Random Harmonic Analysis Program, L221 (TEV156)

Volume II: Supplemental System
Design and Maintenance Document

M. L. Graham, R. E. Clemmons, and R. D. Miller

Random Harmonic Analysis
 Program, L221 (TEV156)
 Volume II: Supplemental System
 Design and Maintenance Document

M. L. Graham, R. E. Clemmons, and R. D. Miller
Boeing Commercial Airplane Company
Seattle, Washington

Prepared for
Langley Research Center under Contract NAS1-13918

N/S^

National Aeronautics
and Space Administration
Scientific and Technical Information Branch

CONTENTS

Page
1.0 SUMMARY 1
2.0 INTRODUCTION 1
3.0 PROGRAM STRUCTURE AND DESCRIPTION 3
3.1 Overlay (L221,0,0) - L221vc 5
3.2 Overlay (L221,1,0) - FINDRMS 10
3.3 Overlay (L221,2,0) - SORTQLS 24
3.4 Overlay (L221,3,0) - PLOTQLS (Available Only at Boeing) 32
3.5 Data Bases 42
3.5.1 Input Data 42
3.5.2 Output Data 42
3.5.3 Internal Data 42
4.0 EXTENT OF CHECKOUT 105
REFERENCES 108

TABLES

No. Page
1 Routines Called by L221vc 9
2 Routines Called by FINDRMS 19
3 Routines Called by SORTQLS 30
4 Routines Called by PLOTQLS 38
5 Common Blocks Used in Each Overlay 45
6 Common Blocks Used in the Routines of L221ve 46
7 Common Blocks Used in the Routines of FINDRMS 47
8 Common Blocks Used in the Routines of SORTQLS 48
9 Common Blocks Used in the Routines of PLOTQLS 49
10 Description of the Labeled Common Blocks 50
11 Input Constants and Frequencies of Block I 95
12 Arrays Contained in Block II 96
13 Arrays Contained in Block III 98
14 Options Used in Checkout Cases 106

FIGURES

No. Page
1 DYLOFLEX Flow Chart 2
2 Overlay Structure of L221 (TEV156) 4
3. External Input/Output of L221 (TEV156) 4
4. Macro Flow Chart of Overlay (L221,0,0) - L221vc 6
5 Macro Flow Chart of Overlay (L221,1,0) - FINDRMS 11
6 Overlay (L221,1,0) FINDRMS Input/Output 23
7 Macro Flow Chart of Overlay (L221,2,0) - SORTQLS 26
8 Overlay (L221,2,0) SORTQLS Input/Output 31
9 Macro Flow Chart of Overlay (L221,3,0) - PLOTQLS 33
10 Overlay (L221,3,0) PLOTQLS Input/Output 41
11 Contents of SCRATCH - A Temporary Scratch File 43
12 Contents of SCRAT2 - A Temporary Scratch File 44

1.0 SUMMARY

Program L221 (TEV156) is structured as four overlays, one main and three primary. Input into the program is made via cards and magnetic files (tapes or disks). Output from the program consists of printed results and magnetic files containing vectors suitable for plotting.

Although L221 serves as a module of the DYLOFLEX system, it can be operated as a standalone program. Subroutines used by L221 include routines embedded in the program code, routines obtained from the standard FORTRAN library, and routines obtained from the DYLOFLEX alternate library.

2.0 INTRODUCTION

Program L221 (TEV156) was developed for use as either a standalone program or as a module of a program system called DYLOFLEX (see fig. 1), developed for NASA under contract NAS1-13918 (ref. 1). Because of the DYLOFLEX contract requirements developed in reference 2, a program was needed to calculate power spectral density (PSD) gust load parameters for equations of motion and load equations that have frequency-dependent coefficients. An existing program ${ }^{1}$ that calculated PSD gust load parameters for equations with constant coefficients was modified according to the DYLOFLEX specifications ${ }^{2}$ to also use nonconstant coefficients matrices for the equations of motion and load equations.

The objective of this volume is to aid those persons who will maintain and/or modify the program in the future. To meet this objective, the following items are defined in some detail:

- Program design and structure
- Overlay purpose and description
- Input, output, and internal data base descriptions
- Test cases and procedures

[^0]

Figure 1.-DYLOFLEX Flow Chart

3.0 PROGRAM DESIGN AND STRUCTURE

The program is structured as a system of four overlays (fig. 2).
Main overlay (L221,0,0) L221vc
Primary overlay (L221,1,0) FINDRMS
Primary overlay (L221,2,0) SORTQLS
Primary overlay (L221,3,0) PLOTQLS
The main overlay L221 reads cards that direct the execution of the primary overlays. It also aids communication between the primary overlays via labelled common blocks.

The 1,0 primary overlay FINDRMS performs all of the analytical calculations of the program. Optionally, its results are written onto magnetic files (tape or disk) to be processed by the two other primary overlays.

The 2,0 primary overlay SORTQLS sorts the FINDRMS results (responses - Q's, loads, output spectrum, and \bar{A} values) and prepares a magnetic file (tape or disk) of data vectors suitable for plotting.

The 3,0 primary overlay PLOTQLS sorts the FINDRMS results exactly the same as SORTQLS, but writes a magnetic file of plot data and plotting instructions geared specifically to the COMp80 plotter.

The input and output data for L221 (TEV156) is displayed in figure 3. Each overlay is discussed in detail in succeeding sections. Included for each overlay are:

1. The overlay's purpose
2. The overlay's analytical steps
3. The input/output devices used
4. A macro flow chart
5. Table of subroutines called
(Note: All subroutines have only one entry point)
Special symbols are used on the tables of subroutines called to indicate routines that are loaded from the operating system library and from the DYLOFLEX alternate subroutine library (DYLIB). All other subroutines are local to L221 (TEV156).
This document does not contain a description of each local subroutine. Please see the program listing, where each routine contains "internal documentation," comments describing its purpose, operation, input, output, modification history, etc.

The storage and handling of data is discussed in section 3.5, Data Bases. All magnetic file (tape or disk) communication outside the program is done via READTP/ WRTETP ${ }^{1}$ To achieve the most efficient use of core, a scheme to allow variably dimensioned arrays (dynamic storage allocation) was used. Section 3.5 also displays the variably dimensioned arrays (matrices) and describes the subroutines that keep track of them.

[^1]

Figure 2.-Overlay Structure of L221 (TEV156)

Figure 3.-External Input/Output of L221 (TEV156)

3.1 OVERLAY (L221,0,0) - L221ve

The main overlay of L221 (TEV156) is L221vc, where v is a letter indicating the program version, and \mathbf{c} is an integer number indicating the correction that applies to the v version.

Purpose of L221ve
L221vc performs certain bookkeeping tasks, directs the execution of the primary overlays, and aids communication between primary overlays via labeled common blocks.

Analytical Steps of L221vc

L221ve performs its task in the following steps:

1. The subroutine PRGBEG is called to place the program header on the printed output.
2. A data card is read. It must begin with $\$$ FREQ to assure that the card input file is correctly positioned. If it does not contain \$FREQ, execution is terminated.
3. A program directive card is read, printed, interpreted, and acted upon according to the following logic:
a. If the keyword is \$TITLE jump to step 3 again.
b. If the keyword is \$CHECKOUT, set the checkout switch and jump to step 3 again
c. If the keyword is \$FIND, jump to step 4.
d. If the keyword is $\$$ SORT, jump to step 5.
e. If the keyword is \$PLOT, jump to step 6.
f. If the keyword is \$QUIT jump to step 7.
4. Overlay ($L 221,1,0$) is called. When it is finished program control returns to step 3.
5. Overlay ($\mathrm{L} 221,2,0$) is called. When it is finished program control returns to step 3.
6. Overlay ($\mathrm{L} 221,3,0$) is called. When it is finished program control returns to step 3.
7. Subroutine PRGEND is called. This subroutine places the program termination message on the printed output.

If fatal errors are discovered, the program prints a diagnostic and jumps to step 7. The macro flow chart of this overlay is shown in figure 4. The subroutines called are displayed in table 1.

I/O Devices of L221ve

L221vc reads program directive cards and writes them on the printed output file. All other I/O accomplished by L221 (TEV156) is done in the primary overlays.

Figure 4.-Macro Flow Chart of Overlay (L221,0,0)-L221vc

Figure 4.-(Continued)

Figure 4.- (Concluded)

Table 1.-Routines Called by L221vc

OVERLAY (L221,0,0)
PROGRAM L221ve

CHKWRD
FINDRMS - OVERLAY(L221,1,0)
IRDCRD ${ }^{+}$
PLOTQLS - OVERLAY (L221,3,0)
PRGBEG +
PRGEND +
REQFL +
SORTQLS - OVERLAY(L221,2,0)

+ indicates a routine on the DYLOFLEXalternate subroutine library DYLIB.

All others are local to L221 (TEV156).

3.2 OVERLAY (L221,1,0) - FINDRMS

Purpose of FINDRMS

The first primary overlay of L221 (TEV156) is FINDRMS. FINDRMS performs all of the analytical tasks of L221. Given an input power spectrum $\phi(\Omega)$ over a range of frequencies ($\Omega_{1}, \Omega_{2}, \ldots, \Omega_{\mathrm{NFREQ}}$), matrices of equations of motion and load equations, and excitation forces, FINDRMS will find:
\(\left.\begin{array}{ll}\{\mathrm{Q}\} \& The generalized coordinates at each frequency

\{SUMC\} \& The load transfer function at each frequency\end{array}\right]\)	and integrate over the range of frequencies to find:

Analytical Steps of FINDRMS

The FINDRMS operations are divided into the following steps:

1. Read card input of options and constants.
2. Read card or tape input of equations of motion ($\left[\mathrm{M}_{1}\right],\left[\mathrm{M}_{2}\right], \ldots,\left[\mathrm{M}_{6}\right]$ and $\left[\mathrm{S}_{1}\right]$, $\left[\mathrm{S}_{2}\right], \ldots,\left[\mathrm{S}_{6}\right]$ for feedback) plus the excitation forces $\left(\left\{\mathrm{C}_{2}\right\}\right.$ and $\left\{\mathrm{C}_{3}\right\}$ or $\left\{\mathrm{f}_{\ell}\right\}$ and $[\widetilde{\phi}]$). This includes $\{$ FREQM $\}$ frequencies if NKVAL >0.
3. For each of the NFREQ frequencies, solve for $\{Q\}$, the generalized coordinates, save $\{Q\}$ on the scratch file, and optionally print $\{Q\}$.
4. (Optional) - Modify the equations of motion for a static elastic solution and repeat step 3. Chosen columns of the matrices $\left[\mathrm{M}_{2}\right],\left[\mathrm{M}_{3}\right],\left[\mathrm{M}_{5}\right]$ and $\left[\mathrm{M}_{6}\right]$ are set equal to zero for the static elastic solution.
5. Read card or tape input of load equations ($\left[\overline{\mathrm{M}}_{1}\right],\left[\overline{\mathrm{M}}_{2}\right], \ldots,\left[\overline{\mathrm{M}}_{6}\right]$ and $\left[\overline{\mathrm{S}}_{1}\right],\left[\overline{\mathrm{S}}_{2}\right]$, $\left[\overline{\mathrm{S}}_{3}\right], \ldots,\left[\overline{\mathrm{S}}_{6}\right]$ for feedback) plus the matrices $\left\{\overline{\mathrm{C}}_{2}\right\}$ and $\left\{\overline{\mathrm{C}}_{3}\right\}$ or $[\bar{\phi}]$.
6. For each frequency read $\{Q\}$ (from step 3), calculate $\{\overline{S U M C}\}$, the input spectrum $\phi(\Omega)$, and the output spectrum SPEC, optionally write data on files IPLTPE and IRTAPE, optionally print $\{\overline{\text { SUMC }}\}$, and keep a running integration over the frequencies of $\{\overline{\mathbf{A}}\}$ and $\left\{\mathbf{N}_{0}\right\}$.
7. Print $\{\bar{A}]$ and $\left\{N_{0}\right\}$ and optionally punch them on cards.
8. (Optional) - Check the correlation between the different load responses requested by card input data.
9. (Optional) - Modify the load equations for a static elastic solution (set chosen columns of $\left[\overline{\mathrm{M}}_{2}\right],\left[\overline{\mathrm{M}}_{3}\right],\left[\overline{\mathrm{M}}_{5}\right]$ and $\left[\overline{\mathrm{M}}_{6}\right]$ to zero) and repeat steps 6,7 , and 8.
10. (Optional) - For additional sets of load equations repeat steps 5 through 9.

Figure 5 contains a macro flow chart of FINDRMS. The subroutines called by FINDRMS are displayed in table 2.

I/O Devices of FINDRMS

The possible I/O devices for FINDRMS are shown in figure 6. For a complete description of the input data cards and magnetic files used, see sections 6.3 and 6.4 in volume I of this document.
The two scratch files, SCRATCH and SCRAT2, are described in section 3.5.3.

Figure 5. - Macro Flow Chart of Overlay (L221,1,0)-FINDRMS

Figure 5.-(Continued)

Figure 5.-(Continued)

Figure 5.-(Continued)

Figure 5. -(Continued)

Figure 5.-(Continued)

Figure 5.-(Continued)

Figure 5.-(Concluded)

Table 2.-Routines Called by FINDRMS

OVERLAY (L221, 1,0)
PROGRAM FINDRMS

* indicates a routine in the FORTRAN subroutine library.
+ indicates a routine in the DYLOFLEX alternate subroutine library DYLIB. All others are local to L221 (TEV156).

Table 2.-(Continued)

OVERLAY (L221, 1,0)
PROGRAM FINDRMS

CORREL
FETADD +
FETDEL +
GCMAT $\left\{\begin{array}{l}\text { DELETR }+ \\ \text { FETADD }+ \\ \text { INITIR }+ \\ \text { IRDCRD }+ \\ \text { LOCF* } \\ \text { MATRED } \\ \text { GRDPEN } \\ \text { REQFL }+ \\ \text { READTP }+ \\ \text { EOF* } \\ \text { INITIR }+ \\ \text { PRINTM }+ \\ \text { PRNTCM }+\end{array}\right.$

Table 2.-(Continued)

OVERLAY (L221.1.0)
PROGRAM FINDRMS

Table 2.-(Concluded)

OVERLAY (L221,1,0)
PROGRAM FINDRMS

RETURNF +
SECOND*
SAVEQ

SOLVEL

$$
\left\{\begin{array}{l}
\text { FEDBAK } \\
\text { SUMATS }
\end{array}\right.
$$

SOLVEQ $\quad\left\{\begin{array}{l}\text { CGLESM }+ \\ \text { FEDBAK } \\ \text { SUMATS }\end{array}\right.$
SPCTRM
STARTR+
Statel

Figure 6.-Overlay (L221,1,0) FINDRMS Input/Output

3.3 OVERLAY (L221,2,0) - SORTQLS

Purpose of SORTQLS

SORTQLS is called to process data written on the magnetic file IPLTPE by FINDRMS, and write a magnetic file, NEWTPE, which contains pairs of matrices, independent and dependent variables, to be plotted by a subsequent program.

IPLTPE contains one file of data for each FINDRMS solution. Each file begins with the frequency array \{FREQ\} (a $1 \times$ NFREQ matrix), which is followed by NFREQ groups of three or four of the following arrays ($\{\overline{\mathrm{A}}\}$ will be present only if IPLRMS $=1$ on FINDRMS card set 4.3).

\{ MMAGR $^{\text {¢ }}$	$1 \times$ NDOF	The magnitude of Q
\{ $\mathrm{QMAG}_{\mathrm{L}}$ \}	$1 \times$ NLD	The magnitude of $\overline{\text { SUMC }}$
\{SPEC\}	$1 \times \mathrm{NLD}$	The output spectrum
- $\{\overline{\mathrm{A}}\}$	$1 \times$ NLD	The RMS loads, through frequency i

If the static elastic solution was requested in FINDRMS, every second file on IPLTPE is from a static elastic solution.

Analytical Steps of SORTQLS

The SORTQLS operations are divided into the following logic:

1. Read a set of data cards defining the SORTQLS options, the FINDRMS load set to be processed, and the item (QMAG $_{R}$, QMAG $_{L}$, SPEC, or $\overline{\mathbf{A}}$) to be sorted.
2. Position IPLTPE at the beginning of the FINDRMS solution to be processed.
3. Read and store the frequency array, $\{$ FREQ $\}$.
4. Read and store the NFREQ matrices of the desired item (QMAG ${ }_{R}, Q_{M A G}$, SPEC, or \bar{A}) as the rows of the NFREQ \times NR matrix [SOL1] shown below.

SOL1

5. (Optional) - When pairing of standard and static elastic solutions is requested, step 4 will be repeated for the same item of the next solution, which is the static elastic solution in the subsequent file. The new solution is stored in the array [SOL2], which is identical to [SOL1] in size.
6. (Optional) - Scale the frequencies and/or [SOL1] (and [SOL2]) as requested.
7. Write on NEWTPE the frequency array \{FREQ\} and the column of [SOL1] corresponding to the chosen degree of freedom (for $\mathbf{Q M A G}_{\mathrm{R}}$) or load (for $\mathbf{Q M A G}_{\mathrm{L}}$, or SPEC, or $\overline{\mathbf{A}}$).
8. (Optional) - Repeat step 7 for the array [SOL2] if pairing was requested.
9. Repeat steps 7 and 8 for all generalized coordinates, loads, spectra, or $\overline{\mathbf{A}}$ values requested by the current data set.
10. Repeat steps 1 through 9 for as many data sets as needed, but terminate SORTQLS execution after reading the \$END card (see card set 61).

Figure 7 contains a macro flow chart of SORTQLS. The subroutines called by SORTQLS are displayed in table 3.

Figure 7. - Macro Flow Chart of Overlay (L221,2,0)-SORTOLS

Figure 7.-(Continued)

Figure 7.-(Continued)

Figure 7. -(Concluded)

OVERLAY (L221,2.0)
PROGRAM SORTQLS

DELETR+
ENDFIL*

FETADD+
FETDEL +
INITIR +
KARDIN $\left\{\begin{array}{l}\text { CHKWRD } \\ \text { EOF* } \\ \text { IRDCRD }+ \\ \text { NAMFIL }+\end{array}\right.$
LOCF*
REDSOL $\{$ READTP +
REQFL+
SECOND*
STARTR +
WRTETP +

* indicates a routine in the FORTRAN subroutine library.
+ indicates a routine in the DYLOFLEX alternate subroutine library.

All others are local to 2221 (TEV156).

I/O Devices of SORTQLS

The possible I/O devices for SORTQLS are shown in figure 8. For a complete description of the input data cards and magnetic files, see sections 6.3 and 6.4 in volume I of this document.

Figure 8.-Overlay (L221,2,0) SORTQLS Input/Output

3.4 OVERLAY (L221,3,0) - PLOTQLS

Purpose of PLOTQLS

The Overlay (L221,3,0), PLOTQLS, is called to process the data written on file IPLTPE by FINDRMS and write an output file TAPE99, which contains the plotting instructions for the COMp80 plotter.

Analytical Steps of PLOTQLS

PLOTQLS sorts the independent and dependent variables in exactly the same manner as program SORTQLS (see section 3.3). Steps 7 and 8 are replaced by calls to NPS subroutines, ${ }^{1}$ which generate the plotting instructions.

PLOTQLS has additional data instructions not applicable to SORTQLS; the establishment of grid limits and plot labeling information are two examples.

Figure 9 contains a macro flow chart of PLOTQLS. The subroutines called by PLOTQLS are displayed in table 4.

Note: The automatic plotting overlay PLOTQLS in this program requires subroutines that are proprietary to The Boeing Company.
${ }^{1}$ Numerical Plotting System - Users Manual. BCS-G0509, March 1976. (Internal Document.)

Figure 9.-Macro Flow Chart of Overlay (L221,3,0)-PLOTQLS

Figure 9. - (Continued)

Figure 9. -(Continued)

Figure 9.-(Continued)

Figure 9.-(Concluded)

Table 4.-Routines Called by PLOTQLS

OVERLAY (L221,3,0)
PROGRAM PLOTQLS

ADJSMX
ADVANC**
AXLGLG**
AXLILI**
CARDIN $\left\{\begin{array}{l}\text { CHKWRD } \\ \text { EOF* } \\ \text { IRDCRD }+ \\ \text { NAMFIL }+\end{array}\right.$
EXITPL**
FETADD+
FETDEL +
FORM**

FTNBIN*

* indicates a routine in the FORTRAN subroutine library. ** indicates an NPS routine in the BCS FORTRAN subroutine library.
+ indicates a routine in the DYLOFLEX alternate subroutine library.

All others are local to L221 (TEV156).

Table 4.-(Continued)

OVERLAY (L221, 3,0)
PROGRAM PLOTQLS

GDLGLG**
GDLILI**

GMNMX
INITIR +
LOCF*
NOLGB**

NOLGL**
NOSLIB**
NOSLILI**
PFLGLG**
PFLILI**
REDSOL $\{$ READTP +
REQFL +

SC420N**
SECOND*

STARTR ${ }^{+}$

Table 4.-(Concluded)

OVERLAY (L221.3.0)
PROGRAM PLOTQLS

STCHSZ**
STFONT**
STLNOR**
STLNST**
STNDIV**

STNCHR**
STNPTS**

STSIGF**
STSPEC**
STSUBJ**
STS 2OB**
STTOOL**
STTXTR**
TITLEG**

I/O Devices of PLOTQLS

The I/O devices used in PLOTQLS are shown in figure 10. For a complete description of the input data cards and files, see sections 6.3 and 6.4 in volume I of this document.

Figure 10.-Overlay (L221,3,0) PLOTQLS Input/Output

3.5 DATA BASES

The L221 (TEV156) data bases include I/O magnetic files (either tape or disk), internal scratch (temporary) storage files, and labeled common blocks.

3.5.1 INPUT DATA

The input data for L221 (TEV156) is in two forms; data cards and magnetic files (either tape or disk).

Card Input Data

For a complete description of the L221 (TEV156) card input data, see section 6.3 in volume I of this document.

Magnetic Files (Tape or Disk)

For a complete description of the L221 (TEV156) disk or tape input data, see section 6.4 in volume I of this document. The possible files read are IFTAPE, INTAPE, and LDTAPE.

3.5.2 OUTPUT DATA

The output results of L221 (TEV156) may be of three types: printed results, magnetic files, and/or punched cards.

Printed Output Data

For a complete description of the printed output data, see section 6.5.1 in volume I of this document.

Magnetic Files (Tape or Disk)

For a complete description of the magnetic file output data, see section 6.5 .2 in volume I of this document. The possible output files are IPLTPE, IRTAPE, and NEWTPE.

Punched Card Output Data

For a complete description of the punched card output, see section 6.5.3 in volume I of this document.

3.5.3 INTERNAL DATA

L221 (TEV156) uses two methods to pass data between sections of the program: labelled common blocks and scratch (temporary) magnetic files (either tape or disk).

Magnetic Files (Scratch Disk Files)
L221 (TEV156) uses two disk files, SCRATCH and SCRAT2, for the temporary storage of data. Both files, SCRATCH and SCRAT2, will be returned to the system through the use of subroutine RETURNF ${ }^{1}$ when L221 (TEV156) execution is terminated.

[^2]
SCRATCH

SCRATCH is a temporary scratch file written and read by the 1,0 primary overlay, FINDRMS. The file contains the power spectral density (PSD) solution frequencies and responses required to calculate loads. The data for each frequency is written as a single record with a standard FORTRAN binary WRITE statement. The contents of SCRATCH are displayed in figure 11.

Array size
NDOF $\times 1$
NDOF $\times 1$
1*
1^{*}
1*
where: FFS

FFS	$=$ The computed Küssner lift growth function for frequency i
FYDAMP	$=$ The computed feedback transfer function for frequency i
GFS	$=$ The computed Wagner lift growth function for frequency i
NDOF	$=$ The number of degrees of freedom
NFREQ	$=$ The number of frequencies
0	$=$ The array of generalized coordinates for frequency i
QMAGR	$=$ The array containing the magnitudes of $\|0\|$'s elements for frequency i
*	Signifies that arrays are complex and twice the size ind

Figure 11.-Contents of SCRATCH-A Temporary Scratch File

SCRAT2

SCRAT2 is a temporary scratch file written and read by the 1,0 primary overlay, FINDRMS. The file contains the interpolated tabular input spectrums to be used in the calculation of $\{\overline{\mathrm{A}}\}$ and $\left\{\mathrm{N}_{0}\right\}$. The arrays are written onto SCRAT2 with standard FORTRAN binary WRITE statements. The contents of SCRAT2 are displayed in figure 12

Figure 12.-Contents of SCRAT2-A Temporary Scratch File

Common Blocks

Table 5 displays the common blocks used in the program and the programs in which they are used.

The labeled common blocks are used for communication between the main and primary overlays, and for communication between routines in a primary overlay. The block names and contents are described on the following pages.

Blank common is used in the primary overlays of L221 (TEV156) as a variable length working storage area. Each overlay calculates the core required to process the problem being analyzed, and calls subroutines of VARDIM (variable dimensioning storage) subroutines to perform the bookkeeping of array allocation. Pointers to the array locations are stored in labeled common blocks.

Table 5.-Common Blocks Used in Each Overlay

Common Blocks

The tables on the following pages display all of the common blocks within L221 (TEV156). Table 5 indicates which blocks are used by each of the overlays. Tables 6 through 9 show (per overlay) which routines require the common blocks. Finally, the contents of each labeled common block are described in table 10.

Description of the Labeled Common Blocks

Table 10 describes each variable contained in all of the labeled common blocks of L221 (TEV156). The common blocks are ordered alphabetically, with each variable being described according to its location within the common blocks.

Table 6.-Common Blocks Used in the Routines of L221vc

Common Blocks

Table 8.-Common Blocks Used in the: Routines of SORTQLS

Common Blocks

Table 9.-Common Blocks Used in the Routines of PLOTOLS

Common Blocks

${ }^{\text {a }}$ Global means the block is used in more than one overlay.

Table 10. - Description of the Labeled Common Blocks

[^3]Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

LABELLED COMMON NAME: BUFFR8

DESCRIPTION: Buffer Area used for the Input Matrices

NO.	VARIABLE	TYPE	DIM.	NOMENCLATURE	DESCRIPTION
1	LA8	ARAY8			
2					Length of ARAY8

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

LABELLED COMMON NAME: CASLOC					
DESCRIPTION:		Contains the Locations of the Case-dependent			
		arrays in blank common (VARDIM storage).			
NO.	VARIABLE	TYPE	DIM.	ENG. NOMENCLATURE	DESCRIPTION
1	LCSO	I			Pointer to $\{\mathrm{CSO}\}$, special feedback coefficient matrix.
2	LCS 1	I			Pointer to \{CSl\}, special feedback coefficient matrix.
3	LCS 2	I			Pointer to \{CS2\}, special feedback coefficient matrix.
4	LDAMP	I			Pointer to \{DAMP\}, the damping coefficient matrix.
5	LFLL	I			Pointer to \{FLL\}, the distance between gradual penetration panels Used to calculate the time log.
6	LFREQ	I			Pointer to \{FREQ\}, the frequency solution matrix.
7	LINSP	I			Pointer to \{INSP\}, the tabular input spectrum matrix.
8	LNDEL	I			Pointer to \{NDEL\}, the degrees of freedom deletion matrix.

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

LABELLED COMMON NAME: \qquad DESCRIPTION: Specifies the last array entry found by LøCATR.					
No.	VARIABLE	TYPE	DIM.	ENG . NOMENCLATURE	DESCRIPTION
1	JTHENT	I			Specifies the catalog (KATLOG) entry of the last array located by routine LOCATR, (LOCATR is a VARDIM routine).

Table 10.-(Continued)

Table 10.-(Continued)

LABELLED COMMON NAME: GNCLOC					
DESCRIPTION:		Locations of the Generalized Coordinate Arrays			
No.	VARIABLE	TYPE	DIM.	ENG. NOMENCLATURE	DESCRIPTION
1	LPHIT	I			Pointer to [$\widetilde{\phi}]$, gradual penetration summation matrix used to calculate $\left\{C_{3}\right\}$.
2	LC2	I			Pointer to $\left\{\mathrm{C}_{2}\right\}$.
3	LC 3	I			Pointer to $\left\{\mathrm{C}_{3}\right\}$.
4	LSUMM	I			Pointer to [SUMM], the equations of motion summation matrix.
5	LSUMC	I			Pointer to \{SUMC\}, the forcing function matrix
6	LMI	I			Pointer to [M_{1}], an equations of motion matrix.
7	LM2	I			Pointer to $\left[\mathrm{M}_{2}\right]$, an equations of motion matrix.
8	LM3	I			Pointer to $\left[M_{3}\right]$, an equations of motion matrix.
9	LM4	I			Pointer to $\left[M_{4}\right]$, an equations of motion matrix.
10	LM5	I			Pointer to [M5], an equations of motion matrix.

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

LABELLED COMMON NAME: LODLOC					
DESCRIPTION:		Locations of the Load Set-Dependent Arrays			
NO.	VARIABLE	TYPE	DIM.	ENG. NOMENCLATURE	DESCRIPTION
1	Lload	I			Pointer to \{LOAD\}, a correlation array.
2	Lloadc	I			Pointer to [LOADC], a correlation array.
3	LNLDC	I			Pointer to \{NLDC\}, number of loads to be correlated with each load.
4	LCORSU	I			Pointer to [CORSUM], a correlation array.
5	LCORLS	I			Pointer to [CORLST], a correlation array.
6	LQMAGL	I			Pointer to \{QMAGR\}, the magnitude of $\{Q\}$.
7	LSPEC	I			Pointer to \{SPEC\}, the output spectrum.
8	LA	I			Pointer to $\{\overline{\mathrm{A}}\}$, the RMS values.
9	LPM	I			Pointer to $\left\{N_{0}\right\}$, the zero crossings.
10	LPHITB	I			Pointer to $[\overline{\widetilde{\phi}}]$, the summation matrix for gradual penetration calculation of $\left\{\overline{\mathrm{C}}_{3}\right\}$.
11	LC2B	I			Pointer to $\left\{\overline{\mathrm{C}}_{2}\right\}$.
12	LC3B	I			Pointer to $\left\{\overline{\mathrm{C}}_{3}\right\}$.

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

* Boeing Computer Services, Inc., "Numerical Plotting System Users Manual"; BCS Document BCS-G0509; March, 1976. (Internal document)

Table 10.-(Continued)

LABELLED COMMON NAME: \qquad DESCRIPTION: \qquad NPS routines					
NO.VARIABLETYPE \quad DIM. EOMENCLATURE DESCRIPTION					
1	DUM1	R	1157		```Scratch storage area used by the NPS plotting subroutines.*```

* Boeing Computer Services, Inc., "Numerical Plotting System Users Manual"; BCS Document BCS-G0509; March, 1976.
(Internal document)

Table 10.-(Continued)

* Boeing Computer Services, Inc.; "Numerical Plotting System Users Manual"; BCS Document BCS-G0509; March, 1976.
(Internal document)

Table 10.-(Continued)

Table.10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

LABELLED COMMON NAME: SIZOPT

DESCRIPTION:		Contains the problems , dimensions, options, and tape numbers to be used in FINDRMS.			
NO.	VARIABLE	TYPE	DIM.	ENG. NOMENCLATURE	DESCRIPTION
1	FREQL	R	10		Frequencies at which LOAD/DOF will be printed.
2	ICORR	I			Number of loads to be correlated with others
3	IDAMP	I			Option which indicates the number of different structural damping factors. $=0$ the same factor for all freedoms. $=1$ a different damping factor for each frequency.
4	IFDBAK	I			Option which chooses the feedback loop to be used. $=0$ no feedback loop used. $=1$ standard feedback loop used. =2 special feedback loop used.
5	IFREQ	I			Option which chooses the frequency matrix input. =-1 Frequencies will be read from cards in cycles/second.

Table 10.-(Continued)

Table 10.-(Continued)

LABELLED COMMON NAME: SRTDTA (Concluded)

DESCRIPTION: \qquad

NO.	VARIABLE	TYPE	DIM.	NOMENCIATURE	DESCRIPTION
9	NEWTPE	H			ENG.

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Continued)

Table 10.-(Concluded)

LABELLED COMMON NAME:					
DESCRIPTION:	Blank common				
NO.	VARIABLE	TYPE	DIM.	NOMENCLATURE	DESCRIPTION

Description of Blank Common Used

The array or matrix sizes required in the modules of L221 (TEV156) vary widely from one problem to another. In fact, in most cases more than 50% of the matrices are null and need not be stored. For these reasons the VARDIM routines described later in this section are used to dynamically allocate core, compact storage, and keep track of most array locations and sizes.

The arrays independent of problem size are still defined in the standard FORTRAN fashion. Only the arrays using VARDIM will be discussed in this section.

Program L221ve

No VARDIM array storage is required.

Program FINDRMS

Three different blocks of arrays are defined in VARDIM storage as FINDRMS is executed. The arrays will be defined only if the statement under the heading option-dependent is true.

- Block I is defined in the subroutine CONDAT and contains the arrays of input constants and frequencies (table 11). Block I is made up of card sets 3 through 11.
- Block II is defined in the subroutine GCMAT and contains the arrays necessary to calculate the generalized coordinates (table 12). Block II is made up of card sets 12 through 30.
- Block III is defined in the subroutine LOMAT and contains the arrays necessary to calculate the load frequency response and the RMS values (table 13). All arrays of Block II except Q, QMAGR, and FLL are deleted before Block III is defined. Block III is made up of card sets 31 through 49.

Table 11.-Input Constants and Frequencies of Block I

Aryay Name	Size	Option=dependent
NSTEL。	NDOF	ISTATE>0
NDEL	NDOFD	NDOFD 1
DAMP	NDOF	--
CS 2	NDOF	
CS 1	NDOF	IFDBAK=2
CSO	NDOF	
FREQ	NFREQ	--
FREQS	NS P	
SPECIN	NSP*2*NELE	I SPEC<0
SPFR	2*NELE	ISPEC<0
	where NEIE	(NFORC* (NFORC+1))/2
	NSP	ABS (ISPEC)

Table 12.-Arrays Contained in Block //

Array Nage	Size	Option-dependent
Q	2*NDOF*NFORC	--
QMAGR	NDOF*NFORC	--
FREQM	NKVAL	NKVAL>1
FLL	NPAN	NPAN>0
PHIT	2*NDOF*NPAN	NPAN>0
C2	NDOF*NFORC	--
c3	2*NDOF*NFORC	--
summ	2*NDOF*NDOF	--
SUMC	2*NDOF*NFOC	--
M1	NDOF*NDOF	NULMAT (1) >0
M 2		NULMAT (2) >0
M 3		NULMAT (3) >0
M4		NULMAT (4) >0
M5	\dagger	NULMAT (5) >0
M6	NDO F*NDOF	NULMAT (6) >0
	IFDBAK>0, and	
S 1	NDOF*NDOF	NULMAT (7) >0
S2		NULMAT (8) >0
S3		NULMAT (9) >0
S4		NULMAT (10) >0
S5	\dagger	NULMAT (11) >0
S6	NDOF*NDO F	NULMAT (12) >0

Table 12.-(Concluded)

Arxay_Name

$\left.\begin{array}{l}M 51 \\ M 52\end{array}\right\}$

$\left.\begin{array}{l}C 31 \\ c 32\end{array}\right\}$
$\left.\begin{array}{l}\text { PHIT } 1 \\ \text { PHIT2 }\end{array}\right\}$

Size
Option-dependent NKVAL> 1, and
$\left\{\begin{array}{l}\text { NULMAT }(4)>0\end{array}\right.$
$2 * N D O F * N F O R C$
2*NDOF*NFORC
2*NDOF*NPAN
$2 *$ NDOF*NPAN
$\left\{\begin{array}{l}\text { NPAN }<0\end{array}\right.$

$\left\{\begin{array}{l}\text { NPAN }>0\end{array}\right.$

Table 13.-Arrays Contained in Block III

Array_Name	Size \quad Qpt	Qetion-dependent
LOAD	ICORR	
LOADC	ICORR*10	
NLDC	ICORR	ICORR>0
CORSUM	ICORR* 10	
CORLST	ICORR*10	
QMAGL	NLD*NFORC	--
SPEC		--
A		--
PM	\dagger	--
C2B	NLD*NFORC	--
Phitb	2*NLD*NPAN	NPAN>0
C3B	$2 *$ NLD*N FORC	--
SUMMB	2*NLD*NDOF	--
SUMCB	2*NLD	--
PHIOME	(NFORC* (NFORC + 1)) /2)/2 --
MB1	NLD*NDOF	NULMAT (1) >0
MB2		NULMAT (2) >0
MB3		NULMAT (3) >0
MB4		NULMAT (4) >0
MB5	\dagger	NULMAT (5) >0
MB6	NLD*NDOF N	NULMAT (6) >0

Table 13.-(Concluded)

Arryay_Naxme	Sizze	Option=dependent
	NLD*NDOF	IFDBAK>0, and
SB1		NULMAT (7) >0
SB2		NULMAT (8) >0
SB3		NULMAT (9) >0
SB4		NULMAT (10) >0
SB5	\dagger	NULMAT (11) >0
SB6	NLD*NDOF	NULMAT (12) >0
	NLD*NDOF	NKVAL> 1, and
M41		$\{$ NULMAT (4)>0
M42		
$\text { M51 }\}$		$\{$ NULMAT (5) >0
M52		
$\text { M61 }\}$	\dagger	$\{\operatorname{NULMAT}(6)>0$
M62	NLD*NDOF	
PHIT1	2*NLD*NPAN	$\{$ NPAN >0
PHIT2	2*NLD*NPAN	
$\text { c31 }\}$	2*NLD*NFORC	\int NPAN<0
c32	2*NLD*NFORC	

Program SORTQLS

Two or three arrays will be defined in VARDIM for SORTQLS.

Array name	Size	Option-dependent
FREQ	NFREQ	-
SOL1	(NFREQ*NR)	-
SOL2	(NFREQ*NR)	IPAIR >0

where NR is NDOF or NLD, depending upon the response being plotted (NDOF for QMAGR and NLD for QMAGL and/or SPEC), and IPAIR is 1 if pairing of standard and static elastic solutions has been requested.

Program PLOTQLS

The required VARDIM storage is the same as described in program SORTQLS above.

Variable Dimensioning Storage Scheme (VARDIM)

Analyses requiring the storage of matrices can lead to inefficient large core programs (i.e., coded for the maximum matrix sizes) unless some method is used to make the storage required dependent upon the individual problem's size. A series of five subroutines (STARTR, INITIR, LOCATR, DELETR, and XFER) collectively known as VARDIM, has been written to handle the allocation of matrix storage during program execution. VARDIM uses blank common for all array storage. This method is possible on operating systems that place blank common at the end of all other program storage. The user must request enough field length (core) to provide sufficient array storage between the beginning of blank common and the end of the declared field length.

VARDIM is not a matrix language. It does not provide matrix operations, only array storage allocations and the necessary bookkeeping. The subroutines were designed to be called by FORTRAN programs that do their own matrix storage (input/output), perform their own matrix operations, and calculate their own array subscripts.

Some general features of the VARDIM scheme follow:

1. Array storage may be variable within a single program run as well as between runs. Arrays may be defined or deleted at any time. It is not necessary to define them all at the beginning of the program.
2. Each array will be identified by a six-character hollerith name (left-justified), may have from one to three dimensions, and may be a real or integer variable type.
3. Newly defined arrays will be null.
4. The array storage is always compacted to use the first words of blank common. A newly defined array is always located after pre-existing arrays. If array is deleted, then arrays $i+1$ through n are moved forward to positions i through $n-1$.
5. When any VARDIM routine is called, it checks to see that there are no duplicate array names or illegal dimensions and that core and/or the array catalog has not been exceeded.

The bookkeeping performed by VARDIM is stored in a catalog array KATLOG and the labeled common block /VARDIM/.
6. The VARDIM array catalog, KATLOG, is itself an array in VARDIM storage with the dimensions (6, NMAX, 1). Each array will have a six-word entry in KATLOG (i.e., one column). The six words contain:
a. Name-6 hollerith characters, left-justified and blank filled
b. Location-the first word address of the array in blank common
c. Type-0 for integer and 1 for real
d. Row dimension size
e. Column dimension size
f. Level dimension size
7. All VARDIM routines except XFER contain the labeled common block /VARDIM/, which has the bookkeeping variables:

NMAX Maximum number of arrays which may be defined for this program
NENTRY Number of arrays currently defined
LWAVAL Last word available in blank common (length of blank common)
LWUSED Last word currently in use by VARDIM in blank common
LKAT The first word address in blank common of the array named KATLOG
MAXUSD Maximum core used by VARDIM since calling routine STARTR
8. All VARDIM arrays except XFER contain the blank common definition

COMMON D(1)
DIMENSION ID(1), KATLOG $(6,1)$
EQUIVALENCE (D,ID,KATLOG)
9. A program checkout feature is available. The VARDIM routines contain the following labeled common block.

COMMON / CHKPRT / ICKPRT

If ICKPRT $\geqslant 5$, each VARDIM routine except XFER will print a message giving information about the array and core locations it is manipulating. There are two print lines for each message.

NOTES:

- For a description of the VARDIM routines used by the overlays of L221 (TEV156), see the discussion of the VARDIM routines beginning on the next page.
- It will be necessary to use the $\operatorname{REDUCE}(-)$ control card to prevent the loader from reducing the program's executable field length to dimensioned blank common size of 1 .

Discussion of VARDIM Routines

The purpose and usage of each of the VARDIM routines will be briefly described. The variables below appear repeatedly in their argument lists.

- NAMEA An array name of up to 6 hollerith characters (left-justified)
- LA First dimension of array NAMEA
- MA Second dimension of array NAMEA
- NA Third dimension of array NAMEA
- INTRA A key to the VARDIM routines indicating NAMEA's variable type (0 for integer and 1 for real)
- LOCA The location of array NAMEA-the first word address in blank common

Subroutine STARTR

STARTR must be called before any other VARDIM routine. It creates the array catalog, sets the maximum number of arrays, and determines the maximum array storage available.

Calling sequence of STARTR:
CALL STARTR (IMAX,LENGTH)
Input
IMAX The maximum number of arrays to be defined at any one time; if $\operatorname{IMAX}=0$, STARTR will assume 100
LENGTH The number of words available in blank common for use by the VARDIM routines; if length is input as zero, STARTR will find the length available (difference between the beginning of blank common and end of field length)

Output
LENGTH The number of words available in blank common; if LENGTH is returned as zero, there was not enough blank common to create the catalog array, KATLOG

Subroutine INITIR

INITIR is called to initialize or define a new array. It must be called before any other VARDIM routine refers to the array. INITIR allocates the array storage, zeros the area, and makes an entry in the array catalog. When the array being defined already exists, the elements are simply set equal to zero if the dimensions are to remain the same. If the array size is to be changed, the old array is deleted and a new one defined.

Calling sequence of INITIR:
CALL INITIR (NAMEA,LA,MA,NA,INTRA,LOCA,IRI)
Input
NAMEA
LA
MA
NA
INTRA
See subroutine argument definitions in discussion of VARDIM routines

Output
LOCA See subroutine argument definitions
IRI
Error code
$=0$, no error detected
$=-1$, previous array of same name deleted before defining a new one
$=\quad 1$, maximum number of catalog entries was exceeded
$=2$, one of the arrays dimensions is 0
$=3$, blank common storage exceeded
$=4$, routine STARTR was not called beforehand.

Subroutine DELETR

DELETR is called to eliminate an array from VARDIM storage. The array's entry in the VARDIM catalog will disappear and both the catalog and array storage compacted.

Calling sequence of DELETR:
CALL DELETR (NAMEA,IRD)
Input
NAMEA See subroutine argument definitions

Output

IRD \quad| Error code |
| :--- |
| $=0$, no error detected |
| $=\quad-2$, NAMEA is not in the VARDIM catalog |

Subroutine LOCATR

LOCATR is called to determine an array's size, type, and location. LOCATR should be called just before handling the array because the array's location changes as other arrays are deleted and added to VARDIM storage.

Calling sequence of LOCATR:
CALL LOCATR (NAMEA,LA,MA,NA,INTRA,LOCA,IRL)
Input
NAMEA See subroutine argument definitions
Output
LA
MA
See subroutine argument definitions
NA
INTRA
LOCA
IRL
Error code
$=0$, no error detected
$=-1$, no entries in catalog
$=-2$, NAMEA is not in the catalog

Subroutine XFER

XFER is a subroutine called by DELETR to quickly move blocks of core.

4.0 EXTENT OF CHECKOUT

Nine different data cases were used to verify that L221 (TEV156) runs correctly. The results of the nine cases were compared against answers produced by hand calculations and previous versions of the program (see footnote 1 in sec .2).

Checkout Problems

No. Type of problem
1 Standard execution with input equations of motion and load equations from cards
2 Standard execution with equations input on a magnetic file; SORTQLS and PLOTQLS also
3 Execution with frequency-dependent equations of motion and load equations input on cards

4 Same as 3 except equations input via a magnetic file
5 Multiple forcing functions input on cards
6 Same as 5 except equations input via a magnetic file
7 Same as l except freedoms physically deleted from cards; serves as a check case for number 8

8 Same as 1 except freedoms deleted through use of a program option
9 Magnetic file input of matrices (same as 4) with DYLOFLEX header arrays on the file
The options used in the checkout problems are displayed in table 14.

```
Boeing Commercial Airplane Company
P.O. Box 3707
Seattle, Washington 98124
May 1977
```

Table 14.-Options Used in Checkout Cases

DATA CASES

OPTIONS	1	2	3	4	5	6	7	8	9
NDOF	7	7;7	7	8	2; 7	2; 7	5	7	8
NFREQ	10	10;10	10	210	3:72	3;72	10	10	210
NPAN	0	5;0	0	0	0;0	0; 0	0	0	0
NKVAL	0	0; 0	10	20	0;0	0; 0	0	0	20
NFORC	0	0; 0	0	0	2; 6	2;6	0	0	0
NDOFD	0	0;0	0	0	0;0	0; 0	0	2	0
IFREQ	0	0;0	0	0	-1;0	-1;0	0	0	0
ISPEC	1	1;-10	1	1	-3;-26	-3;-26	1	1	1
Istate	0	2;0	0	0	0;0	0;0	0	0	0
IFDBAK	0	1;0	0	0	0; 0	0;0	0	0	0
IDAMP	0	1;0	0	0	0; 0	0;0	0	0	0
INTZRO	1	0;1	1	1	1; 1	1;1	1	1	1
IPRINT	1	1;0	0	0	1; 1	1; 1	1	1	0
IRMSPR	0	3; 0	0	0	3;72	3;72	0	0	0
IPUNCH	0	0; 0	0	0	0; 0	0; 0	0	1	0
ICKPRT	2	2;0	0	2	5;1	5;1	5	5	2
IPLRMS	0	1;0	0	0	0:0	0;0	0	0	0
LPDOF	0	2:0	0	0	0; 0	0; 0	0	0	0
INTAPE		INTAPE;		EOMTPE					DYFEOM
IPLTPE	ONE11	TWOLI;	THRE11						
IRTAPE		TAPE3;		IRTAPE					
Iftape						; IFTAPE			
2	12.	12.;12.	12.	1.	1.11.	1.il.	12.	12.	1.
VEL	2613.83	$\left\{\begin{array}{l} 2613.83 \\ 2613.83 \end{array}\right.$	2613.83	829.53	1.;1.	1.;1.	2613.83	2613.83	829.53
L (TSCALE)	2500.	2500; 2500	2500.	2500.	1.;1.	1.:1.	2500.	2500.	2500.
C (GPSCAL)	0	1.;0.	0 .	0.	0.; 0 .	0.;0.	0.	0.	0.
TABFS	0.	0.;0.	0.	0.	0.;0.	0.;0.	0.	0.	0.
TABS	0.	0.; 0 .	0.	0.	0.;0.	0.;0.	0.	0.	0.

Table 14.-(Concluded)

DATA CASES

REFERENCES

1. Miller, R. D.; Kroll, R. I.; and Clemmons, R. E.: Dynamic Loads Analysis System (DYLOFLEX) Summary. NASA CR-2846-1, 1979.
2. Miller, Ronald D.; Richard, Michael; and Rogers, John T.: Feasibility of Implementing Unsteady Aerodynamics Into the FLEXSTAB Computer Program System. NASA CR-132530, 1974.

-For sale by the National Technical information Service. Springfield, Virginia 22151

[^0]: ${ }^{1}$ Clemmons, R. E.: A Power Spectral Digital Computer Program to Determine Dynamic Loads Due to Random Gusts-PSDSYS (TEV156) - Users Guide. BCS-G025, June 1973.
 ${ }^{2}$ Clemmons, R. E.: Programming Specifications for Modules of the Dynamic Loads System to Interface with FLEXSTAB. NASA contract NAS1-13918. BCS-G0701, September 1975.

[^1]: ${ }^{1}$ Clemmons, R. E.: Programming Specifications for Modules of the Dynamic Loads System to Interface with FLEXSTAB. NASA contract NAS1-13918, BCS-G0701, September 1975.
 (Internal Document.)

[^2]: ${ }^{1}$ Clemmons, R. E.: Programming Specifications for Modules of the Dynamic Loads System to Interface with FLEXSTAB. NASA Contract NAS1-13918, BCS-G0701, September 1975.
 (Internal Document.)

[^3]: ${ }^{\text {a }}$ Variable types are as follows: $C=$ complex, $H=$ hollerith, $I=$ integer, $L=$ logical,
 $\mathrm{O}=$ octal, $\mathrm{R}=$ real

