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p;opertios. The rosonrch of the Saharan dust will lead to n

significant study in the future when the model will be available to

couple with air chemistry, and cloud and precipitation physics. This

complete aerosol model would explain hopefully the micro- and macro-

physical properties resulting from the complete cycle of nerosol ,

evolutions, and the analysis of the validated fields against

observations would help to estimate the effects on clouds, on

radiative characteristics Untterson, Gillette and Stockton, 19771

Carlson and Cnverly, 1977), and on visibility.
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THEORETICAL STUDIES OF THE TRANSPORT AND REMOVAL PROCESSES

OF SAHARA DUST

A snbsynoptic scale aerosol model has been dveloped during the

last six month at Ames Resenrch Center to study the long term fate of

the Snhurna dust which may play an important role in affecting

the climate over the Atlantic end Europe Ly cooling the atmosphere

due to the increase of the enrth's ulbedo or conversely warming the

atmosphere due to the eulmncement of the greenhouse effect.

I

The processes controlling the evolution of aerosol particles may

be divided Into dynamic processes concerned with the motions of air

currents and microphysical processes concerned with the growth of the

Individual particles. If dust particles nre introduced Into the

atmosphere, the particles will be diffused through a cortaln layer

and transported along the air cq!-eum ts. At the 800 nib level over the

Atlantic (see Figure 1. Cates, 1976) the dust particles originating

from North Africa will be transported west at inland, southwest near

African coast and then be transported northwest passing the ridge.

however, the situation is quite different at the 400 mb level (see

Figure 2. Cates, 1976) at which the particles whose concentration may

be quite small will be transported along the westerly jet to Europe

and Mid—East.

The main body of the dust clouds may be contained in the

convective layer and transported east to reach the eastern coast of

North and Central America. The rate of production of the large

particles depends on the collision efficIen—ay which depends In turn

cn the flow of uir in which the particles are Imbedded and the

dynamics cf the particles in resanr_:e to the drag force exerted by
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the air (Lnngmutr,l9/r8) Penrcey and Hill, 19571 IIocking,1959i Shufrir

and tiolburger,1963i Davis and Sartor,1967t Davis, 1972) as well no

their conleacence efficiency. Studies have been made In order to

parameterize the removal processes due to coagulation and

sedimentation.

A transport model has been developed based on th^ Ames PIanetary

Boundary Layer ;fodel (Loo and Swnn,1977i Swan and Lee, 1978). The PBL

model has been modified to include dust transport in the convectl-o

layer. Therefore, the model consists of three layers= mixed layer,

convective layer and free atmosphere. The dust primarily blows off

the African desert in a westerly direction and the dust layer

thleltuess seems to be controlled by the dnytime depth pf the

planetary boundary layer over Africa, and remains constant over the

ocenn. By the addition of a third layer to the model, this

convective layer transport can be taken into account.

The results from a preliminary test run are Presented in

Figuros 3 to 6. For this test run, simple initial and boundary

conditions were assumed to provide PBL wind ns southeasterly with 6

m/sec, sigma value at interface as 0.85 (about 1200 meters above

surface), PBL and surface potential temperature as 295 K. potential

temperature Jump at interface as 10 K, stability in the convective

layer as 50 degrees per sigma and vertical gradients of x- and y-

component wind as -40 and 40 m/sec• per sigma, respectively. Those

simulated fields which represent the subsynoptic scale motions for

4:00 a.m. of ,)uly 15 were obtained after 48 hours of real timi•

simulation in order to pass the transient period. The surface

pressure field (Figure 3) shows the topographic features of the

target area as well as the mass distribution of air due to the

initial southeasterly wind. The vertically averaged parameters of PBL

depth, potential temperature and wind are shown in Figures 4 to 6.

The wind pattern over ocean was quite uniform with about 5 m/sec, but

Vic...,_... ,.......	 ...



the wh-I over land wus channelled, bier -Led and drained due muiuly to

the topographic features. Ilia actual simulation of those parameters

will be quite different if the initial and boundary values that

varies with time and space are introduced.

In order to simulate the real situation as closely no Possible,
1
the Initial values and the steady state boundary values are provided

from various sources of observational and numerical studios (Posey

and Clapp, 1964; Espetishnde, Jr., 1970; Alexander and Nob ley, 1976;

Gates, 1976) and those raw data ware interpolated and smoothed to NA

properly to the coordinate system employed by the model and to the

complex terrain of the target area. in Figures 7 and 13, the surface

albedo constructed by Posey and Clapp(1964) and the su r face heat

capacity field constructed accounting the Gall properties

(Espensla de, 1970) over the target area are shown, respectively. in

Figures 9 through 22, the self —explanatory Initial fields constructed

to fit the model are shown (Gates, 197G; Alexander and Mobley, 1976)

for various parameters. The actual simmnlntions using these initial

vnlues are not available at this time. However, we can discuss n few

interesting features found from them. As expected, the hot and dry

spots (Figures 10 and 13) are located over most of Africa. The P11L is

shallow over land. In particular it is shallower over Saharan

desert. It is quite moist lit 	 P6L (Figure 13) and quite dry in

the convective layer (Figure 14). The PP.L momentum field (Figures 15

and 16) can be explained considering the surface pressure pattern

(Figure 9).	 -

In the future, this model may be exercised extennsiveiy to

understand various dynamic and physical processes characterising the

behavior of the dust and to validate the results against

observations. The surface dust Inventory, if available, will be used

to parameterize the dust flux in terms of mesosenle parameters such

as momentum, drag and atmospheric stability and of surface

rm
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Figure 1. Geopoteutial Height at 800 mb Jr meters.
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Figure 2. Geopotential Height at 400 mb in meters.
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Figure 3. Surface Pressure in mb (Test Run)
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Figure 5. PBL Potential Temperature in K (Test Run)
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Figure 7. Surface Albedo in Z.
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Figure 11. Sigma Value at Interface.
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Figure 12. PBL Potential Temperature in K.
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Figure 13. PAL Water Vapor Mixing Ratio in g/kg.
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Figure 14. Moisture Drop at Interface in g/kg.
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Figure 15. PBL X-Component Wind in m/sec.
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Figure 16. PBL Y-Component Wind in m/sec.
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Figure 17. X-Component Bind Jump at Interface in m/sec.
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Figure 19. Stability in Convective Layer in deg/sigma.
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Figure 20. Vertical Gradient of Moisture in g/kg.
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Figure 21. Vertical Gradient of U in Convective Layer in m./s/sigma.
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Figure 22. Vertical G— iient of V in Convective Layer in m/s/sigma.
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