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In this paper I analyze the quadrupole gravitational radiation
emitted by a !mly-prx-um, rigid, Newtonian body. An earlier vortl
(hereinafter referred - as Paper I) presented the solutions for axisya-
metric cojects and, in the small-wobble-angle limit, an approximate solu-
tien for aonaxisymmetric bodies. Paper I also discussed some astrophysical
applications of those calculations to meutron stars as sources of gravi-
tational waves. Here, I give algorithms for Computing the exact results
for the gravitational pover radiated and waveforms produced by an arbitrary
rigid Newtonian object, rotating free of external torques, in the standard
quadrupole moment formalism, I also give computationally wseful formulae
for the interesting case of almost-spherical object precessing with a
small vobble angle. These series expansions retain the precise frequency
dependence of the waves — an important point for observe:rs wha may have to
integrate over long times in order to see a signal. The results are com-
pared with the simpler, approximate waveforms of Paper i. Since that
paper discussed at length the application of these calculations to astro-
physical Systems, only a few remarks on that topic are included hera,

Section II of this paper reviews some of the classical Newtonian-
mechanics results for free precession, defines the coordinate system aud
terminology used herein, and presents foreilae useful for calculations of
the power radiated in gravitational waves by a votating rigid body, Tlat
section also gives the dominant terms in the gravitat.onal lwinosity for
an object with small wobble angle, small oblateness, and small nonaxisym-
metry, and interprets those terms, Section III reviews more of the
classical free-precession results, a°d uses them to derive formulae for

the gravitational waveforms h‘(t) ana I&(t). That section also presents



explicitly the dominant terms, with their exact frequency dependences,

for the same astrophysically-relevant limit as in Sec., II. The vaveforms
are interpreted and compared with the approximate results of Paper 1,
Figures 1 and 2 show the exact results for h _ and hx as calculated accord-
ing to the algorithm discussed in Sec. IIL.C., in two specific cases, for
a variety of observer inclinztions relative to the precessing body.

Finally, Sec. IV summarizes the conclusions of this paper,

I1. POWER RADIATED IN GRAVITATiONAL WAVES

A. Review of classical free precession results and
specification of zoordinate system

Throughout this paper, 1 shall use the physical conventions of Landau
ard Lifshitz2 in describing rigid body cotions, and tae mathematical nota-
tion of Abramowitz and Stt:gms for elliptic functions and integrals. Much
of the material necessarily repeatel here in the course of specifying the
problem is taken directly from Ref. 2, I work in units where G = ¢ = 1.

A rigid, Newtonian object in flat space has its inmertial properties
completely specifizc by its mass and by a symmetric tensor ?uxth com-
poments I,, = | p(bijr‘? - 1:,):!3:. In sowe noninertial coordinale system
called the "body frame" ? is diagonalized, with diagonal components Il’
12, 13, and the center of mass of the object is stationary at the origin.
Choose the bady-iframe unit basis vectors :l‘ 22, :3 to form a right-handed
coordinate system such that I, <1, <1,. (1f any two of the principal
moments of inertia are equal, the analysis in Paper I applies.) I shall
use Latin subscripts for components of tensors evaluated in the inmertial-

space reference frame, and Greek subscripts in the body frame, When

specific components are referred to explicitly, the letters X, ¥, and z

are used in the inertial frame and the digits 1, 2, and 2 in the body
frame,
.
The components of a tenter (such as I) in the body frame and in the

inertial frame are related by the “rotation matrix" Ry, ™ . *% . At any

J e
moment, the body frame's instantaneous angular velocity may be described
by a vector fi. The total angular momentum of the body is J -‘;-ﬁ, a
constant (if gravitational radiation-reaction torques are ignored),
Choose the coordinate system of the inertial frame so that § = J :..

The orientation of the body frame relative to the imertial system {s
described by three Euler angles: © is the angle between :. and :3, o is
the longitude of the ascending mode (that is, the angle between 3‘ and
the line of nodes formed by the intersection of the 2.-2, plane and the
€,-¢, plane), and y is the angle in the € -¢, plane between the line of
nodes and Zl. (See Sec. 35 of Ref, 2 for illustrations and comments.)

Choose the origin of time and the orisntation of :‘ and :’ such that
at t = 0, © is at its maximm value, § = %/2, and ¢ = 0; that is, %, lies
in the :x':y plane and :l and :3 lie in the :,-:z plane. (This completes
the specification of the two coordinate systems, and results in formuiase
vhich agree with the conventions of Paper I aad Ref, 2,)

1f the compcnents of @ in the body frame are denoted by 2y, °2’ and
2;, then the body has rotational emergy E = } (xlnf + 129.22 - 13932) and
angular momentum J = [J] = (112:;12 + 122322 + 132%2}5. Now, for speci-
ficity, make one additional assumption about the precession: assume
that _12 > 2812. This is equivalent to assuming that, in the body frame,
the apparent precessional motion of J is a closed curve around the :5
axis. (If £ 2EL,, the motiom of 7 i along a curve passing through

the :2 axis and the solutions for the gravitational radiatiom may be



obtained as a limit of the equations given below, If .12 < 2!:2,

motion of J is along a closed curve around the :1 axis, and by consist-

the

ently interchanging the indices 1" and "3" below, the correct solutioms
2ppear. )

The compoments of 1 in the body frame are simple elliptic functions
of time, Define the initial-value constants a = nlft'-—O) and b = %{::o},

and the dimensionless time varizble T according toc the equation

B i )

(-1 ) -1 )‘5
1:]::[" ek Wl
12

ﬂlvicn‘r

10, -1)7%

&etl[—l | sn 1 (2)

213"2_
ns-bdn-r-

The parameter m of the elliptic functions in Egs. (2] is
, 2

(12- 1) I, @

G

(1, -L) 1, b

== (3)

As m ~ 0, sn 7+ sin 1, cn 1 + cos T, €8 1+ 1, and the solutions reduce
to the symmetric-object solutions of Paper 1. The elliptic functions are
periodic in their argument Ty with period LK where K(z) is the "complete

elliptic integral of the first kind" defined and tabulated {n Ref, 3

B. Derivation of equations useful for the quadrupole-

monent formalism calculation

The quadrupole-moment !w—ll.-h says that the total energy radiated
per unit tize in gravitational waves is

- - 3
g = e ¢ &£
§<‘ji‘}k> where ljk = I"'j‘k'f Ejht )‘5’ and Ijt - Z‘i ‘jk - - "—ts Ijt'

The angle-brackets denote a time-average over a few periods,

The solution for the body's precessional motion fs much sizpler i=
the body frame than in the fnertial frame, 5o it is profitable to work
in the body frame as much as possible. In evaluating the total pover
radiated in gravitationaj waves, in fact, one can work eatirely in the
body fraze, and I shall do so,

Since Iji: = -ju.ll'xlﬂ and the body-framed I“ is constant, simgle
differentiation with Tespect to time gives
Ijk 5 l;.v (ljp'\v > s.ju.’kv b skju.iv o lju.l.v)'

The derivatives of the rotation matrices are:
.ju = cjk!"kt!;. = c“qnvl”

2
R = Gt Ry, + oo - (3] L )

- oot . .
Ry - [em..fna- 12l%ay) oen“nyonu%] Ryy = gk .

Taking Eqs. (1) and plugging into the equation for 1’._ yields
ljk = lj“l‘w!“v where the body-frame Quantity l"v is:



- - 2 - -
| -L [ e )
B, = -sn797 S e [e:w‘(nE i n.) + @n, + nr“u} +

e [.‘:W‘(Ee - hlﬁlaqe) + 2‘"‘1‘-’,, - i'zya'J + (s)

+31,.8 [nyfe“v L e o ) + n.. (:w, + c.m‘mv)] o

The problem of calculating the total power radiated, P, thus reduces
P oniiires 1
to the problem of evaluating P = ¢ ¢ ijhljk) -3 (lm' ‘“}
The terms of 'uv are not really as complicated as they may appear
to be when written in tensorial notation. Using the fact that IHV is

diagonal in the body frame, ome finds:

-8l - andy - o) ®
where

4 =1,-1,, f,=1,-1,, &, =1, -1, (7)

The other diagonal components of B I= follow by cycling the indices

1+2+3-1, Yor the off-diagonal terms,
By, = &0, - 5181%,) + 8.2 (24 -4) -
1 =400 s) + 2124, -4,

- 0 (28,-4)) - 3d 3‘2 - 3“2“.5“1

-
and the other cczponents of B follow by cycling the indices and by
symetry ('uv = lw)-
Equation (S) is quite general and in fact can be used to calculate
for any time-varying rotation rate 5(:) the inertial-frame time derivatives
-
of any rank-2 censor 1 which is constant in the body frame. For our

-
special case, where 7 is that of free precession and I 4s the inertia

tensor, the equations of wotion and their derivatives determine the

derivatives of nu:

s -1

nu i Iuv ma 7€ u b
-1 2 (
T BT, - 2 o tag (%)

-1
:l‘ m‘n“«’m H’halnx Cu

Using these identities to remove the derivatives of % from .l:ll'

e 'u-enl%(-ﬁ*é-é)

m--hﬁslale + .
-y ) (10)
‘A‘@’( 9K Wi oy
5 M-y
an(gh - T 2).

The other components follow by symmetry and by cyclically permuring sub-

scripts.

In order to evaluate the actual power radiated in gravitatiomal
waves, it is necessary %o know the average values over a cycle of ua %
snk %5 lus 7, etc. These can be expressed in terms of the complete
elliptic integrals of the first and second kinds, K(z=) and E(m) (see

Ref, 3). The results of time-aversging over a cycle ms.
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The fdentities ca2 T=]l . sn2 T and dae tT=1-m ln2 7 vhich relate
other elliptic functions to sn 1 enable all of the other averages to be
calculated from the above ones. From these averages, the exact power

output in gravitational radiation is straightforward to write out.

C. Exact quadrupole-moment gravitational luminosity

The total power P radiated in gravitational waves depends on the
parameters 1., 1., and 1y (principal moments of fnmertia of the rigid
body), and a and b (initial values of the components of cthe body's
angular velocity along the ;1 and :3 body axes),

To compute the total gravitational luminosity for any choice of
these parameters, one can proceed as follows: (1) evaluate the elliptic-
function parameter m from Eq. (2); (2) evaluate the averages over a
cycle :sns T}y (sua T cnh 3 (ln2 T cne t dn° T}, etc, of the various
combinations of even powers of sn %y 8 7, and dn : with exponents adding
Up to &, using Eqs. (1]) and the elliptic function identities which follow

them; (3) evaluate the averages (Buve) for u,v running 1 through 3, using

Egs. (2), (7), (10), and the averages calculated in step (2); (k) add up

the results of step (3) and divide by S to get Pw é (s ), the

HV.HV
quadrupole-moment formalism result for the luminosity in gravitaticnal

waves,

D. Series expansions for small wobble angle, small
oblateness, and near axisymmetry

Because the gravitational power radiated P must be invariant under
& reversal of the direction of rotation (7 = —ﬁ), P contains only even
powers of 8y, 85 nd f;. Define coefficients r“, G, and l!uv for each

of the types of terms in by:

1 € 2.2 2 b 2
e (e e oin 22 v u 0t ?) = el
3 LEV

One can expand i'“, G, and s“v for the interesting case of s=all
oblateness, where the differences between the prinscipal coments of
inertia are small compared to the principal mosents themselves. The
results are simple; through order ﬁ‘az

2

F =324
- -

¢ =10 (445740 + o (4o e a8 48

2 (1= c.uu.v)(s a“m‘) for Ef v

(13)

Bp =By =Ry =0,

The equation ru = 32 Aua is, in fact, exact to all orders in A“.

The "r“ terms” in P, which are proporticnal to a sixth power of a single



bedy-frame angular velocity, are precisely (32/s) (12- Is)a{ﬂls),
(s2/5)(1, - 11)2(;125), aad (32/5)(1, - 1,)%(0.%). These are familtar frem
“he case of rotation about a principal 2xis, where there are no other
terms.,

The expression for P in terms of Fu, G, and Hpv still contains un-
evaluated averages of angulsr velocities. 1In the astrophysically relevant
case of small wobble angle, small cblateness, and near-axisyrmmetry those
averages can be convenieatly expanded. Small wobble angle means that the
ratio of tae body-frame angular velocities al(c)/na(o) = afb << 1. Small

oblateness fmplies tha* (13- Il)/15 << 1 (since I, <1, < I,, there is

no need to mention 1, here). Near-axisymmetry causes (12- 11)/(15 -1,) = 1;

that is, the equatorfal moments of inertia are close to each other compared
to their difference from the polar mosent, 1If equal weights are given to
all three of these small parameters, the power radiated by a free',

precessing rigid body caz be expanded to Bive, at lowest order:

32 .6 2

2L
P-r—-s-b (Ie-ll) -

a“b .'13 - 11,2)2, (%)

ol

where 11:2 is some average of Il and 12, the precise nature of which is
irrelevant to this order,

This simple result for the gravitational luminosity is also quite
reasonable, The first tern, (22/5) e (12- 11)2, is the standard result
for a rigid body !ruly-ntlttng about its principal axis Is at angular
velocity b. The second term is the small-wobble-angle limit of the
energy radiated by a fruly-rotn:lng axisymmetric rigid body,l with

equatorial moments of inertia Il = 12'

I11. GRAVITATIONAL WAVEFORMS FROM FREE PRECESSION

A. Further review of classical free precession results

The calculation of the waveforms radiated by a precessing object {s
both simpler and more Complex than the calculation of the total power
radiated by that body. It is simpler in that only two time derivatives
OCiur, instead of three, and that only terms linear {n ? occur, instead
of terms quadratie. J¢ is more complex in that the Euler angles of the
body appear explicitly. It is also complicated somewhat by the appearance
of one more parameter, th.. observer's inclination angle "y~ relative to
the invariant J directiom,

The components al, f,, and & of @ in the body frame are periodic
in tize, with period

4
s iy
T. —
v [r:s-xz,)tls-:lj] an
[see Eqgs. (1), (2), amd (s)).
The Buler angles 6 and y are also periodic, with rerios 1/2;
b
€S & = = i dn ¢
(1e
11“3 -1) } T )

e lpmey] 25

Here and throughout I use the notation and initial-value choices of
Sec. II.A and of Ref, 2, wherein the classical free-precession results
which I quote are derived, Note that if the oblateness of the body {s
small, the period T ig very lomg. As ll - la and the object approaches
axisymmetry, m + 0, A(t) + constant, and T - ""‘:""s“s' 1)), the

i1



usual free precession period of a symmetric body. Note also that for
precesrsiu: eround the :5 axis, . <0.
The Euler angle g, unfortunately, is complicated; if it is written

nlm,q.old-gz, then the flmctlon;l can be expressed by

q(aiwlf t)) = (17)

(—-+ Lmx

vhere @ is a solution of sn(2i{cK) = asb/(lln) 22l 9, is a theta-function
in the nctation of Ref. 3. (Because of the common periodicity of the
elliptic functions and the theta-functions, all solutions o are equiva-
lent.) 1If K'(n) = K(1-m) and ¢ = exp(-X'/K), then a useful series

expansion of 9y can be written:

Ql(t) = z —len(

sinh (2nx2). (18)
n=1n(1-¢> )

'l'

The function rpl(t) is periodic in t with period T/2. The other part of

% is a linear function of time: ga(t) = 2-t/T", where

2; % (am)
Fei-¥ o
(19)
3, 2 [(s5-1)05-1 1)# ;—‘ q" el
T — —-—_—"—v—-—-— T B -
X LI J asl 1-4

Thus, cos (q,a(t)) has a period T' not, in general, commensurate with T,

and so the body's motion typically is nonperiodic. The period T' » 2:11/.1

as the body becomes axisymmetric,

B. Derivation of equations for the Quadrupole-

moment waveform calculation

The general expression for the wvaveforms radiated is a sizple onme:
in the transverse-traceless gauge of Ref. %, the dimensionless

gravitational-wave amplitudes are

(20)

In these equations, r is the distance from the observer to the
Sourcs of the radiatior, and ¥ and § are unit vectors transverse to
the waves' direction of propagation. Specifica’’r for a source at the
origin of the inertial frame and & distant observer in the :,-: plage
at colatitude i from the : axis, the vectors ¥ and & may be defined
uv.e,cul-c -hl.d---o‘. S.chnobumrmu, in the
usual astronomical conventicm, define the body's “inclimation” to be
angle {,

As in Sec, 11, it is advantageous to work as such as possible in
the body frame. Using the relation I’ =1 (.ju.kv 2% .iv"‘ u&'),
and substituting the results for l o and K, from Sec. n.l Egs. (L),

Js
I obtain;

fjk e .ju.kv‘uv
where
A= -2]3|2l“ . (:mﬁb + n,n")l” .
(21)
. ((unpa + arn‘)lw + a‘m“-leb“w‘n

5]



is defined completely in terms of body-freme quantities, Coobining Egs.

(20) and (21) with the definitions of ¥, ¥, and incltnation i, 1 obtain

-1
h = _r_[(c“ i l’u - sin 1 l'u)(cos i Ryv - sim { lt'v) -
- lmn“] AL {22)

2
hx ke (cos i .yu - sin { Ir-u) R, Am'

where the explicit components of AH_ are

Ay -2 (40,7 - &%)

hi2 = (4 -8, + ad, (3)
2
’(“1‘42 * %) 8%

and symmetry and cyclic index pemutation give the rest,
The components of the rotation matrix Rju in terms of the Euler

angles €, g, and ¢ are reproduced here for convenient reference. They are

B ———

cos ¥ cos g - sin | cos g

sin @ sin o

- €08 O sin ¥ sin g -~ €0s © cos ¥ sin g

€os ¥ sin - sin | sing
R=j =8in 6 cos g
'

+cucuntr.mg ¢:os°cosvcoso
cos G }

’

sin O sin sin © cos

(2%)

C. BExact quadrupole-moment gravitation:] waveforns

The gravitational wave amplitudes radiated by a tml.y-pnccuh‘,
Bewtonian, rigid hody depend on the parameters 1, 1,, and 1, (principas
moments of inertia of the body), a and b (inftial values of the comgonents
of the body's angular welocity along the 'c'! and 33 body axes), 1 (inmcli-
nation angle of the observer relative to the Znvariamt ¥ direction of
the body), and time ¢,

To compute the gravitational waveforms h+ and .x for any choice of
these parapeters, one can proceed as follows: (1) evaluate the ellipeic
function parameter m from Eq. (3); {2) evaiuate the constant o defined
by sn(2iaK(m)) - 41,4/(1,4) (following Bq. (17)); (3) evaluate the time
parmeter : using Eq. (1), the angular wvelocities &, o, and o at
“time" 7 using Eqs. (2), and the Buler angles &, 5, and ; using Eqs.
(15)-(18); (L) evaluate the components of AL udl’“ using Egs. (23)
and (24); (5) plug the results of the preceding evaluations evaluations
into Egs. (22) to compute h’(:) and hx(:). This algoriths war used to
calculate the waveforms shown in Figs. 1 and 2, which are discussed in

the following subsection,

D. Series expansions for small wobble angle, small
oblateness, and small nonaxisymmetry

While arbitrarily-accurate values for h‘ and ‘x may be computed
using the algorithm described above, for wany purposes it may be more
useful to have available the first terms of a series expansion of the
gravitational waveforms, :n making these expansicns, one must be care-
ful not to lose the correct, exact frequency dependence of the waves,
Experiments to detect nearly-monochromatic gravitational radiation often

15
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need to integrate for long times in order to build up an observable
signal. Hence, "smali" errors in the calculated powver spectrum are
dangerous. There also may exist several closely-spaced frequency com-
ponents in the radiatiom, which will be confused and confounded by a
series expansion that fails to preserve the correct frequency spectrum,

To make the expansions possible, in addition to demanding small
elliptic function parameter m, it is also convenient to demand that the
wobble angle be small and that the parameter

b s I-I‘u“-lz) 3
R LR

be small. This allows expansion of cos .. The rssucption of small 5 is
equivalent to the assumption that the body's nonaxisymsetry is not too
lurge.

The resulting expansions of the cosines of the Euler angles are:

blL

ccs 9 = _J_S_ [1 + E icos 2v-1) + G(na)]

cos ¥ = sim v [1 + (8 + E) cos2v + 5(52,-2,-5)] (23)
L

2
cos g = cos -f’}‘- - % sinh (2:2) sin %’.E sin 2v 4 G(nz)

where v m xt/(2K) = 2xt/T.

One may now plug in and grind these explicit Euler angles through
the equations for h+and I&. The results arz simple and interesting for
the astrophysically important case of small wobble angle, small oblate-

ness, and near-axisymmetry discussed in Sec. II:

b, =2 (1+ cos®1)(1,-1,)8° cos (20t) +

con o0 ) (5) (8) eon (29)
(28)
h u;:—m i (lz.xl)n2 sin (20¢) +

s ot (-1, ) (3-,‘) (5‘5")2 s ()

where @ m (29/T') - (°4/T) and 1) , is an average of I, and 1, (as before).
These are the dominant tems in the radiation; corrections are of higher
order in =, b, al,/(b1,), 1,-1,)/1,, and (1,-1,)/(1,-1,). BEgs. (26)
do, however, retain th. exact frequency dependence f the dom. ant parts
of the waver _, the period T'., (The cost is that T' cbeys a messy trans-
cendental eqiation.) The results here agree with Egs. (2) of Paper I,
where o _Lplir expansion was made which only gave the waves' approximate
frequencies,

As was the ‘ase in Sec. II, the do-inant components of h and b
[Eqs. (2€)] have a simple physical interpretation. The waves at frequency
20 with stremgtu independent (to this order in the expansion) of the wobble
angle are from the differing momrnts of inertia Il and Ia. Thzy are
identical in strength, frequency, and anmgular distribution to the waves
produced by a simple rigid rotor (a spinning dumbbell, for example).
The waves at frequency 2%/T' are the swall-wobble-angle limit of the waves
produced by a freely-precessing, axisymmetric (ll ~1,) object [Bgs. (1) of
Paper I]. As in that case, the mean frequency of pulses seen from a spot
fixed on the body's surface is not equal to the gravitational-wave fre-
quency; the two Jiffer by the precession frequency 2+/T. As discussed in

17



Paper I, this frequency splitting may cause difficulties for some
gravitational-wave detectors vhich rely on a high-Q system, mechanicall-
synchronized with a pulsar's electromagnetic pulses, to integrate up an
observable signal. On the other hand, i{f the frequency srlitting can be
observed, it will provide a direct measurement of a pulsar's oblateness.
Other details of the gravitatienal waveforms Bive information about wobble
angle, inclinatiom, and nonaxisymmetry — information difficult or impos-
sible to obtain by electromagnetic means, See Paper 1 for a detailed
discussion,

Figure 1 shows the computed waveforms h_and hx for a freely-
precessing, nearly-axisymetric body ‘.'ll/!5 = €.99, 12/13 = 0.991) moving
vith a fairly small wobble angle (a/b = 0.1). The exact solution as
graphed agrees with the first terms in the series expansion [Egs, (28)]
to within the expected accuracy of ~ 107 ~ la/b] ~ 8. The particular
choice of initfal conditions at ¢ U used in this paper, and the loca-
tion of the observer in the :y-:: plane, produces the particular phase
relationship between h“ and hx evident near t = 0. At later times, the
frequency splitting due to the (in this case slow) body-frame precession
changes the relative phases of the two wave polarizations. The - 10%
contributions from terms not retained in Egs. (28) also cause slow {time-
scal: T) amplitude variations of the waves; the variations are especially
visible at i = 0. The frequencies of the dominant Fourier components as
calculated in Eqs. ({26) are exact.

In Fig. 2, the waves emitted at various angle:s by ¢ highly-oblate
(11113 = 1f3, 12113 = 2/3) body precessing with a large wobble angle
(/b = 1) are shown. In this case the two timescales T and T' are of
comparable magnitudes, and the waveforms at all inclinations { exhibire

& wealth of information about their source,
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IV. CONCLUSIONS AND OPEN QUESTIONS

The results given in Secs. II and I11 of this paper for the power
and waveforns produced by a freely precessing, rigid, Newtonian body are
simple applications of the quadrupole-moment formalism to one specific
physical system, As discassed in Paper I, these idealized calculations
may be applicable to the astrophysically realistic case of a rapidly
rotating meutron star. The sensitivities of Bravitatiomal experiments
a-e improving at a rapid rate; it ir conceivable that some brecessing-body
sources will be detectable within the next decade. The results presented
ber: may then help save others some Computational labo:,

Papers I and 1T have only dealt with weak-field, slow-potion, smell-
str2ss sourc:s (the standsrd Newtonian approximation to gemeral relativiry),
Keutron stars have rather strong fields, since GYrc” ~ 0.2 in typical
models, I Suspect, but hawve not proved, that the Strong-field, slow-
wotion approximation to keneral relativicy will give precisely the same
vaveform predictions as does the weak-field formalisn, if the moment of
inertia and quadrupole moment temsors of the body are properl;, redefined,
This topic might be vortk further inve. ‘lgatioa. It might alse be inter-
esting to calculate more realistic models of precessing neutron stars,
where the assumptions of : finjite rigidity and zero external torques are
relaxed. (Paper I, Sec. 71, suggests but does not prove thet such real-
istic oodels will typically not differ significantly froz the models
calculated here, except for havirg a lomger precess‘on timescale T,)
Firally, wore work on the interpretation of the gravitational waveforms
might be valusble; Paper I discussed how to deduce inforsation about he
source from the waves, but only for the cases of axisymmtric bodies and of

small-wobble-angle precession for triaxial bodies,
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FIGURE CAPTIONS

Fig. 1. Gravitational radiation waveforns h_ (solid lines) and b
(dashed lines) measurable by observers at inclinations i = 0° &

30° A , and 90° relative to the T of the freely precessing,

rigid, Newtonian source. The algorithe and equations of Sec.

III were applied to a body with principal moments of inertia

‘1"3 = 0.99 and 12/15 = 0.991, rotating with initial values
of its angular velocities .11(6)/;‘3(0) =afb = 0.1. For this
case, solution of the equations of motion gave elliptic function
parmeter m = L1 x IC™, a = 0,9:893, perfod T' « 6.18906b, and

precession period T = £55,19b. The dimensionless "units" in

terms of which h is plotted are

G Ib r 1, R
:F It ’ . (IOLS s-o;‘;)(zoo r:l s"l) (l :Pc) 3

Fig. 2. Gravitational radiation waveforns h (solid lines) and h

(deshed lines) measurable by observers at inclinations 1= 0
300, 50° » and 20° relative to the § of the freely precessing,
rigid, Newtonian source. In this case, 1/1 = 1/s, 12/1
“1(°)/“5(°) =afb=1,m=13 a= 0.k79788, T' = 1, 79069b, and
T=6€,93566 b. As in Fig. 1, the dimensionless “units" in terms

of wvhich h is plotted are (:ilsb2 r:k.




Fig. 2
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