@ https://ntrs.nasa.gov/search.jsp?R=19790024769 2020-03-21T21:01:13+00:00Z

TRITA-NA-7906

Inst for Numerisk Analys Dept of Numerical Analysis
KTH and Computing Science
100 44 STOCKHOLM 70 The Royal Institute of Technology

S-100 44 STOCKHOLM 70, Sweden

GENERALIZED DISKS
OF CONTRACTIVITY FOR
EXPLICIT AND IMPLICIT

RUNGE-KUTTA METHODS

by
Germund Dahlquist *
and
Rolf Jeltsch **
TRITA-NA-7906
* Germund Dahlquist **Ro1f Jeltsch
Dept of Numerical Analysis Dept of Mathematics
and Computing Science Ruhr-University Bochum
The Royal Institute of Technology D-4630 BOCHUM
S-100 44 STOCKHOLM 70, Sweden Fed.Rep. of Germany
Funds for the support of this study have This author has been suppu.sizd
been allocated partly by the NASA-Ames by the Swiss National Foundation,
Research Center, Moffet Field, Grant No. 82-524.077.

California, under interchange
No. NCA2-0R/45-712, while this author
was a visitor at Stanford University.




Abstract

The A-contractivity of Runge-Kutta methods with respect to an inner-
product norm, was investigated thoroughly by Butcher and Burrage

(who used the term B-stability). Their theory is here extended to
contractivity in a region bounded by & circle through the origin.

The largest possible circle is calculated for many known explicit
Runge-Kutta methods. As a rule it is considerab’y smsller than the
stability region, and in several cases it degenerates to a point.

An explicit Runge-Kutta method cannot be contractive in any circle of
this class, if it is more than fourth order accurate. The practical

relevance of this analysis is not yet quite clear.



1. Introduction

We investigate the contractivity of Runge-Kutta methods when applied to
nonlinear differential equations. While stability of a method is con-
cerned with the boundedness of the numerical result, contractivity
requests that the difference of any two numerical solutions, computed
with the same stepsize, does not grow in a certain norm. For one-step
methods and the natural norm, given by the differential equation, both
concepts are identical if the differential equation is linear with
constant coefficients. In the other cases contractivity is a stronger

requirement.

For linear multistep methods contractivity has been introduced by

Dahlquist [4], where it was called G-stability. G stands for a positive
definite matrix which is method dependent and is used to define a norm

in the space of numerical solutions. Nevanlinna and Liniger [10] have
treated contractivity of linear multistep methods using method

independent norms, such as the maximum norm. Butcher [3] introduced
B-stability which is contractivity for nonlinear, autonomous contractive
differential equations using the natural norm. In [1] similar contractivity
concepts have been discussed, namely AN-stability for nonautonomous linear
and BN-stability for nonautonomuous nonlinear systems. These concepts
reduce to A-stability in the linear constant coefficient case and are

thus only reasonable for implicit methods. We extend the contractivity
concept for Runge-Kutta methods in such a way that explicit methods are
included too. We will be using the natural norm in contrast to {2] where an
‘dea similar to Dahlquist s G-stability is introcduced. In all these concepts
one requests a certain monotonicity confition for the differential equation.
In the present article this condition is given in (2.9). Then it is shown
that the nunerical method when applied to such a differential equation

is contractive for either arbitrary or special choices of the stépsize h.

In the remaining part of this section we give an outline of the article.
In Section 2 basic notations and definitions are given. In particular
the monotonicity condition for the nonlinear differential equations and
the concept of contractivity are described. In Section 3 the r-circle
contractivity is introduced. If a method is r-circle contractive then

the stability region contains the interior or exterior of a disk of
radius |r| which is tangential to the imaginary axis at the origin.
However, the converse is not true, i.e. there are methods whose stability
region contains a disk of radius r with the origin on the boundary

which are not r-circle contractive. We then give purely algebraic necessary
and sufficient condition in terms of the coefficients for a method to be
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r-~circle contractive., An algorithm is given which enables one to compute

r for any given explicit or impli2it Runge-Kutta method. It is natural to
introduce the concept or reducible methods.

An m-stage Runge-Kutta method is raducible if there exists an m'-stage
Runge-Kutta method with m' <m and both methods give identical results on
any computer which carries out additions of O and multiplications by 0
without round-off errors. It is then shown that for irreducible r-circle
contractive methods 1/r is a contiruous function of the coefficients of

the method and that this is not the case if one admits reducible methods.
Furtber confluent methods are introduced. A method is called confluent if
at least two of the row sums of the coefficient matrix A are equal. It is
then shown that to any confluent method, which is r-circle contractive and
to any € >0 there exists a nonconfluent method which is r'circle contractive
and |1/r-1/r'| <e. In Section 4 we show that one has numerical contractivity
for nonlinear differential equations if the method is r-circle contractive,
if the differential equation satisfies the monotonicity condition (2.9) and
if h is chosen approPriately.‘In Section 5 we show that for an explicit
r-circle contractive method one has r<m, where m is the number of stages.
This result is sharp. Further if r is negative then the p is 1 error order
and r < 1/2c where c is the error constant of the method. Finally, we list
the value of r for many of the well known explicit Runge-Kutta methods.

* Tt is shown that an explicit circle contractive method cannot have an
error order exceeding L. }
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2. The methods and the test equation

For solving initial value problems

(2.1) y'(t) = £(t,y(¢)), y(0) given, y,f €R® or €*,

we consider m stage Runge-Kutta methods. Let h> 0 be the stepsize, tn' nh
and Yo is the numerical approximation to the exact solution y(tn). The

numerical solution Yoe at tn+ = tn+ h is computed as

1

m
(2.2) Va1 = yn+hj£1bj r(tn+ cjh,Yj) .
where
n
(2.3) Y, = ynwjz1 8, ; f(tn+ cjh,Yj), i=1,2,...,m.

We always request

n
(2.ka) Z b. = 1
j=1 9
and
m
(2.4p) c; = 521 ‘ij .

Observe that by (2.4a) the method has an error order of at least one.
(2.4b) is not necessary for a method to be convergent, see [11].

However, it is convenient in notation to have (2.4b) and practically all
known methods satisfy (2.4b). Moreover, the extension of the present
results to methods without (2.4b) is trivial. If the matrix A = {aij} is
strictly lower triangular then the method is called explicit otherwise
implicit. We call a method nonconfluent if all c; are distinct and
confluent otherwise. For compactness in notation we introduce the vectors
Y,F () ER™ or €"° and J€R" defined by

Y, f(t“+c1h,Y1 ) 1
(2.5) Y= Y2 , Fn(Y):- f(tn+c2h.Y2) » 1= 1 \.
Y f(tn+cmh,ym_) 1

We shall simplify the notation by the use of the K necker~product symbol ®,

see [ 5, p.116]. In order to avoid parentheses we assume that ® has higher
priority than ordinary matrix multiplication. Let II| be the sxs identity
Latrix, and let o - ('b1,b2,...,b'). Then (2.2) reads

T
(2.6) Ype1 = Y, th0" @ I.l"n(Y)
and (2.3) takes the form

(2.7) Y= 1oyn+m01.rn(!) .

At <~



The aim of this article is to investigate under vhat conditions any

two numerical solutions Yn ' 12, which are computed
n-°'1 ’I LI ] n.0’1 ’. LN )
vith the same h will satisfy the inequalities,

(2.8) 0y = 2peq W sy -2 I, n=0,1,....

We assume here that |lull:= <u,u>‘6 where <-,-> is an inner product defined
on R® or C®. Note that in contrast to G-stability [L] and the nonlinear
stability in [2] the norm does not depend on the method used but only on
the differential equation treated. We talk of numerical contractivity if
(2.8) is satisfied. The main purpose of this article is to show numerical
contractivity. To do this we need to impose conditions on the differential
equations and on the methods. The condition on the method is the r-circle
contractivity vhich is treated in Section 3. For the differential equation

we request the monotonicity condition
(2.9) Re<f(t.y)- £(t,2), y-z) < —alle(t,y)-£(t,z2) IR Wy,z€R® or €°.

In Section 4 we shall show that if a,r and the stepsize h satisfy the
inequality (4.2) then one has numerical contractivity. To clarify the
condition (2.9) we observe that for a linear equation y' =)y condition
(2.9) becomes

(2.10) Re(1+a)r)/A < 0.
Thus if we introduce the generalized disks

{A€C| |r+r|sr} ifr>o0
(2.11) D(r) = { {A€T| Rergo0} if reo
{(Le€T] |ar]2-r} irr<o

then (2.10) is equivalent to A€D(1/2a). If a2 O then (2.9) implies that
for two solutions y(t) and z(t) of (2.1) one has

(2.12) S iy(t)-2(t)IP 50 for all t,

Further observe that a is not invariant against scaling. Let y(t) be a
solution of (2.1) and define z(t):= y(tt). Then z(t) is a solution of
the scaled system

2'(t) = g(t,z)

vhere
g(t,z):= to(te,y) .
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If (2.1) satisfies (2.9) with a=a, then g satisfies (2.9) with otos-ruf.

Moreover (2.9) with a> 0 implies that f is Lipschitz continuous with 1/a
as Lipschitz constant, for one has

He(t,y) - £(t,2) lNly-zll 2 Re(-f‘(t.y)+f(t.z).y-z>
2aRe (- £(t,y) + £(t,2), = £(t,5) + £(t,2))

- Re(e(t,y) - £(t,2),¥ =z +af(t,y) - af(t,2)) 2alif(t,y) - £(t,2) IR .

Here we have used Schwarz's inequality and (2.9).



3. The r-circle contractivity

In this section we define r-circle contractivity. In order to motivate
this definition we consider the scalar test equation

(3.1) y' o= A(t)y(e), A(t)ec.
If one applies (2.6), (2.7) to (3.1) the numbers
(3.2) g = hx(tn+hci). i=1,2,...,m

and ¢ = (c1.c2,...,cm)T are needed. Assume that (3.1) satisfies the
monotonicity condition (2.9) then t;iGD(r) with r=h/2a. If the c; are
distinct then one can choose any m complex numbers ;iED(r) and find a
smooth A(t) such that (3.2) holds. Applying (2.6), (2.7) to (3.1) leads
to

(3.3) Yoo = K&y,

where

(3.4) K(g) = 1+sz(1m-Az)'111
with

(3-5) Z= diaﬂ(c1aC2a---9;m)s

see [1]. Clearly ve have numerical contractivity if |K(g)| < 1. This leads
to the

Definition 1. A Runge-Kutta method is called r—eircle contractive if D(r)
is the largest generalized disk with re0 and

(3.6) |K(g)| <1 for all r€D™(r).

A method is called circle oontractive if (3.6) holds for some r# 0.

Note that for a confluent method applied to (3.1) one never has gy %5

it ¢y = ey Nevertheless we request (3.6), One reason for thir is, as we
shall see at the end of this section, that with the present definition
1/r is a continuous function of the couefficients &; 5 and b.i if the method
is irreducible. Clearly D(r)cS, vhere S is the stability region of the
method, given by

8= (ue&| k()] s 1}.
Following Burrage and Butcher [1] we introduce the matrix,

(3.7) Q= BA+ATB-db = (g LI
(%5):-1.5-1

vhere

(3.8) B= diq(b,,bi,.....bn).
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Theorem 3.1. A Runge-Kutta method is r-circle contractive if and only if

(3-9) bj ZO for 5-1.2,...,111

and p » -1/r is the largest number such that
T T
(3.10) wQw 2 pw Bv for all w€ER®.

Proof. According to Corollary L.3, the conditions (3.9) and (3.10) with an
arbitrary p' imply that (3.6) holds with r' = -1/p' if p'90 and r'=sw if
p'=0., We then only need the converse result, namely

Lemma 3.2. Assume (3.6) holds for some r'# 0, r' may be infinite. Then
(3.9) and (3.10) hold for p'=-1/r' if r' is finite and p' =0 othervise.

To show Lemma 3.2 we need the following lemma of Burrage and Butcher [1].

Lemma 3.3. Let Z be such that Im-AZ is nonsingular and let

{3.11) us= (Im-AZ)'ln.
Then
K22 T byl )? 7
(3.12) K(g)|# - 1=22 ) b.{u,{*Rez, - Qes s Uy L
jay 3 4 i '0_1131133

Proof of Lemma 3.2. Assume that for some r' one has (3.6), that is

(3.13) |k(g)|2 -1 <0 for a1l r€D(r').

To prove b 2 0, assume on the contrary that b <0 for some i. Choose 7.=0
for j#i a.nd C = -¢, For ¢> 0 sufficiently mll one has cEDm(r ).
(3.11),

(3.14) u; = 14-05(:). vhere ij(e)|-°0 a8 €20,j%1,2,...,0.
The right hand side of (3.12) becomes
(3-15) 'Zbit"’tk(t)

vith |k(e)|=+0 as €-+0. (3.15) is positive for ¢ sufficiently small. This
contradicts (3.13),




In order to show that wT(Q'!- -S-,-B)w is nonnegative we assume the contrary.
Let w = (w1 .\02....,wm)'r€Rm be such that

m
1
(3.15) I q.v.w.+ = J v.w2co,.
i,5e1 i 1) rloyay i
ip.c w,2
Let (pj = wj/r' and cj- ~rterte Y = :'Lw‘i € - -?-f;rez + 0(e3). By construction

[ = (c1,c2,....cm)€Dm(r') for all e. Since zj-00 as €20 (3.14) holds
again. We substitute ¢ ; in the right hand side of (3.12) and find

1 m m
(3.16) IK(’-)IL"('F.Z by w,2- 1

w.)ez + c2k1(c)
i=1 i,9 J

.o W,
- qlJ i
with |k1(e)|-0 as ¢ 0. Hence (3.16) gives a contradiction to (3.13) for ¢
sufficiently small, Thus (3.10) holds for p'=-1/r', This proves Lemma 3.2
and Theorem 3.1. ®

Remark. From Theorem 3.1 follows easily that an algebraically stable method
in the sense of Burrage and Butcher [1] is r-circle contractive with a non-
positive r.

In order to describe the situation where some of the bj are equal to zero
it is convenient to introduce the

Definition 2. An m-stage Runge-Kutta method is called reducible if there
exist two seis S and T such “hat S#¢, SNT=¢, SUT={1,2,...,n} and

(3.17) b =0 if k€S8,

(3.18) ‘jx'o if JET and k€S.

The method is called Zrreducible if it is not reducible.

This definition says that the stages with index in S don't have an influence
on the finel outcome of the integration provided multiplications by 0

and a/litions of O are performed exactly. If the method is reducible it is
equivalent to the m'-stage Runge-Kutta Method which consists of the stages
with index in T only. Hence m' is the number of elements in T and m' <m.

We study nov Theorem 3.1 for r-cirecle contractive methods with some bk- 0.
Let 8 and T be such that SUT » {1,2,...,m} and

(3.19) b, =0 for k€8
(3.20) 'bJ >0 for JET.

By (3.7), Qy = O for k€8. Hence for Q- pB to be nonnegative definite

A, s 2 e



it is necessary that

(3.21) qkj =0, jm=1,2,...,m for all k€S,

Since qkj = ‘jkbj when bk-O one finds thet (3.21) is satinfied if and
only if

(3.22) 8y 0 whenever jET and k€S,

Thus (3.19), (3.20) and (3.22) imply that the method 18 reducible. We
have therefore shown the

Corollary 3.4. An irreducidble Runge-Kutta method is r-circle contractive

if and only if

(3023) bj > 0 for j“.a...-.m

and p = =1/r is the largest number such that

(3.24) wiQw 2 pWiBv for all wERD,

Let o7 be the set of all irreducible circle contractive Runge-Kutta methods.
Hence, by Corollary 3.l4, a Runge-Kutta method is ine¢Z if and only if all
b;j are positive. The methods ine? are the ones vhich interest us. If a
method is not in @it is either not circle contractive or it is reducible
and after deleting the irrelevant stages one has a member of .

In the following we shall compute rfor a given method ineR Bince all b
are positive it follows that B% = dug(bvz. bg,..., bv‘) is nonnngular.
Using the transformation BKV = v reduces (3.24) to

(3.25) vTB-qu,B-%v 2 oviv for all vER®.

Let v, ,v,,...,v be the eigenvalues of the real and symmetric matrix B'%QB"6 .

Hence the largest p for which (3.25) holds is Ppin = . MiD v; ané thus
' ist .2. ese |t
by Corollary 3.4 one has

ir min v; = 0
i“.z,....n
(3.26)
mn % othervise .
i-i.e....,n

Clearly the set#? is open and Ppin * ain v; * 1/r is ® continuous
i-’ s0 0 .. !
function of the coefficients &5 and bj 3: the methods. However, if some ]

of the b 5 tend to zero the following possibilities can occur. Either the
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limiting method is no longer r-circle contiactive, see for example Heun's
method (5.10), or else it must become reducible. In the latter case r nay
or may not depend continuously on b 5 as the following example shows.

Example 1. Let

=3
b = (1-¢,¢) .

Clearly (2.4) and (3.9) are satisfied for all ¢€ [0,1]). For ¢€ (0,1)

ve find
¥, Y, e-1 --evz(l-e)‘é
BRB el yo
~c'2(1-¢g) 2 -c+2a

The eigenvalues are

Vio® -;-(20- 12 V(2a+1)2 - 8ac) .

Hence 1
-1 if 02-5
limp ., (¢) =
c+0+ min 2a if u<--;- .

However, if ¢= 0 then the method is reducible and :in be reduced to Euler's
method with

A= (0)
T - (1)
and
Ppinl0) = 1.

pmin(‘) is

-

Hence one has a discontinuity on &fif a< --;-. and if a2~
continuov. in (0,1).

Note that similar discontinu iies of Ppin CAR Occur as some bj tend to
zero even if one restricts oneself to the class of explicit methods.

Observe that the set C of confluent methode inc7 is a surface in«f of
lover dimension. Thus by continuity of 1/r as & function of 8 j and b.i
any confluent r-circle contractive method inof ces be approximated by s
non confluent r'-circle contractive method such that 1/r is as close
to 1/r' as one vishes. This property would not hold if we had

replaced (3.6) by

(3.27) [X(g)| £ 1 for a1 g€D®(r)nV
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vhere
Ve {z€C T; =ty vhenever ciscj}
as we can see in the following

Example 2. Consider the classical 3-stage Nystrdm method of order 3
given by

wjw winmro o

see [9] p.48. If one computes r using the above algorithm one obtains
res0.92668857. If we haa used (3.27) instead of (3.6) in the

definition of r-circle contractivity one would have found r.= 3. However,
for a5 =€ sufficiently small (3.6) and (3.27) are identical. Thus using
(3.27) instead of (3.6) would have resulted in an r which does not depend
continuously on the coefficients of the method. This is one reason for
choosing (3.6) rather than (3.27). The main reason, however, is the

Theorem U.1 of the next section.

Condition (3.27) was used by Burrage and Butcher [1]. A similar condition
(with intervals on the negative real axis) was used as early as in 1957

by Liniger [13].

| a1
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4. Nonlinear contractivity

Theorem 4.1. Assume the differential equation satisfies the monotonicity
condition (2.9) and the Runge-Kutta method is r-circle contractive. Then
two numerical solutions Y and z computed using the same stepsize h>0
satisfy

(4.1) Ilynﬂ-znﬂll sllyn-znll for n=0,1,2,...

provided

(4.2)

h/r<20 if rsew
a20 and h arbitrary if r=o,

Proof. First we observe that it is enough to show (L4.1) for n=0 only.
Subtracting from (2.6) the corresponding equation for the solution

2z gives
1 n=0,1,...

_ T
(4.3) X, = x,+hb @ ILF
vhere we have used the abbreviations

Xo = Yo~ 20» X} =Y¥1-21» F =TFo(Y)-Fy(2)

and Z € R*® or €° is given by

(k. 1) Z=f 2 .

In a similar fashion one obtains from (2.7) the equation,
(k.5) X=1ex,+hA®IF,

vhere X = Y- 2, It is enough to show that

(4.6) xy I~ lixgl? s 0.
By (k.3),
(5.7)  lix, B NxyI? = h2Re(x ,b" ® IF) + 2 lIv’ @ I FIR.

The first term on the right hand side can be simplified if we introduce
. i KO8 P P ™ be gi
the following product [ , ] in or . Let U,V € or e given by

e



U1 V1
Us U2 s Ve V2
U v
m m

vhere Ui’vi € R® or C°. Then

m
(4.8) fu,v] = j£1bi UsaVs)e
Hence
(b.9) (ky» bTOIF) = [10x,F] .

In order to show (4.6) we need an upper bound for Relle X oF]. The following

lemma is an easy consequence of (2.9) and the definition (4.8).

Lemma 4.2. Assume bj 20 for j=1,2,...,m and that the monotonicity

condition (2.9) holds. Then

(4.10) Re[F,X+aF] < 0.

Eliminating X from (4.10) using (L4.5) leads to
a
(k.11) Re[F,19x ] < -hRe[F,A® IF + ©F] .

Using (4.9) and (4.11) in (4.7) gives

(4.12) llxy M2 - Wxgl2 < ~h2Re P(F)
where
(k.13) P(F) = 2[(A®T_+&1 )F,F]- a1 FIR.

Observe that P(F) is a quadratic form in F and it remains to show that its
real part is nonnegative, Let G € R or €™° be written as

G
G = 62
G
m

vhere Gi €R® or Cs. Hence



.

b=
ReP(G) = :1 J(< {1 ‘51°1'°J> <° ' );. i »
v22 § o (o,0,) - <zb° I hyep)

=1 imi J=1
- 121 321 %5 <G..G >+ 22 i-1 <G 6, )

Thus by (3.10) Re P(G) is nonnegative if =2a/h ¢ p = =1/r if r#m,
If rso then a has to be nonnegative and h is arbitrary. This completes
the proof of Theorem k.1,

Note that (4.2) also shows that the scheme is numerically contractive in some
cases when the differential system is not so, nemely if a<0 and r<0.

Corollary 4.3. Assume that

{L.14) b,j 20 for j®1,2,...,m,
and
(4.15) wiaw 2 o'V Bv for all wER'.

Then one has
(4.16) |k(g)] €1 for a1l g€D™(r')

where

o it p'=0
r'=
-1/p' otherwise.

Proof. Let [ = (c1.c2,....:m)T €0%(r'), 2 = diag(;1,...,;m). Let h=1, s= 1
and F=ZX vhere X € €. Then (L4,3) and (L4.5) become

(b.17) X1 = Xg+ b 2X
and

(k.18) X = xol + AZX.
Thus ‘

(4.19) x; = K(g)xq

and we have proved the corollary provided (4.6) holds. This is, however,
shovn in exactly the same way as in the proof of Theorem l,1. Just observe
that €D™(r') implies Re[ZX,X+a2X) < O for a=1/2r' and that (4.15) with
p' = =1/r' implies ReP(G) 20.

ot Bt
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Theorem 4.4. An irreducible Runge-Kutta method that is more than fourth
order accurate, cannot be circle contractive (with respect to the norms
considered in this paper), unless

, m
(L.20) sc.2= J 8

c. i=1,2,..0m
21 . 9 &y | .
J=1

J J

These conditions cannot be satisfied, if the method is explicit.

Proof. We first prove that (4.20) cannot hold for explicit methods. Since
for an explicit method c,= 0 and 85 =0 for j2i, it would follow from (4.20)
by induction that ciao for i=1,2,3,...,m, which is possible for first order

accurate methods only.

The other statements follow from the positivity of the bj (Corollary 3.4)
and a lemma, that John C Butcher pointed out to us.

Lemma 4.5. (Butcher [14]). If a Runge-Kutta method is more than fourth order
accurate, then

(4.21) b.( 8..C.— =C. ) =0.
421 1 3=1 1J J 21

Proof. The left hand side of (4.21) can be written,

2
= - 2 1 L
L Zbi( ‘i.i"j) Ibyc;? Jagses + plbe;t.
i J i J i
These sums are associated with the rooted trees of order 5 named, respectively,
t12» to and tg in Butcher's algebraic theory, and, by [15, Table 9.3] their

values are, for any method that is more than fourth order accurate, respect-
ively, 1/20, 1/10 and 1/5. Hence

This proves the lemma and the theorem.

The conditiorc (4.20) and more general conditions of a similar type are often
required tor implicit Runge-Kutta methods, see e.g. [3).
See t1s50 the comments at the end of the paper.

s R b e
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5. Methods with optimal r and examples

Given an r-circle contractive Runge-Kutta Method, let D(rs) be the largest
generalized disk of the form (2.11) in its stability region 0. ‘en one has
D(r)c:D(rs). The following two exemples show that D(r) may be a proper
subset of D(rs).

Example 3. The 6-method is given by

0o o
A= (e 1-3)

bT = (g 1-8)
or

Yneg = ¥q + 0(0£(e v ) + (-e)f(t oy 1)) .

n+1

For 6 =0 it is reducible and can be reduced to the implicit Fuler method
with r(0)=-1, For 6=1 it is reducible too and the reduced method is the
explicit Euler method with r(1)=1. For 6€ (0,1) one finds r(8)=1/e.

In particular, for the trapezoidal rule, where 6= 1/2, it follows that
r(1/2)=2. This result is in agreement with the fact that the trapezoidal
rule is not B-stable, see [12]. To compute the stability region we observe
that K(ul) = (14 8)/(1-(1-8)u). Hence S=D(r_(8)) with r_(8)=1/(26-1).

Therefore one has

r(O)--—1=rs(0) implicit Euler,
D(r(8)) is a proper subset
(6)) prop for 0<H8<1
of D(rs(e))
r(1)= 1'rs(1) explicit Euler .

Note, however, that if we define,
?n = Yn - (1'9)hf(tnnyn)s
then {9n} satisfies the "one-leg" difference equation,

3

see [4]). Tt is well known [L4] that this one-leg method is A-contractive
(B-stable) when 0< @< %. If 2n is defined sualogously to 9n’ it follows
that

ey =T ne(et v (1-0)t ., 69 +(1-0)9 ),

N9,y = By N9 -2 0.

The conclusion is that, for 0<@g %, the 6-method, although it is not B-stable,
is A-contractive with respect to a different problem-dependent, metric.

Example 4. The most general two stage second order explicit Runge-Kutta
method is characterized by

A'(132« g)’ b= (1-a,0), a0,

see [6, p. 121). If a=1 the method is reducible and thus not circlie

. bRV s
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contractive. However, for a€ (0,1) one finds by an easy calculation that

(5.1) r(a) -2/(1+V%F3). a€ (0,1).

Here r(a) depends truly on a, and r{a)<1 for u#%. This is in contrast
to the stability region S which is independent of a. In fact

s = {uECI [1+u+p2]| < 1} and thus

(5.2) rs(a) = 1 for all a#*0.

It is wellknown that S is bounded for explicit methods. Hence r is positive
for explicit circle contractive methods. How large can r actually be?

Theorem 5.1. Assume an explicit m-stage Runge-Kutta method is r-circle

contractive. Then

(5.3) re<m.

Moreover, equality is only attained if

(5.4) K(ul) = (1457,

which implies that the error order is one. The method with

bi = 1/m 1-1.2,....111.
(5.5) 0 forig)

a,, = for 1> j
1 |y for 1>

attains equality in (5.3).

Proof. 1In [8] it is shown that r_sm with r_=m if and only if (5.4) holds.
Thus from r<r follows (5.3) and (5.4). If a Runge-Kutta method has error
order p, tnen K(yl)-e" = 0(up+1). For the special K(ul) of (5.4) we find
e’ -k(ul) = -'21711'"2"' O(u3) and thus by (2.4) p=1. An easy calculation

shows that IB'VZQB-V2 = -%Im for the method given by (5.5). Thus by (3.26)

one has r=m and equality in (5.3) holds.

Let us nov consider the same problem for implicit methods. Burrage and
Butcher [1] have investigated algebraic stability and shown that there are
implicit m-stage Runge-Kutta methods of order 2m, 2m-1 and 2m-2 vhich are
algebraically stable, that is r is nonpositive., The following theorem
gives a relation between the size of a negative r and the accuracy of the
method.

pewmepe s S P
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Theorem 5.2. Assume the Runge~Kutta method is r-circle contractive with
r<0 and

(5.6) K(pl) - " = - P! + 0(uP*?),
Then
p=1, ¢<0
and
r < 1/2c.

Proof. Let R be the radius of curvature of 3S at u=0. Since D(r)<S one
has that 0<R< -r. It remains to be shown that

L if p>1

if p=1,

Lot 3S be given in a neighborhood of O by the equation y = g(t)+it.
g(t) is implicitly defined by |K((g(t)+it)2)|2 = 1. Ueing (5.6) we find

1= e25(t)(1 se(e(t)+it)P* 4 o(e(t) + it)p+2)
(5.8)
(1 +e(e(t)-it)P* v o(e(t) - it)l"'a)
Implicit differentiation of (5.8) gives
£'(0) =0

" 0 if p>1
£"(0) = {-2(.' if p=1

and hence (5.7) follows immediately.

Note that for implicit r-circle contractive methods with a nonpositive r
the absolute value of r increases as the accuracy increases.

B
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6. Calculation of r for some explicit methods

We omit the algebraically stable methods given in [1] and restrict ocurselves
to the explicit methods listed in [9].

A1l second order two stage methods are contained in Example k.

Third order formulas. Note that for all these formulas, rs~1.25-

0 0 0
% 0 0
120

o o= (V24 %) r=0.5

6 00
%0 0
0 % 0

Te (¥ % %) r~0.927

0 0 0
0
()
s (Y 0 %)

This method has b, =0 and is irreducible. Thus it is not circle contractive.

Classic form

>
[ ]

Nystrom form

>
"

o
[ ]

Heun form

A

Ralston's optimum third-order form

ooo)
A= 00
(g

BT =g(2 3 4) rn0.899
Kuntzmann's optimum third-order form
0 0 0
A= 0.4648162 0 0
-0.0581020 0.8256939 0
bT = ( 0.2071768 0.3585646 0.4342585) rm 0,847

Fourth order formulas. Note that for all these formulas, r -~ 1.h,

Classical form

ae(¥% 00 0
(5522)
0 0 1V 0O
Va(¥ KK ) re

e



Kutta form
0000
A= é 0 0 0
-4 1 0 0
=11 0
e (% % % %) reo0.u6l
Gill form
0 0 0 0
Y 0 0 0
A= Nwve-n2 -2 o 0
0 ~VZ/2 +Z/2 0
T (¥ (2-VE)/6 (2+V2)/6 ¥ )  rm0.586
Kuntzman optimum fourth order form
0 0 o0 0
A=l (8 0 0 0
220 \-33 165 0 O
95 -75 200 O
b’ = o= ( 55,125,125, 55 ) r~0.698

360

Ralston's optimum fourth order form given in [9, p.58) is not circle
contractive since bp~-0.55198066 < 0.

Concerning methods of order exceeding four, see Theorem 4.4,

Finally, ve recall the remark, made in Example 3 of Section 5. One can
perhups find a larger value of r with a different metric., Therefore, our
values of r must not be considered as a final verdict in the comparison
of methods. Our conditions are sufficient for good behaviour on certain
non-linear problems, rather than necessary.

It is also possible that the picture can be brighter for some methods, if
vwe relax our requirements a little in other respects, e.g. by practically
reasonable regularity assumptions for the function f. One can perhaps
"break the barrier" expressed in Theorem L.L by small changes of our

definitions.

Hyman [7] has recently reported scme interesting empirical evidence of the
shortcomings of the linear stability theory as a guide-line for the
behaviow of Runge-Kutta methods on non-linear problems. We have not yet
had the opportunity to study his results from our point of view,

More theoretical and experimental research is therefore needed to test the
practical relevance of our analysis.
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