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Nonparallel Stability of Two-Dimensional Nonuniformly

Heated Boundary-Layer Flows

A. H. Nayfeh and N. M. El-Hady
Engineering Science and Mechanics Debarthent,
Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061

An analysis is presented for the linear stability of water bound-
ary-layer flows over nonuniformly heated flat plates. Included in the
analysis are disturbances due to velocity, pressure, temperature, den-
sity, and transport properties as well as variations of the liquid
properties with temperature. The method of multiple scales is used to
account for the nonparallelism of the mean flow. In contrast with
previous analyses, the nonsimilarity of the mean flow is taken into
account. No analysis agrees, even qualitatively, with the experimental
data when similar profiles are used. However, both the parallel and
nonparallel results qualitatively agree with the experimental results of

Strazisar and Reshotko when nonsimilar profiles are used.
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I. Introduction

Linke] was the first to investigate experimentally the effect of
heat transfer on transition. He measured the drag on a vertical heated
plate that is placed in a horizontal airstream. He found that heating
the plate causes its drag to increase considerably. He concluded from
this observation that heating the plate is destabilizing. Liepmann and

2 fully confirmed the destabilizing effect of heating in air bound-

Fila
ary layers. They performed measurements on a vertical heated plate in a
horizontal airstream. They found that the critical Reynoids number
decreases with wall heating. The destabilizing effect of heating in an
incompressible Eir boundary layer is due to‘increasing the air viscosity
next to the wall, thereby producing an inflected velocity profile. On
the other hand, cooling yields a fuller velocity profi]e and hence a
more stable flow.

Since heating decreases the viscosity of water, the above measure-
ments and argunrents suggest that héating the éurface of a body in a
water stream i$ stabilizing. This has been confirmed by the analysis of

3’4. Their analysis is for a parallel flow and is based on

Wazzan, et al
the disturbance-vorticity equation only; that is, it does not include
the energy equation and hence the temperature fluctuations. However,
their analysis includes the effects of the mean-temperature distributicn
on the viscosity of the fluid. With these assumptions, Wazzan, et a13’4
obtained a fourth-order modified Orr-Sommerfeld problem. Their results
show that the critical Reynolds number increases as the wall heating‘

increaases, reaches a maximum, and then decreases. Lowell and Reshotko5
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reformulated the baralle] stability problem and included temperature as
well as vorticity fluctuations. They ended up with a sixth-order rather
than a fourth-order system. They found that the solutions of the'fourth-
and sixth-order systems are close for all wall temperature ratios over
the normal liquid range of water.

The stabilizing effect of small wall-temperature ratios in water
was confirmed experimentai]y by Strazisar, et a]6 and Parker7. Parker
found that the transition Reynolds number for water flowing in a tube

can be increased from 10 x 106 to 42 x 106

by using a 7°C wall overheat.
Strazisar, et a]s conducted an experiment for the case of uniform wall
overheat. Their results show that, as the wall heating increases, the
critical Reynolds number increases, the growth rates decrease, and the
range of frequencies undergoing amplification decreases. All of these
results qualitatively agree with the parallel stability results3'5. To
compare quantitatively with the experimental results, El-Hady and
Nayfeh8 used the method of multiple scales to deveiop a nonparallel
stability theory for heated water boundary layers. The nonparallel
results are in good agreement with the experimental data.

Since the flow over the portion of the body upstream of the criti-
cal Reynolds number is stable, no stabilization is needed on that por-
tion, and une would need heating only on the portions downstream of the
critical Reynolds number. This suggests the use of nonuniform rather
than uniform wall heating. This led Strazisar and Reshotko9 to examine
experimentally the effect of nonuniform wall heating. They conducted

experiments with two types of wall heating.‘ The first is a step change

in temperatures and the second is a power-law temperature variation of
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the form T - T, = Ax", where T is the temperature, x is the distance in

the streamwsie direction, n is a constant, and the subscripts w and e

denote conditions at the wall and the edge of the boundary layer, respec-

tively. In their power-law case, they kept Tw(xref) - Te fixed while

they changed the exponent n. They made all their measurements af xref; ﬁ\§$}12??T3
which corresponds to a displacement-thickness Reyinolds number of about

800. Their results show fhat decreasing n is stabilizing; that is, the

case n < 0 results in lower growth rates than the case n = 0 (uniform

case), which in turn results in lower growth rates than the case n = 1.

These results could not be explained, even qualitatively, by using the

9’]0. This led to the speculation that an appropriate

parallel analyses
nonparallel theory may be needed to explain these results. However,
applying the nonparallel theory with a similar mean flow, we were also
unable to explain, even qual{tatively, these results as shown in Fig. 1.
Looking closely at the aforementioned parallel and nonparallel
calculations, one finds that all of them emp]oy self-similar boundary-
layer profiles. For a uniform wall temperature or for a power-law.
temperature distribution in a fluid having constant properties, the flow
is selstimi]ar. However, for a fluid with variable properties, the.
flow is not self-similar if the wall temperature is rnot uniform. In.

9 show varia-

fact, the mean—f]ow measurements of Strazisar and Reshotko
tions of the mean flow from the similar solution. Therefore, the pur-
'pose of the present paper is to examine the parallel and nonparallel

stability of nonsimilar water boundary layers over nonuniformly heated

flat plates.



II. Problem Formulation and Method of Solution

The present study is concerned with the two-dimensional, nonparallel
stability of two-dimensional, viscous, heat conducting liquid boundary
layers to small amplitude disturbances. The amalysis takes into account
variations in the fluid properties but neglects buoyancy and the dissi-
pation energy. All fluid properties are assumed to be known functions
of the temperature alone. Dimension]ess'quantities are introduced by
using a suitable reference length L* and the freestream values as refer-
ence quantities, where the asterisk denotes dimensional quantities.

To study the linear stability of & mean boundary-layer flow, we
superpose a small time-dependent disturbance on each mean-fiow, ther-

modynamic, and transport quantity. Thus, we let

a(xyst) = Glxay) + alxy,t), (1)

where Qs(x,y) is a mean steady quantity and q{x,y,t) is an unsteady
disturbance quantity. Here, q stands for the streamwise and transverse
velocity components u and v, the temperature T, the pressure p, the

density p, the specific heat cp, the viscosity u, and the thermal

conductivity . Substituting Eq. (1) into the Navier-Stokes and energy
equations, subtriacting the mean quantities, and linearizing the result-

ing equations in the q's, we obtain the following disturbance equations:

90 ] ?_ =
YT (pu +oUg) + 5y (pgv + oV) = 0, (2)
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au U U 3l
u,, du, s o, s sy s
s( + U +u +V ay)+9(usax+vsay)

s 9x ax stv

’ BU aVv
=38, 1 33 3u s
3 + R { us(f‘ +m )+ u(r‘ +m y )]

ax aX
v Vv
3 du , v _S 4 _S ‘
'7 [us('a7+ ax) +u(ay + X )i! (3)
aV v v aVv
v v s v s s s
Pelzt + Us 3% * Y 5x +vsay’k"z)y)J"’(USW*'VSW")
U EY)
- P | du , 3v _S,_S
3y ' R {ax [ Gy * 3x) + ulay * 3¢ )]
av al
2 W, Ay, e O s
3 [ug(r T + u(r TRRET )]}. (4)
aT BT c aT
o, S T 2
et tuse * UtV ay * Vg ay +(og + o)y ax
s
aT ' oT
S9 .1 3 T _S74 9 aT
AT RProc, X (kg 3x + < 3% d * 37 (% ay
s
aT
s
+ K W ’ (5)
do du dc dcp'
Ps Uy Ky, C_ = HTE s afi s afg s ET_E T . (6)
p s s s s

Here, cp is the liquid specific heat at constant pressure, R =
S
p*U*L*/u* is the Reynolds number, and Pr_ = c* u*/<* is the freestream
e e e P e e
Prandtl number. Moreover,

r<2@+2,m=20-1, r=la+a, 1% @,
(7)
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where £ is ‘the ratio of the second to the first viscosity coefficients
(2 = 0 is the Stokes assumption).

The problem is completed by the specification of the boundary
conditions; they are

u=v=T=0aty-=0, | (8)

u,v,T + 0 as y + =, | (9)

We restrict our analysis to mean flows that are slightly nonparallel;
that is, the transverse velocity component is small compared with respect
to the streamwise velocity component. This condition demands all mean-
fiow variables to be weak functions of the streamwise position. These
assumptions are expressed mathematically by writing the mean-flow vari-
ables in the form

U = Uglziny)s Vg = eV (any)s Po= Pe(xi), T = T (xiny),

(10)
where x; = ex with € being a small dimensionless parameter character-
izing the nonparallelism of the mean flow. jn what follows, we drop the

carrot from VS.

To determine an approximate solution to Egs. (2)-(10), we use the

n and seek a first-order expansion for the

method of multiple scales
disturbance variables u, v, p, and T in the form of a traveling harmonic

wave; that is, we expand each disturbance flow quantity in the form

q(x1,¥,t) = [qolx1,y) + eqr(xy,y) + ...Jexp(i8), (1)
where

Bwlal, B (12)

7. A=t



e ————— . . e —— e

For the case of spatial stability, a, is the complex wavenumber for the
quasi-parallel flow problem and w is the disturbance angular frequency,
which is taken to be real.

Substituting Egs. (11) and (12) into Eqs. (2)-(10), transforming
the time and spatial derivatives from t and x to 6 and x,, and equating
the coefficients of €° and € on both sides, we obtain problems describ-
ing the qo and q: flow quantities. These problems are referred to-as

the zeroth- and first-order problems and they are solved in the next two

sections.
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I11. The Zeroth-Order Problem

Substituting Eqs. (11) and (12) into Eqs. (2)-(10) and equating the

coefficients of €" on both sides, we obtain the follcwing problem:

Li(ugsVosPesTy) = iuofpsua + (US - '&’—O)Do] + 'gy (DsVo) =0, (13)

. w r 2 BU
L2(ugsVoaPosTo) = [1DSGo(Us‘ - a?) + R u Go]uo (OS ay
- l.a_ué.a o + ia - To (du aU ] aus dug
Ray ~o/ve oPo = ay dT, ay "Ry ay
du_ aU
if v 1 s _sal 1
TR M3y TRAT, 3y ay R —le (14)
. S im s
L3(ug,VvasPosTo) = [1050!0(”5 - a’o‘) tr usao]Vo "R %3y Ug
R S U | SN "R S V7Y
R dT_3y '° "R Ms® 3y ~“R3y
P r
'. w 1 2 aZKS
Lu(uo’Vo‘,po’To) = ["Dsao(US - a) + W_p— (Ksﬁo - 372"‘)]1'0
5
aT oK 2
s 2 s 3Tg 1 °T
+p vy - = - 55, Ko =0z = 0. (16)
s‘ay RPrecps 9y 3y RPrecps oy
The boundary conditions are:
Up=ve=To =0 aty=0, ’ (17)
Ugs Vp» To - 0 as y - o, (]8)

Equations (13)-(18) constitute an eigenvalue problem, which is
solved numerically. It is convenient to express it as a set of six

first-order equations by introducing the new variables z n defined by
0



Zgy = Ug, Zgy < 3y ° Zg3 = Vo,

(19)
Zoy = Pa» Zps = Toa Zge = 'g'}:‘o'.

Then, Eqs. (13)-(18) can be rewritten in the compact form

i ¢ :
T jZ] 342, 0 fori=1,2..,6, (20)
251 293 = 295 = 0 at y= 0, (21)
Zo1s Zo3s Zos * O as y + &, (22)

where the a;; are the elzaments of a 6.x 6 variable-coefficient matrix.
The nineteen nonzero elements of this matrix aré listed in Appendix I.

7o set up the numerical solution, we first replace the boundary
conditions (22) by a new set at y = Yo where Yo is a converient location
outside the boundary layer. Outside the bcundary layer, the mean flow
is independent of y and the coefficients aij are constants. Hence, the
general solution of Eqs. (20) can be expressed in the form

2= jzl Aijcjexp(Ajy) for i = 1,2,...,6, y = Yo (23)
where the Aj are the eigenvalues of the matrix [aij]’ the Aij are the
e]emenfs of the corresponding eigenvector matrix, and the c; are arbi-
trary constants. The real parts of three of the Aj are negative, while
the real parts of the remaining Aj are positive. Let us order these
eigenvalues so that the real parts of Ai1,A2, and X; are negative. Then,
the boundary condition (22) demands that c., cs, and ¢g are‘zero. To
set up this condition for the numerical procedure, we first solve Egs.

{23) for the cjexp(Ajy) and obtain

10



[
cjexp(Ajy) = izl biqui for j = 1,2,...,6, (24)

where the matrix [bij] is the inverse of [Aij]' Setting c.,=Cs=C¢
= 0 in Eq. (24) leads to

.

8 , v
Z] bysz g = 0 for j = 4,5, and 6 aty = y,. (25)
1 =

Using Eqs. (25) as the boundary condition at y = Ye and guessing a
value for ag, we integrate Eqs. (20) from y = Yo to y = 0 by using the

12 that employs a Gram-

computer program developed by Scott and Watts
Scamidt orthonormalization procedure, and then we attempt to satisfy the
boundary conditions (21). If the guessed value for o, is the correct
eigenvalue, the three boundary conditions will be satisfied. In general,
the guessed value is not the correct value and the bouﬁdary conditions
at the wall are not satisfied. A Newton-Raphson procedure is used to
update the value of a, and the integration is repeated until the wall-
boundary conditions are satisfied to within a prescrited accuracy. This

leads to a value for oo and the eigenfunctions are recovered using the

stored solution vectors.  They can be expressed in the form

z ;= A(xl)ci(xl,y) for i = 1,2,...,6, (26)

where A is still an undetermined function at this level of approxima-
tion. Tt is determined by imposing the solvability condition at the

next level of approximation.

n



i¥. The First-Order Problem

With the solution of the zeroth-order problem given by Eq. (26),

the first-order problem becomes

Y4 i 6 dA ) .
ay = J‘Z'l aijzlj - G]- E‘ + DiA ) fOl" 1= ],2,--.,6, (27)
211 =213 5215 =0 aty=20, (28)
2115 2139 235 > 0 as y > @, (29)

where the G; and D; are known functions of the Ci; a9, and the mear-flow
quantities. They are defined in Appendix II.

Since the homogeneous parts of Eqs. (27)-(29) are the same as Egs.
(20)-(22) and since the latter have a nontrivial solution, the inhomo-
geneous Eqs. (27)-(29) have a solution if, and only if, a solvability
condition is satisfied. In this case, the solvability condition demands
the inhomogeneities to be orthogonal to every solution of the adjoint

homogeneous problem; that is,

f z [6; dx + DA dy = 0, (30)

where the Ni(xl,y) are the solutions of the adjoinl homogeneous problem

corresponding to the eigenvalue a,. Thus, they are the solutions of

aw
Z aJl 5 = 0 fori=1,2,...,6, (31)

Wo =W, = Wg =0 at y =0, (32)

Wz, w;., ws -+ 0 as y -+ =, (33)

Substituting for the Gi and Di from Appendix II into Eq. (30), we

obtafn the following equation for the evolution of the amplitude A:

12
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%%é-l- = a3 (x1), (34)
where © , ©
6 (]
fay = - [ ) OM;dyl/[f ) 6.Wdyl. (35)
3= =1
0 0 .

The solution of Eq. (34) can be written as

A= Aoexp[icfa,(x;)dx], (36)

where Ay is a constant of integration.
To determine a;(x;), we need to evaluate dag/dx; and the aci/axl.

To accomplish this, we differentiate £qs. (20)-(22) with respect to x;

and obtain
g—y (;l;) - Jf aij(:if = G, %‘-j:—h s; for i = 1L2sesbs (37)
g—,‘r’;}=-§%=%§f=0aty=0, (38)
%%f s g&% s %ﬁf-* 0asy (39)

The initial conditions for the_computational procedures are chosen to
exclude any multiple of the homogeneous solutions. The Si and Gi are
known functions of Lis Qoo and the mean-flow quantities and their deri-

vatives; they are given by

= .i J ax | andG 2 C —lforj=],2,-.-’6 (40)
=1

Using the solvability condition of Egs. (37)-(39), we find that

g%% =- [ ig S W;dyl/[ zl G W dy]. an

13
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Therefore, to the first approximation

20y = AoCx(Xl'Y)eXp[i.f}Go + eap)dx - iwt] + O(e), (42)

where the z . are related to the disturbance variables by Eq. (19) and
the constant A, is determined from the initial conditions. It is clear
from Eq. (42) that, in addition to the dependence of the eigensolutions
on x,, the eigenvalue o is modified by €a;. The present solution re-
duces to those gbtained by Nayfeh, et a113 and Saric and Na,yf"eh.l4 for

the case of nonheat conducting flows.

14



e e e A . A T8 e S e e e o o

V. The Mean Flow

For flows whose thermodynamic and transport properties are func-
tions of temperature, the two-dimensional boundary-layer equations for

a zero-pressure gradient and in boundary-layer coordinates are

o+ (=0, (43)
oy .
pu Smwpv 2o B, (44)
3y oy
puc g—l+ ovcp%- 3 %) , (45)
P dy 3y Y

The temperature dependence of p and u couples the momentum and
energy equations. Note that buoyancy and viscous dissipation effects

are neglected.

We introduce the Levy-lLees tr'ansfm‘mation]5

d¢ = peUeuedx R ’ (45)
-l —

dn = oU,(26)" /2dy . (47)

Then, the derivatives with respect to x and y are transformed according

to
FI 9 ,nd
X peUe“e 3 * an °’ (48)
pU
'a_—'=_'§T/_2%ﬁ . (49)
ay (2)

Substituting Eqs. (48) and (49) into Eqs. (43)-(45) yields

15
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2 & ag 3V +U =0, | (50)

au U _ 3 ey . '
2tU 3¢ + V= an "~ an (c an) o, (51)
a C aH '
2¢U s n = Gran) = 0 (52)
where
U=u/Ug, H=T/T, : (53)
Ve ——31—] (54)
PeleMe 2(€)
C = pu/plys Pr = cpu/K . (55)

The boundary conditions are

u(g,0) = 0, V(g,0) = 0, H(g,0) = H (£), (56)
u(g,n) > 1 and H(g,n) > 1 as n>n. (57)

Equations (50)-(52), (56), and (57) are numerically integrated using a
step by step procedure in the streamwise direciton. A three-point
implicit finite-difference technique is used to reduce the energy and
momentum equations and the boundary conditions to a set of simultaneous
tridiagonal equations. These equations are linearized and then solved
by using the algorithm of Thomas. Then, the continuity equation is
numerically integrated by using the trapezoidal rule. The method of

solution closely parallels those of Fliigge-Lotz and Blottnerls, Davis

17 18

and Fliigge-Lotz'’, and Harris

16



VI. Analytical Results and Comparison with Experiments

Strazisar and Reshotko9 performed their experiments in a water
tunnel whose test section was 394 mm long, 229 mm wide, and 152 mm high.
The freestream turbulence was 0.1 - 0.2% for U; < 3.4 m/s. They mea-
sured the boundary-layer characteristics on a flat.plate that was 348
mm long and 16 mm thick and spanned the test secfion. The plate was
fitted with a rounded leading edge (0.79 mm radius) located 10.8 mm
below the top of the test section.

Disturbances were artificially introduced in the boundary leyer by
using a vibrating ribbon that is stretched across the plate surface 95.3
mm behind the leading edge. The amplitudes of the generaied distur-
bances were measured at five stations spaced 6.4'mm apart between x =
127 mm and x = 152.4 mm. They traversed the boundary layer in the
normal direction and recorded the peak amplitude. Then, they determined
the gEowth rates at x = 139.7 mm by using a polynomial curve fit of the
peak amplitude dafa.

The plate heating was provided by 11 electric heaters distributed
along the plate. The wall temperature was monitured by using 11 ther-
mistors imbedded in the surface of the plate at its centerline. How-
ever, because of the large temperature gradients invo]Qed, the ther-
mistors did not accurately yield the plate temperature. Consequently,
they had to determine the wall temperature from boundary-layer profiles
measured with a hot-film anemometer operating as a resistance thermo-
meter. Due to equipment limitations, the wall temperature could not be
monitored or maintained near the leading edge. Since the thermal bound-

ary is very thin near the leading edge, measurement of temperature

17
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profiles using the hot-film anemometer were impractical in that region
and the first measurement of the wall temperature was provided by a
thermistor imbedded 30.5 mm from the leading edge.

In the case of the power-law distribution Tw - Te = Ax", Strazisar
and Reshotko held the temperature difference fixed at Xraf.? while they
varied n and x as shown in Fig. 2. They presented growth data at Xpef.
= 139.7 mm only (corresponding to R = 475). Their results show that
decreasing n is stabilizing. However, Fig. 1 shows that decreasing n is
destabilizing in both the parallel and nonparallel calculations when a
similar mean flow is used. Hence, using self-similar mean profiles
cannot predict the experimental data.

Since the upstream wall temperature distribuiton is essential for
calculating nonsimi]ar boundary layers we are unable to compare quanti-
tatively the analytical results with the data of Strazisar and Roshotko
for the case of power-law distributions. Figures 3-5 show the variation

of the parallel and nonparallé] growth rates with frequency (defined as

F = w*v;/ng) calculated for the pcwer-law distributions shown in Fig; 2

for AT = 1.67°, 2.78°, and 4.44°C at Xpof, = 139.7 mm. In each figure,
we show the results for n = -0.5, 0, and 1 as well as the results for
the unheated case. Thevnonpara11e1 growth rates do not include the
distortion effect of the mode shabe. Including this distortion modifies
quantitatively but not qualitatively the results. Both parallel and
nonparallel theories predict that decreasing the exponent n results in a
stabilizing effect at Xpef.? in qualitative agreement with the experi-
mental resultsg.

The stabilizing effect produced by decreasing the exponent n can be

explained as follows. As n decreases, Fig. 2 shows that AT increases

18



—— . . oo e a8 . S Gt § 2B AV iy S e e .

at all locations upstream of x;ef . But increasing AT results in a
fuller velocity profile and hence a more stable flow. Therefore, the

stabilizing effect produced at x is a cumulative of all upstream

ref.
stabilizing effects. However, as n decreases, AT decreases downstream
of Xeaf . resulting in less fuller velocity profiles. Therefore, at
some location dcwnstream of Xpof.» 8 distribution with a larger exponent
will be more stabilizing as shown in Fig. 6. Thus the neutral stability
curves are not nested and conclusions regarding stabilizing and desta-
bilizing effects away from Xrof. depend on the Reynolds number. The
integration of the growth rates yields the amplification factor, which
seems to be the best indicator of stability. Figure 7 shows the varia-
tion of the infegrated growth rates of Fig. 6 with Reynolds number.

Also shown is the variation of the maximum amplification factor with the
exponent n. It appears that the maximum émp]ification factor for n =

- 0.5 and n=0 are nearly the same, while it is higher for n = 1. This

result holds for other frequencies as indicated by the nasting of the

growth-rate curves (Fig. 4) as functions of frequency.

19
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VII. Conclusion

We analyze the linear nonparallel stability of two-dimensional
1iquid boundary layers on a flat plate for the case uf nonuniform wall
heating. -Stability calculations using a self-similar mean flow cannot
predict, even qualitatively, the experimental results of Strazisar and
Reshotko for power-law temperature distributions. However, by using
nonsimilar mean flows, both paraliel and nonparallel results are in
qualitative agreement with the experiments. The stabilizing and desta-

bilizing effects at Xrof depend on the temperature distribution.
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APPENDIX II

dA
G, -dx—l-*l' DA = 0,

dA_ __ifag , _R_
6. dx + DZA - Ps Im Wo I)(’

dA_ _1
G, dx * DsA = Pg Im’

du 30, u

dA rts 1 M 2 s r¥a
G dx1+D“A_RpS T T 8y)Im R o 3y Im"’ly’
Gs gﬁ + DsA = 0,

A RPrecpS
Gsa;;-*' DeA = - e Ie,
where

dp dp
s dA . By y oS (_S4_S
Im - [p.21 US a‘T_S' CS] a;l_ = {3)‘.1 oy + oS %1 + [dTS (3X1 + 3y )
dp do do dp
9 S $3Cs .y __S3Cs
*Us oy (Zﬁz) * Vg ay (dT ar s + U dT s dT, dy As
. 8u

- r(2ir 1 s £ 3 dA

Iy = [ ugeo - pUg)r + g 5y o0 T R ¥ 5y ] o

. u 8U .
ir dag S 2ir oy
+ {[ﬁ— (“s ax, + oo —axx) = P 3%, ]Cx (T U0 = O U )axl

; s y W, dps U 3US
+ g ar, (rgr+ 5y ) - ar, (UsﬁTJ' Vg :Ty—)]‘vs A,
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APPENDIX II1

The variation of the thermodynamic and transport properties with

temperature is given by Lowell and Reshotko5

o1 (1% - 3.9863)2(T* + 288.9414 5.4.3
o = 1 - s A e T963) L+ 0.011445 exp(- 23y,

p* in gm/m2, T* in °C.

Log(1:002) _ 1.37023(T* - 20) + 8.36 x 10°4(T - 20)2
EARTE 109 + T* ’

u* in Cp T* in °C

K* = - 0.901090 + 0.1001982T* - 1.873892 x 10'4T*z

+1.039570 x 1077*? |

k* in megawatts cm!

k!, T* in °K.
ck = 2.13974 - 9.68137 x 10737* + 2.68536 x 10-57#?
- 2.82139 x 10781%3,

c; in cal gm']K'], T* in °K .
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Figure Captions

Variation of the spatial amplification rate with frequency
at Xpof. for'power-]aw temperature distributions for

AT = 2,78°C at Xref, using similar mean-flow profiles.
Power-law temperature distributions.

Variation of the spatial amplification rate with frequency
at Xpef. for the unheated case and the power-law tempera-

ture distributions of Fig. 2 for AT = 1.67°C at Xraf using

nonsimilar mean-flow profiles.

Variation of the spatial amplification rate with frequency
at Xref. for the unheated case and the power-Tlaw temperature
distributions of Fig. 2 for AT = 2.78°C at Xraf. using non-
similar mean-flow profiles.

Variation of the spatial amplification rate with frequency
at Xref. for the unheated case and the power-law temperature
distributions of Fig. 2 for AT = 4.44°C at xref. using non-
similar mean-flow profi1%§.

Variation of the spatial amplification rate with streamwise
position for the unheated case and the power-law temperature
distributions of Fig. 2 for AT = 2.78°C at Xrof. using non-
similar mean-flow profiles.

Variation of the amplification factor with streamwise posi-
tion for the unheated case and the power-law temperature
distributions of Fig. 2 for AT = 2.78°C at xref. using non-

similar mean-flow profiles.
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Figure 1. Variation of the spatial amplification rate with frequency

at Xpaf for power-law temperature distributions for

AT = 2.78°C at x ¢ using similar mean-flow profiles.




Figure 2.

Power-law temperature distributions.
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Figure 3. Variation of the spatial amplification rate with frequency
at X .¢ for the unheated case and the power-law tempera-

ture distributions of Fig. 2 for AT = 1.67°C at Xpof using

nancimilar maan_flmu nrafilac
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Variaticn of the spatial amplification rate with frequency
at Xeof for the unheated case and the power-law temperature

distributions of Fig. 2 for AT = 2.78°C at x . using non-
simi]ar mean-flow profiles.
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Figure 5. Variation of the spatial amplification rate with frequency

at x . ¢ for the unheated case and the power-law temperature
ref.
distributions of Fig. 2 for AT = 4.44°C at X ref using non-

similar mean-flow profiles.
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Figure 6. Variation of the spatiail amplification rate with streamwise

position for the unheated Case and th2 power-law temperature
distributions of Fig. 2 for AT = 2.78°C at x £, using non-
similar mean-flow profiles. ret.
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