. on the other hand, when the velocity is

negative, a forward difference approximation is used for either

aor a	 in a similar fashion, the windward differencing

technique is used to control the difference representation of the

normal convective terms containing an and Ln in equations

(46) and (47) .
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Referring now to Fig. 6, it can be shown that the

finite difference representation of equations (15)- (47) may	 4
be written as

^i,j	 Al *i+,,7 + A2 *i- 1 ,7 + A3 oi,j+l + A4
 t i,j-1

+ A5 (48)

and

W i, 3 Bl ^'1+1, j + B
2 w i-1 r _ s- B3	

^'i, j +l + B
4 wi

rj-1

+ B5 (4S)

and

Hi 
rj

= C1	
r^Hi+1	 + C2 Hi-1 ri + C3 Hi r3 +l

+ C 	 Hi , j- 1

+ C 5 (50)

Where the coefficients A5 , B5 and C 5 , in the above equations

serve as the explicitly known source terms. The value of these

coefficients as well as the cofficients AI through A4 , B1

through B 4 , and D1 through D4 , are given in Table 2.

Iterative Procedure

For the numerical solution of our system of coupled finite

difference equations (48) - (50), a wide variety of classical

matrix iteration techniques are available_ The point SOR method

of solution has generally been acknowledged as being the best

of these iterative techniques, because of its effectiveness

and simplicity of application. within the category of the point

iterative method, there is a choice of alternate Methods.

In the present report, the Gauss•-Seidel method is used, for it

is known to yield more rapid convergence solution and places less

demands on computer storage.

:' t
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TABLE 2.

Al = 26 Ari/A^

,er	 •	 r

COEFFICIENTS OF THE FINITE DIFFERENCE EQUATIONSf

/A0/ (b i+1 + bi)

*	 *
A2 = 26An/AC/A0/ /(b 	 bi)

*
A3 = Y At/Afl/A0/bi

w
ra

A4 = Y A^/.An/Ao/bi

rt bt * 2 2	 a 1 ^i^ r 	 1A5 = A A^ `- b w R J z/2^r -	 ( ^^) _ a ( ;^ a ) ]/Ao
0 0	 b f	 n b

whore

Ao = Al + A2 + A3 + A4

-f • All unsubscripL quantities in this table are evaluated at the grief
node (i,j)• Note that the stream channel thickness b^ is constant
for all j.	 3-



B 2 = [B21 + B22
 b. /(Re) (Re) i-1, j ] bi/bi--1

B3 r X8 31 + B 32 bi/(Re) i,j+lI bi/bi+l

B4 _ B41 + B42 b i/ (Rei , 3-'1)

where

B11 = J (qj11 + tj'11 j) /8BO

B12 ^ S on/AC/Bo

13 21 = J (x'22 + 1'x'22 1) /$Ba

w
Ln

:rT

B 	 [B11 + B12 bi+1/(Re) i+1,j I bi/bi+1 Re - 
r0 b  27r

b	
Re

rt ,^ z

B22 = S An/AE/Bo

B31 = J(t1) 33 + 111) 3 31 )/3Bo

B32 = Y aC/An/Bo



w
cn

B42 = Y AE/on/Bo

B - -- 2 A^ An b [?	 a2 (`}'^) + J R  a ( sins a^i ) + a ( si a	 ) I /B-	
DE of 

Re	 Re aE b an	 an b a	 a

Bo = B11 + 
B21 + B31 + B41 + ($12 + B22 + B32 + B42) b /Re

'pil - q' i+l, j--1 -t- '^ i, j-1	 ''i+l, j+l - q'i, j+l

*22 - 'p i--1, j+1 + ^i, j+l _ ^i-1, j -y -
 t))i , j -1

X 33 = 'P i+l, j+l + 'P i+l, j - ^i-1, j+l _ 1p i-1, j

'1'44 - '^i-1, j-1 + ^ i-1, j - ^ i+l, j-1 - 'P i-1-1, j+l

f	 I «'



c12 = S Ar1/0C/Pr/[ (Re) i+l,j + (Re) i.,j

C21 W J b0 (^22 + 1^P221) /Bb*

( c21 "F c22) /CO

(C31 + c32)/C 0

(C41 + C42 )/C 0

J b* ( ^11 + 1,P11!) /lb*



In using the Gauss-Seidel method, two cycles of iterations

are required to obtain a complete solution to equations (48)- (50). 	 1.'

The first cycle consists of the iterative solution of the stream

function and vorticity equations. When a converged solution is
	 I

reached for these two equations, the energy equation is then

solved in the final cycle. During the first cycle of iterations,

a successive over--relaxation, using an.optimum over-relaxation

V
	 factor, Rf , is used. The iterative procedure is given by

6 ^ R  gn+l + (1 - R f ) 8n	(51)

where 9 denotes a general flow property and includes * and w.

The superscripts (n-'-1), and n represent an iteration counter.

For the final cycle of iterations it is found that using

an under relaxation factor, U, improved the convergence character-

istics. The under relaxation relation used is

H = U Hn+l + (l _ U) H n	.(52)

In the present solution the optimum values for the different

relaxation factors are determined by trial and error.

A•

Boundary Conditions in the Iterative Scheme

The general recursive formulae for the iterative solution

as given by equations (48) - (50) are only applied at the interior

nodes of the flow domain. Near the various boundaries equations

similar to (38) -(41) are used. Along the upstream and downstream

boundaries, equations (38) and (41) are introduced in the solution

procedure in a straightforward manner with minimum compu-

tational effort. However, along the periodic boundaries AB, NM,

FG and IH, the boundary conditions provided by equation (39)

have a unique feature. Specifically, neither the boundary values

nor the derivatives of any of the flow properties are specified

apriori along these boundaries. The only information supplied

f	 1	 dby equation (39) are the equality o the function va ues an
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their derivatives at every two corresponding points. Therefore,

a special approach is required to determine the values of the 	 ^,t

dependent variables fir, w, and H, along the periodic boundaries.

The approach to be taken here relies on a modified evaluation

of the governing equation for each flow property to determine

the boundary condition for the float property in question. The

modification is introduced in an attempt to insure that equation

(39) holds, that is to satisfy the periodicity condition. The

numerical procedure is as follows.

Let the generalized finite-difference form of any of the flow

governing equations (45) - (47) be represented by, (see Fig. 6

for subscript notation):
i

e	 =a 6	 +a a	 +a a	 +a ^ ei,j	 1 i+l,j	 2 i-l ri 	 3 i , j+l	 irj`1
i

+ a5	 (53) ;-

where  6 denotes a general flow property	 w, and H). The

coefficients al through a5 depend on the particular equation 	 -

itsed, and are obtained by a proper combination of the coeffi-

cients Al through C 5 given in Table 2. For the grid points

along the boundary AB of Fig. 6, the above equation is modified,

using the periodic boundary conditions given by equation (39)

to the following form:

e.	 -a 6 i	 i+a 6	 +a 6.	 i+a e
1	 +l,l	 2	 -1,1	 3 a,2	 4	 ,p-1 i

+ a5 + X l	 (54)
f

(54a)

,I



The points along NM are not part of the solution regions, since

the.value of the dependent variables at each of them is just

equal to the corresponding point along AB. The equation for

the first mesh line below NM must be modified by substituting

the periodicity condition given by equation (39) into equation (53).

8 i = a 9.	 + a 0	 + a e.	 + a 0
,p--1	 1 a.+l,p--1	 2 a.-1,p-1	 3 a,l	 4 z,p-2

+ a5 + X2	 (55)

where X2 = a	 for m and H;

X2 = a3	for	 (55a)

A similar approach can be applied along the other boundaries

(FG and 1H) where a periodic condition exists.

4. RESULTS AND DISCUSSION

The equations formulated in Section 2 are programmed for

numerical solution using the finite difference technique discussed

in Section 3. The program is arran ged to handle general flow

within turbomachinery, which may be of the axial, radial or

mixed flow type. in general, the program requires as an input

the configuration of the stream channel annulus S l , the inlet

flow conditions, the rotational speed of the machine, and the

blad.s geometry. Recalling that all the flow calculations are

carried out in the unit square of the transformed domain, there-

fore the blade input geometry is supplied to the program in the

form of the transformation parameters 6, ^, Y and J. As pointed

out in Section 2, these parameters may be specified for any blade

geometry using Thompson code for the automatic numerical generation

of boundary fatted coordinate system [12I.
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The program output consists of the distribution of the

i
	 stream function, the vorticity, and the static pressures within

j

	

	 the blade passages. The variation of meridional and tangential

velocity components from blade-to-blade and from the inlet of
G

	

	 the machine to its exit are also generated. in cases where

blade cooling is considered, the program has the capability to

generate the temperature distribution within the blade passages.

in order to keep the computer time within reasonable limits,

(usually less than 5 minutes on an AMDAHL 470), the flow domain

has been divided, for all calculations, into 30 step sizes in n
direction and 40 in the ^ direction, with the greater number of

nodes distributed in the meridional direction.

Five flow cases are investigated using the developed program.

The main purpose was to check the accuracy of the present method

of analysis in predicting the actual flow behavior within

turbomachine channels. The accuracy of the method was confirmed

by a comparison with available experimental. data. Four of those

investigated cases were concerned with inward flow situations,

while the fifth one dealt with an outward flow case. In all

cases investigated, the flow was considered to be incompressible

and having a constant effective viscosity, p e . The blade surfaces

are assumed to be adiabatic with no heat sources or sinks.

Inward Flow Cases

These flow cases are those of a radial inflow turbine whose

rotor consists of eight radial straight blades. A full description

of the rotor geometry is given in Fig. 7. The primary reason for

the selection of this specific rotor is that a substantial

amount of experimental data is available for it (reference [20]).

Thus, besides providing a basis for comparison with the theoretical

predictions, the experimental evidence is used to show avenues for

future development in the present method of analysis.

The flow patterns are investigated on a blade W-to-b3.s.de stream

channel., S l , Located midway the passage depth of the rotor as

41



shown in Fig. 7. The results are presented over a wade range

of operating conditions, which are summarized in Table 3. The

coordinate system used in the solution is illustrated in Fig. 8.

The results presented include stream function contour plots,
velocity profiles across . the rotor passages together with some
information concerning the pressure distribution within these
passages.

The streamline contours for the four inward flow cases of

Table 3 are shown in Figs. 9a and 9b. The streamlines are plotted

for the region between a pair of blades, represented by the

heavy thick Tines. The streamlines are designated by a stream
function ratio y/' total such that the value on a streamline

indicates the ratio of flow through the passage between the

streamline and the pressure surface of the blade. Thus, for the

given channel configuration, the streamline spacing is indicative

of the velocity relative to the rotor, with close spacing indi-

cating high velocities and wide spacing indicating low velocities.

For the operating conditions corresponding to case 1, as shown

in Fig. 9a, it is observed that a recirculating -ddy began to

form near the pressure surface of the blades. As the rotating

speed increases, the recirculating zone grows much larger, as

shown for case 3 in Fig. 9b. The relative velocity near the

suction side of the blades increases in the later case. This

effect may be attributed to the fact that the effective sectional

area of the rotor decreases with the growth of the recirculating

zone. Since large recirculatory zones cause higher losses in

total pressure, it is desirable to avoid them through efficient

rotor design and proper selection of the operating conditions.

From the inspection of Fig. 9, it can be concluded that the size

of the recirculating eddy depends upon the relative magnitude of

the flow rate (M t/p t) and on the rotor speed, N/	 These

zones generally can be reduced by increasing the mass flow rate

area./or decreasing the rotor tip speed..

The most remarkable feature of the present results is the

good agreement obtained between the predicted flow behavior and

the experimental evidence taken from reference [20]. in all
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cases studied, the size and the e^ztent to which the recirculating

zone grows compares.favorably well with the experimental data,

as indicated in Fig. 9.

Figures 10a and . lflb show the predicted meridional velocity

distribution across the blade passages at three different radial

locations. These locations are selected to correspond to a

radius of 23.2, 15 and 6.8 cros, respectively. The dotted line

shown on each figure represents the velocity distribution for

an inviscid solution. The results of the viscous flow analysis

show a large variation in the meridional velocity profiles as

44he flow travels downstream. The profile distribution, at

stations located away from the turbine inlet, indicate that

regions of high meridional velocities are shifted towards the

blades suction surface as shown in Figs. 14a and lab. While,

regions of high relative meridional velocities are observed to

exist near the blades pressure surface at subsequent downstream

stations. Compared with the viscous calculations, the inviscid

flow solution predicts a completely different flow behavior, in

this respect. Moreover, in some flow situations where severe

changes take place near the rotor tip as in case g in Fig. 10b,

the inviscid flow solution fails completely even in predicting

the flaw characteristics. All these factors, in addition to the

existance of reversed flow regions rear the blades pressure

surface make it clear why the inviscid solutions always fail to

produce a realistic prediction of boundary layer characteristic

parameters in rotating machines when used in conjunction with

standard boundary layer analysis.

Figures lla,b,c show the pressure variation between blades at

four radial locations corresponding to radius, r = 13.1, 16.3,

19.5 and 22.7 cros. The static pressure, p, is plotted in these

2 2rtipfigures using the nondimensional quantity, Cp = ( pl-P)/ 2g

where pl , p l are the mean static pressure and density at rotor

inlet respectively. The experimental measurements of reference [201
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are also shown in the same figures. As with the stream function

and velocity results, the present method of analysis provides a

good prediction of the pressure distribution over a wide range

of operating conditions. On the whole, the value of C is
p

observed to be larger on the suction.side of the blades and

decreases near the pressure surface, with smaller changes in C p
values at higher rotational speeds. in the region lying between

the center of the passage and the pressure surface, the Cp

values become smaller as the rotational speeds decrease. These

observations imply that the static pressure drop from the rotor

inlet increases with increased rotational speed. Near the

suction surface, the pressure drop increases with the decrease

of rotational speed. Such a tendency is remarkable, particularly

near the rotor inlet.

j Some comments might also be made concerning the discrepancies

observed between the predicted and experimental values of pressure

distribution in case 4 near the rotor exit (i.e. at r = 13.1). As

reported in the experimental work of reference [20], the operating

conditions for this case cause the flow to be heavily separated'.

The existence of large separation zone within the rotor is

believed to modify the channel shape in such a way as if the

zone acts as a pseudo blade. This in turn affects the pressure

distribution in the manner shown in Fig. llc. Therefore, it

appears that in order to deal with flow cases where heavy

separation is encountered within the rotor channel, one has to

incorporate a zonal model for such separation in the present method

of analysis. Such development in the method of solution is

undoubtably essential for further use of this method of analysis

in aerodynamic improvement and performance prediction of

turbomachines.

i	 -
i

t it is to be noted that this type of separation is not a regular
two dimensional one, but rather a three dimensional type.



Flow in Radial Compressor

The capability of the present method to analyze the flow in

diffusion cascades is examined by studying the flow behavior

within the rotor of a radial bladed compressor. The rotor

profile is shown in Fig. 12. The rotor has 12 straight radial
blades. The blade--to-blade shape in the physical domain as well

as the coordinate system used in the solution are shown in

Fig. 13. Additional summary data for the solution appear in

Table 3 (as case number 5). A typical distribution of the flow
properties on the blade--to-blade computational surface, 51 , of
Fig. 12 are calculated and the corresponding results are cal-

culated and the corresponding results are presented in Figs. la

and 15.

Figure 14 shows a comparison between the predicted stream-

line contours and those determined experimentally in reference [21].
The experimental evidence was obtained by tracing photographs of

streak lines from the rotor segments under the same operating

conditions reported here. Good agreement is generally observed

and it should be particularly noted that the shape and the size

of the recirculating eddy compare favorably well in both cases.

The predicted meridional velocity profiles across the rotor

passage at three different radial locations are illustrated in

Fig. 15. Shown also in the same figure, the calculated velocity
distribution using an inviscid blade--to--blade analysis. The

inviscid solution, although showing the existance of negative flow

regions as exemplified in Fig. 15b, over estimates the size

of the recirculating eddy noted in Fig. 14. This overestimation

is supported by the existance of large negative meridional

velocities near the blade suction surface. In an actual case,

boundary layer phenomena are expected to reduce the effective

flow area of the passage, thus increasing the volume flow rate

per unit area through the effective area and thereby reducing

the size of the eddy. This is exactly the same result obtained

using the present viscous flow solution.
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TABLE 3. PARAMETER FOR THE NUMERICAL SOLUTIONS
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H
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U
C3 f= U P, K.J E 4 P h-E	 C : X 6 SY	 3 i N

1 Inward-Flow
0.0011 87.9 39.3 72.27 0 33.7 0 1.175 x 105 288 10540 117Turbine

2 Inward-Flow
0.0012 87.3 39.3 74.25° 37.7 0 1.208 x 10 5 288 10607 121Turbine

3 Inward-Flow 0.0012 116.6 52.0 79.77 0 10.5° 1.219 x 105 288 10670 106Turbine

4 Inward-Flow
Turbine 0.0012 145.6 65.4 81.28 6.30 1.275 x 105 288 10750 119	 i

5 Compressor 0.00343 589.25 261.8 44.5° 81.2 0 1.370x 105 288 10330 130

f

* In all cases studied, the upstream boundary AN of Figures 8 and 13 is located at
radius ratio r/rtip of 1.35, while the downstream boundary HG is located at
radius ratio r/rtio of 0.254.

* N designates the rotational speed (r.p.m.)

t For all cases, the blade surfaces are considered to be adiabatic and the flow is
assumed to be laminar with constant viscosity, ue.
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On the whole, the present method of analysis provides a

good prediction of the actual flow behavior within the passage	 t,
of turbomachine rotors. The preservation of the ellipticity

of the flow problem is believed to be the major element that

results in such good prediction. The ellipticity is preserved

through the consideration of all the diffusion terms of the

governing equations during the solution procedures. The method

of analysis proves also to be of acceptable accuracy and

provides invaluable information on the rotor flow characteristics.

This is evidenced by the good agreement obtained between the

predicted results and the available experimental data.

i
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i
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Unit vector

Unit vector

Unit vector

Unit vector

Unit vector

Rinetic ene

in ^ -direction.

normal to a constant ^- Line.

normal to a constant TI-line.

tangent to a constant ^-line.

tangent to -a constant n--line.

rgy of turbulence, J/Kg.

S	 '-

1

j;

NOMENCLATURE

Al ,A2 ,A5 	Coefficients of the finite difference equations.

B1 ,B 2 ,B 5 	Coefficients of the finite difference equations.
i.

b	 Normal stream annulus thickness, m.

Cl ,C 2 ,C 5 	Coefficients of the finite difference equations.

C1 ; C21 CD	 Constants in the turbulence model.

Cp	 Specific heat at constant pressure, J/ (Kg) ('Y,) .
F

D	 Dissipation function.

e	 Unit vector in m-direction.M

e^

(en)

(en)n

(et)
(et) n
E

Gl,G2,G3,

GV G5

h

hl,h2rh3

H

J

2

M

Donating source terms in the flow governing equations.

Static enthalpy, J/Kg.

Scale factor for the orthogo_?ai curvilinear -oordinates.

Total enthalpy, J/Kg.

Jacobian matrix, E. (B.2).

Mixing length, m.

Meridional distance, m.

Mass flow per blade flowing through the stream

annulus, Kg/sec. 	 ?

0 t rd unit normal to th e s tream surface 5 	 see 'p,2ss	 Ll Wa r 1 r g .
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P

Pr

PrQ

!

	

	 x

R

Outward unit normal to blade surface.

Components of N in m, 0 directions respectively.

Distance of the near-wall grid point (w+l) from the

blade surface, see Fig. 5.

Static pressure, N/m 2 or blade pitch.

Effective turbulent Prandtl number.

Molecular Prandtl number.

Radius from axis of rotation, m.

Universal gas constant, U/(Kg)(°K).

I r

Re	 Reynolds number.

SCE	 Schmidt number for kinetic energy of turbulence.

SCE	 Schmidt number for dissipation of kinetic energy of

turbulence.

t	 Time.

T	 Temperature, °K.

V	 Absolute velocity vector, m/sec.

V	 Magnitude of V, m/sec.

W	 Relative velocity vector, m/sec.

W	 Magnitude of W, m/sec.

W1 ,W2' W3	 Components of W in xi, x2 and x3 directions,

respectively.

Wm

	

	Meridional component of the relative velocity vector,

m/sec.

W.	 Tangential component of the relative velocity vector,

€	 m/sec.	 3

x	 Stretched meridional coordinate, Eq. (26).

xl ,x2 ,x3	 General orthogonal curvilinear coordinate.

-	 51



_.	 _ ..,	 .. -._....u_	 ---	 -	 -- .	 ...

i

I

}

z

Z

a

Y

6

P

Cr

11

lie

1^ Q

SZ

6

4

w

E

Ti

At

Superscripts

Axial coordinate, m.

Number of blades.

Angle between m and z, rad., see Fig. 2.

Coordinate transformation parameter, Eq. (29),

or angle between relative velocity vector and

meridional plane, rad., see Fig. 2

Coordinate transformation parameter, Eq. (29).

Coordinate transformation parameter, Eq. (29).

.Fluid density, Kg/m3.

Coordinate transformation parameter, Eq. (32b).

Coordinate transformation parameter, Eq. (32b).

Kinematic viscosity, m2/sec.

Effective viscosity, m2 /sec.

Laminar viscosity, m2/sec.

Rotational speed, rad/sec.

Denotes general flow property and includes ^, m, and H.

Relative angular coordinate, rad., see Fig. 2.

Stream function.

Vorticity, !/sec.

Dissipation of Kinetic energy of turbulence, J/Kg.

Boundary fitted coordinate, see Fig. 6.

Boundary fitted coordinate, see Fig. 6.

Time step counter.

Mean value

Denotes nondimensional quantity.

Iteration counter.n
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Subscripts

e

Q

i	
M

w

f	 W+l

0

i,j

inlet

exit

total

tip

Effective

Laminar.

Meridional component.

Wall value.

Pertaining to points in the flow field at a

distance An away from w, see Fig. 6.

Tangential component.

Denotes field poistion in (E,n) domain, see Fig. 7.

Inlet or upstream.

Exit or downstream.

Total conditions.

Rotor tip.
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APPENDIX A

DERIVATION OF STREAM SURFACE EQUATIONS

The detailed derivation of the equations governing the

fluid flow on the blade-to--blade computational surface, Sl,

of Fig. 2 is presented in this a ppendix. The complete equations

of motion that describe the flow behavior in a turbomachine

passage, are first written for a general orthogonal curvilinear

coordinate system. A transformation of the resulting equations

'to the computational coordinates system is then outlined.

Principle Equations in Orthogonal Curvilinear Coordinate

For a general orthogonal curvilinear coordinate system

(xl ,x2 ,x3 ) with scale factors hl , h2 , h3 , the Navier Stokes
equations given as equations (1) and (2) in Section I may be

written in the following form:

Conservation of Mass:

ap	
a (aW )

at +	 2hl ax tpwl) + h2 ax 	 E3 2x3 {pw3}

+ pWl 
(1 

2h 2 + 1 
ah3 ) + p'2 (L_ ahl + 1 3h3)

h1	h2 ax 	 h3 ax 	 h2	 hl ax 	 h3 2x2



}

1 +

Conservation of Momentum in xl, Direction

aw	 w	 aw

P ta^1 + h1 axe -:-
^-	 Z

w aw	 W	 aw

axl + h3 a^1 —2	 3	 3

W	 W ah	 W	 ah

hz (ham ax 1,
	

hi axe)1	 Z	 1	 2	 2
h?

2

h 3 ink axZ1	 3	 3 h33 ax3)	 2 (SZ 2w3
Z

- S2
3W2 )	 2^ h	 ax—1

1	 Z

	

- 1 a P 	 2 1 a	 ( ^ . w}

	

h2 ax 	 3 h2 ax1 e

	

aW	 W ah	 W ah

	

+ h h 1h { ax [2u eh2h 3 (h ax 	 h h ax 	 h h ax Z} 7^- 2 3	 1	 Z	 1 2	 2	 3 1	 3

h	 W	 h	 W
+ ax [uehlh3 (h2 ax (h2} + h

1 ax (ham }) 1
2	 1	 1	 z	 2	 2	 1

h

+ 3x	 ^^ h ^-hz 	 (h1 axe3	 3	 3

W

( hl)	 +

h

h	 ax {h3) ) ]I

w

1 Z	 Z 3

Ile
	 h 2 a	 W2

+ ham- l	 ax	 i h ) T
Z 2	 - Z	 Z	 2

h, a
h	 ax2	 2

W1

(h 	 )	 -1

ah1	
: RODUCIBILITY OF THE

ax	 r2 JGINTAL PAGE IS POOP

+	 uhh1 3

{h1

3 ax 3 (h1)	 +1 h3 ax1
(h3 ) I -	 ax1Z	 3 3

2u e 1
aW2 W3 ah 2

+
W1 a h 2

- 3h 

hIh2 (h2
ax2

+h2h3
ax3

h 
1 
h 
2 ax 

l - ax 

211

1 h1h3 a h3

aw

ax3

W^

+ h3h 1

ah 3

ax e + h2h 3

w3 ah3

axz ^ -

ah3

ax1	
(.2)

where

9-W - Z aw
l 	 1 aW2 + 1 aW

3	W1 1 ah 2 	 1 ah3
F-1- ax1 h2 TX-2 h3 a73 h1 {h2 -ax, + h3 ax1}

W2 1 1h1	 1 ah 3	W3 1 !hl	
1 ah2

	

+ h2 i h1 ax2 + h3 ax2 } + h3 (h1 ax 3 + h2 ax 3 )	(A.2a)
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Conservation of riomentum in x2 Direction:

a^^	 w aW	 w aw	 w 3W	 w W ah	 W 3h1	 2	 2	 2	 3	 2	 3	 3	 3	 2	 2

	

P fat 
+ 

h3 ax } h2 ax 	 h3 ax  W h2 {h3 ax 	 h3 ax 3?

T1 W	 2	 2

h2 Ch 

L

2 

ah

ax1 — h

w 

1 ax

ah 

2} + 2i^3W1 ^Zw37~ 2h2 ax 2]

1—. 	 z i a	
cu V.w)h'2 ax 	 3 h2 ax 	 e

h 	 h	 w

+ hxh h { a x Ch2h 3 u e ah2 ax 
(W2
h^ 	 hi ax (h1111

1 2 3	 i	 1	 I	 2	 2	 2	 x

+ a	 i aW2 	W3 ah2	 T'71ah2
ax  C2uehih3 {h3 ax  + h 2 

h 3 ax  +
 h 1 h 

2 
axi}1

	

h	 W	 h	 W

+ ax CuehZh2 i h3 3x (h3) + h ax ^h?) ) 

11

3 	 2	 2	 3	 3	 3	 2

W

+ heh Ch 3x h

	

i	 (3) + h 2 ax (hy) 1 ' ax22 3	 2	 2	 3	 3	 3	 2	 3

ue h2 3	 W2 hi 3	 Wi	 3h 
+ h 2 h1 Chi axx { h2} h2 ax2 this 1 

Ix 

2u 
e- 7. aw3 	Wi ah 3 	W2 ah 3 	ah3

h2h3 
Ch3 

ax 	 h3 hi ax  + hl)h3 3x2 1 3x2

2u 	 I aWi 	W2 ah ].	 W3 ahi 	 'hl
h2h2 C hi ax  + h lh2 ax2 + h 3hi ax,;	3x9



i	

'LF

REPROI)MM LlTr

Conservation of Momentum in x ^ Direction; ORI"CINTAT r a -, ro

aW	 w aW	 w a 	 w aw	 w	 ah	 w ah3	 1	 3	 2	 3. 3	 3	 1	 1	 1	 3	 3
P at + h 1 '§ —z-1 h2 ax  "- 

E3	 h (Wh1 ax  
	 h1 ax 

} W2 
(w3 

ah3 y WZ ah 2
) + 2 (S2 W — S2 W ) -- S2 2 1 ar2l

h3 h2 2x2 h2 ax3	1 2	 2 1	 2 h3 ax3

(uQ - w)h3 ax 	 3 h3 ax 	 e

h	 W	 h	 W

+ h1h2h3 { ax l [h 2h3 e (h3 ax3 ( h1) + hi ax1 (h3))

hW
	 'L-
	 W

}ax [h1h 3 4 e (h3 ax ( h3) + h2 3x (h2 ) ? l
2	 2	 2	 3	 3	 3	 2

	

aw	 W 2h	 W 2h

+ ax3 [2h1 h2 e (h3 ax  + h3hI axI	 h2h 3 ax2)]}

u e	 h1 a	 Wl	 n3 a	 13	 ah3
r h

1h3 [h 3 ax  (h1) + h 1 2x1 ( h 3 ) - 3x1

+ lie	
[h3 

2	
(h3) + h2 

2	
(h2) l . 3h3h2h3 h2 ax  h3	 h3 3x 3 h2	 ax 

2v 	 1 aw
l	W2 3h:	W3 3h1	3hl

h1 h3[h1 ax
1 + h1h2 2x2 + h3 h 1 ax 3 l - ax

2ja 	 'W2 	 !h 2
	 2h	 ah

h2 	 [h 2x2 +h h 2x2 +
 h i

	2x2j ^ 2x2	 (A.4)
2 3	 2	 2	 2 3	 3	 1 2	 1	 3

In the above equations s2 1 , 0 2 , 52 3 are the components of the rotor

angular velocity, E, in the xi, x2 , x3 directions respectively.

i.
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4	 '

Flow Equations on Blade-to-Slade Computational. Surface SZ :

Starting from equations (A.1), (A.2) and (A.3) , the flow
equations over a blade-to--blade computational surface is formu-

lated. in deriving the required equations, one has to describe

the computational surface S I in terms of the orthogonal curvi-

linear coordinates xl , x2 and x3,

S l ( xl , x2 , x 3 ) = 0	 (A. 5)

Equation (A.5) is used to relate any flow property q of the three

dimensional flow field with the same flow property q on the

surface SI , In general

q = q (xl , x2 , x3 )	 (A. 6)

Since x3 on the surface S  is not an independent variable,

therefore,

q = q (xl , x2 , x 3 (x l , x2 ) ] = q (xl , x 2 )	 (A.7)

The relation between the partial derivatives of the flow property q

in the three-dimensional field with those on the surface S  can

be written as:

^...._^_ - nl hl ^
ax  - ax 	 n3 h3 ax 

Da	 Lq - n2 h2 aq

ax  r ax2 n3 h3 ax3
(A. 8)

where nl , n2 , and n3 are the components of a unit vector _n that

is normal, to the prescribed surface in the x l , x2 and x3

directions, respectively.
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1

The previous derivation is valid for any generalized curvi--

,inear coordinate system. Following Wu [ l] , the best coordinate
hoice for the surface S 1 are the meridional distance m, the

tangential angle ^ and the normal distance n to the surface

tsee Fig. l) .
The fallowing relations apply for the (m-^--n) coordinate

system

n  = n2 = 0 ,	 n3 = 1
	

(A.9)

and the metric or Lamie coefficients hxr h2 , h3 are given by:

h1 = 1 ,	 h2 = x ,	 h3 = I
	

(A. 10)

In the present study, the number of the surfaces, to which the

passage is divided, is chosen to be large. Therefore, the

filament thickness b or each surface is considered to be small

-compared to the radius r. Consequently, for those surfaces which

are located away from the hub and shroud boundaries (Fig. 3) ,

one can consider that the 4:hange of floe properties across the

filament thickness, b, is neglected. Thus

aC, =^= 0	 (A.11)

Using equations (A, 9) , (A.10) and (A.11) to rewrite the right
hand side of equation. (A.9) , we obtain

^ — = « =	 (A. 12)a^ 	 axl	 am
REi PRODUGIBMITY OF ` T W
nIRTCrWAj' PAC'r" is PQOR	

(A.13)ax 	 ax2	 a^

Substituting the expressions in equations (A.11) , (A.12) and (A.13)

for the derivatives of all quantities in the equations of motion

(A. 1) , (A. 2) and (A. 3) , we obtain:
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Conservation of Mass

aA 
4 a	

a
t ^ ? +	

(P^j } + p w ar - o
at a	 m r a	 r m am

where % and W are the components of relative velocity vector

in the meridional and tangential direction respectively.

Conservation of Momentum in the Meridional Direction

8Wn
+ P ( W

3W W0 a w+	 -
W2 sina--

2
n r sina , 232 d sina)

ant r	 a r

_	 a	 2- 
M^ 3 aâ1

a
Cue (

2^^m dim 	1 a W^
s?r^a+ r ^ 	)^+ ram

1	 a
er

a w^	 a	 all	 W^
--}+ 

a^ [am	 e(am

a WM

sina	 -;- Ti—) ]r
am r

-- 2	 [^r•e
a =̂ W

+ m sina] sina (A.15)a

where a is the angle between the meridional streamline and the

axis of rotation (z), as shown in Fig. 1, such that sina = 
dr
dm

Conservation of Momentum in the Tangential Direction

!-WA
	 aw	 a^^

Pr a t + p (rinPan aYn^ + W^ a
	

+ W ^W sina + 2R r K. i5s Lna )
lit

aww	 aw
F

^. .. -..
a^ - 3 a [u e (a mm + rm sina + r 3 ^ ]

aw	 acs	
!W-6 

W
+ artt C a ^r amp -- W sina + aim}) + 3^ [211 ( r a¢ + 

,-a sina) )

+ 4esina[
a^m^ - 

r sina + r am
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Adopting equations (A.14) , (A.15) and (A.16), leads to a system
that contains derivatives with.respect to two space variables

only, namely m and 	 Ccnsequently, the flow over the surface 51

may be treated in a two dimensional manner.

In order to obtain an equation for a stream function,

reference [1] introduces the concept of an integrating factor, b,

such that the equation of continuity becomes:

br at +am (brpWn) +
a ( b pW^} =0	 (A.17)

where the factor, b, satisfies the following relation,

bm am + br a b = 0	 (A.18)

A stream function may now be defined such that

Wm = b pr a^ , W = - b P am	 (A.19)

The previous equations indicate that the integrating factor, b,

is nothing more than the filament thickness of the surface 51.

It is worth noting that the above system of equations are

valid for any computational surface providing that its geometry

has been defined. The system can be applied in the rotating frame

as stated, or in the absr,.-ute stationary frame by setting Q = 0.

When dm = 1 or a = 90°, the equations represent the flow in a pure

radial machine. Also, when	 = 0 or a = 0 1 , the equationsdr

represent the flow in an axial machine:` 	 ^*

REPRODUCIBILITY OF THE
^RIGirrAz. PAGE IS POOR
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Energy Equation	 F

For steady relative flow through a turbomachine rotor, the	 1 1L
i

	

	

conservation of energy given as equation (3) in Section 1, can

be rewritten in the following form:

pW • Oh = W • dp + D + 0 • ( pr vh)
	

(A. 20)

where Pr is the

function.

It i s more

in terms of the

components.

expressed as fo:

Prandtl number and D is the energy dissipation

convenient to express the energy equation (A.20)

total enthalpy H of the gas, and its velocity

The total enthalpy for turbulent flow is

L1ows .

H = h + W2/2 + ow r + 0 2r 2/2 + E
	

(A. 21)

where E is the kinetic energy of turbulence.

Using the above equation, the energy equation (A.20) reduces

to-.

_	 2	 2 2
A Si ' QH = PW. O (	 QW^r + --2	 + E I + FT • pp

+ 0- [pr `7' (H - 2z - RW^r - SZZr2 -
 E)] + D	 (A. 22)

Equation (A.22) may be e,-pressed in a slightly different form by

eliminating the pressure term in the right hand side using the

momentum equation (1) of Section 1, with the following result

pW-VH = pW-7[i2W^r + 0 r 2 + El	 s

+ F • ( e 0(H- 2? - SZW r - ^2r2 - E) I

- W.p (uew) + 3W -V(ue0 -W) + D
	

(A, 23)
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PW' 9E =- V*( S 
	 VE)
CE

(A. 24)

+ 3 W • v (Pev • x1') + D (A. 25)

It is to be noted that in formulating the above relation, use

has been Made of the following vector identities:

2	 }
fl-E xW = 0	 ,	 w•w•v w _ w •v 

27

F1
 _ _	 2 

	

• R-ir7 • v ^	 ,	 V 41

where w is the vorticity vector.

In order to preserve simplicity of concept and for better

organization, it would be very advantageous, as pointed out in ref.
[22], to replace the kinetic energy of turbulence convective term,

pW • oE, that appear in the above equation by its equivalent diffusion

expression. The exact form can be expressed, using the transport

equation of the kinetic energy of turbulence, as follows:

where SCE has the significance of Schmidt number for the kinetic

energy of turbulence. It is worth noting that the adoption of

equation (A.24) implies that the generation and decay terms in the

full kinetic energy of turbulence equation are in balance.

Substituting now equation (A.24) in (A.23) , we obtain:

pW • vH = pW • v [QW^r + 0
2
r2 ^ + 0 • [Lepz v (H w	 -• SSW r

z2	 u^Zr
-E ) + Se VE] - W , vx (uem)

CE
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For the (m,^,n) coordinate system, associated with the computa-

tional surface 51 of Fig. 1, the 0 operator can be expressed as

a	
e^ a
	

(A.26)P_em am r a¢

where em and e 0 denote unit vectors in the meridional and

tangential directions respectively. The velocity vector W, and

the vorticity vector w, may be written as follows in this

system of coordinates

W-W em + W^e -b 
p

m 	 L  a0 em - amp 
e

1

m=wry	 (A.27)

When the relations (A.26) and (A.27) are used to fully expand the

energy equation (A.25), the following result is obtained.

r

	

b am ^^ a	 am	 am 	 r am} - r 4 ( P= pN3

+ a {I, 
r 
[1 3W2 /2	 1	 _ 1	 aEam a	 Pr am	 - (SCE Pr ) am] }

f. a {ue [L- aW2/2 - ( 1 	 1	 aE	 a
r	 Pr	 50	 s CE 	 Pr) ao

i l — W0 am (gew)

+ r aT (u
erl) — Dr + G2 = a

	 (A. 28)

*where

G2	 _	 b { am [ ( W¢r+rZn)] -	 [ (T''̂ br+
r2i2; amp }

24	 2
+ n{a ["e r a (W r+ Or 1 1+ ' 

2 [ e	
( W6
	 r) 1 }

am Pr	 am	 2	 r a Pr a	 Z

(A. 29)
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and the dissipation function, b, is given by

g ill 2	 1 3 Wi	W	 y

D	
2U e { (gym) + (r a¢ + 

-m sing ? "}
aW	 I aTIT	 W^	 2	 (A.30)

+ 11 {arn + r a^ - r sina)

.r

^, w
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APPENDIX B

DERIVATIVE TRANSFORMATION

This appendix presents the mathematical expressions used to

transform the partial derivatives from the physical space of

(m,o) coordinates to the computational domain of (^,n) coor-

dinates. A few relations involving directional derivatives

either normal or tangent to a line of constant E as well as a

Line of constant n are also included. Since the purpose of

this appendix is to provide a quick reference only, most of

the algebraic development is omitted.

Partial Derivative Transformation

As pointed out earlier in Section 2, two transformations are

employed to transform the physical space of Fig. 5a into the

unit square of Fig. 5c. These transformations are given by

equations (31) and (35). The partial_ derivatives of any scalar

function, f, are transformed utilizing the chain rule as

follows:

of = of ax + of a^	 I. of
ax ax —m aF am r a 

iof 21	 of. an
— r ( aE ax + an ax)

_ 1	 a of	 a^ of
rJ ( an a^ — a	 arl ) (B.1)



k

where J is the Jacobian of transformation given by:

J - DE an an BE

Likewise, higher order derivatives, which appear in the flow

governing equations, are transformed using the following

relations:

r	
(r af

)	 22f
am	 am	 a 

1 [ ( ate) 2 S 2 _ 2 ao ao a 2 f	
(ao) 

2 a2= ^
- s an	 a 2	 3^ a n a an	 a	 an2

+	 { [ ( ate) 2 a2 — 2 a a a 2c^ + ( a0 ) 2 a20
J3	 an
	

32	 a an aan	 a	 ant

( ax of _ ax a_f ) + [( ao ) 2 a2x — 2 a as a2x—T,
	 an	 an	 a^2	 ag an a an

+ (a1) z a 2 x I ( ate of -- a0 ate) ?
a^	

3 T2 ag an	 an a9

a 
2 
f = 1 [ ( ax} 2 a2f — 2 ax ax a 2 f 

+ ( aX) 2 a2f ^a¢z	 J2	 an	 a 2 	 a an a^an	 ag	 an2

1	 ax 2 a 2 ^	 ax ax 92^	 a x 2 12^+
3 { [ (ate) a 2 - 2 ag an aEan a- (a9) an21

ax of	 ax of	 ax 2 a 2 x	 ax ax 32x
all a -- a	 an ) + [ (an)	 3E 2 r 2 ag an a&an 

+

+ ( ax ) 2 9 2x^ ( ab of _ a(b af)
aC 

ant 
3 ^ an an a 

(B. 4)

(B.5)
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1

i	 Y(r ate) -- a2f -. ? [ ( ate a¢ + ax ad,a 2f 	 ax ads a 2 f
a	 am	 a^ax J2 	 29 an	 an a ) a are	 a ag an 

	

ax a# a 2f 	 of	 ax a as ax a as
an an aC2] 

+
an CJ3 ( a a an - an a^ ate)

+ 1 ( ax a2 w ax a	 1	 ax a¢ as	 ax a as}
J2 an a ^2 a a^an }} } a^ [^3 (an an a^ - a an an

1	 ax a 2^	 ax .a2
	+ J (aE an 	 an acan)]

(B.6)

Directional Derivatives 

In most fluid flow analyses, the

the flow properties, along or normal

often needed to evaluate various bou:

quantities can be easily obtained if

or normal to a line of constant ^ or

physical boundaries, are specified.

ence [12], these vectors can be expressed in terms of the

transformation parameters ax ax , a`^
a^

,
	a^

, etc. as follows:

ax

an 

(et) 
= ( em 

+ 

a e^)/^
n aE

Some of the relations given in this appendix can be found in
reference [12]. They are repeated here howver for completeness
and easy reference for the development of the governing
equations.

4

i
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directional derivatives of

to the boundaries, are

adary conditions. These

the unit vectors tangent

n, that coincide with the

As pointed out in refer- -

V
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an Im
t

(en) n - (-	 em + ^ e^) //Y
	

(B.7)

where(et} and 
{et)n 

represent the unit vectors tangent to

E	 constant and constant n lines respectively. While, (en) ^

:

	

	 and (en ) n denote the unit vectors normal to the constant and
the constant n lines. The above mentioned unit vectors are

f	 shown in Fig. B--1 as they appear in the physical domain.

The transformation parameters S and Y in equation (B.7)
are given by

2	 2	 2	 2
S = 

( ax) + ( aTjn )	 Y = ( ax} + { )	 (B.7a)an	 a	 a^	 a^

The directional derivative of any scalar function, f, in any

direction e is given by

of =
an	 (e	

V) f

where Of can be written as

ax a F 	ax of —I 	 (Ii of	 aO	 --V- = rJ ian a^ - a 
of

^ an em + (aJ an a^ a^} e^	 (B.$)
a

Associating the direction e with the unit vectors normal and

tangent to lines of constant ^ or n, we have



n=constant

n=constant

e
c

m

^=constant	 ^=constant

^=constant

(et) n

(et}( en) 
r1

n=cons taut

ten d 9

JAI

FIG. B-I., UNIT TANGENT AND NORMAL VECTORS,
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i

B''= C(en)I VI E = ( a ao - s ate) /Jvz"
(Ben}

- Hen }
 n

' vI f - (Y an ^ B ate} / JIfy
(Ben)r

where

Bx Bx A B^
an	 Do 9 T1

(B.9)

(B.10)

With these relations th- different derivative boundary conditions

associated with the flow governing equations may be evaluated

in a straightforward manner, providing that the values of the

different transformation parameters are available.

f At 6Lq -rE -icy/c5A" 4 - `7?
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