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PREFACE

This document constitutes the McDonnell Douglas Astronautics Company (MDAC)
final technical report for Phase I of the First Small Power System Experiment
(Engineering Experiment No. 1). Phase I is an investigation of various system
concepts that will allow the selection of the most appropriate system or

systems for the first small solar power system application. This 10-month

study is a part of the Small Power Systems Program that is being developed under
the direction of the Department of Energy (DOE) and managed by the Jet Pro-
pulsion Laboratory (JPL)}. The final report is submitted to JPL under Contract
No. 955117.

The final technical report consists of five volumes, as follows:

R Volume I Executive Summary
e II System Concept Selection

ITI  Experimental System Definitions
(3.5, 4,5, and 6.5 Year Programs)

IV Commercial System Definition
v Supporting Analyses and Trade Studies

Requests for further information should be directed to the following:

e Mr. J. R. Womack, JPL Technical Manager
Jet Propuision Laboratory
Pasadena, California
Telephone (213) 577-9302

2 Dr. R. J. Holl, MDAC Program Manager
MDAC-Huntington Beach, California
Telephone (714) 896-2755

e Mr. R, P. Dawson, MDAC Deputy Program Manager
MDAC-Huntington Beach, California
Telephone (714) 896-3080

8 Mr. W. H. Scott, Manager Energy Contracts

o ' MDAC~Huntington Beach, California
jkii Telephone {714) 896-4821
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# THREE CANDIDATE PROGRAMS FOR EE NO. 1

SCRZ20

Small Power Applications activities to point-focuS'distributed'systems.
" quently, DOE directed that JPL take the necessary steps to constrain the JPL-
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® CATEGORY A CANDIDATE SYSTEMS - GENERAL, EXCLUDING DISH CONCENTRATORS

. Figu're 1~1. Overail Program Scops

Phase II involves the preliminary and detailed design of the preferred
system, and component and/or subsystem development testing that are needed
before proceeding with plant construction in Phase III. Phase II may be.from

8 to 42 months depending on the program selected by JPL as a result of Phase I.

Phase III will consist of subsystem fabrication, ptant construction, installa-
tion, testing, and evaluation of the solar power facility (Engineering
Experiment No. 1), A 3-year schedule is anticipated for this phase, with
testing conducted during the third year. '

Late in the Phase I study period, DOE concluded that a better balance of the

overall solar thermal electric program could be achieved by Timiting the JPL
Conse-

managed first Engineering Experiment (EE No. 1) to point-focusing distributed
receiver technology for all phases beyond Phase I. Accordingly, on 3 April
1979, all MDAC efforts on Phase II program plann1ng were term1natad by JPL
directive, :
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1.1 STUDY TASK APPROACH

Phase I study objectives were: (1) select preferred system concapts for each

of the three program durations, (2) complete conceptual designs for each of

three system concepts, (3) provide sensitivity data over range; plant rating:
0.5-10 MMe; annual capacity factor: 0 storage to 0.7, (4) prepare detailed
Phase II plans and cost proposal {3 versions of EE No. 1}, (5) prepare

Phase III program and cost estimates (3 versions of EE No. 1), and -

(6) recommend preferred EE No. 1 program. Three major tasks were planned for
the 10-month Phase I effort. They were Task 1 - Development of Preferred
System Concepts, Task 2 - Sensitivity Analyses, and Task 3 - Phase II Program
Plans. The Top-Level study flow is indicated in Figure 1-2.

In Task I, three preferred concepts were defined to the conceptual design
level. The concepts were consistent with the three specified program stariup

aCR20
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times of 3.5, 4.5, and 6.5 years. In Task I, power plants were considered
for a nominal 1.0 MWe rated capacity and 0.4 capacity factor. Activities in
Task I through the selection of the three preferred system concepts were
primarily a systems engineering/evaluation conducted by MDAC. Subsystem
chéracteristics, performance, and preliminary development requirements were
supplied by the appropriate subcontractors. Following this cencept selection,
the conceptual design of subsystems was initiated in which descriptions,
finalized development requirements, performance, reliability, and cost data
for each of the three selected concepts were developed.

- In Task 1I, the impact of varying rated power (0.5 and 10.0 Mie) and system

capacity factor (zero storage case and 0.7) was investigated. Sensitivity

~ analysis in Task II was performed by MDAC using subsystem data supplied by the

subcontractors. This task featured system and subsystem reoptimization for
each of the cases evaluated.

In Task III, the management, technical and cost plans for Phase II for each of
the three selected concepts were to be prepared in accordance with JPL guide-
lines and MDAC system recommendations were to be provided. However, as
reviewed above, during the latter period of the contract, JPL directed MDAC to
terminate all Task III efforts. Accordingly, Task III efforts were discontin-
ued and Phase II Program Plans are not reported.

1.2 ROLES AND RESPONSIBILITIES

N A team of companies led by the McDonne11 Douglas Astronautics Company (MDAC)

was contracted to conduct the Phase I definition of Category A systems (gen-
eral only echuding dish concentrators). The team included MDAC, Rocketdyne,
Stearns-Roger, the University of Houston Energy Laboratory. and Energy
Technology, Incorporated (ETI). MDAC was the prime contractor for the effort
and was responsible for overall contract compliance. The four major sub-
contractors and their prime areas of responsibility were: (1) Rocketdyne
Division of Rockwell International (receiver, dual-media energy storage),

/ 4
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(2) Energy Technology, Inc. {radial turbine and gearhox), {3) Stearns-Roger
(tower and plant layout/equipment), and (4) University of Houston Solar Energy
Laboratory (collector field optimization).

1.3 SYSTEM SUMMARY

From the preliminary design analyses efforts to date., MDAC concludes that the
proposed central receiver power system concept is a feasikle, low-cost, and
Tow-risk approach for a smalil solar power system experiment. It is particu-
larly suitable for early deployment under the 3.5~ and 4.5-year programs.

The concentrator subsystem is currently under development and low-cost, high-
production rate heliostats will be available for this program. The proposed
receiver subsystem using Hitec is similar to existing fossil fired Hitec
heaters. The tower is a standard Tow-cost guyed steel tower. The energy
transporf system using Hitec is based on standard state~of-the art equipment
and operating conditions. For the 3.5- and 4.5-year programs, a simpie two-
tank storage subsystem is proposed which requives no development. The powar
conversion system is based on existing axial steam turbines. A1l the balance
of plant equipment involves state-of-the-art equipment and processes. The

6.5-year program contains development of a radial outflow turbine and qualifi-. f

cation of a dual media thermocline storage subsystem. The technology employed
in all programs is consistent with the development time available, Thus, the
proposed MDAC concepts satisfy all of the important JPL selection criteria,
namely, high operational reliability, minimum risk of failure, good commercial-
ization potential, and low program costs,

1.4 EXECUTIVE SUMMARY M
This volume contains a brief executive overview of the Phase I study. Section 2
summarizes the screening analyses used to setect three preferred concepts for
the three EE No. 1 program durations. In Section 3, the JPL-supplied system
selection criteria are developed into the specific requirements that were
imposed on the design of each EE No. 1 system. The resulting system designs
and performance are summarized in Section 4, with the corresponding subsystem
designs and development status described in Section 5. Sensitivity of the
baseline system to changes in rated power and annual capacity factor is given
in Section 6. An overall systems evaluation is made in Section 7. Supporting
detailed information is contained in Volumes II, III, IV, and V.

/ /
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Section 2
CONCEPT SELECTION

The MDAC study contract addressed Category A systems, which were to include,
but not be Timited to, central receiver and linear focusing systems. Catego-
ries B (point-focusing, distributed collectors, central power conversion) and
C (point-focusing, distributed collector, energy conversion at the collector)
were assigned to other contractors, and therefore excluded from this effort.

By this definition, Category A included a broad spectrum of candidate systems.
To select the preferred system candidates in this category, a dual screening
process was utilized irn which evaluation criteria were developed that were
first used for screening and then finally used to make the selection itself.
The selection methodology is shown on Table 2-1. Using t'-is screening
approach, #DAC Tirst identified those candidate subsystems and components which
could qualify for the established criteria. These selections were then
synthesized into systens which could be implemented in either the 3.5-, 4.5-,
or 6,5~year programs., These candidates were optimized so that alternative
systems wuld be compared in their best Tight. The status of subsystem devel-
opment was assessed to determine program requirements for the different systems.
Based on the above approach, a final evaluation was made to select the three
preferred systems,

Candidate concepts within Category A that were screened are cummarized in
Figure 2-1. The Tirst screening was the selection between distributed collec-
tors and the central receiver. After selecting the central receiver, shown

by the box, the progression continued down this tree leading toward our final
preferred systems. Each selection is denoted within the boxes. Brief sum-
maries of each of these screening processes are given below.

The selection criteria used in the screening evaluation and system/subsystem
optimizations are summarized on Table 2-2. The criteria, which are Tisted in
the order of their importance, include high operational reliability, minimum

MOoOONNELL DGUGL‘&
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- _ Table 2-1, Selection of Three Preferred System Candidates
Dual Screening Methodology

e Initial Screening Process
e Utilize gross evaluation criteria

- Technology readiness
- Potential hazards
- System costs and complexity

@ Evaluate all potential subsysiem and component
candidates

8 Include system impact in comparing alternate
candidates

& Final Selection Prgegss

@ Synthesize surviving subsystems/components into
system candidates

e Optimize candidate system and subsystem designs
o Assess subsystem development status

e Conduct formal evaluation using all selection
critaria

¢ Select preferred system configuration for each
Engineering Experiment No. 1 program duration

risk of failure, commercialization potential, and low prongram costs. MPDAC
applied these criteria rigorously to all evaluations.

Only the highlights of concept selection are described here. Details of this
evaluation process are contained in Volume II of this report.

------
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« CALoRIA ot o LATENT HEAT [ AXraL TURSINE
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o RECIPHOCATING

Figure 2-1. Candidate Congapts ENGINE

Table 2-2. Selection Criteria (In Order of Importance)

1. High Operational Reliability — Selected system concepts should lead to:

— A commercial plant that operates with a high reliability during its
Tifetime (typically 30 years)

— An experimental plant which will start up satisfactorily and operate
reliably for at least 2 years after startup with minimum forced
outages atiributable to design deficiencies and hardware failures

(Enhancement of reliability through modularity/redundancy should be
considered)

2. Minimum Risk of Failure — Selected concepts should minimize development
risk and thereby provide high confidence that subsystem development can
be achieved within Phase II times and that the experiment can be brought
on-line at the specified startup times.

3. Commercialization Potential — Selected concepts should use or contribute
directiy to the eventual systems that are Tikely to achieve commercial
success in the Tate 1980's.

— Costs/performance
~ Flexibility (modularity should be one of primary considerations)
— Institutional interface aspects

4. Low Program Costs — Concepts should be selected to minimize the estimated
deveiopment and capital costs of Phases II and III. -

7
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2.1 COLLECTOR

The First selection tu be made invoived the collector subsystem., The central
receiver was compared to distributed collectors for a 1 MWe system, The dis-
tributed collectors selected for the comparison utilized either parabolic
troughs or segmented mirrors as the lingar concentrators. These are generaily
considered to be the most attractive by specialists in the solar field. All
common elements, such as reflectivity, were then normalized so that they could
be compared on an equal basis. The idealized performance of the distributed
collector, not the measured performance, was then calculated, assuming that
the performance potential of the concept could be achieved. For example, the
transmission efficiency of the glass was assumed to be 92%. Next, the temper-
ature was optimized considering both collection efficiency and the efficiency
of converting from thermal energy inte electricity. The field and storage
were then sized to achieve a common annual capacity factor. This was done
because the Tinear concentrator has a much more peaked daily collection char-
acteristic. Consequently, it will require a larger storage capacity to pro-
duce the same annual capacity factor. Also, line Tosses and the daily warmup
requirements were added to the energy that must ba coliected by the linear
concentrator.

A cost comparison was ihen made between the distributed collector and the cen-
tral receiver. This is shown on Figure 2-2, with the central .eceiver con-
strained to the same operating conditions as the distributed collector and with
the centra?® receiver optimized. The evaluation methodology and major results are
also summarized on the figure. The capital costs shown are for a 1.0 MHe
system and include the energy collection and storage elements only. The cost
of the distributed collector was based on $200/m2, which is a projection from
one of the manufacturers. The best cost projection for trough collectors is

. $130/m2. However, even when normalizing and taking equal cost the central
receiver has considerably Tower capital costs when configured to the same oper-
ating conditions as the distributed collector concept. Addftiohal?y, the central
receiver can utilize higher temperature conditions and employ a fluid such as
Hitec, which is not practical for use with distributed concentrators. In
summary, the Centra1 receiver was clearly the best selection.

/ 10
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g - METHODOLOGY
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% ° xggugg#zecommoueusmeurs
.G., REFLECTIVI
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H ¥ s81/m2 ® OPTIMIZE DC COLLECTION
= $81/m2 TEMPERATURE CONSIDERING
P POWER CONVERSION
Q
E ® SIZE FIELD AND STORAGE FOR
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0 © COMPARE WITH CENTRAL RECEIVER
CENTRAL RECEIVER OVER RANGE OF COLLECTOR

DISTRIBUTED (WITHDC (OPTIMIZED) AND HELIOSTAT COSTS

COLLECTOR CONDITIONS)

(OPTIMIZED)

RESULTS
© CENTRAL RECEIVER CLEARLY
MOST COST EFFECTIVE

® DISTRIBUTED COLLECTOR HAS
INADEQUATE EFFICIENCY/
TEMPERATURE PERFORMANCE

Figure 2-2. Selection of Concentrator (Central Receiver vs Distributor Collectors)

2.2 POWER CONVERSION CYCLE

The next comparison was between the Rankine cycle and the Brayton cycle for
power conversion. The final system comparison, including major system char-
acteristics and the results of the evaluation, is shown on Figure 2-3.

A somewhat similar methodology was used to compare the two cycles at their
optimum performance. For the Brayton cycle, an open-loop configuration with
the Centaur engine was used. For this case, the efficiency of the recuperator
was increased from 0.75 to 0.9. A multi-shaft configuration was also used
even though the contractors designing the solar Brayton cycle systems under
Electric Power Research Institute (EPRI) contract selected the single-shaft
configuration. The multi-shaft configuration gives significantly better

part load capabilities. Finally, a cavity receiver was optimized for each

of several inlet temperatures in terms of the spillage and thermal efficiency

of the receiver. This Brayton system configuration included the best charac-
teristics that MDAC could justify.

/ 1
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EVALUATION

@ RANKINE CYCLE HAS HIGHER OVERALL CYCLE EFFICIENCY

@ THERMAL STORAGE IMPRACTICAL FOR BRAYTON CYCLE - REQUIRES BATTERY STORAGE
@RANKINE CYCLE SELECTED

Figura 2-3. Selsction of Powar Conversion Cycle {Brayton vs Rankins)

Similarly, an optimum Rankine cycle configuration was utilized. An advanced
radial outflow turbine was used which has an expansion efficiency of 84%.

Heat transfer salt (HTS) was used as receiver coolant and a partial cavity
receiver design employed. A comparison of the overall efficiencies of each
concept is shown on Figure 2-3. The upper curves represent the product of the
collector field and receiver efficiencies as a function of turbine inlet tem-
perature, For the Rankine cycle, there is Tittle variation with inlet temper-
ature in the 300 to 500°C operating range. For the Brayton cycle, much higher
inlet temperatures are required, and thermal collection efficiencies signifi-
cantly decrease with temperatures in the 700 to 900°C operating range. Combining
the thermal collection and power conversion cycle efficiencies, the optimum
inlet temperatures are slightly over 500°C for the Rankine cycle and approxi-
mately 800°C for the Brayton cycle. Overall Rankine cycle efficiencies are
higher than the Brayton cyclie efficiencies. This is largely the result of
lower collection efficiency at the higher temperatures required for the Brayton
cycle. In addition, the Brayton cycle does not have the capability of thermal
storage which would require either ducting the hot gas to the ground or putting
the storage on the top of the tower, which is not practical. For these
reasons, the Brayton cycle will require battery storage, which is a very
serious penalty to impose on any system. For all of these reasons. MDAC

. selected the Rankine cycie. ‘

Y, 12
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2.3 RANKINE CYCLE WORKING FLUID

The next selection was the working fluid for the Rankine cycie — organic versus
steam. Figure 2-4 shows the net cycle efficiency as a function of temperature
for these two options, together with a summary evaluation. The Tower curve for
the steam Rankine cycle represents the best state-of-the-art multi-stage axial-
turbine available. The upper curve represents the radial outflow turbine,
which is the baseline for our commercial unit. The organic Rankine cycle
efficiency shown on the figure uses an axial turbine which has better efficien-
cies than ejther the radial outflow or axial steam turbines in the Tower tem-
perature ranges. However, organic systems are limited to about 400°C using
supercritical toluene. Most of the other organics are limited to Tower oper-
ating temperatures, Toluene also has a potential explosion hazard. More-
over, the application range is limited to approximately the 1 MWe range. None
of the organic turbine manufacturers have seriously considered developing
larger turbines. Since a range of 1 to 10 MW is being considered for the

small solar power system, an organic Rankine approach would resquire multiple

CR20-
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Figure 2-4, Selection of Rankine Cycle Working Fiuid (Organic vs Steam}
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1 Mde turbines. Finally, a turbine development program would be required to
produce a8 1 MWe supercritical toluene turbine.

The steam Rankine cycle on the other hand has the capability to attain much
higher temperatures. Standard techno1ogy and equipment can be used for EE
No. 1 with efficiencies exceeding the organic unit. In order to provide
the improvement in performance noted on the figure, it is desirable to
develop a radial outflow turbine. However, this development is not as
essential as it is with organic turbines. For all the above reasons, MDAC
chose the steam Rankine cycle. ' '

2.4 COLLECTOR FLUID

The next selection was the fluid to be used in the receiver assembly of the
collector subsystem. Alternative Tluids were evaluated, and their advantages
and disadvantages are summarized on Table 2-3. Superheated steam, which is
used for the Barstow 10 MWe plant, is current state-of-the-art. Although

is difficult to buffer the turbine against insclation transients. Although
the resulting operating complexity may be reasonable for a larger plant on a
utility grid, such complexity is not suitable for a small community power
plant. Additionally, an admission turbine would be required for operation
from storage because the regenerated steam is necessarily at Tower temperature
and pressure. Such turbines are not available in the 1.0 M{ range. Conse-
quently, superheated steam is an unattractive candidate. Using saturated
steam, a reheat turbine would be required o achieve reasonable effi-

ciency. Such turbines are available in larger sizes, but unavailable at the

1 MW Tevel. Consequently, turbine development would be required. In addition,
storing hot saturated water-steam is very expensive because of the high pras-
sure "nvolved. For these reasons, both of the water candidates were omitted.

The organic fluids have the advantage of low vapar pressure and are commer-
cially available. However, their température capability is generally limited
to around 300°C. This jnherent performance limitation is unattractive at

1 MWe, but even more unacceptable when scaled up to the 10 Mde power rating.
Also, they require fluid maintenance and makeup. For these reasons, organic
collection fluids were eTiminated. Syltherm, which replaces the carbon with
silicon, has somewhat higher temperature capability. However, cost is very

MOCIONNELL DDUGLL‘%_
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Table 2-3.

Selection of Receiver Collector Fluid

Fluid

Advantages

Disadvantages

Superheated steam

‘Saturated steam

Organics

Syltherm

[Hitec/nTs]

Liquid sodium

e State-of-the-art

Simple system

Low vapor pressure

Commercial

Higher performance
capability than
organics
Commercial

Temperature capability
500°C+

Good properties

3 Best coolant

Difficult to buffer
turbine from insolation
transients

Dual admission turbine
required but not avail-
able

Performance penalty
when operating from
storage

Requires reheat turbine
High storage cost
Limited temperature
Fluid maintenance

Poor scaleup

High cost

Limited performance

Freezing temperature
of >140°C

High equipment cost

Potential hazards

high and its performance is still Timited to 427°C (800°F). Syltherm costs
preclude use of the sensible heat of the fluid itself for energy storage.
Makeup, even at 400°C, is excessively costly when in contact with candidate

solid sensible heat storage materials,
a receiver coolant.

4
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Liquid sodium was also considered as a heat transfer fluid. It has excellent
properties as a coolant; however, associated costs for equipment and auxil-
iaries are very high. Additionally, sodium is potentially hazardous, espe-
cially when used near a water-steam source. Consequently. sodium was rejected.

The use of heat transfer salt (HTS or Hitec) was our selection. The salt is
an inorganic material, has good thermal properties., does not decompose at oper-
ating temperatures, and requires minimal maintenance or repienishment. These
heat transfer salts are used in many commercial applications. Thermal proper-
ties are substantially better than the organic fluids. Salt does have the
disadvqntage of a freezing temperature above 140°C. Based on actual industrial
experience with salt, it was determined that this issue could be satisfactorily
resoived by the proper use of insulation and thermostatically controlied
‘electric trace heating. For normal 24-hour operations. practically no trace
heating is required. The receiver and thermal storage cooldown transients

are such that salt temperatures are well above the set point for the heaters
when startup is initiated the next morning. Although some trace heating is
required to condition the riser and downcomer Tines daily, very 1ittle energy
is required over the 24-hour cycle. Energy for irace heating has been

factored into the plant energy balance as a penalty of conversion from ther-
mal to electrical energy, From a trade study between steam trace heating
versus electrical, the annual energy usage for electrical heating was so

Tittle that the expense of capital equipment for steam tracii..g could not be
justified. For the reasons above, Hitec/HTS was selected as the preferred.
receiver collector fluid. It has the best overall balance of properties by

a large margin. ‘

2.5 ENERGY STORAGE CLASS

The class of energy storage to be used in the plant was the next major element
selected. Two classes of energy storage were considered--internal storage of
thermal energy versus external storage of work or electricity. The character-
istics used for the two system classes are shown on Table 2-4. The thermal
(internal) storage candidate used Hitec in a dual medium thermocline
storage mode with nominal operating temperatures from 288°C (650°F) to

510°C (950°F). The'baﬁtery (external) storage candidate used advanced sodium-
sulfur batteries, which were assumed to have the capability qf_E,SOU discharge -

16



Table 2-4. Selection of Energy Storage Class
1 MWe, 0.4 CF (Internal Versus External)

Thermal (Internal) Battery (External)
Characteristics Dual Media Thermoctine Sodium~-sulfur
Hitec 2,500 discharge cycles
288-510°C 75% efficiency
Contribution to
Life-Cycle Energy
Costs (MiT11s/kWhe)
Capital Cost 7.2 13.2
Replacement - 12.7
Efficiency 0.6 6.7
Total 7.8 32.6
Evaluation e Most cost effective @ No buffering of plant
@ Power conversion o Could be charged with
need only be sized off-peak grid power

to plant rating

cycles and approximately 75% recovery efficiency of the stored energy. This
battery is a development item and would not be available for any of the EE
No. 1 programs. However, it is used to represent the future potential of
battery storage.

A comparison of the impact of storage to the 1ife~cycle energy costs for a

1 MWe plant with a 0.4 annual capacity factor is also shown on this table.

The initial capital cost of the battery storage facility is substantial at

this relatively small size. The replacement costs for battery storage are

high because the 2,500 discharge cycles are substantially less than required for
the plant Tife of 30 years. Additionally, the cost impact of the recovery effi-
ciency is shown on the table. Since the battery recovers energy at 75% effi-
ciency, more power must be generated to achieve a 0.4 annual capacity factor.

On the other hand, thermal storage Tosses are small, and full system capacity
and efficiency are available when operating from storage. This results in an

MCDONNELL DOUGL(@—
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advantage of over a factor of four in favor of thermal storage as opposed to
batteries. This advantage would be even greater if current lead-acid batteries
(required for EE No. 1) were compared with even the simplest two-tank thermal
storage designs proposed for the shorter EE No. 1 programs.

Another very important factor is that the power conversion unit using thermail
storage need only to be sized at the plant rating, since the storage subsystem
stores thermal energy. The battery system, on the other hand, stores elec-
tricity so that the power conversion subsystem rating must be much higher
(typically 1.8 to 2 times the nominal plant rating) for a 0.4 annual capacity
factor. This effect is not included on the table. Finally, the battery pro-
vides no buffering of plant operation to insolation transients while thermal
storage between the collector and the power conversion subsystems provides a
complete buffer.

In addition to the reasons above, if an efficient, cost-effective battery sys-
tem were available, there should bs much Tess interest in small solar electric
systems. The battery system itself could be charged with off-peak power rather
than with solar. Since we are grid-connected throughout the country, it would
be an excellent load-Teveling device and appropriate for small community, dis-
persed power applications. Use of any external storage device with a solar
plant ensures that the plant competes with the cheapest alternative source of
electricity in the United States. That is, it competes with the alternative

of charging the device with off-peak power from large, baseloaded coal- or
nuclear-fueled central station plants.

For all of these reasons, and because considerable battery development is
required, MDAC chose thermal storage.

2.6 THERMAL STORAGE

Thermal storage candidates were compared which included sensible heat, latent
heat and thermochemical storage. Alternative candidates for both latent heat
and thermochemical storage were identified and evaluated. None were found that
had the potential for lower costs than sensible heat storage. The major rea-
son for this was that heat transfer surface rather than tankage or storage
media was the major cost driver. '

/
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However, the system impacts illustrated on Figure 2-5 provided the clinching
argument in favor of sensible heat storage. Temperature and enthalpy relation-
ships for the different storage concapts are shown. For sensible heat storage,
the receiver fluid was used directly to heat the working fluid for a steam
Rankine cycle. A generic curve for the working fluid is shown in which the
temperature increases during the Tiquid preheating phase, then is constant
during the Tatent heat of boiling phase and finally increases as superheat is
added to the vapor. With sensible heat storage, this can be closely matched

by the receiver or storage fluid as shown on the figure. If, on the other hand,
a constant temperature Storage is used (which used to be the favored approach),
a significant difference in the input and recovery temperature will result. If
the temperature of the stored energy is constant, it must be charged at a higher
temperature than it can be recovered. So, if a Timit were put on exit tempera-
ture of the receiver fluid (1ine T&), the average temperature in the receiver
for latent or thermochemical storage must be elevated, as shown on the figure.
This results in much higher thermal losses and more pumping power. Working
Tluid temperatures and subsystem efficiencies are thus penalized. From our
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Figure 2-5. Selection of Thermal Storage Principle
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evaluations, these Tatent heat and advanced thermochemical concepts for thermal
storage are not attractive when used in this type of system application. For
these reasons, latent and thermochemical storage devices were rejected.
Sensible heat was chosen for EE No. 1.

2.7 POWER CONVERSION SUBSYSTEM MODULARITY

The next selection was between redundant and a singie prime mover for the

power conversion subsystem. The selection criteria supplied by JPL and repro-
duced on Table 2-2 stated under (1) high operational reliability..." enhance-
ment of reliabjlity through modularity/redundancy should be considered." The
potential advantages of achieving greater availability for EE No. 1 by using
redundancy were compared with the costs associated with redundant power modules.
The results are summarized on Figure 2-6. The availability of full power
versus the number of power conversion modules drops significantly as the number
of modules is increased for a constant power rating of 1.0 Mie {(e.g., 10-100
ke modules). This is due to the higher probability with multiple units that
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one or more of the units will fail. As shown on the figure, the availability of
the system to produce 300 kie with ten 100 kWe modules is slightly less than

if only one 1,000 kWle module were used. However, if two of the 100 kite modules
are out, we have increased our availability to deliver 800 kWe. But this

means that another 20% excess capacity must be built into the plant to achieve
the availability of one 1000 kWe unit. If ten modules are used, it is expected
that one of them will be down most of the time.

As shown on the figure, capital and maintenance costs increase with multiple
units. Cost/sizing relationships usually favor larger equipment sizes. Thus,
capital cost for the multiple units goes up substantially. Also, maintenance
manhours and costs increase with multiple units. One can easily visualize the
many mechanics out in the field with the power conversion subsystem hocds

up, working on them continuously. From this analysis, modularity was found

to be too costly with insufficient improvement i system availability to
justify it. Consequently, a singie power conversion Toop was selected.

2.8 PRIME MOVER

-

With a single prime mover selected for the power conversien subsystem, com-
parisons were alsc made between axial fiow and radial flow turbines and recip-
rocating engines. Turbines were preferred over reciprocating engines based on
performance and maintenance aspects. The axial turbine was selected Tor the
snorter development programs (3.5- and 4.5-year programs) and the radial out-
flow turbine was selected for the longer development program (6.5-year program).

2.9 PREFERRED SYSTEMS SELECTED

Final selections for the three preferred systems for the 3.5~, 4.5~, and
6.5~year programs are shown on Table 2-5. Heat transfer salt was selected as
the receiver fluid for all cases. Hitec (53% KNO3, 7% NaNOB, 40% NaNOZ) was
used for the 3.5- and 4.5-year programs. The binary salt mixture denoted as
HTS (54% KND5, 46% NaNO;) was selected for the 6.5-year program. This provides
a higher temperature capability.

/ 21
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To minimize program risks and costs, lower operating temperature constraints
were imposed on the system for the 3.5-year program duraticn and allowed to
increase as more development time was available. Two tanks were selected for
thermal storage for the shorter duration programs, whereas a dual-media thermo-
cline was selected for the 6.5-year program. An axial turbine was selected

for both the 3.5- and 4.5-year programs. The radial outflow turbine was
selected for the 6.5-year program. The preferred sysiems summarized on

Table 2-5 provide the basis for the further conceptual design and analysis
conducted in this program and summarized in the following sections.

Table 2-5. Selections for Three Preferred Systems
3.5 Years 4,5 Years 6.5 Years
Receiver fluid Hitec Hitec HTS
Temperature Timit 450°C (842°F) 450-510°C 510-580°C
(842-950°F) (950-1076°F)
Thermal storage Z2-tank 2-tank Dual Media
Thermocline

Prime mover

Axial turbine

Axial turbine

Radial turbine

MEDONNELEL HOUGL&
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Section 3
DESIGN APPROACH

In order to ensure the best design choices for each version of EE No. 1, the
system selection criteria from Table 2-2 were expanded into specific require-
ments for system and subsystem definition. These requirements were then
either incorporated into system and subsystem specifications or used as high~
level evaluation criteria for trade studies at all Tevels of system def1n1t1on.
This flowdown from the evaluation criteria to specific requirements is
described in the following paragraphs,

3.1 FLOWDOWN FROM RELIABILITY/AVAILABILITY CRITERION
Constraints and guidelines imposed on subsystem design in order to meet the
veliability/availability criterion are as follows:

Use Fully Qualified Hardware :

Select the Most Reliable Components

Prefer Equipment with Extensive Operating Experience
Employ Conservative Design Practices

Seek Design Simplicity

Utilize Redundancy Where Effective.

The great emphasis placed on this criterion for both the experimental plant
and the resulting commercial unit demands a rigorous adherence to the condi-
tior:s listed. The first three conditions are paramount in selecting plant
~equipment. The first condition precludes selection of any components not able
to be fully qualified for all operating, 1ifetime, and environmental require-
ments in the time available. An example of the appiication of this condition
‘will be to constrain concentrator selection to candidates having substantial
prior development and qualification. The second condition can have a major
impact on system reliability/availability due to substantial differences in
cdmponent failurs rates. An exampie of applying this condition would be the
seiection of an marine-type turbine over a standard industrial design.

MCTONNELE naus&f%__
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Extensive prior operating experience is preferred so that historical failure
rate data are available to make reliability/availability predictions with
confidence and to avoid any surprises.

The last three conditions relate toldesign practices to be employed at both
the system and subsystem level. Conservative design allows margins for any
unforeseen conditions and produces a “forgiving” system. Design simplicity
helps achieve system reliability through minimizing both potential sources
of failure and "surprises." Redundancy of key elements should be used

10 reduce singie-point fajlures but only where it is effective. Redundancy
inherently complicates the system, conflicting with the simplicity condition
above, and imposes additional sources of failure. An example of ineffective
redundancy was the full repiication of the power conversion equipment
described in Section 2 (Figure 2-6).

Strict application of these conditions to EE No. 1 design will produce "an
experimental plant which will start up satisfactorily and operate reliably

for at Teast 2 years after startup with minimum forced outages atiributable to
design deficiencies and hardware failures." Violation of these conditions
ensures the opposite.

3.2 FLOWDOWN FROM PROGRAM RISK CRITERION
Minimizing the risk of failure (either technical or schedule) imposes the
following conditions on EE Mo. 1 design:

Minimize Development Within the EE No. 1 Program
Utilize Standard Fabrication Techniques and Processes

e Select Materials and Equipment that are Available Without
Excessively Long Lead Times ‘

8 Provide Schadule Pads for All Activities-~Particularly Development
and Tests (This Limits Development Objectives)

@ Select Equipment with Viable Backups Available Where There Is Any
Chance of Failure
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These conditions are all se1f-exp1ahatory but are necessary in order to
“provide high confidence that subsystem development can be achieved within
Phase II times and that the experiment can be brought on-line at the'specifiéd
startup times."

3.3 FLOWDOWN FROM COMMERCIALIZATION CRITERION

Although the commercialization criterion strictly applies to the commercial
design (described in Volume IV), conditions were imposed on the design of

EE No. 1 so that it cou1d'1091ca11y evolve into a commercially viable system.

Three categories of conditions were devaloped based on the three sub-
elements of the commercialization criterion.

Costs/Performance

Achievement of commercially competitive energy costs imposes the following
conditions on the commercial design:

Low Capital Costs

Low Maintenance Costs
Minimum Site Assembly
Unattended Operation
High Efficiency.

s 68 ® O &

These conditions were approximated in the EE No. 1 design as closely as
consistent with the higher-level criteria described earlier..

Flexibility

This criterion reguires that the commercial version be'cabab1e of meeting the
power needs of different users at different sites with different power demands
and duty cycles. This is an extremely important criterion for producing a
useful power plant capable of the extensive deployment required to achieve an
econamic scale of production without excessive "customizing" costs for each
installation. Conditions derived from this criterion must be imposed on

25
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the designs generated for EE No. 1 in order to provide a useful experimental
plant leading to a commercially viable system. These conditions are:

8 Finite Number of Modules to Cover the Power Range of 1 to 10 tiWe
¢ Thermal Storage - This Excludes Battery Storage
e Road-Transportable Modules,

The flexibility to meet differing power level requirements in the 1 to 10 MWe
range requires that equipment be designed to cover this range with no more
than five (preferably four) discrete modules. These numbers are consistent
with common industrial practice, as exemplified by commercial turbines,
which are produced to standard frame sizes but which can be applied over a
range of power levels up to their maximum rating.

Power demand profiles are not expected to exactly match solar availability.

As a consequence, storage must be provided to make the collected energy avail-
able when it can be used by the customer. This imposes more storage than the
minimum required to meet the annual capacity factor. Although, as an experi-
mental plant, EE No. 1 will be configured with this minimum storage, the
storage concept must be selected to provide greater flexibility in the commer-
cial versions-~both to meet differing duty cycles and to provide higher anrial
capacity factors. As shown in Section 2 {Tabhle 2-4), battery storage is far
too costly even if the DOE development and cost goals for advanced batteries
are achieved. As a result, thermal storage must be employed to meet this
criterion.

Widespread deployment of small power systems requires that the system be
configured into road-transportable modules. This is particularly important
for the concentrator, since it is necessarily large in area. Reasonable costs
demand factory preassembly of the majority of the concentrator into road-
transportable elements requiring minimum site-assembly operations. This
contrasts with large power systems which could amortize site assembly (startup
and shutdown) operations over a higher power rating.

- 26
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Institutional Interface

The two major conditions imposed on subsystem design to meet this criterion
are:

o Minimize A1l Hazards
e Empioy Standard Technology to the Greatest Extent Possible.

3.4 FLOWDOWN FROM PROGRAM COST CRITERION
The conditions imposed to meet this criterion are divided into categories
according to the two program phases.

Low Costs in Phase II
Conditions imposed to achieve Tow program costs in Phase II are:

8 Minimum Development (Redundant with Condition from Program Risk
Criterion) _ _

@ Utilize Other DOE Development Programs to the Greatest Extent
Possible.

Low Costs in_Phase III
Conditions imposed to limit Phase III costs are:

Use Commercially Available Equipment Wherever Possible

Use Solar Equipment Being Produced for Qther Programs If Possible
Maximize System Efficiency (Redundant with Condition From
Reliability Criterion).

As reviewed above, the general ground rules and selection criteria imposed by
JPL were applied rigorously in the overall MDAC design approach. Its specific
detailed application will be seen in the balance of these documents. It is
therefaore no surprise that the MDAC central receiver power plant is the "“best"
choice for the First Engineering Experiment under the Small Power Systems
Program,

27
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Section 4
SYSTEM DESCRIPTION

Conceptual designs were developed for each of the three versions of EE No. 1.
The design approach outlined in Section 3 was applied to the three system
concepts selected in Section 2 to produce designs that best meet the objectives
of the Small Power Systems Program. The top level characteristics for all
designs are:

System Electrical Output 1 MW (Net)
System Capacity Factor 0.4
Insolation Model Barstow 1976

The McDonnell Douglas central receiver plant corcept is illustrated in
Figure 4-1. The complete system is composed of five major subsystems: the
coilector, power conversion, energy transport, energy storage, and the plant
control subsystems.

Figure 4-1. The McDonnell Douglas 1 MWe Central Receiver Plant
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The collector subsystem consists of the solar concentrator, receiver, and
tower assemblies. The concentrators comprise a field of two-axis tracking
heliostats, which reflect and concentrate solar radiation onto a tower-mounted
receiver. The heliostat field is located north of the receiver tower.

The power plant layout for the commercial unit is shown on Figure 4-2. Equip-
ment is located on skid-mounted units which are factory assembled, checked out,
transported to the site and installed with minimum site assembly operations.
The equipment shelter can be as little as a sunshield with removable side
panels for some sites. The plant control unit is located in an adjacent
trailer. A more substantial Butler-type building is provided for the first
experimental plant. Provisions are made for adequate office, laboratory, and
bench space to carry out all test and evaluation objectives of the EE No. 1
operations program,
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System schematics for the three versions of EE No. 1 a..d the commercial sys-
tem are shown on Figure 4-3. A summary of the design characteristics of each
system is given on Table 4-1 together with an indication of the current state-
of-the-art. The heliostats, which vary in number from 217 for the 3.5 year

EE No. T to 133 for the commercial plant, are based on the 10 MWe Barstow
plant design. The receiver is a partial cavity-cone, and the fabrication of
this unit is fully state-of-the-art.

The energy transport subsystem collects thermal energy from the receiver and
transports it to the energy storage subsystem and thence to the power conver-
sion subsystem. Hitec is used as the transport fluid for the 3.5-year and
4,5-year program because of its relatively Tow melting temperature (142°C)

and common use in industrial processes. The binary mixture of 54% KNOS and
46% NaNOs, denoted as HTS, is used for the 6.5-year and commercial programs,
because it has a higher temperature capabiiity (increasing system performance)
and is more economical.

The energy storage subsystem both isolates the power conversion subsystem from
the collector subsystem and stores thermal energy for extended operatien. For
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Table 4-1. Systems Summary (1 MWe, 0.4 Capacity Factor)

State-of-

3.5 Year 4.5 Year 6.5 Year Commercial the-art
Number of 217 171 139 133 '
heliostats (45m2) (49m2) (49m2) (49m2)
Tower height (m) 40 40 40 36
Receiver type Partial cavity Fabrication
Energy transport
Fluid Hitec* Hitec* HTS*#* HTS*=% Hitec
Energy storage Two-tank Dual media Two~tank

thermocTine

Turbine type Axial Axial Radial Radial Both
Maximum salt
temp {°C) 454 510 538 566 510+
Maximum steam
temp (°C) 427 482 50 538 538+
Auxiliary power
(kWe) 134 108 82 79
Overall net
efficiency (%) 13.8 16.2 19.8 z0.4

*53% KNO3, 40% NaNOz, 7% NaNO3
**54% KNO3, 46% NaNO3

the 3.5~ and 4.5-year programs, a simple two-tank configuration is utilized
which requires no development. For the 6.5-year and commercial programs, the
storage unit consists of a single tank filled with crushed taconite (iron ore}.
The salt/taconite mixture stores the thermal energy as sensible heat utilizing
the thermocline principle with the salt also functioning as the heat transfer
medium.

Steam produced from the steam generator drives a steam Rankine cycle turbine
which in turn drives an electrical generator to produce electricity. For the
3.5~ and 4.5-year programs, an existing axial steam turbine is utilized. For
the 6.5-year and commercial programs, & radial outflow turbine currently under
development by Energy Technology. Inc. {ETI) is utilized. Waste heat from the
turbine is rejected by a wet cooling tower.
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A1l the balance of plant equipment involves state-of-the-art equipment and
processes. The technology employed for each EE No. 1 program concept is con-
sistent with the development time available. Further description of EE No., 1
subsystems together with thejr development status is given in the following
section.

In order to determine the requirements and preferences that a utility company
might have for a facility such as the one being studied, & number of utilities

and communities were visited. The more important conclusions reached are

presented helow:

@ There is a substantial variation in the Tocal grid distribution
voltage to which the piant could be connected. In some cases, pro-
visions for interfacing with the grid already exist.

¢ A preference for wet cnolihg was indicated since water was not in
short supply at most sitaes.

‘@ A preference for internal (thermal) rather than external (battery)
storage was indicated.

¢ Daily power demand profiles showed that the demand for electricity
lags the isolation availability by several hours. The power genera-
tion profile can be matched to the demand profile by the use of
additional storage beyond the minimum reguired to meet the specified
annual capacity factor. The analysis of utility requirements also
indicated that a larger capacity factor of about 0.5 would be
preferred to 0.4.

Although the plant is designed to interface with an existing electrical grid,
it can be modified to operate as a stand-alone unit in a location not serviced
by a grid by making a few alterations.

The capability of supplying the electrical demand 24 hours a day throughout

the year can be accomplished by providing either: (1} a diesel generator
capable of supplying the plant rated power, or (2} a fossil fuel-fired Hitec
heater capable of supplying the heat inputAnecessary for operation of the
basic power plant.

a3
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The fired heater is the preferred selection with a Tower-rated diesel gener-
ator utilized for plant auxiliaries and to supply minimum system emergency
power requirements.

Additional equipment required in a stand-alone plant would be an elecirical
resistance bank to serve as a buffer for electrical load transients. This

unit would be cooled using the cooling tower water. A slight change in the
turbine control system would also be required.

System performance was calculated for each configuration by combining the
performance of each of the optimized subsystem designs. The process started
with the net annual electrical energy required to meet the plant rating and
annual capacity factor and worked "backward" accumulating the various loss
factors until the concentrator field was sized. The results are presented
graphically on a "waterfall" chart in Figure 4-4, Note that the average
annual unavilability of the plant is taken into account in sizing the col-
lector field and specifying plant performance.

The electrical energy produced by the system eacihr month, based on the Barstow
insolation data, is presented in Figure 4-5. This profile would be identical
for all experimental programs.

Costs for the commercial plant ranged from about $2.5 million at a deployment
rate of 100 plants per year o $2.2 million at a rate of 5,000 plants per
year. The corresponding energy costs, including operations and maintenance,
on an investor-owned utility ranged from 156 to 169 mills/kWhe using the
JPL~-supplied costing groundrules. The corresponding energy costs on a
municipal-owned utility would be Tess. These costs could be competitive with
diesel electric generation in rural areas not connected to a grid. The sen-
sitivity of energy costs to plant rating and annual capacity factor are
covered in Section 6.
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Section 5
SUBSYSTEM STATUS

A summary description of the subsystems selected for each version of EE No. 1
will be given here together with a review of their development status and an
evaluation using the seiection criteria presented on Table 2-2. It should

be kept in mind that the actual process went in the opposite direction--starting
with the selection criteria, proceeding through an assessment of development
status to arrive at subsystem designs which fully satisfied the selection
criteria for each program duration.

The Tive major subsystems w.11 be described with the collector assemblies
(concentrator, receiver, and tower) treated separately because of their dis-
tinct characteristics. The energy transport and storage subsystems will be
described together because they utilize common technology, equipment, and
transport fluid.

5.1 COLLECTOR SUBSYSTEM — CONCENTRATOR ASSEMBLY:

The function of the concentrator assembly is to collect, redirect, and focus
insolation on the receiver assembly that is mo'.1ted south of the field on a
tower. The concentrator assembly consists of reliostats pTus related controls
and the electrical power supply necessary for drive purposes. The heliostats
are individually mounted on pedestals and are segmented for easy site assembly.

The heliostats selected for EE No. 1 are shown on Figure 5-1. The 3.5-year
program uses the heliostat developed for the Barstow 10 MWe plant with minor
modifications. A more advanced second generation heliostat is proposed for
the 4.5-year, 6.5-year and commercial designs. This heliostat is similar to
the Barstow unit; however, various design changes were incorporated to reduce
its costs, particularly in high-volume production.

Both heliostats have four subassemblies: the reflector paneils, the drive unit,
the pedestal support and foundation, and control. While dimensions and details
differ, the description given below generally applies to both units.
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3.5-YEAR PROGRAM 4.5-6.5-YEAR AND COMMERCIAL
(BARSTOW HELIOSTAT) (SECOND-GENERATION HELIOSTAT)

REFLECTOR PANEL
y  ASSEMBLY

STOWAGE ol A
20 S STRUCTURE
JUNCTION
80X -

AZIMUTH DRIVE

TRACKING ELEVATION JACK
JACK (TRACKING)
CABLE ASSEMSLY
48 m2 - 49 m2
¢ DOE DESIGN REQUIREMENTS HAVE BEEN ADAPTED TO e DESIGN DEVELOPMENT UNDER OTHER DOE PROGRAMS
SMALL POWER SYSTEMS WILL SUPPORT ENGINEERING EXPERIMENT NO. 1
© JOINTED MAIN BEAM AND FACTORY PRE-ASSEMBLED
SUBASSEMBLIES ALLOW FOR EASY INSTALLATION sy TIOOYY RATED ONBANSTOW HELIORTAT

© LOW-PROGRAM COST ASSURED BY PARALLEL DEVELOPMENT

Figure 5-1. Collector Subsystem (Heliostats)

There are two reflector panels per heliostat and each panel is made up of six
mirror modules. The mirror modules use second-surface glass mirrors. The
modules are attached to a support structure that maintains their alignment

and rigidly attaches them to the drive unit. Focusing is achieved by slightly
curving the mirror modules during manufacturing, and by shimming the modules
to the proper cant angles after attachment to the support structure.

The drive unit incorporates azimuth and elevatior drive mechanisms. It is
mounted on top of the pedestal and consists of motors, drive transmissions,
position feedback sensors, reflector support bearings, and a structural
housing. The drive unit positions the reflector during normal operation to
redirect the solar radiation to the receiver. The drive unit can also position
the heliostat in an inverted stowage position to minimize the risk of damage
from severe weather conditions.

The pedestal support and foundation is used to mount the heliostat in the
field. The drive unit and reflector panéls are mounted on top of the pedestal.
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The pedestal is rigidly attached to a precast concrete foundation by bolted
flanges (3.5-year design) or slip joint (4.5-, 6.5-year, and commercial
designs).

Heliostat control is achieved from the control subassembly. Field controllers
calculate the sun's position, direct individual heliostat motions, calculate
any errors in position, and direct corrective motions. Heliostat controllers
calculate actual heliostat position, compare to the commanded position from
the field controller, and drive the motors to correct the errors indicated.
Power supply to the drive units and the control function are made through a
“serial hookup." This enables remaining heliostats to function normally
should one heliostat fail. A1l heliostat controls have manual override
capabilities.

Heliostat development at MDAC is illustrated on Figure 5-2. The Small Power
System Prcgram will benefit greatly from the preceding and on-going development
of heliostats shown on this figure. Heliostat research was initiated by MDAC
in 1973 with the first U.S. heliostat built and tested in 1974 under National
Science Foundation (NSF) contract.

HELIOSTAT DEVELOPMENT aTre-1
= Evcn.wrlomI — ! s 51979 mme m
— e S S [

SECOND GENERATION HELIOSTAT, 48 m2

Figure 5-2. Heliostat Developlln;mv at MDAC
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An improved version was built and tested in 1975 as part of the 10 MWe pilot
plant Phase I program. Further design improvements formed the basis for a
third model built in 1976. This heliostat was tested for performance in the :
desert at China Lake, California, and was subjected to full structural,
lifetime, and environmental testing.

The design of this third model was selected by DOE for the Barstow 10 Mue
plant with engineering model: now under construction and evaluation. Produc-
tion of these heliostats is scheduled to start in 1980 with a production rate
of approximately 2,000 heliostats per year.

The heliostat design selected for Barstow also became the basis for the MDAC
second generation desigh. This unit is being fabricated, and evaluation tests
will be conducted in 1980.

The three factors present in this program which are considered necessary for
the successful deployment of solar concentrators in the Small Power Systems
Program are: '

8 A substantial foundation of design, development, and testing
(] A significant level of hardware production, and
® An on-going program for product improvement (cost reduction).

The cohcentrator for EE No. 1 should not be based on a Tess~solid foundation.

An evaluation of the concentrators for the collector subsystem using the pre-
scribed selection criteria is shown on Table 5-1. With respect to reliability
and availability, the hardware has beeh put through 1ife cycle and environ-
mental tests qualifying it for 30-year operation. Moreover, the heliostat
field has inherent redundancy. Program risk is Tow because there is no
development required for the EE No. 1 program--heliostat hardware will be
available, From the commercialization standpoint, this heliostat design can
produce thermal energy cheaper than any other type of concentrator MDAC has
~investigated; this 1s the most cost-effective system concept. Common use of
this hardware for both large plants (greater than 10 MW) and small plants,
produce economies of prdduction scale. Simi]ar]y, the same hardware can be
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Table 5-1. Collector Subsystem Evaluation {Heliostat)

Criterion Features

- Commercialization potential

Reliability/availability ® Hardware qualified for 30-year Tife and
environmental conditions

Inherent redundancy

No development in EE No. 1 program
Hardware will be avaiiable

Lowest cost ($/GJ) concentrator examined

Common hardware for large (>10 MWe) and
small (1-10 MWe) systems

] gommon hardware for electricity, thermal,
oth

Designed for transportability

Low program costs 0 Development cost charged to earlier
programs

® Volume production avajlable from large
central receiver programs

Program risk

MCOOMMELL, uou&k‘@_

used to produce electricity, to produce steam only, or to produce a combination.
0F particular importance, the hardware has beern desighed for road transport-
ability. The program costs are low because heliostat development was targely
amortized on earlier programs. Furthermore, because the Barstow program is
on-going with an expected production rate of about 2,000 units a year, a much
higher vo]umebbaSe is available than could be provided for EE No. 1 alone.

5.2 COLLECTOR SUBSYSTEM ~ RECEIVER ASSEMBLY

The receiver assembly is shown on Figure 5-3, together with major character-
istics for the three versions of EE No. 1 and the commercial unit. The receiver
assembly is composed of an absorber unit, structural assembly (inciuding housing
and doors), instrumentation, insulation, and heaters. The receiver faces south
with the aperture tilted downward 20° from the vertical.

The absorber is a partial cavity design consisting of spiral tubes with the heat
transter fluid entering at the periphery and exiting at the apex of the cone.
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35 45 65  COMMER,

o CONFIGURATION «— SPIRAL PARTIAL CAVITY —
@ APERTURE DIA {m} 4.5 4,28 400 35

@ ABSORBER
TUBE MATERIAL —-316 CRES—~ --INCOLOY 800 ~

/} STUBEO.D. (mm)  44.5 445 381 381
" eNUMBER OF
PARALLELTUBES 4 4 4 3

SQUTLET
TEMPERATURE (%) 454 510 S38 566

Figure 5-3. Callector Subsystam {Receiver)

The edge section contains relatively cool fluid that is exposed to atmospheric
cooling. This section is heated with the Tower intensity fringe elements of
the flux, As the flux builds up closer to the center, the tubes are formed
into a much steeper conical cavity and the hot fluid exits at the center.

Four parallel tubes are used for EE No. 1, whereas three parallel tubes are
used for the commercial unit all with standard size tubing. For the 3.5- and
4.5-year programs, standard 316 CRES is used. The 6.5-year and commercial
programs employ Incoloy 800 for the higher allowable design temperatures.

Insulated doors close over the receiver aperture to prevent excessive cool

down during periods of no insolation. Trace heaters keep the Hitec/HTS from
cooling and solidifying.

The receiver development status is summarized on Figure 5-4. There are two
main development issues for the receiver assembly: (1) fabrication and
(2) technical verification of performance. A top-down requirement imposed
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FABRICATION TECHNICAL VERIFICATION

@ 3, 5-YEAR PROGRAM
® ANALYSES ONLY
® BACKED OFF FROM
STATE-OF-THE-ART TECHNOLOGY

e 4. 5-YEAR PROGRAM
e CRTF MODEL TEST
e VERIFY STATE-OF-THE-ART
TECHNOLOGY

® 6. 5-YEAR PROGRAM
¢ LABORATORY TESTS
® CRTF MODEL TEST
® EXTEND TECHNOLOGY

CONVENTIONAL ROLL
BENDING EMPLOYED

® STATE OF THE ART

Figure 5-4. Receiver Development Status

was that the fabrication utilize standard state-of-the-art processes to mini-
mize development risks and costs. Consequently, the spiral tube approach was
selected which can be formed by conventional roll bending techniques, as

shown on the figure. Consequently, there is no fabricatinn development
required for this design.

To verify performance, development testing will be required in some cases.
MDAC started with the 4.5-year program for which full model testing in the
Central Receiver Test Facility (CRTF) was possible. This design was set at
the state-of-the-art for heat flux and temperature conditions. Since the
3.5-year program does not have an adequate duration to allow such testing,
operating conditions were backed off from the current state-of-the-art so
that we can operate with full confidence without experimental verification.
For the 6.5-year program, which has a very lo.g development period, the
technology was extended in the areas that would be cost effective in the per-

formance of the plant. Both laboratory tests and CRTF testing was included in
this program.
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MCDONNELL DOUGLL@_

43



b
K

An evaluation of this assembly, according to the design criteria, is shown on
Table 5-2. From a reliability/availability standpoint, the design is very
conservative because it is based on standard boiler codes for 30-year lifetime.
Since the abosrber consists of continuous spiral tubes, there are only entrance
and exit welds. This greatly enhances equipment reliability. If the receiver
required many panels with extensive tube-header welds, there would be many more
sources for failure and deployment for the 3.5-year program without verifica-
tion testing would have been questionable.

Standard fabrication methods were used for all designs. This minimizes
potential program risks. For the 3.5-year program, the risk criterion is met
by having an extremely conservative technical design. For the 4.5-year pro-
gram, the risk criterion is met by imposing state-of-the-art conditions and
performing verification testing. A development test in the Central Receiver
Test Facility (CRTF) is planned, and this becomes the critical path for track-
ing the program. The Phase II test has a 4-month schedule "pad" which is
considered to be acceptable. The duration of the 6.5-year program is so Tong
that there are no schedule constraints whatsoever,

The receiver is designed to be cost effective in large production rates, and
it is designed for road transportability. From a cost standpoint, there will
be a significant first-unit cost since this is the first-of-a-kind to be built
Additionally, in the 4.5- and 6.5-year programs, the test program itself is

a major program cost element.

5.3 COLLECTOR SUBSYSTEM ~ TOWER ASSEMBLY

The primary function of the tower assembly is to provide support for the
receiver. It is designed for the most severe wind and seismic conditions
expected and also to minimize receiver sway resulting in reflected solar
energy missing the receiver aperture. In addition, the tower provides support
for the Hitec/HTS riser and downcomer and aliows for necessary maintenance
functions.

The tower assembly, shown on Figure 5-5, consists af the basic tower structure,
supporting guy wires, foundations, working platforms, service elevator and
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Table 5-2. Collector Subsystem Evaluation (Receiver)

Criterion Features

Reliability/Availability o Designed to ASME boiler code
(30-year 1ife)

g Minimum tube/manifold welds

Program risk A1l programs e Standard fabrication methods
3.5~year e Conservative technical design
4, 5~year ¢ Phase II test is critical item
(4~month schedule pad)
6.5~year e No development schedule
constraints
Commercialization potential ® Designed for automated
production

8 Designed for transportability

Program cost A1l programs @ Significant first-unit costs
4.5~ and @ Model test is major element
6.5-year

Tadders, lights, Tightning protection, heliostat target device, electric power
lines, water Tines, and supports for heat transfer Tluid Tines, n1trogen purge
Tines, instrumentation and pneumatic Tines.

An evaluation of the tower assembly is shown on Tabie 5-3. From a re11ab111ty
standpoint, the tower is designed to cope with all operating conditions.

Towers of this type have been used for years, and there is no program risk
because there are no development issues. From a commercialization standpoint,
this size tower uses a low-cost guyed-steel design. The fower is transportable,
either in prefabricated sections or as steel members for fabrication at the
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_ — ~ CR204
RECEIVER-X [—

INSOLATION \

W0 @HEIGHT: 40 m (131 FT} - EENO, 1 PLANT
| 36 m (112 FT) - COMMERCIAL PLANT

<§ﬂ\ @ GUYED STEEL - FOUR 2.5 cm (1 INCH) DIA CABLES
<1 1

@ ASSEMBLED FROM STANDARD STEEL SECTIONS

N
X7

/ e
STEEL i
TOWER vl ® CONCRETE BASE - 27.5 m3 {36 CU YD)
' Tﬁ*ﬁggﬁﬁgm
' % FIUiD . ©OPERATING DEFLECTION - 1.5 cm (0.6 IN) IN 16 m/s
XJ PIPING (36 MPH) WIND
i<
N ® SERVICE ELEVATOR FOR EE NO, 1
hias s il 1 T T .

Figure 5-5, Collector Subsyste;n (To;.ver)

Table 5~-3, Collector Subsystem Evaluation (Tower)

Criterion . Features
Reliability/availability ¢ Designed to code for all conditions
Program risk : & No development required

o Standard construction/eraction

Commercialization potential @ Low-cost quy steel design
'@ Transportable, prefabricated tower sections
® Painted to be unobtrusive

_-Program cost . = - @ No development
8 Low cost for first unit
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site. The tower can be painted to be relatively unobtrusive. Program costs
will be lTow since no development is required and, since it is of standard
construction, there are no unique high first-unit costs.

5.4 ENERGY TRANSPORT AND STORAGE SUBSYSTEMS

The energy transport and storage subsystems include all necessary Hitec/HTS
circulation and control equipment and storage tanks. They are configured to
allow indepenaent operation of the receiver and power conversion loops, thus
providing operational flexibility by permitting startup, shutdown and normal
epe;ation of one loop while the other loop is in a different mode. This is
accomplished by the use of two independent circulation circuits, each with its
own circulation pump, control valves, isolation valves and sensors. The
receiver loop extracts fluid from storage at a Tow temperature, pumps the
fluid to the receiver in a controlled manner to maintain a constant

receiver outlet temperature and returns the heated fluid to the storage sub-
system. A pump then sends the required quantity of "hot" Hitec/HTS through
the second Toop to the steam generator and returns the "cold" fluid to
storage.

The designs selected for the three versions of EE No. 1 and the commercial
plant are shown on Figure 5-6. A simple two-tank configuration is used for
the 3.5-year and 4.5-year programs while a single~tank, dual-media thermocline
configuration is used for the 6.5-year and commercial designs. Consistent
with the general design guidelines discussed earlier, progressively higher
operating temperatures are allowed for the Tonger duration programs.

47
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3.5- AND 4, 5-YEAR PROGRAMS _+  6.5-YEAR AND COMMERCIAL
o
A A
“\ RECEIVER \ __¢* RECEIVER
(‘/ \ e | >
Vi
L ¢ )
HOT l's"m-lju-—" '::' Fm F“h% ' r-- _——;
gtabogtiphbotht ! GENERATOR !
] |
L 1_. L |
3, 5-YEAR 5-YEAR 6. 5-YEAR COMMERCIAL
FLUID HITEC HITEC HTS HTS
STORAGE ~—— 2-TANK— ~—DUAL MED!A THERMOCLINE —
CAPACITY (MWH) 17.1 14.9 12.5 1L9
MAX TEMPERATURE (°C) - 454 510 538 566
PUMPS ~— VERTICAL SUBMERGED — ~—— HORI ZONTAL IN-LINE ——

Figure 5-6. Energy Transport and Storage Subsystems

The development status of the energy transport and storage subsystems is
summarized on Figure 5-7. Since the 3.5- and 4.5-year programs use Hitec,

two separate storage tanks, and qualified vertical submerged pumps, there

are no development requirements. A1l the components are standard and have had
extensive application in many systems throughout the world. For the 6.5-
year program, HTS is used together with a single dual-media thermocline tank
and horizontal in-1ine pumps. A more complete material compatibility test is
needed for the HTS and the solid material (Taconite). Moreover, horizontal,
in-Tine centrifugal pumps for HTS have not been operated for extensive periods
at these conditions nor are they in commercial use. The HTS research program
presently underway at the Sandia Livermore Laboratory should provide the salt
and component technology needed for the 6.5-year design.

48
MECDONNELL m&



i

3,5- AND 4. 5-YEAR PROGRAMS

e ALL COMPONENTS
ARE STANDARD
ITEMS WITH
EXTENSIVE
PRIOR
APPLICATION

Figure 5-7. Eneray Transport and Storage Development Status

CR20-1

6. 5-YEAR PROGRAM

e MATERIAL
COMPATIBILITY
VERIFICATION
FOR DUAL MEDIA

© QUALIFICATION OF
IN-LINE PUMPS,
OTHER COMPONENTS
-USERESULTS
FROM DOE
SALT TECHNOLOGY
PROGRAM (SANDIA-L)

The evaluation of the energy transport and storage subsystems is given on
Table 5-4. From a reliability/availability standpoint, the present operating
experience with salt energy transport installations is excellent. Existing

systems work very well with minimum maintenance or replacement.

Advanced com-

ponents are planned to be used only when fully qualified. For the short dur-
ation programs, there is no development required, and consequently, no program
risk. For the 6.5-year program, there are no schedule constraints for the

necessary development testing.

If necessary, conditions can be reduced to

the 4.5-year design temperature and configuration for which there is no

development required.

For commercialization, one of the most important objec-

tives was Tow-cost storage to match the solar availability to the various user
demands. Program costs are expected to be low, primarily because there are
no development requirements in the 3.5- and 4.5-year programs and moderate

costs in the 6.5-year program.

For the shorter duration programs, the equip-

ment is commercially available and in common use, which will result in Tow
first unit costs. However, MDAC does plan to make use of other DOE programs.

MCDONNELL DOUGL(“%_
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Table 5-4. Energy Transport and Storage Evaluation

Criterion Features

Reliability/availability ¢ Present operating experience
is excellent

® Advanced components used only
when/if fully qualified

Program risk 3.5~ and e No development required
4.5-year
6.5-year ® No development schedule con-
straints - 4.5~year design
as backup
Commercialization potential e Low-cost storage to maich

various demand profiles/
capacity factors

Program cost 3.5~ and # o development costs
4 . 5-year e Low first-unit costs
6.5-year @ Moderate cost for dual-media
tests

¢ Use of DOE salt technology
program results

5.5 POWER CONVERSION SUBSYSTEM

The function of the power conversion subsystem (PCS) is to convert the thermal
energy colilected and stored in the Hitec/HTS into electricity, to distribute
this electrical energy to the electric grid, and to supply the plant's
auxiliary (parasitic) power requirements.

The PCS generates power by use of a steam Rankine cycle. The major components
of the PCS are listed on Figure 5-8.

The selection of the steam turbine is the most critical element in the design

of the PCS. The 3.5-year and 4.5-year programs will utilize conventional
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3.5- AND 4.5-YEAR PROGRAMS
{AXIAL TURBINE}

MAJOR COMPONENTS
(PACKAGED AS SKID-MOUNTED MODULES)

% TURBOGENERATOR AND ANCILLARY EQUIPMENT
® STEAM GENERATOR
@ FEEDWATER HEATERS AND PIPING

® PUMPS
: ® CONDENSER AND AIR REMOVAL EQUIFMENT
TURBINE INLET: 3.5-YEMR 4279C, 62 BAR
4,5YEAR 482°C, 103 BAR ¢ HEAT REJECTION EQUIPMENT
6,5-YEAR PROGRAM AND COMMERCIAL ¢ WATER T\ SATMENT

(RADIAL QUTFLOW TURBINE)
& AUXILIARY POWER UNIT

® INSTRUMENTATION AND CONTROL VALVES
& SWITCHGEAR AND PLANT ELECTRICAL NETWORK

TURBINE INLET: 6.5-YEAR 5109¢, 121 BAR
COMMERCIAL 538°C, 138 BAR

Figure 5-8. Power Conversion Subsystem

marine turbines. The radial outflow turbine, as developed by Energy
Technology, Inc. (ETI), will be the prime mover in the 6.5-year and commercial
programs. This turbine offers significant performance advantages due to
improved expansion efficiency and the ability to provide up to five extraction
ports for feedwater heating. These two configurations are shown on

Figure 5-8.

The steam generator caonsists of a separate preheater, natural recirculation
boiler and superheater sections connected in series. Heat rejection is
accomplished with a wet cooling tower. Piping is carbon steel or admiralty.
alloy throughout. The water/steam Toop will be blanketed with nitrogen at
night to prevent oxidation and corrosion.

A1l elements of the PCS have been selected for maximum reliability and are

standard equipment requiring no major development effort with the exception
ot the turbine for the 6.5-year program. Development status of the PCS is

summarized on Table 5-5.
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Table 5-5. Power Conversion Subsystem Development

Steam Turbine Is Only Development Item

@ 3.5-Year program -- Standard axial marine tu-bine (100's in service)

8 4.5-Year program -- S1ightly uprated axial marine turbine (standard
3.5~year design as backup)

¢ 6.5-Year program -- Full development/qualification of optimized radial
outflow turbine

An evaluation of the power conversion subsystem, is summarized on Table 5-6.
A1l the EE No. 1 programs utilize a natural recirculation boiler to enhance
the reliability of the power conversion Toop. The 3.5- and 4.5-year programs
use high reliability axial marine turbines. The reliability/availability
values obtained from several of the manufacturers of these marine units are
outstanding. For the 6.5-year program, the ETI design for the radial outflow
turbine is an inherently reliable one.

There is no development risk in the shorter programs, since there is no
development required. For the 6.5~year program, the development period is
very adequate. The radial outflow trubine could also he developed for the 4.5-
year program, however, only at some schedule risk. The high cycle efficiency
of this turbine greatly enhances its commercialization potential. The radial
turbine is designed for automaied manufacture and should be a relatively Tow
cost hardware item. A1l power conversion subsystem elements are designed to
be transportable as skid mounted assemblies. The single prime mover and
generator provides good commercialization potential compaved with multiple
power conversion modules as yreviewed in Section 2.
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Table 5-6. Power Conversion Subsystem Evaluation

Criterion Features
Reliability/availability A1l programs & Natural recirculation boiler
' 3.5- and o High refiability marine
4,5-year turbine
6.5-year @ High reliability design
Program risk 3.5~ and ® No development required
o 4. 5-year
6.5~year ¢ Substantial "pad" in deveiop-

~ment schedule

| Commercialization potential ¢ High cycle efficiency

@ Turbine designed for automated
manufacture

@ Transportable, skid-mounted
equipment

¢ Single prime mover/generator

Program cost 3.5~ and 8 No development costs
' | 4.5-year ® First unit employs standard
equipment
6.5-year - @ Turbine development is major
element

Program costs for the shorter programs are minimal since there are no develop-
ment requirements. The first unit costs are relatively low since standard
equipmaht is utilized. For the 6.5-year program, development of the radial
outtiow turbine is a major cost element.

5.6 PLANT CONTROL SUBSYSTEM

The plant control subsystems for the three EE No. 1 programs and the commercial
plant are summarized on Figure 5-9. This subsystem includes all cammand and
control equipment, sensors, and display and recording of plant status. For
the commerc1a1 system, the equipment is trailer mounted as illustrated on the
f1gure. Control equipment addresses two prime areas; the concentrator and
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éﬁz{_“ o COMMAND ARD CONTROL SURSYSTEMS
aoaly 1
%ﬁ i ® SENSE SUBSYSTEM OPERATIONS
el ® DISPLAY/RECORD PLART STATUS
© TRAILER-MOUNTED (COMMERCIAL UNIT)
25VEAR 45-YEAR G5YEAR _ CRMMERCIAL
- COLLECTOR/ THREE-ELEMENT COMBINED INTD TWO ELEMENTS -
COMGENTRATOR  FROM {0 MNe
DEGREE OF
AUTOMATION © KODETRANSITIONS  © LOOPWARMUPR o TUABINESTARTUP o ALL SYSTEMS
AND SHUTOWN ANO SHUTDOWN % FULL REDUNDANEY
© OTHER BLANT
OFERATIONS
OPERATIONAL
MODES: ® MANUAL s s @ SEMIAUTOMATIC @ AUTOMATIC {UNATTENOED)
© SERIAUTOMATIC ——— = ® AUTDMATIC © SEMIAUTOMATIC
@ AUTOMATIC —————e— = @ HARUAL © MANUAL

Figure 5-9, Plant Contral Subsystem

the entire plant. For the 3.5-year program, concentrator control is exactly
the same as for the Barstow 10 MWe plant, which uses three prime control
elements. These are: the heliostat controller (HC), the heliostat field
controller (HFC), and the heliostat array controller (HAC). For the Tonger
programs, these controls are reduced to two elements which are more cost
effective for a small plant. Fully automated plant operation is required

for the commercial unit. In the 3.5~year program, only mode transitions are
automatad. Greater amounts of automation are utilized for the longer programs.
Full realization of automated control, including full control redundancy, is
not achieved until the commercial unit. One of the three experimental pro-
grams would be used to gain the experience and confidence required to fully
develop automated control. Operating modes for the 3.5-and 4.5-year programs
will have manual control as a basic operating mode backed up with ssmiautomatic
and limited automatic operation. The 6.5-year program uses semiautomatic
contrel with automatic and manual backup.
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Plant control development reguirements are summarized on Table 5-7. As
reviewed above, no development is required for the 3.5-year program. Equip-
meni similar to the 10 MWe Barstow plant will be used. The plant processor,
as a ong-lead item, will have to be procured during Phase II. This same
equipment will be used for the 4.5-year program except that field control

"will be incorporated into the central plant control--the field controller

will be eliminated. Also, additional automated techniques will bé incorpo-
rated. _More extensive automated control will be used for the 6.5-year program.

Table 5-7. Plant Control Development

-8 3.5-Year Program
® No development required
¢ Order plant processor during Phase II {Long-lead
procurement) - ' :
¢ Automation tools available for testing

@ 4.5-Year Program
# Eliminate Tield controiler
e 3.5-year sysiem hardware configuration
® Add additional automated techniques

¢ 6.5~Year Program
e Extensive automation developed

An evaluation of the plant control subsystem is given on Table 5-8. Reliabil-
ity and availability are enhanced with the three control Tevel options
(manual, semiautomatic, automatic). Also, the plant processor is redundant

in all configurations. For the commercial unit, full redundancy of the sub-
system is proposed which ensures virtually no unavaf?abi]ity. Program risk is
very low for all cases. For the 3.5-year program, commercial hardware is used

. throughout--there is no development required whatsoever. On the other two

programs, the development objectives are matched to the available time. Plant
control development is extended as far as practical in meeting this criterion

-and in being cost effective. There is minimal risk with this program

flexibility.
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For commercialization, automated operation is key to achieving competitive
power costs. Consequently, automation is one of our major goals leading to
commercialization. In addition, the transportability criterion is met by the
trailer mounted control unit. This is important in order to have access ip
virtually any remote site where the plant may be deployed. Since commercial
hardware is used for all programs, there are no development costs for the
3.5-year program, and only moderate development costs to incorporate progres-
sive automation features for the 4.5-and 6.5-year programs. Full realization
of the automated operation is considered to be outside the scope of the

EE No. 1 program.

Table 5-8. Plant Control Evaluation

Reliability/availability ¢ Three-Level control options
Redundant plant processor
e Full redundancy (commercial

unit)
Program risk A1T programs e Commercial hardware
3.5- year s No development required
4.5~ and o Development matched to avail-
6.5-year ble time
o Less automation as backup
Commercialization potential e Automated operation
# Transportable trajler-mounted
unit
Program costs A1l programs @ Commercial hardware used
3.5-year @ No development costs
4,5~ and 8 Moderate development costs
6.5 year ¢ Full realization outside scope
of EE No. 1 programs
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Section 6
SENSITIVITY TO POWER LEVEL AND STORAGE CAPACITY

Sensitivity to changes in power rating and annual capacity factor was deter-
mined. The power rating was varied from 0.5 to 10,0 MEa at a constant
capacity factor of 0.4. Likewise, the capacity factor was varied from no
storage to 0.7 at constant rated power of 1.0 Mie. |

For the 10 MWe power rating, both a partial cavity receiver with a north
field, and a cylindrical receiver with a 360° surrounding field were investi~
gated. From the results of trade studies, the north field/partial cavity
receiver was selected for the 10 MWe power rating because the more effective
field performance and higher receiver efficiency produced a Tower overall cost
of energy.

For the no-storage case, a small two-tank energy storage subsysiem was retained
to isolate the power conversion subsystem from insolation transients caused

by intermittent cloud passage. Thase buffer tanks were sized for 10 minutes

of full-power operation. The corresponding heliostat field was optimized to
produce 1 MWe at 750 w/mz. Consequently, the "no-storage" case has a capacity
factor of 0.275.

Resuits are shown on Figure 6-1, which presents energy costs relative to the
baseline plant at 1.0 MWe and 0.7 capacity factor. Energy costs for the
_haseline plant were given in Section 4 as a function of annual deployment rate.
The Tower curves represent the cost contribution of capital equipment. The
upper curve represents the total costs of cap1tal equipment and operat1ons and
maintenance (0&M). As can be noted from the f1gure, energy costs increase
rapidly for plant ratings below 1.0 MWe. Above 1.0 MWe the costs decline in

a more gradual manner. An interesting observation that can be made from this
analyses is that even w1th automated operat1an, the 0&M costs make a very Targe
contribution to the energy costs.
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Figure 6-1. Sensitivity Resuits

For capacity factor variations, a more gradual behavior is apparent. However,
energy costs are lower for plants with Targer annual capacity factors. For
these relatively small plants, the power conversion equipment is a major
contributor to captial costs. Higher capacfty factors amortize this cost
over more annual energy; thus reducing energy costs.

From these results it can be seen that more competitive energy costs would be

produced by plants with ratings above 2 Mie and anuual capacity factors abova
0.4. ’
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Section 7
OVERALL EVALUATION

An overall evaluation of the final sysiem designs was made based on the major
selection and evaluation criteria previously reviewed.

High operational reliability is the first evaluation criterion. To meet

this requirement, selected system concepts should lead to: (1) an experimental
plant that will start up satisfactorily and operate reliably for at Teast

2 years after startup with minimum forced outage attributable to design
deficiencies and hardware failures, and (2) a commercial plant that will
operate with high relfability during its lifetime (typically 30 years). In
addition, enhancement of reliability through modularity/redundancy should be
considered.

The corresponding system reliability evaluation is given on Table 7-1. All of
the concepts proposed by MDAC have a predicted availability of 0.95 or better.

Table 7-1. System Evaluation--Reliability/Availability

o Predicted Plant Availability 0.95 (Al171 Designs)

e Full Tife qualification of heliostats
Conservative receiver design conditions - Reliable desigp
® Balance of equipment conventional (historical failure data
available)
¢ Redundancy where appropriate

® Full Redundancy of Power Conversion Not Justified
¢ High capital cost

@ High maintenance cost
e Reduced availability of full capacity
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Fully qualified heliostats from other programs will be used. Conservative
receiver design conditions have been selected and state-of-the-art fabrication
techniques used. The balance of the piant utilizes conventional equipment
with historical failure rate data that have been used for the reliability
predictions. Selected redundancy has been employed where appropriate; however,
full redundancy of the power conversion unit was not justified due to higher
capital costs, high maintenance costs, and reduced availability of full
capacity. Based on these design and operating approaches, the proposed experi-
mental and commercial systems will meet these reliability criteria better than
any alternative solar thermal electric concept.

Minimum risk of failure is the next major criterion to be evaluated. The
selected concepts were to minimize development risk and thereby provide high
confidence that subsystem development can be achieved within Phase II times
and that the experiment can be brought on-1ine at the specified startup times.
A system summary relative to program risk is given on Table 7-2. By design,
all the proposed programs have minimum technical and minimum schedule risks.
No collector development is required. This would normally be a major risk

Table 7-2, System Evaluation--Program Risk

A11 Programs Have Minimum Technical and Schedule Risk
® No collector development required
@ Receiver fabrication methods are conventional

# Standard equipment used exclusively in 3.5~ and 4.5-year
programs--available within schedules

¢ Al7 development schedules have substantial "pads"
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element to any solar power program. Recejver fabrication methods and opera-
tional conditions have been selected to minimize development risks. Standard
equipment is used exclusively for the 3.5~ and 4.5-year programs and all
equipment is available within the prescribed scheduies. Finally, the design
and development schedules have substantial pads *o accommodate unforeseen
occurrences. The tightast schedule constraint is a 4-month pad in the 4.5~
year program for incorporating receiver test results into the finmal design.

The next major evaluation criterion is commercialization potential. The
selected concepts should use or contribute directly to the eventual systems
that are 17kely to achieve commercial success in the Tate 1980's. To meet

this requirement, commercialization has been reflected in terms of cost/
performance, flexibility, and the institutional interface aspects. An evalua-
tion of the MDAC systems is summarized on Table 7-3. Energy costs of the small
solar power plant in favorable locations will be competitive with diesel
electric plants in this size range in the post-1985 period. In addition, this
system should be superior to any of the alternative solar options in the 1 to
10 MiWe size range.

To satisfy Tlexibility needs, it was concluded that four modules can reasonably
cover the 1 to 10 Mide size range. Customer power demand profiles can be
economically matched by the low-cost thermal storage design selected. Opera-
ting flexibility is enhanced furtirer by the segregation of the power generation
loop from the power conversion Tooj. Additionally the desired annual capacity
factor for small communities was typically 0.5, which is greater than the base-
iine 0.4. Again, the value of Tow-cost storage is important. Stand-alone
capability is also possible for use in regions remote from the grid. ATl
equipment is designed for road transportability to achieve flaxibility of plant
siting. Finally, the same plant can provide thermal energy which increases

its potential areas of appiication.

Minimum unique developments or operational procedures are required for this
plant. This makes maximum use of the existing infrastructures avoiding the
costs of extensive new industrial development. In addition, the plant is a
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Table 7-3. System Evaluation--Commercialization

8 Energy Costs

9 Competitive with diesel electric plants in favorable Tocations--
Post-1985
@ Superior to alternative solar plants in 1 to 10 MWe size range

e Flexibility

Four modules cover 1-10 MWe range effectively
Economically match solar availability to demand
- Low cost thermal storage
- Power generation separated from eneragy collection
Stand-alone capability
Road transportable for siting flexibility
e Thermal energy option available from same basic plant

¢ Institutional Interface
% Matches existing infrastructure
¢ "Good Neighbor"--No unique hazards

"good neighbor." There are no unique hazards from explosions or toxicity
nor significant chemical or noise polution.

This proposed small power system shouid become a genuine commercial product.

The final evaluation criterion is Tow program costs. Concepts should be
selected to minimize the estimated development and capital costs of Phases II
and III. An evaluation with respect to this criterion is summarized on
Table 7-4,

Phase II development costs have been minimized for the three EE No. 1 systems.
Existing concentrators with minimum modifications are used, and thus, con-
centrator development is not required. The design and operations of other
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Table 7-4. System Evaluation-~Program Cost

¢ Phase II Costs Minimized in A1l Systems

Concentrator development not required

Other development minimized (none for 3.5 year)

Short duration design phases

Adequate schedule time for development programs (where required)

e Phase III Costs Minimized in A1l Systems

® Low cost designs selected
¢ Volume production of concentrator
o Most other hardware is "off-the-shelf"

subsystems and components have been selected to minimize development require-
ments. There are no development tests at all for the 3.5-year program. Short
duration design phases have been scheduled to minimize engineering costs.
Adequate development time has been scheduled for those few components, where
required.

Phase III development costs, which include the first experimental unit costs,
have also been minimized. In all cases, low cost designs and operational pro-
cedures have been selected. The concentrators will be obtained from the
votume production Tines established for the Barstow 10 MWe solar electric
plant. Most other hardware is "off-the-shelf."

In conclusion, all three systems proposed by MDAC fully satisfy the selection
criteria specified by DOE/JPL for the First Small Power System Experiment
(Engineering Experiment No. 1}. Early deployment of one of these experimental
plants will provide the operational experience needed for the design of the
final commercial version., This plant could significantiy reduce our country's
dependence on imported o0il for energy.
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