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Abstract 

The A-contractivity of Runge-Kutta methods with respect to an inner- 

product norm, was investigated thoroughly by Butcher and Burrage 

(who used the term B-stability). Their theory is here extended to 

contractivity in a region bounded by a circle through the origin. 

The largest ~ossible circle is calculated for many known explicit 

Runge-Kutta methods. As a rule it is considerab:y smdler than the 

stability region, and in several cases it degenerates to a point. 

An explicit Runge-Kutta method cannot be contractive in any circle of 

this class, if it is more than fourth order accurate. The practical 

relevance of this analysis is not yet quite clear. 



1. Introduction 

We investigate the  contract ivi ty  of Runge-Kutta methods when applied t o  

nonlinear d i f f e r en t i a l  equations. While s t a b i l i t y  of a method is  con- 

cerned with the boundedness of the  numerical r e su l t ,  contract ivi ty  

requests tha t  the  difference of any two numerical solutions,  computed 

with the same stepsize,  does not grow i n  a cer tain norm. For one-step 

methods and the natural norm, given by the  d i f f e r en t i a l  equation, both 

concepts a re  ident ica l  i f  the  d i f f e r en t i a l  equation is  l i nea r  with 

constant coefficients.  In  the other cases contract ivi ty  i s  a stronger 

requirement. 

For l inear  multistep methods contract ivi ty  has been introduced by 

Dahlquist [4],  where it was cal led G-stability. G stands fo r  a posi t ive 

def in i te  matrix which is method dependent and i s  used t o  define a norm 

i n  the space of numerical ~ o l u t i o n s .  Nevanlinna and Liniger [ lo]  have 

t rea ted  contract ivi ty  of l inear  multistep methods using method 

independent norms, such as t he  maximum norm. Butcher [3] introduced 

B-stability which is contract ivi ty  fo r  nonlinear, autonomous contractive 

d i f fe ren t ia l  equations using the  natural  norm. In [ 11 similar contract ivi ty  

concepts have been discussed,namely AN-stability fo r  nonautcrnomous l i nea r  

and BN-stability f o r  nonautonomuous nonlinear systems. These concepts 

reduce t o  A-stability i n  the l inear  constant coeff icient  case and are  

thus only reasonable f o r  implici t  methods. We extend the  c o n t r ~ c t i v i t y  

concept for  Runqe-Kutts methods i n  such a way tha t  expl ic i t  methods are 

included too. We w i l l  be using the  na tc ra l  norm i n  contrast  t o  i21 where an 

'dea similar t o  Dahlquist!~ G-stability i s  in t r~duced .  In a l l  these concepts 

one requests a cer ta in  monotonicity conriition for  the d i f f e r en t i a l  equation. 

In the p ~ e s e n t  a r t i c l e  t h i s  condition i s  given i n  (2.9). Then it i s  shown 

tha t  the numerical method when applied t o  such a d i f f e r en t i a l  equation 

i s  contractive fo r  e i t he r  a rb i t ra ry  or  special  choices of the s tepsize h. 

In  the remaining part  of t h i s  section we give an out l ine of the a r t i c l e .  

In  Section 2 basic notations and defini t ions a re  given. In par t icular  

the monotonicity condition f o r  the  nonlinear different ial .  equations and 

the concept of contract ivi ty  a re  described. In  Section 3 the r-circle  

contract ivi ty  is  introduced, I f  a method is r-circle  contractive then 

the s t a b i l i t y  region contains the in t e r io r  o r  exter ior  of a disk of 

radius Irl which is  tangent ial  t o  the imaginary axis  at the origin. 

However, the converse i e  not t rue ,  i.e. there  a re  methods whose s t a b i l i t y  

region contains a disk of radius r with the or igin on the boundary 

which are  not r -circle  contractive. We then give purely algebraic neceeeary 

and suf f ic ien t  condition i n  terms of the  coeff icients  fo r  a method t o  be 



r-circle contractive, An algorithm is given which enables one to colnpute 

r for any given explicit or implj :it Runge-Kutta method. It is natural to 

introduce the concept of reducible methods. 

An m-stage Runge-Kutta method is rducible if there exists an ml-stage 

Runge-Kutta method with m'*m and both methods give identical results on 

any computer which carries out additions of 0 and multiplications by 0 

without round-off errors. It is then shown that for irreducible r-circle 

contractive methods l/r is a contibuous function of the coefficients of 

the method and that this is not the case if one admits reducible methods. 

Further confluent methods are introduced. A method is called confluent if 

at least two of the row sums of the coefficient matrix A are equal. It is 

then shown that to any confluent method, which is r-circle contractive and 

to any E > 0 there exists a nonconfluent method which is rlcircle contractive 

and I 1 /r - 1 /r ' I * B . In Section 4 we show that one has numerical contractivity 
for nonlinear differential equations if the method is r-circle contractive, 

if the differential equation satisfies the monotonicity condition (2.9) and 

if h is chosen appropriatelye*1n Section 5 we show that for an explicit 

r-circle contractive method one has rem, where m is the number of stages. 

This result is sharp. Further if r is negative then the p is 1 error order 

and rs1/2c where c is the error constant of the method. Finally, we list 

the value of r for many of the well known explicit Runge-Kutta methods. 

* It is shown that sn e licit circle contractive method cannot have an =I error order exceeding . 



2. The methods and the test equation 

For solving i n i t i a l  value problem 

(2.1 ) y l ( t )  = f ( t , y ( t ) ) ,  Y(O)  given, y,f E R' o r  c', 
we consider m stage Runge-Kutta methods. Let h > O  be the 8 t e p s i r e , t n = n h  

and yn is the  numerical approximation t o  the exact solution y( tn) . The 

numerical solution yn+l at = tn+ h is  computed as 

where 

We always request 

and 

Observe tha t  by (2. ha) the  method has an error  order of a t  l eas t  one. 

(2.4b) is not necessary for  a method t o  be convergent, see [ 11 I .  
However, it is convenient i n  notation t o  have (2.4b) and pract ical ly all 

known methods sa t i s fy  (2.4b). Moreover, the extension of the present 

resul t s  t o  methods without (2.4b) is  t r i v i a l .  If the matrix A = {aij} is 

s t r i c t l y  lower triangular then the method is called explici t  otherwise 

implicit. We c a l l  a method monfh&mt  i f  all ci are d is t inc t  and 

conftwnt otherwise. For compactness i n  notation we introduce the vectors 

Y,F ( y ) € P s  or  and ICE? defined by n 

We shal l  simplify the  notation by the ure of the K- mckertproduct symbol a, 
see [ 5 ,  pe 1161. In  order t o  avoid parenthese8 we assume tha t  hrs  higher 

priori ty than ordinary matrix multiplication. Let I8 be the 8x6 identi ty 
T w t r i x .  and l e t  b = (bl,b2 ,..., b,). Then (2.2) redm 

and (2.3) takes the  form 



The aim of  t h i s  a r t i c l e  f o  i n v e s t i g 9  p d e r  what conditions any 

two numerical solutions yn which are  computed I. j na , l , . . .  
with the same h w i l l  satisi'y the  inequal i t ies ,  

We assume here t h a t  ilull: - ( U , U ) ~  where ( , ) is an inner product defined 

on o r  p. Note t h a t  i n  contraat t o  G-stability [b] and the  nonlinear 

s t a b i l i t y  i n  [21 the norm does not depend on the  method used but only on 

the  d i f f e r en t i a l  equation t reated.  We tdur of nlasricat omtractid@ i f  

(2.8) is  sa t i s f ied .  The main purpose of t h i s  a r t i c l e  i s  t o  show numerical 

contractivity.  To do t h i s  we need t o  impose conditions on the  d i f f e r en t i a l  

equations and on the  methods. The condition on the  method is the  r-circle  

contract ivi ty  which is t rea ted  i n  Section 3. For t he  d i f f e r en t i a l  equation 

we request the  monotonicity condition 

In Section 4 we s h a l l  show tha t  i f  a , r  and the s tepsize h sa t i s fy  the  

inequality (4.2) then one has numerical contractivity.  To c l a r i fy  the  

condition (2.9) we observe t h a t  f o r  a l i nea r  equation y' = Ay condition 

(2.9) becomes 

Thus i f  we introduce the  generalized disks 

then (2.10) i s  equivalent t o  XQD(112a). If a 2 0  then (2.9) implies t h a t  

f o r  two solutions y ( t )  and z ( t )  of (2.1 ) one has 

Further observe t h a t  a is  not invariant againrt  scaling. Let y ( t )  be 

solution of (2.1) sad define e(t):-  y ( t t ) .  Then z ( t )  is s solution of 

the  scaled systcm 

c w  = g ( t * c )  

where 

g(t*c):= t f ( t t , y )  . 



I f  (2 .1)  s a t i s f i e s  (2 .9)  with amaf  then g 8at i s f ies  (2 .9)  with a =  a = Taf. 
g 

Moreover (2 .9 )  with a > 0 implies that f i s  Lipschitz continuous with l/a 

as  Lipschitz constant, for one has 

Here we have used Schware ' s inequality and ( 2 .9 ) .  



3. The r-circle contractlvity 

In  t h i s  section ve define r-circle  contractivity.  In  order t o  motivate 

t h i s  def ini t ion we consider the  sca la r  t e s t  equation 

If one applies (2.6). (2.7) t o  (3.1) t he  numbers 

T 
and C = ( c ~ , c ~ , ~ . , ~ )  a r e  needed. Assume t h a t  (3.1) s a t i s f i e s  t he  

monotcnicity condition (2.9) then ci E D(r)  with r -  h/2a. If the  ci a re  

d i s t i nc t  then one can choose any m complex numbers C~ EDir)  and f ind  a 

smooth A ( t )  such tha t  (3.2) holds. Applying (2.61, (2.7) t o  (3.1) leads 

where 

(3.4) K ( C )  = I + b T z ( ~ m - ~ ~ ) - l n  

with 

(3.5) 2 = d i . g ( ~ ~ , ~ ~ , . . . , r ~ ) ,  

see [ 1 1. Clearly we have numerical contract ivi ty  i f  I K( C ) ( 5 1. This leads 

t o  the  

Definition 1. A Runge-Kutta method is ca l led  r-&rote contrrzetive i f  D ( r )  

i s  the la rges t  generalized disk with r 0 and 

A method is cal led &rote cwntraative i f  ( 3.6) holds fo r  some r + 0 .  

Note t h a t  fo r  a confluent method applied t o  (3.1) one never has ci * ( 
j 

i f  c . = c Nevertheless we request ( 3.6 1, One reason fo r  t h i ~  i8 ,  a8 we 
1 j* 

s h a l l  eee a t  the end of t h i s  section, t h a t  with the  preeent def in i t ion  

l / r  i s  a continuoue function of the coefficiente a: . and b. i f  the  method 
-J J 

is  irreducible. Clearly ~ ( r ) c  8, where S i e  the s t a b i l i t y  region of the 

method, given by 

s - 01eEl I K ( P ~ ) I  J 1)  

Following Burrsge and Butcher [I] we introduce the ntatrix, 



Theorem 3.1. A Ruwe-Kutta method i s  r -circle  contractive i f  and only i f  

(3.9) b .  2 0  f o r  j = 1 , 2  ,..., m 
J 

and p - l / r  i s  the largest  number such tha t  

Proof. According t o  Corollary 4.3, the  conditions (3.9) and (3.10) with an - 
arb i t ra ry  p '  imply tha t  (3.6) holds with r '  = -110' i f  p '  0 and r t  i f  
p '  = O .  We then only need the  converse r e su l t ,  namely 

LefMla 3.2, Assume (3.6) holds fo r  some r t  * O ,  r '  may be in f in i t e .  Then 

(3.9) an8 (3.10) hold fo r  p v = - l / r q  i f  r '  is  f i n i t e  a n d p v = O  otherwise. 

To show Lemma 3.2 we need t h e  following lemma of Burrage and Butcher [ l  I .  

Lemm 3.3, Let Z be such t h a t  Im- AZ i n  nonsingular and l e t  

Proof o f  Lemma 3.2. Assume t h a t  for  rome r '  one has (3.6). tha t  i e  

(3.13) I K ( c ) ~ ~  - 1 I 0 fo r  a l l  C E D ~ ( ~ ~ ) .  

To prove b. 2 0, assume on the  contrary t h a t  bi c 0 f o r  sane i .  Choose c - 0  
J j 

for  j * i and ci = -c. For r r 0 ruf f ic ien t ly  mall one ha8 f D"(rt ). By 

(3*11),  

The r igh t  hand r ide of (3.12) becomer 

with Ik(c)l+O am c*O. (3.15) i r  por i t ive  fo r  c suf f ic ien t ly  small. This 
contradicts (3.13). 



T 1 In order to show that w (Q+;i%)w is nonnegative we u s u e  the contrary. 

Let w - (wl,w 2,... ,  w ) T € ~  be such that m 

- - 
iq.c w 2 

k t  ipj = w./rt and cj= - r t  + r t e  = iw. r - b r 2  + 0(r3). By construction J J 2rt 

c = ((1,(2B...,cm)€~(rt) for all c. Since {.+O as r+O (3.14) holds 
J 

again. We substitute C .  in the right hand side of (3.12) and find 
J 

with k c )  0 a 0 Hence (3.16) gives a contradiction to (3.13) for r 

sufficiently mall. Thus (3.10) holds for pt=-l/rt. This proves Lamma 3.2 
and Theorem 3.1. 

Remark. From Theorem 3.1 follows eaaily that an algebraically stable method - 
in the sense of  Burrage and Butcher (1 1 is r-circle contractive with a non- 
positive r. 

In order to describe the situation where erne of the b. are equal to zero 
J 

it is convenient to introduce the 

Def ini t ion 2. An m-stsge Runge-Kutta method is called r e d d b b  if there 
exist two se!;s 8 and T such :hat 8*6, S n T = d ,  SUT={l,2,...,m) and 

(3.18) a = O  if j € T  and ~ E S .  
jk 

Tho method is called drrodudbh~ if it is not reducible. 

This definition mays that the rtrges with index in S don't have an influence 

on the final outcome of the integration provided mu1tipli~:ations by 0 

and dlitions of 0 are performed exactly. If the method ir reducible it ir 

equivalent to the m'-strge Runge-Kutta Method which conrirts of the strges 

with index in T only. Heace mt ir the number of elementm in T and mt em. 

We study now Theorem 3.1 for r-circle contractive methodm with some bk= 0. 

Let 8 and T be such that S U T  {1,2,...,m) end 

(3.19) 5k - 0 for k C 8  

(3.20) b * 0 for j Q T .  5 

S (3.7) , p, = 0 for k C  8. Hence for Q- pB to be nonnegative definite 



it is necerrary tha t  

(3.21) qkj = O ,  j.1.2 ..... m fo r  a l l  k C S .  

Since q - a b. when bk=O one finds t h s t  (3.21) i a  sa t inf ied  i f  and k j  j k j  
only i f  

(3.22) a = 0 whenever j € T and k E S . 
j k 

Thua (3.19). (3.20) and (3.22) imply t h a t  the  method ro reducible. We 

have therefore shown the  

Coral lary 3.4. An irreducible Runge-Kutta method is r-circle  contractive 

i f  and only i f  

(3.23) b . > O  f o r  j -1 .2  ..... m 
J 

and p = -1Ir is  the  l a rge r t  number such tha t  

Let 4 be the ae t  of a l l  i r reducible  c i r c l e  contractive Runge-Kutta methodr . 
Hence, by Corollary 3.4, a Runge-Kutta method i o  i n  c/a i f  and only i f  a l l  

b. a r e  positive.  The methodr i n &  a re  the  ones which i n t e r e r t  ur. I f  8 
J 

method is not i n d i t  is e i the r  not c i r c l e  contractive or  it is reducible 

and a f t e r  deleting the  i r relevant  rtrgeo one has a member of 4. 
In the following we sha l l  compute r for  a given method i n  4 Since all b 

v: j 
a re  positive it follow8 t h a t  B4 = d i q ( b 7 ,  bf , . . . . bm ) io  nonr inmar .  

Y Ueing the transfornution B  w r v reducer (3.24) t o  

Let v, .v2.. . . .v be the  ei#envaluer of t he  r e a l  and r)l.tric matrix B - ~ Q B - ~  . m 
~ e n c e t h e l a r g e r t  p f o r r h i c h  (3.25) hold8 i r p d n =  min vi an& t h w  

i=l.2.....t - 7 

by Corol luy  3.4 one hu 

Clearly the r e t d  i a  open aad odn - d n  vi m 1Ir i r  continuow 
i-1.e.a.m 

function of the  c ~ f f i c i + n t a  8 8nd b i f  the  Irathoda. Howaver, i f  8- i 3  3 
of t he  b tend t o  zero the  folloving p o r r i b i l i t i e r  c m  occur. Either the  

j 



l imit ing method i r  no l o w e r  r-circle  cont~.act ive,  ree fo r  example Heun'r 

method ( 5 .  lo), o r  e l r e  it murt became reducible. In the l a t t e r  cam r amy 

or  may not depend continuour1:r on b a s  the  following example ehowr. 
j ' 

Example 1. kt 

Clearly (2.4) and (3 .9)  a re  r a t i r f i e d  fo r  ill c €  [ O , l ] .  For cE (0.1) 
we f ind 

The eigenvaluer a re  

Hence 

However, i f  c =  0 then the method i r  reducible and c m  be reduced t o  Euler'r 

method with 

and 

Hence one 

cont i n u o ~  

note that 

zero even 

6Imin(O) = -1 

1 ha8 a dircontinuity on *g i f  a < -5. 1 and i f  a 2 - I ;  Pm&) i8  

i n  [0,1). 

r h i l a r  dircontinb Lie8 of pmin can occur u rune b. tend t o  
J 

i f  one r e r t r i c t r  onerelf *o the  c l a m  of expl ic i t  methobr. 

Obrerve t h a t  the  rot C of conflwnt  mothode i n 4  i r  a surface i n  4 of 
lover dimension. Thum by continuity of l l r  u a function of a and bj i d  
my confluent r -circle  contractive method i n &  c u  be approxiutcd by a 

aon confluent r ' -c i rcle  contractive muthod such that l/r ir u close 

t o  llr' u one virher. Thir property would not hold i f  we had 
replaced (3.6) by 

(3.27) (K(c)I 1 fo r  a l l  c € ? ( r ) n ~  



where 

as we can see in the following 

Example 2. Consider the claesical 3-stage Nystriim method of order 3 

given by 

see 191 p.48. If one canputes r using the above algorithm one obtains 

rw0.92668857. If we haa used (3.27) instead of (3.6) in the 

definition of r-circle contractivity one would have found r = 3 .  However, 
C 

for a31 = L sufficiently a 1  (3.6) and (3.27) are identical. Ihu. usixq 

(3.27) instead of (3.6) would have resulted in an r which does not depend 

continuously on the coefficients of the method. This is one reason for 

choosing (3.6) rather than (3.27). The main reason, however, is the 

Theorem 4.1 of the next section. 

Condition (3.27) was used by Burreige and Butcher [ 1). A similar condition 

(with intervals on the negative real axis) was used as early as in 1957 

by Liniger [ 1 31 . 



4. Nonlinear contractivi ty 

1 heorem 4.1. Assme the differential equation satisfies the monotonicity 

condition ( 2.9) and the Runge-Kutta method is r-circle contractive. Then 

two numerical solutions yn and zn computed using the same stepsize h >  0 

satisfy 

(4.1) llyn+l-zn+lll s I n - I  for n=0,lS2,. .. 
provided 

I h/r<2a if r * m  
(4.2) a L 0 and h arbitrary if rr-. 

Proof. First we observe that it is enough to show ( 4 . 1  ) for n = 0 only. - 
Subtracting from ( 2.6 ) the corresponding equation for the solution 
r \ 

where we have used the abbreviations 

and z E PS or PS is given by 

In a similar fashion one obtains from (2.7) the equation, 

where X = Y- 2. It is enough to show that 

The first term on the right hand side can be simplified if we introduce 

the following product t , 1 in R ~ '  or p. Let U,V E lpbe or 4? be given bgr 



where Ui ,Vi E R' or c'. Then 

Hence 

In order to show (4.6) we need an upper bound for Re[i@ xo .PI. The following 

lemma is an easy consequence of (2.9) and the definition (4.8). 

Lema 4.2. Assume b. 1 0  for j = 1.2,. . . ,m and that the monotonicity 
J 

condition (2.9) holds. Then 

Eliminating X from (4.10) using (4.5) leads to 

where 

Observe that P(F) is a quadratic form in F and it remains to show that its 

real part is nonnegative. Let G E fB or C?' be written as 

where Gi P R' or c'. Hence 



Thus by (3.10) R ~ P ( G )  i r  nonnegative i f  -2a/h I p = - l / r  if r*-. 
I f  r = - then a has t o  be nonnegative and h i e  arbitrary. This completes 

the proof of Theorem 4.1. 

Note that  (4.2) also shows that  the rcheme i s  numerically contractive i n  sane 

cases when :he different ial  system is  not so, nemely i f  a c 0 and r < 0. 

Corollary 4.3. Assume tha t  

(4.14) 

and 

b. 2 0 for  j =  1,2 ,..., m ,  
J 

where 

OD i f p 1 = O  

-1 p otherwise . 

and 

(4.18) 

Thus 

(4.19) 

X = x o P +  AZX.  

and we have proved the corollary provided (4.6) holdr . Thir i r ,  however, 

shown in  exactly the rmw n;y am i n  the proof of Theorem 4. 1. Suet obmerve 

tha t  c € p ( r t  ) impliem RetzX,X+ ~ z X ]  s 0 for  a 1/2rt  and tha t  (k.15) with 

p '  = - l / r t  implies ~ e P ( 0 )  20. 



Theorem 4.4. An irreducible Runge-Kutta method t h a t  is  more than fourth 

order accurate, cannot be c i r c l e  contractive (with respect t o  t he  qonns 

considered i n  t h i s  paper), unless 

These conditione cannot be sa t i s f i ed ,  i f  the  method is expl ic i t .  

Proof. We f i r s t  prove t h a t  (4.20) cannot hold f o r  exp l i c i t  methods. Since - 
fo r  an expl ic i t  method c, = 0 and 8.. - 0  f o r  j 2 i, it would follow fro (4.20) 

1J 
by induction tha t  c S O  f o r  i=1,2,3,...,m, which i s  possible f o r  f i r s t  order i 
accurate methods only. 

The other statements follow from the  pos i t iv i ty  of the b .  (Corollary 3.4) 
J 

and a lemma, t ha t  John C Butcher pointed out t o  us. 

LeIma 4.5. ( ~ u t c h e r  [ lb] ) .  If a Runge-Kutta method is  more than fourth order 

accurate, then 

Proof. The l e f t  hand s ide  of (4.21 ) can be written, - 

These sums are  associated with the  rooted t r e e s  of order 5 named, respectively, 

t 12, t g  and t g  i n  Butcher's algebraic theory, and, by 115, Table 9.31 t h e i r  

values are,  for any method t h a t  i s  more than fourth order accurate, respect- 

ively, 1/,?0, 1/10 and 115. Hence 

This proves the l a m a  and the  theorem. 

,The condit ior ,~ (4.20) and more general conditions of a similar type are  often 

ror implici t  Runge-Kutta methods , see e . g. [ 31. 

See t l s o  the conmrents at the  end of the  paper. 
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5. Methods with optimal r and examples 

Given an r-circle contractive Runge-Kutta Method, let D(r,) bc t h ~  lar~ent 

generalized disk of the form (2.11) in ito atnlvililhy region 2. 'l'lwn o l ~  has 

D(r) c D(rs). The following two examples show that U(r) may be a proper 

subset of D( rs ) . 
Example 3. The O-method is given by 

For B = O  it is reuucible and can be reduced to the implicit Euler method 

with r (0) = -1. For 0 = 1 it is reducible too and the reduced method is the 

explicit Euler method with r(l)= 1. For B E  (0,l) one finds riel= 118. 

In particular, for the trapezoidal rule, where 0 = 112, it follows that 
r( 112) = 2. This result ia in agreement with the fact that the trapezoidal 

rule is not B-stable, see [12]. To compute the stability region we observe 

that K(p3L) = (1 +~8)/(1 - (1-0)~). Hence S=D(r,(e)) with rs(8)= 1/(28-1). 

Therefore one has 

r(0) = -1 = rs(0) implicit Euler , 
D(r(8)) is a proper subset I for 0 <  0 <  1 
of D(rS(8)) 

r(l)=l=rs(l) explicit Euler . 
Note, however, that if we define, 

9, yn - (l-O)hf(tn,yn), 
then {Pnl satisfies the "one-leg" difference equation, 

%+ = 9 n +hf(Otn+ (l-O)tn+ls Ofn+ (l-0Wnrl] 

see [I]. It is well known [I] that this one-leg method is A-contractive 
1 

(betable) when 0 < 8 < 5. If en is defined &::dlogouely to Qn, it follows 
that 

wn+, - en,, 11 119~ - enll . 
1 

The conclusion is that, for 0 < 0 ;, the 0-method, although it is not &stable, 

is A-contractive with reapect to a different problem-dependent , metric . 
Example 4. The moat general two stage second order explicit Runge-Kutta 

method is characterized by 

see 16, p. 121 1. If a = 1 the method is reducible and thw not circie 
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contractive. However, f o r  a € (0.1 ) one f inds by an easy calculation tha t  

(5.1) r ( a )  = 

Here r ( a )  depends t ru ly  

t o  the s t a b i l i t y  region 

s = w e 1  I I + Y + v ~ ~  s 

(5.2) 

1 on a ,  and r ( a )  < 1 fo r  a * - . This is  i n  contrast  2 
S which is  independent of a .  In f ac t  

1 and thue 

It i s  well known tha t  S i s  bounded f o r  expl ic i t  methods. Hence r is posi t ive 

for  expl ic i t  c i r c l e  contractive methods. How large can r actual ly  be? 

Theorem 5.1. Assume en expl ic i t  m-stage Runge-Kutta method i s  r -circle  

contractive. Then 

Moreover, equality i s  only at ta ined i f  

(5.4) ~ ( ~ 1 1  = ( 1  +y , 

which implies t h a t  the e r ro r  order is one. The method with 

( 0  fo r  i s j  
a., = 
lJ Il/m fo r  i > j 

a t t a in s  equality i n  (5.3).  

Proof. In 181 it is shown t h a t  re sm with r e - m  i f  and only i f  (5.4) holds. - 
Thus from r s r follows (5.3) and (5.4). I f  a Runge-Kutta method hes e r ror  

s 
order p, then K ( y 3 ) -  eY = O ( V ~ + ~ ) .  For t he  special  K ( y 3 )  of (5.4) we f ind  

1 
~ ' - K ( ~ I )  = - i ; ~ 2 +  0(v3) and thue by (2.4) p =  1. An e u y  calculation 

- 

1 shows tha t  B-&QB-% = - -I fo r  t he  method given by (5.5). Thus by (3.26) m m 
one has r = m and equality i n  ( 5.3) holds. 

Let ue now consider t he  same problem fo r  implici t  methods. Burrwe and 

Butcher [ 11 have i n v e ~ t i g a t e d  alaebraic s t a b i l i t y  and shown t h a t  there  a r e  

implicit  m-etage Runge-Kutta methods of order 2m, 2m-1 and 2m-2 which a re  

algebraically s table ,  that is  r is nonpositive. The following t h e o ~ a  

gives a re la t ion  between the  s i t e  of a negative r and the  accuracy of tb. 

met hod. 



Theorem 5.2. Assume the  Rungo-Kutta method i s  r-circle  contractive with 

r <  0 and 

Then 

p = 1 ,  c < O  

and 

r s 1/2c. 

Proof. Let R be the radius of curvature of aS at y = 0. Since D ( r )  c 8 one - 
has tha t  0s R I -r. It remains t o  be shown t h a t  

Let as be given i n  a neighborhood of 0 by the  equation v = ~ ( t )  + it. 

~ ( t , )  i s  impl ic i t ly  defined by IIC((€(t)+ it)P)I = 1. Using (5.6) we find 

Implicit d i f fe ren t ia t ion  of (5.8) gives 

and hence ( 5.7 ) follows k e d i a t e l y .  
8 

Note tha t  fo r  implici t  r -circle  contractive methods with a nonpositive r 

the absolute value of r increase6 as the  accuracy increases. 



6. Calculation of r for  s m  explicit methods 

We omit the algebraical ly  etable  methods given i n  [ I ]  and r e a t r i c t  ourselves 

t o  the expl ic i t  methods l i e t e d  i n  [91. 

A l l  seoond order two stage methods a re  contained i n  Example 4. 

Third order fonu2ae. Note tha t  f o r  all these formulas, rsm1.25. 

Classic form 

-1 2 0 

bT - ( v, 24 5 

Nystrom form 

Heun form 

This method has bp = 0 and is irreducible.  Thus it is not c i r c l e  contractive. 

Ralstonts optimum third-order form 

Kuntzmannts optimun third-order form 

Fourth order fonuZa8. ~ o t e  t h a t  f o r  theme fomulas.  raw 1.4. 

Classical form 



Kutta f o m  

G i l l  form 

Kuntzman optimum fourth order form 

Ralston'a optimum fourth order form given i n  (9, p.581 i s  not c i r c l e  

contractive since b2- -0.55198066 < 0. 

Conceriiing methods of order exceeding four ,  see Theorem 4.4. 
Finally, we r eca l l  the remark, made i n  &ample 3 of Section 5. One can 

perhkps f ind a la rger  value of r with a d i f fe ren t  metric. Therefore, our 

valuee of r must not be considered as a f i n a l  verdict i n  the  comparieon 

of methods. Our conditions a r e  suf f ic ien t  f o r  good behaviow; on cer tain 

non-linear problems, rather  than necessary. 

It is aleo possible t ha t  the  picture can be br ighter  f o r  some methods, i f  

we relax our requirements a l i t t l e  i n  other respects,  e.g. by prac t ica l ly  

reasonable regular i ty  ansumptione fo r  the  function f .  One can perhaps 

"break the barr ier"  expressed i n  Theorem 4.4 by small changes of our 

def ini t ions . 
Hymen [TI has recently reported same in te res t ing  empirical evidence of the  

s h o r t c a n i ~ s  of the  l i nea r  r t a b i l i t y  theory M a guide-line f o r  the  

b e h s v i w  of  Runge-Kutta methods on non-linear problems. We have not yet  

had th. opportunity t o  study h i s  rerrultr from our point of view. 

More theore t ica l  and experimental research is therefore needed t o  t e a t  the 

pract ical  relevance of our analyair. 
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