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1.0 	 INTRODUCTION TO VOLUME II



This volume contains a detailed technical description of the various



tasks that were performed during the course of the initial concentrator



study contract. Additional work performed as part of a subsequent extension



to the contract will be described in a final report to be released at a



later date.



In addition to a description of each of the tasks performed, this



volume also discusses the assumptions that were employed and the results



obtained.



The study reported in this volume was divided into two phases. In



Phase I, the various concentrator concepts were compared relative to cost
 


related parameters and performance. Then the best design for each solar



distance application was selected. In Phase II, one recommended "best"



concept 	 was further developed.



All concepts considered were required to employ very thin silicon
 


solar cells. The cell temperature was not to exceed 150°C. The



concentrators were required to produce illumination of the array within 15%



of being perfectly uniform. The concentrators were also required to



operate while misaligned as much as 5 with the solar axis. Finally, a



reasonable expectation of implementation with existing materials and



technology had to be assured.



In Phase I, all concentrated systems utilized a baseline solar



array which generated 25 kW at 1 AU when unconcentrated. In Phase II, the



size of the-array was reduced to 2.08 kW at 1 AU.





2.0 	 PHASE I TECHNICAL EFFORT DESCRIPTION



2.1 	 Concept Selection Rationale



All concentrator concepts which have been proposed can be divided



into those which utilize lenses, those which use mirrors and others which



combine these optical elements. From a mass standpoint, the selection of



coated thin film Kapton, about 8 pM thick, for use as a mirror material



effectively eliminated from consideration all concepts employing lenses.



Even ultra-thin Fresnel lenses cannot compete on a mass basis with the



selected Kapton mirror material which by comparison is virtually zero mass.



Thus, only mirror type concentrators were considered in this study.



All mirror type concentrators may be divided into two basic optical



configuration categories; front-lit configurations (Figure 2.1-1) in which



the solar array faces the sun and receives direct impingement in addition



to the light reflected from concentrator mirrors, and back-lit configurations



(Figure 2.1-2) in which the solar array faces away from the sun such that



only reflected light is received by the solar cells. In Figures 2.1-1 and



2.1-2. 	 the geometric concentration ratio, C is defined. In both con
g 

figuration types, a parameter of particular interest is the area ratio, 

R, also defined in the figures. This is a measure of the relative mirror 

size required to achieve a given C . Although as previously mentionedg 

the mirrors in all concepts studied have almost insignificant mass,



structure with significant mass is required to deploy, shape and support



the mirrors. Logically, mirror structure mass will be related to mirror



size and hence proportional to R. Since high C is clearly desirable, one

g



measure of relative effectiveness of a concentrator design is the ratio,



C /R. Concepts which exhibit the highest value of this ratio would tend



to be more mass efficient and hence more effective in increasing specific



power.
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It was observed during the study that, in every case, much higher 


values of C /R could be achieved with back-lit designs than with front-lit 

designs. An explanation foz this observation is found from the following 

mathematical proof that back-lit designs will always require smaller mirrors 

to reflect the same quantity of light than will front-lit designs.


Figure 2.1-3 shows two mirrors equidistant from a small solar cell



in space, the one at A in the front-lit position, and the one at B in the



back-lit position. The solar cell, which is normal to the sun's axis,



faces the sun when using mirror A, and faces away from the sun when using



mirror B. Both mirrors were positioned and sized to intercept the same



column of sunlight of width dF, and to reflect it to the cell. Not only



are the mirrors equidistant from the solar cell, but they are also equi


distant from the plane of the solar cell. From the geometry shown in the 

figure, XA ,the width of the front-lit mirror at A, and XB. the width of 

the back-lit mirror at B, are related to each other as follows: 

dF dF

XA =os fA 
 ' 
 XB = cos -B 

@A @



ZA cos B cos (45- 2

.- os Cos



1 + tanX 
A -tan 

XB1 2 

Since this ratio is always greater than 1, the statement is proved. Clearly, 

back-lit concepts configured to achieve high C would tend to have the


g



highest ratio of C /R.
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On the other band, this advantage of back-lit over front-lit designs



tends to disappear when the designs are required to be configured for low C .
 

g



This is the case with silicon solar cells operating in earth orbit (1 AU)



where array temperature limits prohibit the use of high Cg. At low Cg,



the additional power generated by the direct illumination of the array in



the front-lit design tends to compensate for its larger mirrors.



Thus, candidate concentrator concepts for comparative evaluation



were selected from among all known and newly proposed mirror type concentrators;



front-lit as well as back-lit. It was only necessary that each concept be



judged capable of meeting the minimum requirements specified by the con


tract and summarized in Section 1.0.



2.2 Concepts Rejected



From the broad class of all concepts which were seriously considered in



the study, several were found to be incapable of meeting the minimum design



requirements of the contract and were rejected. (The major requirements are



listed in Section 1.0.) The most interesting of these are summarized here



for completeness.



One rejected concept was a front-lit conical light pipe shown in



Figure 2.2-1. From an optical ray trace study it was determined that this



concept could not be configured to meet the uniformity of illumination



requirement.



Another rejected concept was a two dimensional back-lit simple



parabolic concentrator; the SPC, shown in Figure 2.2-2 in cross-section.



It was ultimately rejected because it cannot accept a + o misalignment with



the sun's axis while maintaining the required illumination uniformity.



This concept is of particular interest because, with perfect sun axis



alignment, it is believed to be a theoretical upper limit for two dimensional
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trough concentrators. Although this contention has not been rigorously



proven, no mirror type concentrator can be found to yield ratios of



C /R even approaching that of the SPC for any C however high. With per


fect pointing of the sun's axis along the axis of symmetry of the parabolic 

reflector, all reflected light converges to a line at the focal point of 

the parabola, the line running parallel to the longitudinal axis of the 

mirror trough. The array is placed to intercept the reflected light near 

the focal line. The deficiency of this otherwise ideal concept is illus

trated in Figure 2.2-5. With a 5 sun axis misalignment, the reflected 

light is drastically shifted and grossly defocused and aberrated.



Figure 2.2-4 illustrates still another unique and interesting



concept which ultimately had to be rejected. It was named a Compound



Back-Lit Parabolic Concentrator, CBPC, and was proposed as a possible



solution to the SPC deficiency.



The concept employs two parabolic trough reflectors. The reflector 

on the right is a segment of a parabola whose focal point lies above and to 

the left of the left hand edge of the back facing array. The left hand 

reflector is a segment of a similar parabola whose focal point lies above 

and to the right of the right hand edge of the solar array. The design 

accommodates 5 sun misalignment by configuring the reflectors to be 

oversized. When the sun is on axis, the width of the reflected light at 

the array exceeds the width of the array by an amount such that when the 

sun is off axis and the light is defocused and aberrated, the array remains 

illuminated. However, the shaded area under the array proved to be the



weakness of this concept. With a sun axis shift, the shaded area also



shifts and the reflective behavior of the two mirror segments becomes un


equal. One of the mirrors only illuminates a portion of the array while
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the other illuminates it entirely. The resulting nonuniformity of the



illumination was found to be unacceptable and the concept was eliminated



from further consideration.



2.3 Description of Concepts Accepted for Evaluation



An initial screening of all known candidate concepts identified six



concepts which satisfied the technical requirements listed in Section 1.0.



Each of these will now be considered in detail.



2.5.1 The two dimensional flat plate trough (2D-FPT) shown in Figure 2.3-1



is a front-lit design which has been studied in some detail for space



applications (References 2 and 3). Large values can be achieved by using



extremely large mirrors and employing multiple reflections before light is



received on the panel. However, the mass of the structure necessary to



maintain these large mirrors limits the specific power of the array to an



unacceptably low value. When limited to single reflection, smaller mirrors



results for C <2, however, as C approaches 3, the mirror size becomes
g g 

infinite. A practical limit of approximately 2 has been established as the 

optimum (Reference 2). Variation in the concentration ratio below the 

maximum is accomplished by simply changing the mirror tilt angle. With a 

flat mirror) a shift in the sun's vector produces a corresponding shift in 

the reflected beam. To assure complete and thus uniform illumination of 

the array with a + 50 sun axis shift, the mirror is designed to be oversized 

such that the array is still totally illuminated by the shifted beam. In 

this manner, the concept meets all of the technical requirements. 

2.3.2 The two dimensional compound parabolic concentrator illustrated in



Figure 2.3-2 is a front-lit design which has been extensively studied



(References I and 4). Each mirror is a segment of a parabola. When



properly configured, it inherently accommodates the _ 5 sun shift. Within 
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this sun angle, the maximum C achievable is 11.3, but the area ratio R

g



becomes unacceptably high above a C g of about 5. With specular mirrors,



this concept produces extremely non-uniform illumination and is unacceptable.



However, by introducing a sufficiently diffuse mirror surface, the illumination



non-uniformity meets the 15% requirement, but at the penalty of a high reflec


tion loss. Variation in C 
g 

is accomplished by mirror tilting.



2.3.3 The three dimensional, back-lit, multiple flat plate concentrator



(3D-MFPC) shown in Figure 2.3-1 produces uniform illumination and accom


modates sun axis shift by mirror oversizing. Mirrors are provided in



orthogonal sets of 4. With no sun'misalignment and, hence, no mirror over


sizing, any value of C is theoretically attainable. However, a theoretical


g 

upper limit of C = 131 results when the mirrors are oversized for a sun 
g



misalignment. When actual deployment and support structure are taken into



account, mass considerations create a practical upper limit of C on the


g



order of only 6 or 7. Variability in C below the maximum is accomplished

g



by rolling up selected mirrors or by changing mirror tilt angles.



2.3.4 The reflexicon shown in Figure 2.3-4 is a back-lit design. Here, 

the mirrors and array are truncated cones. By varying cone angles and array 

to mirror distance, configurations with maximum C.'s of any magnitude are g



achievable if mirrors are not oversized for sun misalignment. The illumina


tion is somewhat non-uniform bnt meets the 15% criteria. With oversizing,
 


tipper limits to C exist, however, mass considerations limit C to 11 or 12.

gg 

C g variability is accomplished by moving entire conical mirror assemblies 

verticaLly (along the axis of symmetry) until they nc longer illuminate 

the array. 
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2.3.5 Passive and semi-active multiple flat plate concentrators (MFPC)



are actually two variations of a single two dimensional, back-lit design



(Figure 2.3-5). They differ from the 3D-MFPC only in that they are con


figured in two dimensions. In the passive version each flat plate mirror



is oversized to accommodate sun axis shift. Mass considerations limit C


g 

to about 7 in this version although slightly higher values are theoretically



possible. Variability in C below the maximum is accomplished by rolling up
g 

select Kapton mirrors. The semi-active version has each mirror end indepen


dently and automatically aligned with the solar axis within 10 by a simple



bimetallic device which senses misalignment and corrects as required after



the entire assembly has been aligned by the spacecraft control system.



Since the mirrors are now oversized for only 10 sun misalignment,higher



values of C g are theoretically achievable, however the practical mass-limited



C appears to be about 18. In this version, C variability is accomplishedS g



by individual mirror tilting.
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2.4 Concept Evaluation Procedure



This section summarizes the procedure that was followed to



comparatively evaluate the candidate concepts described in Section 2.3.



Two basic evaluations were performed. The first was an evaluation



of the predicted performance of the concepts relative to power output and



power to mass ratio (specific power) as a function of solar distance (AU).



From the evaluation, comparisons between the concepts were made. The second



evaluation was a comparison of the concepts made in terms of a list of cost


related parameters.



To accomplish the predicted performance evaluations of the concepts,



a number of assumptions and decisions had to be made and certain fundamental



data had to be generated. With regard to the solar array to be enhanced by



the concentrators, a baseline solar cell was selected and for this cell a



curve of efficiency versus temperature and irradiance level was generated.



This work is described in Section 2.4.1.



The 8 micrometer thick Kapton reflectors selected for all concepts



were assumed to be coated either with vapor deposited aluminum (VDA) or with



a particular "cold mirror" coating developed by the OCLI Co. Based on test



data, the VDA reflects 90% of all incident light across the entire light spectrum.



Thus the VDA converts the Kapton into an ordinary or conventional



mirror which reflects all incident light. On the other hand, the "cold mirror"



coating does not produce an ordinarymirror, but instead is spectrally selective.



In principle, a "cold mirror" coating reflects well only across the wavelength



band which the solar cell converts to electrical power. It reflects poorly



across the remaining light spectrum which is desirable since here the re


flected light only increases the cell temperature. An analysis of the
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particular OCLI "cold mirror" coating which was selected in conjunction with 

the selected cells found the total effective refiectance integrated across 

the usable spectrum to be 64% while the total heat inducing reflectance was 

42%. An additional reflection loss of 10% was assumed for all concepts due to 

mirror shape and surface smoothness deficiencies. Higher losses were used for 

CPC due to mirror surface texturing and these data were extracted from ref

erences 1 and 4.



A thermal analysis of each concentrator concept was then performed from



which curves of temperature as a function of Cg, AU, and reflector coating



were generated. This effort and the results are summarized in Section 2.4.2.



All these analytical data permitted the final power output of the baseline



solar array to be calculated for each concept as a function of solar distance,



maximum Cg, and type of reflector coating.



Next, considering each concept individually, numerous structural ideas



for stowage, deployment, shaping, support and adjustment were proposed and



studied. For the idea judged best for that concept, major structural members



were sized by stress analysis, ultimately permitting mass estimates to be



made as a function of maximum C . These data then permitted specific power
g



to be determined for each concentrator concept as a function of C g for various



solar distances and each of two reflector coatings.



The final curves of weight versus maximum C g are shown in figures 2.4-1,



2.4-2, 2.4-3, and 2.4-4 for the reflexicon, 3D-MFPC, passive NFPC and semi


active MFPC respectively. Weight data on the 2D-FPT was obtained from



reference 2 and then modified to make it consistent with the thin solar cell



selected for the baseline array as well as with the size of the array. The



weight of the CPC solar cell blanket given in reference 6 is based on an
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ultra thin silicon cell and cover with essentially the same dimensions as the



cell selected for this study. It was, therefore, assumed that the listed



weight of the CPC blanket would be essentially the same on a per unit area



basis as the weight of the baseline array used in the study. Accordingly,



only an adjustment for comparable output size was made on the CPC data.



Late in the study, however, it was determined that the construction of the



CPC solar cell-blanket differed substantially from that used in this study.



Most significant of the differences was that while the baseline cell used a



50 micrometer cover glass fastened with 30 micrometers adhesive, the CPC



simply used 25 micrometers of adhesive instead of a cover glass. This dif


ference, together with several items accounted for on the baseline, but



omitted in the CPC estimate, caused the CPC blanket to weigh approximately



of the baseline on a per unit area basis. Therefore, while comparisons



between the CPC and the other concepts are valid on a power output basis, a



direct comparison of specific mass is not valid.



Final Phase I performance results are discussed in Section 2.4.3 as



are the results of the comparisons made relative to other cost related



parameters.
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2.4.1 Array Selection and Analysis



For a fair evaluation of the future effectiveness of solar concen


trators, the array selected for enhancement should contain the lowest mass



cells projected to be available in the same time period. Based on this
 


criterion and projecting forward a few years, the silicon cells selected



would be 50 um thick, 13% efficient with 50 unm covers. These would be



mounted on a flexible substrate of Kapton and glass fabric with a rear thermal



control material of second surface aluminized FEP Teflon film. The weight



budget for such a solar array is summarized in Table 2.4.1-1. While the achieve


ment of this low weight still requires a scale up to realize production



quantities of the thin solar cells and coverglass, no fundamentally new



technology is required. The other components of the array are presently



available in production quantity.



During launch such a flexible array would be folded or rolled to



provide a compact volume. Upon reaching orbit the array would be deployed,



then supported in a taut manner by mechanisms attached to the edges of the
 


array. These mechanisms are described elsewhere in this report. The size



of such an array has been calculated using the design factors listed in Table



2.4.1-2. To achieve the required 25 kW at I AU! 55°C. an array of the proposed



construction would need an area of 194 m2 .



The heart of the solar array is the solar cell. Over the past few



years, 50 micrometer thick silicon solar cells have been under development



for space application. Small quantities of cells have been made with effi


ciencies near 14% (See Reference 11). The feasibility of producing thin cells



in a pilot line production facility has been investigated, demonstrating that



production cells with an average efficiency near 12% is possible now (References



12 and 13). With minor improvements, future cells in production quantities



are expected to have an average efficiency of 13%.



The characteristics of the solar cell considered baseline for this



study are summarized in Table 2.4.1-3. The photogoltaic power capability of the



cell is shown in Figure 2.4.1-1. An important property of any solar cell is the



inherent sensitivity of its power output with respect to the cell's temperature.



This is especially important for the present program because the operating



temperature of the cells depends markedly on concentration ratio, AU distance,



and concentrator design. An increase in the cell operating temperature, clue



to enhanced solar irradiance by concentration, causes a slight increase in the



cell short-circuit current and a significant decrease in the cell voltage. The





ITEN MATERIAL THICKNESS(cm) % AREA DENSITY WEIGHT(g/cm ) 

Cover Ceria Doped Glass 0.005 90 2.6 0.0117 

Adhesive RTV Silicone 0.003 90 1.1 0.0030 

'Cell Silicon 0.005 90 2.4 0.0108 

Interconnect Silver and Solder 0.004 10 11.0 0.0044 

Adhesive RTV Silicone & Glass Fabric 0.004 100 1.3 0.0052 

Support Sheet Kapton 0.003 100 1.4 0.0042 

Bus Copper 0.003 40 8.9 0.0106 

Adhesive RTV Silicone & Glass Fabric 0.004 50 1.3 0.0026 

Insulator Kapton 0.003 50 1.4 0.0021 

Adhesive RTV Silicone & Glass Fabric 0.005 100 1.3 0.0065 

Thermal Control Aluminized FEP Teflon 0.005 100 2.2 0.0110 

Diodes & Wire N/A N/A 0.0010 

TOTAL 0.0731 g/cm
2 

= 0.7 kg/m
2 

TABLE 2.4.1-1. UNIT WEIGHT FOR SOLAR PANEL BLANKET





Power requirements 25 kW at I AU, 550C, beginning of life



Cell efficiency 13.0% at 28*C



Design factors



Assembly loss (fabrication) 3%



Bussing loss 4%



Diode loss 0.5%



Solar constant 135.3 mW/cm2



Packing factor 90%



Temperature factor (550C compared to 28°C) 0.88



Initial power (accounts for first 3 losses) 25 kW/0.925 = 27,027 W 

Total area (A) is determined by:



0Iitial 
 power = solar constant x total area x cell efficiency x temperature



factor x packing factor
 


27,027 W = 135.3 mW2x A cm2 x 0.130.x 0.88 x 0.90


cm



2
 
= 
 194 m
A 


TABLE 2.4.1-2. SOLAR ARRAY SIZING ASSUPTIONS





CELL 

2 MIL THICK (2 cm x 2 cm) 

N/P 10 OHM-CM SILICON 

P/P+ BACK CONTACT 

OPTICAL REFLECTING BACK CONTACT 

TI-PD-AG CONTACTS (WITH AL) 

DUAL LAYER ANTI-REFLECTIVE FRONT COATING 

13% EFFICIENCY AMO AT 27°C 

COVER 

CERIA DOPED MICROSHEET 

2 MIL THICK GLASS 

1 MIL THICK SILICONE ADHESIVE 

TABLE 2.4.1-3. BASELINE SOLAR CELL FOR CONCENTRATOR ENHANCED SOLAR ARRAYS
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This data is for a thin 
silicon cell. 2 x 2 cm, 
10 OHM-cm resistivity. 
See table 2.4.1-3 
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FIGURE 2.41-1. PHOTOVOLTAIC RESPONSE FOR BASELINE SOLAR CELL 
27"C AT AMO SUN ILLUMINATION 
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increase in current is typically less than 0.1% per °C. The decrease of



voltage with temperature is typically near 2.2 mV per 0C. Both of these



dependencies, and therefore the temperature dependence of cell power, depends



slightly on cell design features. The expected temperature dependency for the



baseline 50 micrometer cell of this study is shown in Figure 2.4.1-2. This



dependency was established by compiling measured data on various, existing
 


types of silicon cells and projecting to the baseline cell (References, 13,



14 and 15).



The operating temperature of cells depends upon the amount of



sunlight actually absorbed by the cells. Figure 2.4.1-3 shows the useful current



response of the cell as a function of the wavelength of incident light. A key



feature to this is the lack of response at wavelengths much longer than 1.1



micrometers. These longer wavelengths contribute only to heating the cell,



not to useful electrical energy. The heating of the cell actually'reduces



the cell output as indicated in Figure 2.4.l-2. Since about one-fourth of



sunlight energy is at these longer wavelengths, anything done to the cell to



enhance reflectance of this long wavelength light contributes to increased



efficiency of the cell. Of course, as much absorbtion as possible is desired



at shorter wavelength where direct photovoltaic conversion occurs. Using the



specified (Table 2.4.1-1) dual anti-reflective layer for low reflection of short



wavelengths and the reflective back contact to reflect part of the long wave


lengths, the predicted reflectance of the baseline cell is-presented in Figure



2.4.1-3. Both Figures 2.4.1-3 and 2.4.1-4 were used elsewhere in this report to



establish trade-offs in optimizing power by considering the effect of using



"cold" mirrors (visible reflecting, IR transmitting) for the concentrator



surfaces.



The final factor that needs to be considered for solar cells is the
 


effect of non-normal sunlight illumination. In general, concentrator systems



will cause the light to impinge on the array at a wide range of incident angles.



The effect of angle of incidence on cell power is summarized in Figure 2.4.1-5.



As long as the incident angle is within 600 of normal, the power drop off with



angle can be approximated by the cosine of the angle.



While the solar cell is the most important part of any array, thereby



receiving the most attention in this report, the other array components also



are needed to make a practical array. The choice of a 50 micrometer thick



cover was based on the thinnest glass that can be cast in production quantity.



While not presently available is such quantity, it could be produced if a



market were developed. The other array components, listed in Table 2.4.1-1,



are conventional, available materials.
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2.4.2 Phase I - Thermal Analysis



Solar Array and Reflector Coating Thermal Characteristics



Solar Array temperatures for the several candidate concentrator



design concepts considered in Phase I were calculated parametrically as



functions of solar distance, geometric concentration ratio, and concentrator



surface finish. In all cases the array was assumed to utilize 2 mil silicon



solar cells possessing projected thermal/optical radiation properties and



electrical efficiencies comparable to the K6 3/4 type cell. In addition,



all designs analyzed utilize backlit arrays and, therefore, were assumed to



be covered with 2 mil silvered Teflon on the back side to minimize absorbed



solar heat loads (solar absorptance,o(= .1, total hemispherical emittance



6=.66). Temperature data on the front lit designs were obtained from



reference 2 for the 2D-FPT, and reference 6 for the CPC.



The projected spectral reflectance for the assumed solar cell is



shown in Figure 2.4.2-1. The resulting open circuit solar absorptance is



0.79. Total hemispherical emittance was taken as 0.80. Cell electrical



efficiency was considered in the calculation of array front (cell) side



solar loads, i.e., the effective cell absorptance was taken as the difference



between the open circuit absorptance and the efficiency. Assembled efficiency



data as functions of temperature and solar irradiance are shown in Figure



2.4.1-2 (Section 2.4.1). Array temperatures were calculated iteratively



using these temperature dependent data.



Three reflector coatings were assumed in the initial analysis effort.



Vapor deposited aluminum (VDA) was examined because it is the simplest to



utilize. However, because the VDA is an ordinary mirror and hence non selective



specularly, use results in the highest predicted array temperatures. A
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reflectance of 0.9 was assumed, consistent with the Lockheed study (Reference



2). The assumed VDA emittance was 0.04 and absorptance 0.1.



The second finish examined was the OCLI "cold mirror" coating



described in the Hughes Aircraft Company's concentrator design study proposal



(Reference 5). This coating has the advantage of being "tailored" to reflect



primarily in the wavelengths in which the silicon cells are electrically ef


ficient, thus resulting in lower array temperatures. A reflectance of 0.42,



an absorptance of 0.26, and an emittance of 0.7 were assumed for this coating.



These first two properties are based on the coating spectral reflectance and



transmittance data provided by the vendor as presented in Figure 2.4.2-2.



Because this coating is very spectrally selective, the effective cell open



circuit absorptance for incident illumination reflected from the cold mirror



surface is somewhat higher than the value derived for direct solar illumination.



This is a result of the coating being highly transparent to solar energy in



the longer wavelengths (where the solar cells have a moderately high reflec


tance) and highly reflective in the 0.5 to 0.9 wavelength region where the



cells have high absorptance. The cell open circuit absorptance for solar



energy received from the cold mirror reflector was calculated to be 0.87.



This effect is somewhat offset by the fact that the effective cell efficiency



(again, based on incident energy reflected from the cold mirror) is somewhat



higher for the same reasons. Spectral analysis of cell electrical response



has shown that a cell receiving unconcentrated solar energy reflected from



the cold mirror will produce only 64 percent of the power produced by a cell



receiving direct solar irradiation, assuming a fixed cell temperature. However,



because only 42 percentof the total direct energy is reflected onto the first



cell, its effective efficiency is .6or1.52 times the efficiency derived



for direct illumination.
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Similar adjustments were not required-for the VDA reflector finish



because its reflectance is relatively flat across the solar wavelengths.



The third finish considered was a germanium coating supplied by



Valtek. This coating has a high reflectance in the wavelengths from about
 


0.4 to 0.65 microns, meaning that a large fraction of the solar energy above



0.65 to which the cells are responsive is lost. Because the total reflec


tance is only 0.31, use of this coating results in lower array temperatures.



However, because this advantage does not compensate for the reduced energy



available to the cells, this coating was not retained as a candidate reflector
 


finish. Valtek coating spectral reflectance data are shown in Figure 2.4.2-3.



All calculations, regardless of assumed reflector front side finish,
 


were based on a reflector backside emittance of 0.5, which is consistent with



a 1/2 mil thick Kapton reflector substrate. It was also assumed that imper


fections in the reflector surface will cause only 90 percent of the reflected



solar load to be directed into the array.



Array Temperature Predictions



Because of the numerous candidate concentrator design concepts and
 


the many possible configurations of a given concept, a comprehensive thermal



analysis of all designs and configurations of interest was considered beyond



the scope of this limited study. Instead, two of the thermally more straight


forward concepts were analyzed in detail for a given configuration which, in



each case, preliminary optimization studies indicated gave near maximum



specific power, neglecting temperature effects. The two designs analyzed were



the passive multiple flat plate concentrator (MFPC) and the 3-D MFPC.



Figure 2.4.2-4 schematically depicts the elements of the thermal



models developed for these two designs. As shown, the solar array was
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treated as a single node as were each of the symmetric pairs of reflector



panels. Solar heat loads, both direct and reflected, were considered for each



of these nodes. Infrared radiation interchange between the various reflector
 


nodes and between these dones and the array was included.
 


Predicted array temperatures as a function of solar distance and



geometric concentration ratio are shown in Figure 2.4.2-5 and 2.4.2-6 for the



passive MFPC and the 3-D MFPC, respectively, assuming the cold mirror reflector



coating. The geometric configuration of either design was set by the selection
 


of the H/L ratio, where



H= distance from array to inboard edge of first reflector plate,
 


measured parallel to reflector axis of symmetry



L = array width.



The overall length of one wing of the passive MFPC was taken as 1.5 times the



overall width, which it is believed will result in a favorable (minimum weight)



structural design arrangement. This is explained in Section 3.1.7.



The concentration ratios shown in the figures represent those



resulting from deleting appropriate pairs of reflector plates. This is



representative of the reflector plate furling or rolling-up technique selected



as the means for varying concentration ratio of this design.



The dashed portions of the temperature curves indicate those regions



of solar intensity and/or concentration ratio where the irradiance on the



array fell outside the ranges shown on the cell efficiency curves. In the



case of irradiances above 500 mw/cm2 the efficiency data for 500 mw/cm2 were



used. Justification for this decision is contained in Figure 2.4.1-2. For



2
values below 25 mw/cm , linear extrapolation was assumed. These regions do



not encompass conditions of primary concern, either because array temperatures
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FIGURE 2.4.2-4. CONCENTRATOR THERMAL MODEL





exceed the allowable 150°C upper limit, or are so low that they have little



effect on array output.



A comparison of the resulting temperatures for these two design



concepts show little or no difference at a given concentration ratio and solar



distance. This suggests that the differences in these designs, largely, the



view from the arrays to the reflector plates, have small influence on the



array temperatures. Intuitively, the infrared loads on the array from the



reflector should be small at the high concentration ratios because array



temperatures are substantially higher than those of the reflector. At lower



concentrations, the array view factors to the reflector are small because of



fewer plates being deployed. To quantify this supposition, array temperatures



were recalculated over the same ranges of concentration ratios and solar dis


tances, neglecting radiation interchange with the reflector. These results



are presented in Figure 2.4.2-7 as the difference between the predicted tempera


tures including interchange and those neglecting interchange plotted against



array temperature neglecting interchange. As indicated, this difference in



temperatures is relatively small and appears to correlate with array tempera


ture level.



These results led to the conclusion that the data shown in Figures



2.4.2-5 and 2.4.2-6 could be used for a broad range of MFPC configurations



(i.e., other H/L values) with sufficient accuracy for the purposes of this



comparative study.



Furthermore, the results shown in Figure 2.4.2-7 were utilized to



easily calculate array temperatures for much higher concentration ratios



characteristic of the active MFPC design. The resulting temperatures for



this extrapolation are shown in Figure 2.4.2-8, again only for the cold



mirror reflector coating.
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The reflexicon concentrator design could have been treated in the



same manner except for one important difference. The conically shaped array



(approximated by trapezoids) has a small but significant view of itself



(backside surface) which restricts rejection of the front side solar load to



space. A simplified analytical model, comparable to the no radiation exchange



model described above, was developed to which the array self blocking was



added. The temperatures derived from this model were compared with those



neglecting the blocking. The resulting temperature differences are shown



in Figure 2.4.2-9 as a function of solar distance and concentration ratio.



By combining these data with the reflector interchange effects of Figure



2.4.2-7, estimates of reflexicon array temperatures were developed as



shown in Figure 2.4.2-10.



As indicated, all of the foregoing temperature predictions were



based on the cold mirror reflector coating. Similar passive MFPC and



3-D MFPC array temperatures were developed, as indicated in Figures



2.4.2-11 and 2.4.2-12, based on a VDA reflector coating. As can be



seen, these temperatures are significantly higher than those shown for



the cold mirror reflector. A similar analysis of reflector radiation



interchange effects indicated that the reflector infrared loads to the



array could be neglected in the determination of array temperatures. This



is consistent with the fact that the low reflector emittance (.04) results



in very low radiation coupling terms, while the high reflector backside



emittance (.66) results in relatively low reflector temperatures. Based



on this finding, the array temperatures at higher concentration ratios



(active MFPC) shown in Figure 2.4.2-13 were calculated.
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Estimated reflexicon array temperatures for the VDA reflector



coating given in Figure 2.4.2-14, were developed using data similar to



that shown in Figure 2.4.2-9.



Finally, the effects of finish degradation (i.e., increase in solar



absorptance) of the silvered Teflon covering the backside of solar array



(common to all backlit designs) were examined for the passive MFPC operating



at I AU. The Teflon absorptance was assumed to increase from 0.1 to 0.2,



which is typical of 7 to 10 years exposure in a geosynchronous orbit and



significantly more severe than degradation expected in interplanetary



missions. The predicted array temperature increases are shown in



Figure 2.4.2-15 as a function of concentration ratio for both candidate



reflector coatings. As indicated, these effects are relatively small



at higher concentration ratios, increasing to almost 20 C at a concentra


tion ratio of 1.0 with a cold mirror reflector.
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2.4.3 	 Phase I - Concept Optimization and Evaluations Results



The basic calculation procedure followed in predicting the performance



of each concept is described by Figures 2.4.3-1 and 2.4.3-1 (continued). These



figures illustrate the step by step procedure by a specific example calcula


tion. The 	 procedure was merely repeated, parametrically varying AU and Cg



for each concept and for each of the two reflector coatings considered. This



procedure was not applied to the 2 front-lit configurations inasmuch as



performance data on these designs was obtainable from References 2 and 6. The



data obtained from these references was of course adjusted to eliminate



differences in starting array size, solar cell and cover dimensions and solar



cell efficiencies.



For purposes of comparison, the performance of an unconcentrated



planar SEP array was also calculated.. For calculating specific power, the



weight of the SEP array was obtained from Reference 2 and adjusted to eliminate



differences with the baseline array relative to cell type, array size, and



efficiency.



Configuration Optimization



Performance results are presented in Figure 2.4.3-3 for one



particular concept, the semi-active MFPC. Here, specific power is plotted



versus the maximum C 
g 

for solar distances of 4 AU and 6 AU, respectively.
 


Every point on either curve represents a different but specific geometric



configuration of the same concept; each configuration characterized by the



maximum C 
g 

it can deliver and possessing a different number and/or size of



mirrors and a different total mass.



Each curve exhibits a maximum which defines the optimum configura


tion for operating at that solar distance. Since the curves are relatively
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G IV EN 

e 3D41FPC CONCEPT CONFIGURED TO PERMIT CG MAX = 5.2 

OCLI COATING 
AT 1 AU AND 550C), CELL EFFICIENCY AT 550C 11.5%BASELINE SOLAR ARRAY (25 rK 
 

SPECIFIC POWER AT 6 AU AND CG = 5,2 

25 X Ce (CELL EFFICIENCY ATTEMP FOR 6 AU).



POIER OUTPUT = X 
(AU)2 (CELL EFFICIENCY AT 5500)



= 
@ FOR OCLI COATING Ce CoG X 0,90 X 0.64 = 0.576 X CG 0.576 X 5,2 = 2,99 

6,T = -115°C@ FROM IEUPCURVE FOR THIS CONCEPT, WHEN CG = 5.2 AND AU = 

FIGURE 2.4.3-1- EXAMPLE TO ILLUSTRATE PROCEDURE USED TO CALCULATE SPECIFIC POWER





AT 1 AU WITH NO REFLECTOR, SOLAR IRRADIANCE 135 MU-Iu- AT 6 AU AND WITH 
CM 

135 X 2,99- AU2 = 
AN EFFECTIVE CONCENTRATIO RATIO OF 2.99, IRRADIANCE 

BECOMES 
 

11,2 
Cill 

-1150C,AND IRRADIANCE 11.2, EFFICIENCY 13.8%

FROM CELL EFFICIENCY CURVE, WHEN T = 

ON 

THEREFORE, POWER OUTPUT = 25 X 2.99 13.8 2.5 KW


36 11.5 

FROM WEIGHT VERSUS CG CONFIGURATION CURVE, 3D-MFPC SYSTEM WEIGHT 
:544 KG 

2,5 KBf 
0.0046 KW/KGSPECIFIC POWER AT 6 AU = 544 KG.-


USED TO CALCULATE SPECIFIC POWER (CONTINUED)
FIGURE 2 4 o3-1. EXAMPLE TO ILLUSTRATE PROCEDURE 



20,_ 

16 

14 -

12 

10 

(EACH POINT REPRESENTS DIFFERENT GEOMETRIC 
CONFIGURATION OF SAME CONCEPT) 

6,6A 

4 

2 4 6 8 10 
MAXIMUM GEOMETRIC CONCENTRATION 

12 
RATIO, CG 

14 16 18 

FIGURE 2.4.3-3. TYPICAL SPECIFIC POWER VS. CG0 CURVES FOR ACTIVE M4FPC CONCEPTUAL DESIGN 
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flat at the maximum, a range of choices are available, all of which maximize



specific power. Within this range of choices, the most cost effective choice



is clearly the configuration with the highest C since this one will use the


g 

fewest solar cells for any required power output. For example, in Figure



2.4.3-3 at 6 AU, the maximum occurs between C = 8 and 16. Therefore, for

g



primary operation at 6 AU, the C = 16 configuration appears best, yet both


g



deliver about 10 watts per Kg which is approximately the maximum value possible.



On the other hand, C = 16 would be a very poor choice if operation were
 
g



intended primarily at 4 AU. At this distance, the figure shows that the



C = 10 configuration would deliver 25% more watts per Kg than would the
g



C = 16. The shape of the curves in the figure are typical of-all the con
g 

centrator concepts studied. 

Concentrator Concept Evaluation Results 

Relative to specific power and power output performance, concentra

tor concept ranking varied with solar distance. When optimized for primary 

operation at 1 AU, the 2D-Front lit flat plate trough (2D-FPT) with VDA 

coated mirrors proved best with a 25% improvement in specific power over an 

unconcentrated silicon cell array (114 versus 91 w/kg). The other concepts 

showed little improvement in specific power over an unconcentrated array 

with either mirror coating studied for silicon solar cells. The 2D-FPT 

was also the best performer-in power output at 1 AU, generating 35.8 kw. 

These 1 AU results are shown in Figure 2.4.3-4. 

Table 2.4.3-1 summarizes the results of the various concepts when 

optimized for operation at 6 AU but examined between 1 AU and 6 AU. At 6 AU, 

the reflexicon is the best candidate if specific power is the sole criterion 

for judgment. The semi-active MFPC, with nearly the same specific power, 
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appears more attractive than the reflexicon because of its reduced structural
 


complexity and higher concentration ratio which reduces the number of cells



needed.



Independent of power performance, each concept was additionally



evaluated in terms of cost related parameters such as deployment simplicity,



freedom from stability and control problems, intrinsic reliability, simplicity



of concentration ratio variability, compatibility with existing solar array



designs, earth testability, restrictions on attached spacecraft, etc. This



was accomplished by polling a selected group of spacecraft designers and



assigning a numerical rating to their admittedly subjective opinions.



The consensus was that the 2D-FPT concept could be implemented at



the lowest cost and with the fewest technical difficulties, the CPC concept



was ranked very close to the leader, and then the three MFPC concepts formed



a group with admittedly greater complexity, but still well within the limits
 


of existing technology. The reflexicon was judged to be the most expensive



and complex if the six design concepts.



Conclusions for Phase I



Based on a combined evaluation of specific power and subjective



design criteria, the 2D-FPC appears to be the best concentrator design for



arrays using silicon solar cells at 1 AU. At distances greater than 1.5 AU,



some version of the two dimensional MFPC appears best for enhancing the
 


performance of silicon solar cell arrays. At 6 AU the semi-active MFPC



used in conjunction with ultra-thin silicon cells shows dramatic improve


ments over planar arrays.
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- _ _ - - - - - - - - -

Table 2.4.3-1 

THIN CELL SILICON ARRAY 
 

13% CELL AMO 270C



Unconcentrated 2D-FPT 
 

Sep Array with


Thin cells



1AU 25KW 35.2KW 
 

1.5AU 14.2KW 21.3KW 
 

2AU f 7.9KW 13.9KW 

4AU 1.8KW 3.2KW 

6AU 0.7KW 1,3KW 

Optimum Con.' 
Ratio at 6AU, - 1.81 

_ _ - - g - - - - - - - - - - -

Total Conc. 273kg 307kg 
 
Array Mass



Power to


Mass at 6AU 2.6 w/kg 4.1 w/kg 
 

I 

CONCENTRATED ARRAY PERFORMANCE COMPARISONS



6 AU OPTIMIZED CONFIGURATIONS



Passive M-PC

CPC 3D-MPC Reflexicon mirrors) 

29.2KW 28.9KW 28.9KW 28.9KW 

29.2KW 34.3KW ; 34.3 KW 34.3KW 

21.7KW 

7.1KW 

2.7KW 

j 

27,6KW 

10.2KW 

4,34KW 

33.4KW 

15,6KW 

7.6KW 

1 

j 
29.6KW 

11,7KW 

5.2KW 

4.66 6 10 7 


g717kg 664kg 816kg 


8.2 w/kg 6.0 w/kg 11.4 w/kg 6.3 w/kg

JI 

Semi-Active

MFPC-(44 mirrors 

28.9KW



34,3KW



34.9KW



22.0KW



12,1KW



16



175kg



10.8 w/kg





0.12 
- 2D-FPT VDA REFLECTORS 

= 1.81cG 

01 TYPICAL 	 BACK-LIT SOLAR CONCENTRATOR


PERFORMANCE WHEN OPTIMIZED FOR PRIMARY 
USE AT 	 1 AU (COMPARED WITH SEP AND 

-	 2D-FPT ARRAYS) 

a 0.08 

O.06
0 

iL. 

5ACTIVE MFPC WITH OCLI "COLD 
LLI MIRROR" REFLECTORS 

c%0.04 C 3 

UNCONCENTRATED \ 
SEP ARRAAY

0.02 	 ACTIVE MFPC WITH 

VDA REFLECTORS 

CG



0 1 2" _ 3 . 5 6 
SOLAR DISTANCE, AU 1 

FIGURE 2.4.3-4. CONCENTRATOR PERFORMANCE AT 1 AU 
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At large solar distances, the Vapor Deposited Aluminum reflector



coating (VDA) produced a much better power output performance from every



concept than did the particular cold mirror coating that was also considered.



This was found to be the case in spite of the fact that VDA, with its



nonselective high solar reflectance, results in the highest predicted array



temperatures. At large solar distances where irradiance levels and tempera


tures are low, cell efficiency tends to be less sensitive to temperature



change. Thus, the reduction in temperature produced by substituting the



cold mirror coating for the VDA yields only small benefit. However, since



the cold mirror only reflects 6A% of the solar spectrum that is useable by



the cells (as opposed to 90% for the VDA) the power output'is reduced



significantly. The detrimental effect outweighs, by far, the beneficial



effect producing a net loss.



At 1 AU, however, the situation is somewhat different. With VDA



coated reflectors, the temperatures are so high that the maximum allowable



concentration ratio (C ) is limited to approximately 3 if the 150 C array



temperature limit is not to be exceeded. However, with cold mirror coated 

reflectors, the reduction in temperature is so significant that concentration 

ratios up to Cg = 6 are achievable before the 1500C temp limit is exceeded. 

This factor of Xincrease in concentration (from Cg = 3 to C. = 6) more than 

compensates for the lower total reflectance of the cold mirror as opposed to



the VDA (.64 versus .90). Thus, a net improvement in power output can be



realized from a cold mirror coating at 1 AU with any concept that can generate



high concentration ratios; i.e., Cg>>.3. specific power, on the other hand,



may or may not be improved by the cold mirror at 1 AU. This depends on the



rate with which the mass of the concept increases with increasing Cg. Of the
 


concepts evaluated, the front-lit 2D-FPT performed the same with VDA as it did
 


with the cold-mirror, because concentration ratios greater than Cg 2 are not



achievable without unreasonable mirror size. With the diffuse mirror CPC, the



cold-mirror reduces the overall reflection efficiency to unacceptable levels.



The remaining back-lit designs all show only minor improvement in specific



power such that the 2D-FPT with VDA is still superior at 1 AU.



66





3.0 PHASE II - TECHNICAL SUMMARY 

(Semi-active MFPC Design)





3.1 FINAL MFPC CONFIGURATION OPTIMIZATION



3.1.1 Phase II Optimization Objective



The semi-active MFPC configuration selected during Phase I and used



as a starting point for Phase II was one that generated a geometric concentration
 


ratio of 16 and that employed a dual V shaped array. The CG=16 selection was



based on Phase I performance studies which found this value to be optimum for



maximizing the specific power at 6 AU. The V-shaped array was chosen to reduce



angle of incidence effects by causing the reflected light from the mirrors to be



received more nearly normal to the array plane. Because of the V-shaped array



geometry, each mirror could only illuminate one half of the array, and the mirrors



were sized accordingly. A further consideration, which effected the final design



in Phase I, was the selection of a t 1 tolerance on the accuracy of the



individual mirror tracking devices. This dictated the magnitude of the increased



width incorporated in the mirror sizing.



One goal of the Phase II study was a re-examination of the semi-active



MFPC configuration chosen to achieve the OG=16 concentration ratio, the objective



being to determine if a further reduction in size and/or mass is possible.



Specifically, the questions posed were:



a) 	 Is the V-shaped dual array configuration chosen to minimize angle of



incidence effects in fact the best choice when traded against other



effects it may induce?
 


b) 	 Has the optimum ratio of array width to mirror distance been



determined?



c) 	 Is the tolerance selected on sun tracker accuracy reasonable and



achievable?



d) 	 Can a significant refinement of the sizing of the major structural 

members be achieved within the scope of Phase II? 

3.1.2 Optical Design - Equations



The equations for the design of an individual reflector panel are



shown in Figures 3.1.2a and 3.1.2b. The method of analysis is to assume an



array angle and an array-to-reflector distance. The equations then completely



define the reflector geometry, the only variable being the number of panels



selected. Using these equations, a computer program was written to design
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EQUATIONS FOR OPTICAL DESIGN
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reflectors, and using a search method, to select an optimum geometry for a



desired concentration ratio.



3.1.3 Mirror Pointing Accuracy
 


Optical performance of the semi-active MFPC is strongly dependent on 

the pointing accuracy achieved by the solar tracker. Several mechanisms are 

discussed in 3.2.2; the common trait is the production of a sunspot, with a feedback 

system which maintains the spot in a fixed location. One limit on the accuracy 

achievable is the degree of collimation in the incoming light; at one A U this 

is t 1/2; at 6 A U this limit is t 1/12 degree. Another limit is the amount 

of linear translation produced by an axis shift. A conclusion from the study is 

that a motion of 1/8 inch should be sufficient to actuate a properly designed 

feedback mechanism. With a 10 inch separation from the concentrator, this gives 

an accuracy of t .7 degree. Therefore, the selection of an accuracy of - I degree 

as the requirement for our solar tracker is confirmed. 

3.1.4 Single vs. Dual Arrays



In the Phase I Study, as previously mentioned, configurations in which



the array was in two (V-shaped) symmetric sections, at an arbitrary angle to the



solar axis were investigated. During Phase II thermal analysis, however, it



was determined that a planar array configuration with the array perpendicular to



the sun gave equivalent optical performance, with reduced solar cell temperatures.



The need to reduce angle of incidence losses with a V-shaped array was therefore



re-examined. It was found that these losses are in fact negligible. (See



Section 3.1.6) It was, thus, concluded that the superior configuration is the



planar array with each mirror illuminating the entire array rather than 1/2 as



with the V-shaped array. Obviously, there is some weight savings due to the
 


reduced number of parts; there is also reduced complexity, a cooler array, and



a slightly smaller reflector. With a change in array shape, the optimum config


uration had to be redetermined using the computerized method of Section 3.1.2.



3.1.5 Specific Geometry Selection



Table 3.1.5(a) shows the dependence of area ratio R on array/reflector



spacing H/L, for a required maximum concentration of 16 using a flat array.



The optimum R occurs for H/L from 10 to 14. However, to minimize the weight of
 


the end struts, 10 was selected. Note that "R", at 28.7, is about 10% less than



the value of 32 developed during Phase I. This alone reduces weight by perhaps
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T


L 

H/L AREA RATIO ,CONCENTRATION 

16 is not 
8 or less -- achievable 

9 31.0 16.37 

10 28.7 16.15 

12 28.94 16.4



14 28.39 16.05



16 30.14 16.49



18 31.8 
 16.83



TABLE 3.1.5a



AREAS RATIOS FOR VARIOUS ARRAY/REFLECTOR SPACINGS
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5%. Also, the planar array system uses a smaller number of reflector panels,



each a larger size; this reduces the number of solar trackers and bearing



assemblies required, saving even more weight. The planar array choice will also



reduce development cost inasmuch as planar array designs have already been



implemented by Hughes as well as by others in the industry.



3.1.6 Angle of Incidence Effects



One problem with the planar array system, especially for smaller values



of H/L, is that much of the reflected light impinges on the array at a very



shallow angle. This is not desireable, as it causes some of the received light



to be reflected from the solar cell. This loss was, therefore, evaluated,



using the angle of incidence solar cell data presented in the Phase I report (see



Figure 3.1.6(a)). Calculating the light loss for each reflector panel and



summing, it was found that the effect was negligible in the light of the benefits



to be derived from the planar array. For example, for the concentrator with



H/L = 10, the light loss is 2.6%; for H/L = 12, the loss is 1.9%.



3.1.7 	 Final Size Selection



All calculations and data discussed above has been based on normalized



(i.e., dimensionless) parameters. To actually size a concentrator/array system,



we must know a) the array area required, and b) the overall aspect ratio desired.



The Phase I study used an array area of 1044 square feet for each wing, and



generated 12 kW at 6 A U, This reduces to an array area of 86.6 square feet for



the I kW 	 Phase II study. The aspect ratio can be studied parametrically in the



future, but the Phase II scope did not permit such a study and a value had to



be selected. The primary structural elements affected by the aspect ratio are



the shaping beam, which reduces in weight as the concentrator becomes long and



thin, and the central mast, which becomes heavier. As a first estimate of the



optimum, we decided to make these masses approximately equal. Based on the



phase I study, we felt this would occur at an aspect ratio near 1.5:1. From



the weight statement, in 3.4, it can be seen that the shaping beam; at 8.8



pounds, is heavier than the mast and connister, at 7 pounds. From the above



reasoning, there may be a slight benefit to be derived from lengthening the



concentrator somewhat further. A design which satisfies the above constraints



results in L (width of the solar array) equal to 16 inches, a length of 65 feet,



and a reflector aperture of 38.8 feet for one wing. These are the final dimensions



that were utilized in the weight analysis. The cross-section is shown in Figure



3.1.7a. The array utilized in this system, if unconcentrated and sun facing,



would generate 2.08 kw at I AU and 0.06 kw at 6 AU. (See figure 3.6.1-1)
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ARRAY IS 16" WIDE



CENTER IS (0,0)


x 

REFLECTOR



MAST IS


AT (0,7.3 FEET) V



REFLECTOR POINTS


CALCULATED PER SYMMETRIC


3.1.2 	 (IN FEET) _ ABOUT 

Y-AXISYNO. X 

1 1.8 13.3 

2 3.6 13.2



3 5.4 12.9



4 7.1 12.5



5 8.7 12.0



6 i0.3 11.4



7 	 11.7. 10.8


ifi
8 13.2 10.2



9 14.6 9.5



10 15.8 8.7



11 17,1 8,0



13 19.4 6.4.



FIGURE 3.1.7a



CROSS SECTION OF CHOSEN REFLECTOR/ARRAY SYSTEM
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3.2 Discussion of Drawings



3.2.1 Introduction



Drawings have been prepared to show the system, including the method



of attachment to the spacecraft. These drawings which are shown in Appendix



B, are intended to show size, configuration, and some proposed details. As



will be discussed in the following sections, there are some problems which



have not been resolved, and others with several possible solutions. In



creating the drawings, mechanisms which Hughes believes to be appropriate



at this time were selected; however, the text in many cases discusses



possible alternatives. The intent was to show that the problems are



solvable, and to permit a reasonable weight estimate to be prepared.



3.2.2 Solar Tracker Mechanisms



The key to the use of the semi-active MFPC is the use of a tracking



mechanism which can aim individual mirrors,and which does not require intel


ligent control from the spacecraft or complex sensing devices. Similar



requirements arise in terrestrial applications of solar energy, and several



mechanisms have been discussed in the literature. One apparatus uses a



reflector which concentrates solar heat onto a bellows filled with fluid.



The fluid boils, creating a pressure which is dependent on the temperature, and



therefore on the amount of the bellows which is illuminated. Another uses a



pair of solar cells, one of which is illuminated when the sun if off-axis



clockwise, the other when it is counterclockwise; the output being fed to a



D. C. motor. Still another technique focuses light onto a bi-metallic spring



(like a home thermostat). The common feature to these approaches is that the



effect of an axis shift of the sun relative to the tracker is to cause a



motion in'some device; i.e., the expansion or contraction of the bellows,
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rotation of the motor, or deflection of the bi-metallic spring. This motion is



fed into an appropriate linkage which points the system at the new sun position.



Note that due to the geometry involved in a system such as the 3-D MFPC, the



rotation of the reflector panel must be half that of the sun (or solar tracker)
 


to ensure that the light reflected does not shift.



3.2.3 	 Selection of the Solar Tracker ,



The bellows method discussed above is probably not suitable in this



application. The large surface area of the bellows makes its temperature



strongly dependent on temperatures of surrounding equipment, which will vary



widely with solar distance. The solar cell/motor approach is a viable candi


date, but at this point, Hughes believes it will require excessive mass. The



hi-metallic spring approach is probably the lowest mass, and should be quite



responsive. Also, it is very similar in concept to thermal control louver



designs, which Hughes and others have flows successfully in mission-critical



spacecraft applications. The Hughes mechanism uses a coiled bi-metallic



element, with one-half shaded by a mirror. The shade is applied to light re


ceived from a parabolic reflector. The parts are aligned such that when the



sun is on-axis the shading mirror reflects half the sunlight away, and the



Kapton mirror is in the proper position to reflect light on the array. As



the sun moves with respect to the concentrator, the bi-metallic spring is



either brought into complete light or darkness, causing a temperature change,



and generating a restoring torque. One end of the spring is fixed to a



shaft, which rides in a bearing on the shaping beam; the other end is fixed



to the beam. The concentrator and shading mirrors are also attached to the



shaft. Thus the system is always maintained in the proper sun pointing posi


tion. A linkage could be used to achieve the 2:1 angle reduction required.
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However, Hughes has selected a gear pair,. as shown, because less stowage



space is required.



3.2.4 	 Hinges



A large number of self-actuating, self-locking, moment-carrying



hinges are required for the system chosen, with our specific configuration



using 54. Two basic types are possible candidates. One is a design pre


viously patented by HAC (one of the inventors is a member of this study



team) using 2 C-section strips of a spring material, fastened together at



the ends to form a slit tube about 2 diameters long. The C-section pieces



can be buckled and twisted to collapse the hinge; when released, it



straightens and locks. This is an elegant, light-weight mechanism, but



suffers from the difficulty of incorporating adjustment of the locked



position. Many of the hinges in the MFPC design are required to lock in



an off-axis position, and it would be desirable to incorporate an adjustment



capability. Therefore, Hughes has selected a traditional-type hinge for



this study with 2 tubular elements, a pivot pin, and a positive-latch bar.



The locked position can be varied by moving the pivot mounting of the latch.



3.2.5 	 Constant-Tension Device



As the concentrator moves away from the sun, the Kapton temperature



will vary substantially, causing a change in length. A means of compensating



for this motion, which will be on the order of 3-4 inches, while still main


taining uniform tension, is required. Such a capability was incorporated



into the 	 chosen reflector end-bearing device. This bearing allows both



axial and rotational motion of the Kapton at the attach end fitting of the



shaft. A constant-tension spring attached to the outboard end of the shaft



provides the necessary force. Note that this equipment is required on one
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end of the mirror only.



3.2.6 End Truss Network



A network of struts and cables is required at each end of the re


flector system. The 2 shaping beams are made of graphite-epoxy, in multiple



segments, connected with the self-actuating hinges discussed above. Two



transverse compression struts, each in two pieces with a hinge, and 10 in


plane cables as shown in the drawing, form a partial "bicycle wheel" system



to transfer torsional loads into the central column. An axial compression



strut serves as the attach point for the Kapton tension cables; one goes to



each reflector pivot mechanism. This minimizes the bending load imposed on



the shaping bean. Note that the inboard axial compression strut carries the



torque from the central column mast to the spacecraft attach point.



3.2.7 Central Mast
 


The central mast is a standard coilable lattice-column which deploys



from a compact cannister. Such masts have been used in space and are ex


tremely light weight efficient structures. The primary load that must be



carried by this mast is axial compression which is defined by the tension in



the Kapton mirrors and solar array. The tension load is calculated to total



14 pounds.



The basic equations for sizing the central mast were taken from



"Parametric Data for Coilable Lattice Booms for Deploying and Supporting



Solar Cell Arrays from Spacecraft," prepared for VPL by AEC - Able Engineering



Co., Inc. Purchase Order No. JS-685133. The equations use constants based on



fiberglass-epoxy properties. To reduce weight, the equations were modified to



reflect high strength graphite-epoxy properties instead and to allow buckling



of the individual rod elements simultaneous with overall column buckling.
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Using a 	 2x safety factor, the required mast is only 4 inches in diameter.



This is considerably smaller than would be required for a fiberglass-epoxy



mast, thus a substantial weight savings is realized. Note that the mast on



the drawing is not shown to scale, but is shown larger for clarity.



3.2.8 	 Stowage



As shown in the deployment sketch, the concentrator/solar array



assembly is stowed as basically a rectangular box, with 6 struts projecting



from each end. The "box" is about 48 inches wide by 24 inches high by 30



inches long, and the struts project a maximum of 48 inches on each side.



A support pallet would be required; this has not been studied. The design



of the spacecraft-side interface, and the relative positions of the two



power modules with relation to the spacecraft when stowed in the shuttle



bay, have also not been investigated.



3.2.9 	 Deployment



The overall sequencing of the deployment has been determined, but



much work needs to be completed on the specific details, especially the



proper stowage of the cables to ensure freedom from tangling.



The first step is to release the three struts on each end, and the



shaping beams. These deploy and lock in place automatically when released.



It may be necessary to provide specific sequencing of this actuation. The



central column then deploys, pulling out the solar array and the Kapton re


flector elements!. Since the constant-tension mechanism is collapsed, the



tension forces are very small at this time. As the mast reaches the full



length, the reflector panels are completely extended, and the constant-tension



spring is pulled out, applying the required loads to ensure reflector panel



flatness.
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3.3 STRUCTURAL CONSIDERATIONS



The primary structure in the semi-active MFPC aside from the deployable



central mast is the shaping beam at each end of the Kapton reflector strips.



The shaping beam controls the positions of the ends of the Kapton strips.



A structural analysis was performed to determine the shaping beam cross



section. This enabled a determination of the structural weight contained in



the beam anda design concept to be initiated for the shaping beam latch mechan


ism. The analysis used the following assumptions:



1) The beam will be a circular cross section tube



2) The material will be graphite epoxy with an elastic modulus of



twenty million psi along the axis of the tube



3) The only loads that the tube must react are the components of the



Kapton tension that act in the plane of the curved shaping beam due



to the angles of the cable network at each end of the array



4) The criteria for the tube size is that the deflection of the end of



the tube not exceed two feet and that the strength be adequate.



A finite element model of half of the shaping beam was created using the



SPAR program. A computer plot of this model is included in Appendix A. A



plot showing the undeformed and deformed shape is also included. A preliminary



calculation of the beam stress and deformation as a uniformly loaded cantilever



beam gave a preliminary cross section of 1.5 inches O.D. with a .028 inch wall



thickness. The results of the analysis using this cross section are shown in



Appendix A. The maximum deflection of the shaping beam was 13;l inches, well



within the desired two feet. The maximum moment was 473 in-lb which produced



a stress level of just over 10,000 psi. This stress level is low compared to



the allowable stress of approximately 60,000 psi for a 6Y70-E42 graphite epoxy



composite. Therefore the analysis substantiated the design choice of a graphite



epoxy tube 1.5 in. O.D. with ).028 in. wall for the shaping beam.
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The remaining structural effort was concentrated on an overview of



the structural design to assess the feasibility. The design has a wire



braced strut that ties the shaping beam and the solar cell array to the central



mast. This strut constrains the torsional movement of the shaping beam system



so that the torsional stiffness of the central mast now determines the tor


sional frequency of the system. This is an attempt to produce as high a



torsional frequency as possible.
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3.4 	 WEIGHT SUMMARY
 


The weights shown below are for one wing, generating 1/2 kilowatt at



6 A.U.



REFLECTOR 	 WEIGHT, LBS.



Kapton 5.5 

Graphite/Epoxy End Beams 8.8 

Shaping Beam Locking Hinges - .08 lb x 48 required 3.8 

Central Mast 3.0 

Cannister 4.0 

Axial End Struts 

Inboard 1.5 

Outboard 1.3 

Transverse Compression Struts 

Mast - Array .90 lb. x 2 required 1.8 

Mast - Reflector .75 lb. x 2 required 1.5 

Solar Tracker Mechanism 

.5 lb. x 48 requited 24.0 

Reflector Pivots 

Outboard Side - .22 x 24 required 5.3 

Inboard Side  .12 x 24 required 2.9 

Kapton Support Rod and Attach Rod 4.0 

Cables 3.0 

Total Reflector and Structure Weight 70.4 

SOLAR ARRAY 

Blanket & Cushion 11.4 

Shaft & Bearings 1.8 

Slip Ring Assembly 2.9 

Drum 2.9 

Tension Spring & Brake 1.4 

Total Array 20.4 

Total Weight 90.8 lb 
+ 8% Deployment & Pallet 7.2 

98.0 

2 Wings Required - Total 196.0 lb. (89.0 kg) 
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3.5 Modularity



There are two possible ways to add concentrated solar power assemblies.



One method is to simply add additional modules axially; this has the minimum



effect on the spacecraft, but requires stronger, stiffer central mast and end
 


struts, for a weight penalty, and makes deployment somewhat more complex.



Also, there will be some power loss and increased weight due to the longer



power cables required. Only even numbers of power assemblies can be used, due



to the requirement to maintain the center of gravity at the spacecraft; for



example, if 2.4 kW is required, this can be achieved with 5 modules, but a



sixth (or ballast weights) must be carried for balance. The alternative is



to add assemblies as spokes from the spacecraft; this is lighter weight, and



has no penalties from the power module viewpoint, but it complicates the



spacecraft side interface. If many modules are used, the spacecraft field of



view is blocked in some directions (this could be a serious problem for



some scientific missions) and a large radius is required from the space


craft center to the mounting interface (see 3.5a).
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2 MODULES ~NO MINIMUM 

3 MODULES -

MINIMUM RADIUS TO 
INTERFACE IS 3.2



FEET



S ODULES - MINIMUM 
RADIUS TO INTERFACE



FIGURE 3.5a.



MOUNTING OF MULTIPLE MODULES CIRCUMFERENTIALLY
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3.6 	 PERFORMANCE SUMMERY



The following is a summary of the performance characteristics of the



Phase II semi-active MFPC power module as described in the drawings of



Appendix B and discussed in Section 3.2.



3.6.1 	 Output Performance 

General Description: A back-lit, trough type, semi-active Multiple Flat 

Plate Concentrator system divided into two equal wings. 

Solar Array Description: Each wing contains a flexible rolledrup solar 

cell blanket which deploys as a planar array. 

Array area = 86.7 sq. ft. per wing (16 inches X 65 Ft) 

Cells: 50 micrometers thick with a 50 micrometers glass cover, 13% 

efficient. 

Starting Power: Unconcentrated array, if sun facing, can deliver I kw 

per wing at I AU, AMO, BOL, and 55"C. * 

Concentrator: Back lit configuration (Array backside faces the sun)



Area Ratio: 28.7



Mirrors: 24 per wing provide uniform illumination (12 each side)



Length per mirror = 67 ft.



Width per mirror = variable,



(19 inch average)



17.3 	 minimumi



21.6 maximum



Material: 8 micrometers thick Kapton, first surface VDA coated.



Geometric Concentration Ratio, CG: stepwise variable from 16.15 maximum



t6 0.75 minimudf ift approximately 0.1



increments



Reflection Losses: VDA reflectivity loss 10%



Geometric Distortion loss 10%



Angle of incidence loss 2.6%



* See table 3.6.i-1 
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Reflection Efficiency: 78.9%



Effective Concentration Ratio: 12.7 Maximum



System Weight: 44.5 kg per wing, 89 kg total
 


Output: See table 3.6.-1 and Figure 3.6.1-1



Table 3.6.1-1



Array Performance - Total for Both Wings



Concentrated Array Specific Power C 
g 

Array Array Power 

Power Output (Watts/KG) Employed Temp. If Unconcen-

AU (KW) °C trated 

1 2.62 29.3 3 1450 2.08



1.5 2.72 30.7 6 1260 1.14



2 2.83 31.7 12 1370 0.65


° 
 4 1.79 20.0 16.1 32 0.15



6 .98 11.0 -280 0.06



3.6.2 Dynamic Performance of Phase II Concentrator Design



A lumped mass analysis of torsional frequency, assuming loads are rigidly
 


tied to the central mast by the end trusses, gives a natural frequency of .012 Hz.
 


Calculations are shown in Appendix C. This is only slightly less than the .015 Hz



quoted by GE (reference 6) but considerable lower than the 0.4 Hz stated by



Lockheed (reference2) as an objective. However, both the above numbers were



caluulated for a bending mode; neither referenced study analyzed for torsional



frequency, which HAC believes is really the lowest frequency mode in long open



trough structures of this type.
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3.6.3 Thermal Performance - Phase II Design



The thermal analysis performed in Phase I (described in Section .2,4,2)



was directly applicable to the further development of the active and passive



MFPC concentrator designs undertaken in Phase II, this being largely a



refinement of the structural design and a scaling down of the configuration



for a I KW unconcentrated array.



Typical reflector temperatures, shown in Figure 3.6.3-1, were provided



as support to an investigation of possible material degradation in the an


ticipated concentrator mission environments. These temperatures are repre


sentative of near maximum levels, i.e., those reflector "plates" most nearly



normal to the sunline. The small view to the solar array and, in the case



of a VDA reflector finish, the low front side emittance make reflector



temperatures relatively insensitive to the design configuration.



To aid in the comparison of concentrator performance characteristics,



unconcentrated array temperatures were calculated, utilizing the 2 mil



K6 3/4 cell properties and efficiencies derived for the Phase I analysis.



These temperatures were determined by the same technique of iterating array



temperature and efficiency and are presented in Figure 3.6.3-2 as function



of solar distance.
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3.6.4 Anticipated Performance of Mirrors in Space Environment



The reflectors on the multiple flat plate concentrator design pro


posed by HAC would be made using first surface mirrors of 8 micrometers



Kapton (Polyimide) film coated on one side with vacuum deposited aluminum.



The coating will be at least 1000 A° thick, to result in an initial reflect


ivity of 90-92%.



The use of the thin, VDA coated Kapton in space, for long periods of



time, raises the question of possible degradation-, either of the aluminum



coating or the Kapton substrate. This degradation could result from several



sources; e.g., temperature build-up from IR radiation from the sun, cross


link induced Kapton embrittlement due to UV and particulate radiation,



aluminum coating loss as a result of Kapton embrittlement, and possible
 


micrometeoroid erosion of the VDA. Another possible source of damage, which



can be avoided by proper design, is impact damage from Mercury ions from an



ion engine in missions which utilize such an engine. These deteriorating



influences are discussed below.



Using the known OC ratio for the VDA coated Kapton film, it has been



calculated that the equilibrium temperature of the film, with the aluminum



surface facing the sun, will range from -10°C at 1 AU to as low as -167°C
 


at 6 AU. (See Section 3.6.3). The fact that the film will, at all times,



be at a low temperature should inhibit degradation due to UV absorption,



which in the case of Kapton, is mostly molecular chain cross-linking.



While in most cases the above statement is true, if any UV is absorbed



by the Kapton, the possibility exists that at temperatures substantially



below the Kapton glass transition point (where molecular activity is lessened)



another effect might come into play. In this case the lower temperatures



might enhance embrittlement by increasing the half life of the free radicals
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generated ky the UV radiation. The longer half lives could then result in



increased recombinations with the net result of a higher degree of cross


linking per unit of radiation. Of course, if the VDA coating is impervious to



UV radiation, this effect cannot occur. (The backside of the Kapton should



never face the sun). The entire hypothesis, including the extent to which



various thicknessis of VDA screen out the UV radiation, should be investigated



by test.



With regard to creep, the ultimate effect of cross-linking is increased



strength (and increased brittleness), both of which act to inhibit creep (Ref. 7).



Thus, under the 50 psi design tension load creep should be negligible. (A



study of Kapton creep on a specacraft, where the temperature was calculated to


o 

be =230 F and the loading was to be 700 psi, indicated a creep of 1.7% in seven



years).Ref. 8. In any case the VDA will protect against UV deterioration.



The amount of protection will, of course, be dependent of the amount of VIA



employed.



With regard to particulate radiation, the greatest degradation from



this source, it is believed could occur in passage through the Van Allen belts.



The inner belt, ranging from=300 to4500 miles, will be quickly traversed and



should not result in degradation of significance. Passage tirough the outer belt,



at--10,000 toS30,000 miles should likewise result in no appreciable degradation



due to the short passage time. Particulate impingement damage to either the



film or the VDA will be dependent on the time,and flux density. Ref. 9 states,



Reflectance degradation in a 2-mil film of Type H Kapton backed by aluminum
 


is strongly dependent upon electron energy. (Ref. 10). The 2-keV electron



results are characterized by, a peaking of degradation at a wavelength of approxi


mately 0.5 micrometers. The 50-keV electron results and 80 keV electron results



show maximum degradation at a wavelengt. of approximately 0.60 micrometers, For



a fluence of 1015 electrons/cm2 , 50-keV degradation is some six times the



20-keV degradation, whereas 80-keV degradation is some eight times that at
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20-keV," Thus for long term missions the degradation would depend on the
 


deposited dose and dose profile.



Polymer modification or degradation due to outgassing effects will



probably be negligible, since the VDA is unaffected by the vacuum, and the



Kapton is substantially free of all outgassing components.



Micrometeroid encounters, it is believed can be discounted since,



except for shower encounters, a single micrometeoroid would merely affect a



very small area, and not cause a rip or large hole. Nevertheless, imbedding



thin glass or Kevlar threads in a square weave pattern, e.g. on 2 in. centers



would give the construction a rip stop quality, which in terms of tear insur


ance and added stiffness might be worth the additional weight.



While the possibilities of degrading factors are apparently quite low,



assuming the major portion of the mission is further than 1 Au,there are never


theless, several areas where further research is well justified. One of these
 


research projects should be an investigation of the effects of ionizing radia


tion on the VDA coating in a vacuum. The second area is a determination of the
 


minimum amount of VDA which will furnish substantial attenuation to the in


coming UV and particulate radiation (especially solar protons in 0.5-3KeV



energy range).



Another suggested research project is to determine the need to provide



tear resistance in the Kapton substrate to contend with: (a) electron doses



deposited by electrons with energiesZ 100 KeV (I.E., in traversing the Van



Allen belt) followed by (b) micrometeoroid impact.
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______ 

3.7 ROM COST ESTIMATE SUMMARY :HUGHES


L ---------- .---- _ J 

HUGHES AIRCRAFT COMPANY 

FOR DESIGN, DEVELOPMENT & MANUFACTURE OF FLIGHT'READY CONCENTRATOR SYSTEM. PHASE II 

DESIGN, (1KW AT 6 AU) COST (MANUF. LEVEL) 

K$ YEAR 1' 2 3 4 5 

DESIGN ENGINEERING 1,135 DEV. -AL. FLT.



ANALYSIS & DESIGN SUPPORT 1,485



(INCLUDES SYSTEMS ENGR.



AND MANAGEMENT)



u DEVELOPMENT HARDWARE 

2 FABRICATION 607 
t DEVELOPMENT TEST 220



QUALM TEST HARDWARE FAB. 1,700



QUALIFICATION TEST 440



FLIGHT SYSTEM FABRICATION 3,500



FLIGHT ACCEPTANCE TEST 120


TOTAL 9,207



G&A AND PROFIT ia4


11,047





!HUGHES


L--.. . J.....---
COMPARISON OF ESTIMATED RECURRING'COSTS 
 
HUGHES A RCRAFT COMPANY 

* CONCENTRATED ARRAY (1KW AT 6 AU) 

o 40,000 CELLS AT 15$/CELL 600 KS



@ REMAINING STRUCTURE (LESS CELLS) 3.000 KS



# G&A AND PROFIT 720 KS



TOTAL 4,320 KS



* UNCONCENTRATED ARRAY (1KW AT 6 AU)



REQUIRES 33,3 KW ARRAY AT 1 UA OR 668,000 CELLS 
AT 15 S/CELL = 10,020 KS 

a 
 

@ ASSUME REMAINING STRUCTURE CAN BE PRODUCED AT


HALF THE COST OF A CONCENTRATED SYSTEM



0.5 X 3,000 1,500 KS



@ G&A AND PROFIT = 2,304 K$



TOTAL 13,824 KS



CONCLUSION



CONCENTRATED ARRAY AT LEAST 1/3 COST
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APPENDIX A 

STRESS ANALYSIS COMPUTATIONS
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CASE I -

*GROUP 

E2I FORlCES. DIVIDED 3Y 1.0000 

INDEX JOINT P1 P2 P3 P4 P5 P6 

I 1 -1.84 .00 6.50 .00 -473.03 .00 
2 1.84 .00 -6.59 .00 43.30 .00 

2 2 -1.93 .00 6.41 .00 -433.30 '00 
3 1.93 .00 '-6.41 .00 391.59 .00 

3 3 -2.33 .0O 6.05 .00 -301.59 .00 
4 2.33 .00 -6.05 .no 340.57 .00 

4 4 -2.42 .. 00 5.70 .00 -340.57 .00 
5 2.42 .00 -5.70 .00 289.81 .00 

5 5 -2.51 .00 5.28 .00 -239.81 .00 
6 2.51 .00 -5.28 .00 239.39 .00 

6 6 -2.46 .00 4.84 .00 -239.39 .00 

7 -2.46 .00 -4.34 .00 188.88 .00 

7 7 -2.34 .no 4.37 .00 -188.88 .00 

8 2.34 .00 -4.37 .00 146.20 .00 

8 8 -1.89 .00 4.00 .00 -146.19 .00 
9 1.89 .00 -4.00 .00 109.58 .00 

Q 9 -1.84 .00 3.35 .00 -109.57 .00 
10 1.34 .00 -3.35 .00 75.09 .00 

10 10 -1.79 .00 2.62 .00 -75.09 .00 
II 1.79 .00 -2.62 .00 44.03 .00 

II 11 -1.15 .00 2.18 .00 -44.03 .00 
12 1.15 .00 -2.18 .00 23.64 .00 

12 12 -.97 .30 1.39 .03 -23.63 .00 
13 .97 .00 -1.38 .0 7.82 .00 

13 13 -.45 .00 .73 .0 -7.82 .00 
14 .45 .00 -.73 .00 .00 .0o 

-XIfDC;C I 23.362 0 10 

'Al-A' SPACE= 15000 
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ALL 
' " ?£PLTB 
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*'tXUT SSOL 
SYSV COMPLETED.



EXIf 19.275 3 3


1XuT VPRT


OATX SPACE= 20000



CASE F*U U*KU ERR



I .2372209+02 .2386415+02 -.5952635-02



EXIf 21.897 9 9


-PRINT STAT REA*Do*


-PRINT STAT 'ISP


[AfA SPACE= 20000



STATIC DISPLACEMiENTS. 10= 1/1/ 

J(I NT I 2 6 
I .000 * .000 *..000 * 
2 -.550-04 -.153+00 -.140-01


3 -.246-01 -.594+00 -.267-01


4 -.142+00 -. 13J+01 -.381-01


5 -.348+00 -.217+01 -.475-01


6 -.656+00 -.316+01 -.551-01


7 -.108+01 -.429+01 -.613-01


8 -.153+01 -535+01 -.657-01


9 -.202+01 -.656+01 -.692-01


10 -.261+01 -.775+01 -.717-01


II -.331+01 -.879+01 -.732-01


12 -.393+01 -.994+01 -.740-01


13 -.464+01 -.109+02 -.744-01


14 -.535+01 -.120+02 -.745-01



-P.2 IT STAT REAC



jiiAFIC REACTIONS, FORCE EPRORS. ID= I/I/



I IT 11. 2 

1 .659+01* .1.34+01* .473+03*


2 .264-04 .908-05 .763-04


3 .990-04 .505-0-4 -.1 22-03


4 .461-03 .279-04 .610-04


5 .317-03 .823-04 .366-03


6 .305-02 .104-02 .793-03


7 -.220-02 .231 -02 .000


-- .22.5-02 -.375-03
3 -.262-02
 
9 .485-02 .317-02 -.954-03 
10 .117-01 -.207-02 -.671-03 
11 .347-02 .727-02 .427-03 
12 -.491-02 .124-01 -.244-03 
13 -.113-01 -.172-01 -.476-0Q WOJNAL PAGE rS 
14 .796-02 -.167-01 -.171-02 

"- G,SF 

XIT 23.405 0 7


"•X l' 'SF 
",ASPACE= 19000



I _f 26.204 a 14


- '2 ISPL Y=2 102





L, VOL OR 
TYPE GROUP AREA SUM 
E21 I .251810+03 

TOTAL 
 

EXIT 
>DXQT 
,OATA 
E2 1 

6.612 
TOPO 
SPACE= 
COMPLETED 

16000 

4 

EXIT 8.902 
>',XOT K 
DATA SPACE= 20000 

3 

1o. OF 2-11ODE ELEMENTS= 

l)TAL NO. OF ELEMENTS= 
TIME .005 .030 

'iAXCoN, MAXSUB, ILMAX= 
 
TIE .000 .080



'-SIZENR5,LR5= 3 
 

X!XCOH, MAXSUB, ILIMAX= 
T MIE .000 .080 

SIZE INIDEX= 3, ICI. 
 

EXIT 12.506 5 
>")XOT INV 

PATS SPACE= 16000 

EXIP 15.354 3 
>>IFSET CON=l 

>*XOT AUS 
'ATA SPACE= 24500 

r'SI'j,rlNEG= 0 0 

EXIT 17.491 3 
,-YSVEC:APPL FORc 1 
'AT A SPACE= 20000 

>[=1 2 
>j=;, 14, 1 
>-.031 -.270


-. 162 -.2655



.94 -. 253\32 
"-.3196 -.234


"-.3914 -. 2115 

.,635 -. 1845 

.266 -. 1575 
-.1305



--.t571 -.099


-'-. 711 -. 063 
-. 7695 -.0315 

STRUCTURAL 
WEIGHT 
.205414+01 

NON-STRUCTURAL 
WEIGHT 
.000000 

.205414+01 .000000 

16 

6 

13 

13 

157 1400 

I 

149 1400 

IC2= 40 

6 

52 

896 

52 

27, NR4= 

19 

6 
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10= 1/1/1



..... UN)F.TD(?.A4Et



SPEC 
CRLE 1.1 



U
 

-4i 

C
 

7



<
J
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: nuntnMrf : 
L -- - - - -- - - -

IUGHES AIRCMAFT COMPANY 

ANALYSIS pLM..?- C ,CE N17-XA"- MODEL REPORT NO. 

PREPARED BYAXAAA% I- 2-^ 
CHECKED BY



ANA L'/S13 ?s-SuLTS 

%3~, N. 

"TOTALI,%' ' 3,U 

-(N\ tob--S I To 2L 

%jz(2 V ob .o2- wA~tt Thj~ 

o o 

...... ... .. ... 
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APPENDIX B 

DRAWINGS 
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APPENDIX C



CALCULATION FOR ESTIMATED TORSIONAL 

NATURAL FREQUENCY 
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-APPEMDIX C.



CALcszr~n rt<ESrIMATEIA TOR$J~oAJAL, MPv'A ReeC'Gcr 

L /A) 


14 -rA~~e 

3,,9/0or /1 

Cf-r ccri 

4 sfl0 

#A 

.qg 

s rw"FtsvDc~ 

oz.~ 48XSd??- - . -4~r "JP4A"7 

(7fC.c,)2Ax//I 

7/ z7>(.
2.7 74fKio X3g,03KagI-e 

66. xi)72211t 


