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MULTIVARIATE APPROXIMATION METHODS AND
APPLICATIONS IN GEOPHYSICS AND GEODESY

Marie=Jeanne Munteanu

Rets ity
PRETACE

This is the first report in a series which is intended to be written by the
author with the purpose of treating a class of approximation metheds of func-
tions in one and several variables and ways of applying them to Geophysics and
Geodesy.

The first repoxrt is divided in three parts and is devoted to the presentation
of the mathematical theory and formulas. Some of my unpublished results are
being summarized, together with my recent communications and well known re-
sults of other authors in the field.

We try fo give a unified feeling about the topics presented not always insist-~

ing about certain details which can be found easily in the other author's papers.
We discuss various optimal ways of representing functions in one and sev~
eral variables and the associated error when we have information about the
function such as satellite data of different kinds,
The framework chosen is Hilbert spaces, which are very important for

their simplicity in obtaining optimal solutions, for their links with the statistical

interpretations and inverse theory.

Experiments have been performed on satellite altimeter data and on satellite to satellite

tracking data. In both cases the results are very satisfactory and they are going to be

presented in the next report.
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MULTIVARIATE APPROXIMATION METHODS AND
APPLICATIONS IN GEOPHYSICS AND GEQODESY

Marie-Jeanne Munteanu

INTRODUCTION

The purpose of the present survey is to make the reader aware of the existence
of the various representations of a function of several variables and a common
source of their derivation.

I will discuss the numerical experience obtained with them in the satellite
data analysis in a second report.

The main theme of the class of methods is the representation of a funetion
in a Hilbert space as a solution of a boundary value problem for a differential
equation using Green's function, One part of the solution can be viewed as an ap-
proximation of the lunction and the second part as ihe corresponding remainder,

The choice of the differential equation is very important and should he re-
lated to the specific application.

In the next report we will discuss such a choice in connection with the sta-
tistical interpretation and with the links between different methods such as col-
location, kernel functions, spline functions and finite elements.

There is a wealth of connections between different approaches which should
give a perspective on the choice of the appropriate method for the specific problem
and alse to lead us to the desired interpretations.

The importance of the representations derived in this repoi't is that:

1. They furnish an approximation of a given function and the corresponding

remainder,



2. An inner produet for the construction of a Hilbert space with reproducing
kernel is provided.

3. Hilbert spaces with reproducing kernels generated in this manner are very
interesting in optimization theory, namely numerically efficient optimal solutions
are olitalned via projection on different subspaces.

4. Computationally very efficient optimal numerical formulas for interpola-
tion, filtering, differentiation, integration ete. together with their error representa-
tions are obtained very elegantly.

5. Error estimates for the optimal formulas in Hilbert spaces are given by
the hypercycle inequality.

6. The reproducing kernel of a Hilbert space provides us with a covariance
function and therefore leads us to statistical interpretation.

7. Hilbert space treatment seems fo be an alternative to the statistical
approach.

8. Generalized inverse problems which are so vitally important in geophysics
have many times as a framework the Hilbert spaces approaches. (See Bachus and
Gilbert papers.) All these ideas will be discussed in detail in future reports.

Concerning the numerical experience with these methods, together with Carl
Siefring I have experimented with the tensor product representation and more
specifically with the tensor product of univariate B-spling functions.

In the application of the tensor products one necds a first stage, namely gen-
erating the values of the unknown function on the rectangular grid with, {or ex-
ample, least squares and orthogonal polynomials,

We are applying this scheme to sea surface topography.
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On the test data the tensor product of splines works outstandingly well, the
error associated with the method is extremely small. What is extremely inter-
esting about the tensor product of B-splines is that the univariate B-splines are
functions with support of small size any outstanding numerical properties so that
the above two dimensional scheme can be viewed as a vory efficient finife element
formula, This finite clement scheme can be used not only in the best approxima-
tion context such as optima! filtering or interpolation but also in optimally solving
partial differential equations as well as optimization problems of ail kinds, In geo-
physical problems such as for example modelling the SAN ANDREAS (ault or in the
varistional approach of whole-earth dynamics, ete, we can use these funcuons as
trial functions. Our numerical cxperimentation with sateliite data such as altimeter
data js going to b2 included in the next report and hopefully be presented at the AGU
meeting this spring. Of course the nature of for example altimeter data also calls for
the application of other schemes such as blending spline functions. This is the next
step in sequence. The reason is that tensor product vpline functions interpolate data
on a rectangular grid, while blending spline functions interpolate dafa along curves
in space which in our case are the satellite tracks,

In addition if we use B-spline and feast squares in the blending schemes one can
compress data significantly. We have experimented very succesfully with satellite to
satellite tracking data. compressing around 300 data to 32 coefficients.

The FORTRAN subroutings used and the graphs obtained are available and

will be included in a note tegether with all the ciher experiments.



PART I

The first part is concerned with the presentation of a general method in order
to obtain representations of function:z in several variables. This uses, essentially,
the form of the solution of a boundary value problem for an ordinary differential
equation and the isomorphism between the lattice of a collection of linear projec-
tion operators and the lattice of corresponding image spaces. New representa-
tions, well known formulas such as the Taylorian representation of D.D, Stancu
[29] and Sard [2d] as well as the very interesting and elegant results concerning
multivariate functions obtained by Gordon [19], Gordon and Birkhoff [7] are ob-
tained using intuitive diagrams. The reproducing kernel for a Hilbert space of
bivariate functions which have Taylor representations can then be constructed
(see Nielson [24], Mansfield [21], and Ritter [25]).

One can generalize their method for more general cases than bivariate spaces
of functions possesing Taylor expansions and their variations. Once the reproduc-
ing kernels are at hand the question of optimal approximation of linear functionals
in Hilbert spaces is reduced to requiring that the approximation be exact for the

representers of approximating functionals,



PART 1II

In the second part approximation formuias and the corresponding remainders
are characterized as solutions of certain partial differential problems, These
formulas furnish representations of functions belonging to o certain space of bi-
variate functions and provide in some cases an innev product. The space can be
completed in the sense of this inner product, reproducing kernels kernels can be
consgtructed and consequently optimal approximations of linear functionals and
othor very useful quantities in numerical analysis can be derived. One can de-
rive an entire variety of differential problems giving intermediate approxima-
tions and the corresponding remainders, maximal and minimal approximations
being the two extreme cases,

The isomorphism hetween the lattice of a class of Aifferential problems and
the correspending lattice of linear projection operators which are solutions of
the differential problems is used in the main. If, in addition, the isomorphism
to the corresponding lattice generated by the projectors is used the theory of
approximation of multivariate functions can be unified in a beautiful manner,

At the end of the second part of the report the tensor product splines of
Ahlberg, Nilson and Walsh, Gordon's blending splines interpolating a network of
curves and generally splines in several variables interpolating hypersﬁrfaces
and corresponding remainders are introduced, It is well known that blending
splines in two variables have been used with great success in problems of
compuier-aided design, airplane fuselages, automobile exteriors, etc. Gener-
ally speaking these multivariate splines can be used in the problem of modeling

smooth surfaces.



The major role in the construction of these multivariate spline functions is
played by univariate spline functions. Using Gordon's language the urnivariate
spline functions generate a distributive lattice of projectors which has a "maxi-
mal" projector and a "minimal' projeitor. TFor the bivariate case the "minimal?
projector is the tensor product spline and the "maximal’t projector is.tha blend-
ing spline mentioned above.

The lattice of correspridirg remainders gives the errors associated with
the maximal, minimal und generally all intermediate approximations.

‘The above mentioned isomorphivm betwzen lattices suggests the Euler-
Lagrange differential equations satisfid by these splines. Consequently, the
minimization properties nf these functions can be derived.

In a later report several approaches to defining multivariate splines will be
presented. Of course, one important approach will be the variational one, start-
ing with the minimization property of spline functions, deducing the Euler-Lagrange
dgifferential equations and finally obtaining the analytical fe~m of certain types of

multivariate splines.

1. REPRESENTATIONS OF FUNCTIONS I SEVERAL VARIABLES

1.1 The Bivariate Case
1.1.1 W. J. Gordon's Maximal sz Minimal Approximations

Consider the space C?[I'], the set of real-valued functions, defined and con-
tinuous on the interval I' = [0,1], such that all derivatives of order less than or
equal to p are continuous or I', Similarly we define the space C9[I"] where
I'"=[0,1},. Consider also the space C*%[R ] of bivariate functions, defined

on R = }'x I, real-valued, and having derivatives



{i,4? .
DF(x, y)eC*(R,)0si<p, 02 = q, vhere

ptied) -

Let D, and D, be the linear differential operators

= a0 ey 4P d .
D, ~np(-x>m+ e 0 (X) =40 (%),

de ' d
D =b it ra— PR e 1]
y =g dy‘1+ + by (y) dy+b0(y>

defined on C" [I'], C" [I"] respectivaly. We assume a, (x), b i (y) are real and
continuous on their domains of definition, and a o (%) ¥ 0, bq (¥) # 0.

Denote by N, and N, tha respective null spaces of the operators D, and D,.
These are obviously subspaces of dimension p and q respectively.

Let £, ,1=0,p-1 and m, j= 0,q-1 be continuous linear functionals on
CP(I'], C*I"], respectively, which form the bases for the dual null spaces. The

functionals :{i'.‘, i= Q,p-1; m'j, i= 0,q-1 arve of the following lorm:

pe1 M=l
PE) =) ) Ay f(‘cg) +Z f By (0 F (X, £, CPIT1),
k=0 ’E*--O
q=1 Mkf-.-l k' a-t k')
m' (g) = Z Z Bk%; g(x’ﬁ) + Z f a,/ {¥y)gly)dy, geC* [1+1,
kien 4's0 k'=0 “1°

where Ay, B, +p are constants, the functions A, (x) and a, (y) are piecewise
continuous on I' and I" respectively, Xy and yp, ave points in I' and I" respectively.
Denote by ’f‘sv i= 0,p-1 and my, j = 0,a-1 the respective restrictions of the
functionals "&'i, i=0,p-1 and m{,j= 0,q-1 to the subspaces N, and N,. We know
that there exists a unique base ¢, (x), i= G.p-1 for Ny and a unique base y i (9

i= 0,0-1 for N, such that



‘“jw’k)=5hv k, ij=0,q-1.

Lemma 1: Every function {{x)e C” [I'] can be represented in the [ollowing form:

p-1
HOEDIENOEROE J G, (x, t)D, () dt (L)
im0 1!

where G (x,t) is the Green's function of the differential problem

Dyf=e . where FeC”[T']1—Ps . cel? (1]
L.(H=0 i=07p-1 '

(see {41, [10]). Similarly all g(y)e C*(I"] can be written as
q-1

g(y) = Z me (R (¥) + j G,(y,uw)D, (g)du (2)
IH

jm0

G,(y,u) is the Green's function of the differential problem

D g=h D,
{ Y geC 1] —Xwhel? [I"].
m;(g)=0 i=0,q-1

Deline the "partial" operators L,, i= 0,p-1 and Mj, i = 0,q-1 on the space

cP:1 [Ru} such that

L, (F) ='ﬁl[1“ (x,y*)] forall y* 1"
F(x,y) C*0 R, ],

My (" =my [F(x#,y)] forallx* I,

j
Denote by D and D,

D—a(x)—a?—- +a(~<)l+a(x)
x~ Op axp T MY ox T e

3" o
B, = by Sga + b, (y) Byt Lo ()

the extensions of the operators D, and D, to the space C™* [R ].



Theorem: Every F(x,y)eC"*%[R ] can be written in ithe form

p=1

F{x,y) = Z L, (F)# (%) + f G,(xt)D, [F(t,y)] dt =P (F)+R,(F) (3)
and i=0 I
q-1
F(ay)= Z M (F)Y; () + J G,(v,u) D, [F(x,u)l du =P, (F) + R,(F) (4)
J=0 1"

(see Gordon [17], p. 17).

It is obvious that all functions F(x,y) eN AN can be written as

p-1 q-1

Fy) = ) )7 LM (F)$, (x)¢,; () = P,P,(F). (5)

i=0 ja0

Using the results given in [17}, [7], [19] were able to assert that all F(x,y)

€ N,'(HN; can be represented as

Tx,y) = Jl[ G, (x,t) G,(y,u) D, D F(t,u)dt du (6)
Ru

.where N} and N; are the complementary spaces of N, and N,, respectively.
Suppose now we wish to obtain our function in the form
F=P(F) +R(F)
where P(¥) is the component of the function belonging to the subspace er}Ny and
satisfying the interpolation conditions:
L, (F)=L,(P), i=0,p-1,
M (F)=M;(P), j = 0,q-1,
and R(F) if the corresponding error, i.e. the component of the function belonging
to the complemcatary subspace of N U N,.
Let us first make two remarks about the n*® order. These notes will be

used constantly in this chapter.



1. Using Dieudonne's theorem (in [13],p. 123) we can obtain F as the sum
of two components, one in the subspace and the other the corresponding error,

2, There exists an isomorphism between the lattice of the subspaces and

the lattice of the corresponding representations, (S2e Gordon (19]).

Theorem 1: Every function F(x,y)e C*'" [R ] admits the following development:

Fix,y) = P(F) + R(F),

where
p=1 q=1 p=1 gq=1
POF)= 3 L(F)e, () + ) Mi(F)y, ) =) Do LM(F)e, ()¢ ()
im0 =0 is0 j=0
=P,(F)+P,(F) = PP, (F),
R(F) = j 3, (x.t) G,(y.,u) D, D F(t,u)dt du.

RIJ
By using the following diagram, remarks 1 and 2, and formulas (3), (4), (5) a

and (6), we arrive at formula (7).

We can easily verify that P(F) satisfies all the necessary interpolation

conditions.
N,r; N, —N NN, = (N, UN,)
P

L/é\ AT T

¥ =
L
=

N, N,

j
| ==

\L g

g

This diagram suggests that we compose P, (F) and P, (F) to obtain P(F).

10



Denote this operation by o, then
F(F)= (P, o P,)(F) =P (F)+P,(F)-PP,;(F).
In the terminology introduced by Govdon ([19] p. 234) IX(F) is called the maximal
approximation,
We now look for F {n the form
F(s,y) = p(F) + ¢ (F),
where p(F) is the compornent of ' fn the subspace N_ N Ny satislying the inter-

polation conditions

LiM; (F)=LM, [p(F)], i=0,p=-1, j=0q-1.
und p(F) is the corresponding error, i.e, the component of T in the complemoutary

subspace of N, N N..

Theorem 2: Any F(x,y)eC™'" (R ] can be wriiten in the form

F=p(TF)+ r(F),

where
p=1 q-l
PCE) = ) 3 LMy (F )b, () (v) = PyPy(F),
1a0 i=0

r (") = j G,(xt)D F(t,y)dt 4 J G, (y,)D F(u)du +
l’ I"

- JJ G,(xt)G, (y,u)D, D F(t,u)didu =
R\l

=R(F)+ Ry(F) - R R, (F) = (R, 0 Ry)(T). . (8
An immedinte justification of the formula is suggested by the fnllowing

diagram:

11



\ ME— Mmoo
[ Nx % == Ny
\ —\ B s

[~ N ﬂNy

TT-

Remarlks:

1. Theorem 2 can be considered as a generaiization of a development of

Stancu (see [29]),

In fact, if one particularizes as follows,

mx = Dipvo)’ Ey = D::th)' Il = [0’ 1] , Il - [0, 1] ,

Gl
LiMJ.(F)::DF(O,O), i=0p-1, 1] =0,q-1,

one obtains the taylorian development of Stancu:

1
1 p-1 ISP'D)
- = Fo—_— X -t DF(t,y)dt 4
im0 io0 il 1 (P-l)! f ( )+ ( )
= j= 0
1

<—q——1—-)-,- f (y - U):_l D(O.Q)F(X,U) du 73
" Y

1

Vot o ae1
ff (Z{p 1);' (?E-uf;' D(plq)F(t'U)dtdu

¢ Yo

2. Obviously P{F) satisfies the necessary interpolation conditions. Gordon

calls p(f) the minimal approximation,

The diagram in this cage gives us the errors R, (F) and R, (F) of the opera-
tion of composition, then r(F)

H

r(F)= (R, o R,)(F) =R1(F).+R2(F) - R R, (F).

We can obtain another expression for r(F) by making another diagram,

12



Theorem 3: Every function F(x,y) ¢ C*'% [R ] can be written in the following

form:

F(x.y) = PP, (F) + PR, (F) + P,R (F) + R, R, (F) =

p=1 q-1 p=1
=) L.M,-(F)*t‘(x)ut,(y)s‘z “h("?f G,(yw)D, [L,(F)]du
0

=0  j=0 i=0

j=0 ot o

+ -‘V'}(Y) [ G,(x,t)D, [H,(F)Jdt +J] G (%, 1) G,(y.)D, D (F)dtdu (10)
R

u

We justify this formula in a manner identical to the preceding one but we
begin with the following diagram:

——-N;ﬂNy

b~ ‘_N:nNy

For example, for the shaded part we have the following conditions: F(x,y)

e N_and F(x,y) € N;. Then we have the representations

p=1
F(xy)= )" L (F)¢, (x) (11)
i=0
F(x,y) = 'f G,(y,u)D, F(x,u)du (12)
.

By substituting (11) into (12) we see that all functions Fix,y) ¢ N_ N N; can

be written in the form

p-1

Pix.v) = Z ,j;i(x)J‘ (.‘.z(y,u)D'I [Li(F)] du.

ie? 1

13



Similarly all F(x,y) ¢ N, N N can be written as

q-1

F(x,y) = Z ¥, (y)J- G, (x.t)D, [N, (F)] dt.
Il

ju0

In partictlar sinee we have already proposed Theorem 2 we obtain a taylor-
inn development whose expression is different [rom the rest.

Formulas (7) and {10) were deduced by Gordon in a different way (see [18]

p. 939, [17] p. 23, 2.5),

We have demonstratod o method in the very simple case of bivarinte func-
tions and presented for them the maximal and minimal approximations, This
discussion is an introduction to the case of several varinbles and to the subse-
quently more complicated representations.

The above formula gives us a very interesting way of introducing a sealar
product for the bivariate function spaces. For a particular simple choice of the
operators and the functionals we obtain one of the Sard spaces [26) which is very

often used in numerical analysis,

1,1.2 Generalizabions of the Development of A, Sard

LetR = I'x1, (a,b) e R, and p, q are non-negative integers such that

p+g=n. A, Sard in [26] introduces the space B, =B, (ab)= qu (R,; a,b)

as the collection of real-valued functions f(x,y} defined on R, and baving derivatives

épl‘l)

Di(x,y) (x,y) &R,
n-3a3d

D%(x,b) xel j<aq,
-

1,n-j
D%(a,y)) yel" i <p,

which are continuous., Assume p +q=2m,a=0,h=0,

14



Theorem 4: Every function f(x,y) € B’.,‘ can be written in the form:

f=A+B+C4+D

where
gl gl . y_u)h 1=l i, am=1)
Z 'yl Li 0.0 z i! J‘ (2m=i=1)! D*(O,u)du.
- gi [ Giat g™ Db D= (x=t)" (x=t)7"" (y=u)}”
,“;-? (Im-j-l)t yde, J]; (m=1)! (m=1)! (m=1)!

u

To begin we will write out in detail the first sum.

m=~1 m=1
A=A+ ) Ay s ) A
im0 jmd
m=1 m=] x‘ } )
where =Z Z 7 i D}(0.0).
im0 w0

m=-l 2m=-1=j

m=1
¥ - " xi gy i.3)
,Z.OAJ.} l‘é‘, ,Z_._ h Df (0,0).

Construct the following diagram:

(Ker 87 ) (Ker N:'")'

y o=l (Ker H:‘)'
mely o
y® LA . \* A (Ker ﬂy )

20 2.,n=1 my s

y™=1 (Ker Dy)

) 30t + A_"n-l
| l l LI N
1 x x.-l x™ x 2m=1

(13)

Dit u)dtdu



Denote by
Di -2, D, :_.9.:, i =0,%m,
Oxt AN
Also denos by Six|, 8{y™, ..., y?!1], the subspaces generated by x and y™,
« oy Y-l respectively.

It is clear that all f(x,y) ¢ Ker D': N Ker D';' admits the representation A |,
all £(x,y) € 8y i3 n 8lx", ..., x?¥], j= G,m-1 the representation A, |,
j= 0,m-1 and all functions f(x,y) ¢ Sxi1 N 8ly", ..., Y* -] the representa-
tion A, ,,i=0,m-1,

Search the subspaces now for the one which has the B representation, Fol-
lowing the same diagram we prove that all f(x,y) which are elements of the sub-
space {S[1] n (Ker D™} U{SIx] n (Ker D2 1)1y u... U {S8[x") (Ker DJ*')}
can be written in the B form,

Actually for all {(x,y) € S{xi] N (Ker Ds""‘ ), i= 0,m-1, we have that

; 1 (y U)Em-i—l
. - X ks (i,2m=~1) ¢ _ AT
f(x,y) = T ———~—-————(2m_i_1)l D f¢0,u)du, i=0,m-1.
0

Similarly we easily sce the C representation coryesponds to the subspace
{s[1] n (Ker D2™)'} U {Sly]l n (Ker D"y} U . ..U {S[y"] n (Ker D'")'},
Finally we know that all {(x,y) ¢ (Ker D';)' n (Ker D;‘,‘ "admit the D repre-

sentation and formula (13) is thus proved.

Remarks
1. Formula (13) of Theorem 4 constitutes the taylorian development of Sard.
The author has obtained this representation in u completely different manner,

(See [26]).
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A

2, The method, the one by which we have just constructed the formula of
Sard, permits us to obtain more general representations possessing similar
chitracteristics. We have presented the method in the trivial case. We are able
to obtain in an analogous manner more compiex representations of thé form

{(notation is obvious)

1 n,m
FGY) = ) b (O% (LM, (f)+Z¢i(x>f Gy, ) DECERY L (F)Idu 4
0

iej<2m i<m

1
+ Z%(sf)f END) i UG
0

j<m

1el n,m)
f f Gm(x.t)cmcy,u)nt‘(t,u)d tdu (14)
0o

We have replaced the taylorian functionals by the continuous linear functionals

Lle,i+j< 2m,

This representation is considered as a generalization of the taylorian de-

velopment of Sard.

17



2. Decomposition of Linear Differential Problems

In the second part of the report we wili obtain representations of multi-
variable functions starting with appropriate decomposition of certain linear dif-
ferential problems, Wa also [ind again certain developments obtained in the
preceding part of the report, We organize the material in the following way,

Two differential problems, for the bivariate case, are treated in the first
section and we obtain the maximal and minimal approximations and the corre~
sponding errors. One ciase in particular permits us to concretely itlustrate a
result given by G. Birkhoff and W. J. Gordon [7].

In the second section we study two differential problems for the four variable
case whose solutions can bo interpreted as defining an interpolating function for
a system of given curves and for a sysitem of given surfaces, respectively. We
also study the vorresponding errors. As one last example, for the four variable
case, we intend to iliustrate a partial symmetrie intermediate approximation.

Iinally we consider the general case of n variables as providing the inter-
polating function of certain hypersurfaces in j variables, j = I,n-1 and the cor-

responding errors as solutions of certain differential problems, For the n

variable case we are able to obiain all the total symmetric intermediate approx-
imations and the corresponding errors.

TFrom the point of view of the theory of differential equations we obtained
the solution to a certain class of differential problems by systematically using
the same method based on the appropriate diagrams, suggesting the mentioned

isomorphism belween corresponding distributive iattices.
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2.1 Bivariate Case

We adopt the same framework as found in part one.

Let the non-homogeneous differential problem be

8.0 F(x,y) = e(xy),
Ly(F)=f,(y), i=0,p-1,

W, Fy =g,

n
o
e

|

it

the symbolism is the same as in part one, e(x,y} ¢ C°®. ), f, (y) € C3[I"],
u i

g(x) e C°LI'], 1= 0,p-1, § = 0, g-L.

Suppose that the compatibility conditions

—d

Ll(gj):'mj(fi)' I=0,p~1, j=0,q-1,

are satisfied. We can then assume a solution of the form
F(x,y) = F (x,y) + Fy(xy), Fe CT 7[R ],
where F, (x,y) is the solution to the differential problem
ﬂxﬂyFl (xy) =0
L (F)=f), i=0p-1,
Mj (Fl) =gy (x}, i=0,q-1.
and F2 (x,y) is the solution of the problem
ﬁxﬂyl-;_ (%) = e(x,y)
L, (F,)=0, i=0p-1,
Mj(Fz) =0, j=0,q-1,

We then have from the [lirst part that F, is

F,(ay) = Jf G,(x,t) G, (v.u) e(t,u) dtdu.
Ru

19

(17)

(18)

(18)

(20)

(1)

(22)



Following the diagram corresponding to Theorem 1, part one, and ti.
relation
Pxer.'f)xi'ﬂy = Pl{e;mx + Pxerﬂj - Pﬂerﬂx Kcrﬂy' (23)
where by chri-lxi*?y we mean the operator corresponding to all F(x,y) ¢ CP*9 [R],

the component In the subspace Ker 3, 1\}}_, We decompese the second problem into

three differcntiai problomas:
Li(Fyd= £, (), i=0p-1,

{'@yFl2 =0,
Mj(Flg) = gj(x)u j=0,9-1,
BF,=0,

Vi -
i«yizs - 0,

i

LM (F,)=L(g;)=a;;, i=0p-1, j=0q-1,

Tor which the solutions are:

p-t
Fu E] Z ':1 ) ¢1(o\')v
=1
Fip = ) 8;() %),
i=0
p-1 q-1
Fiq = Z Z @ f, () g (x)-
i=0 j=0

From (23) we conclude
Fy=F #Fy-Fig
from which it follows that

F=F, +F,-F,+7F,. (24)
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This is the result proposed by Theorem 1, part one. The unigueness of the isolu-
tion to problem (17) is due to the hypothesis made on the operators L, and M,,

(see part one),

Remarvk:

For the particular case: §, =DM, 9 =p(®)

lij) . . 9
L;_Mj (F)=Féx!,yj),1 = 0,[3—1, J 3‘2‘-13-1; x;- )’j %0 or 11

G. Birkhoff and W. J. Gord’m. obtained the same resuit using an induction method

(see [7]).

Particular Case

We are going to consider a particular case which appears in [7). The solu-
tion given by the aufhor on p. 204, formula (19) {s inexact and will be corrected

in what follows;

rFé::;; =0, 0sx,¥ys1,

F(x,0)= 0, FOy)=0

{ F(x1)=0, F(L,y)=0

Fy(60) = go(<)y F (Oy) = fh(¥),

K.Fy(xvl) = BI(K): F,(Ly)= Ex(y)'

where [, (y), q; (x) € ¢*10,1],1,j= 0,1, and we have

- d . d Nz
ny(i,l)::-d—;{-fj(x): -&;gI(J), i,j=0,1.
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Then the unique solution in ¢*** [R,] is of the form

Fxy = 45(0) Fo () + ¢y (¥) £ (%) + B (%) o (¥) + &, (x) g, (¥) -

1.

1) {1,1) 1,1
- g () Folx) FOL0) = 0 () by (8) o, (v) FCOLY = b (x) b, (v) FELB -
(1.1 €1,0) (1,0
- (XD 1(Y)F(1-1) - ‘f’g(x)‘ff‘g (Y)F(0,0) - ¢’2(-“)¢'1 (Y)F(LO; =

— 250020 PO = ;0 2, Y P T —, (9) 9 (0 FEO) -
420, IF(0,0) = ¢, ) B O F(LL0 - b, (v) 6, OFELE,
,where
$o(x) = x(1 = %)%,
P (x) = x2(1 - x),
¢a(x) = (14 2x) (1 - x)?,
¢,(x) = (3 ~ 2x) x2,
are the cardinal functions for the polynomial interpolation problem in the sense
of Hermite (see Davis [12] p. 45).
The case whare the four initial boundary conditions are non-zero has Laen

considersd by Gordon in [17] p. 38,

Let i~ .ww consider the following differential problem:
BF = £ (xy)
£=)yr~* = [, (x.y),
LM;(F)=a;, i=0p-1, j=04q-1,
where £, (x,y) & coIn x ¢, [,{x,y) € CP[I'] X c®1). The following

condition

B E,(xy) ::IQY fL(ay) (26)
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is assumed to be satisfied, then every solution F(x,y) is necessarily a sum
F(x,y) = F{ (%,¥) + F(x,y)
where F, (x,y} is the solution of the problem
HF =0
ﬂyFl =0

\-LiMj(Fl):"'ij' i=0p-1l, j=0,q-1, (27)

and T, (x,y) is the solution of the problem

19sz = £, (¥}
B F, = £,(x,¥),
LiMj(F2)=0t i=0.P-1a j=0,q-1. (28)

The solution F, (x,y) is obviously given by

p-1 q=-1

Fyay) =) )0 ayy b (0 ). (29)

iz0 =0
Looking for the expression of F, we return to the diagram corresponding to
Theorem 2, part one. Let T be the operator considered in the problem, Then
we deduce that
P(Ker Ty = P(Kcrmx)' + P(Ker ﬂy)' - P(Kcrﬂx)’ﬂ(xerﬂy)' (30)

by (KerT)' we mean the complementary subspace of the null space of the opera-

tor T.
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Then to find the expression for F,(x,y} we decompose the differential problem

(28) into three differential problems:

J’@an = £ (xy)
LLi(Fgl) = 0* i= O-P-l'
{ﬁyl"z,_, = (%)
M}(FM) =0, j=0,q-1
mxms'w‘!” =19x f2(x,y)
L;(Fy3)=0, i=0,p-1,

M;(Fp3) =0, j=0,q-1.

For the reasons given in part one, we then have

r1
F,y = 1 G (o) f(ty)dt,
Y0
rl
Fap = G, (yw) f,(xu)du,
Y
rl 1l
Fos = J G, (x,t) G, (y,u) 0.8 f,(t,u)dtdu.
Yo Yo

T -ing calculated the relation in (30) we obtain
Fy =Fyy + Fyp = Fyy. (31)
Consider the same differential problem and work this time for the expres-

sion of I, from the diagram corresponding to Theorem 3, part one, Thus

[4 s [! l Al 2 3
where

(1) F; satisfies the differential problem

1
{&%=n@m'
L(F,)=0. i=0p-1,
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and covrosponds to tho nall spacs of the operator By,

=t

= Z Mj(l?él)‘lbj(y)'
Ju

(2) 1} satisfios tho problom

{&ﬂ=uwm.
h‘j (l";)_! 0| j = Or q*l..

and corrosponds to tho null spaee of tho oporator ¥

v

p=-1

Fy = 3 Li(Fy) ), (x)

in0

(3) I, liko abovo, is the sclutiud to the problem

PEUN. T e

fﬂxﬂrl'u - NK fni\-u: ’
L, (Fy =0, i=0,p-I,
Imj(inj‘) =0, j=0,q-1.

It ts n cloar vesult that

-l

T‘, = 5!4 o) J- G, (x,t) My {F ty)] dt,
qu
=1 :
Z B (x) J Gy ) Ly {Fy ()] du,
im0

11
1?;‘ = f [ G, (x,t) Gy (y,u) B, (t,u) dtdu,
0 “o ,

This 18 the vosult given by Theoram 3, part ono.
In an analogous mannor wa can trost the case of three and more than three

variables,
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Spline Functions in Seveyal Varlables

g e Y BT e U U

"This seetion is meant to briefly present in o unified manner certnin Lypes
of spline functions in several varfables. The major vole in the consiruction of
these spline Nunetions is played by univariate spline functions.

The reasons bebind plaeing this section at the end of this roport are:

1, Wo use the methods of piaat one, sections one and two in order to dorive
the analytic expression of the spline twetion and the corvesponding remainder.

2, The diffevential prablems studied in part two of the report suggast to us
the Buler-Lagrange cquations of the minimization propertios satisfied by the

spline funetions under consideration,



2,.2.1 Reacolloctions

Lotn': 0= x, < x, €, .. <x =1, 4" Omy, < Y% ... S yo=2land
" 0= Zo < %, <... <z, =1Dbe three partitions of the intervals I'= [0,1], ,

I"={0-1],, and I"" = [0,1], .

¥
Let Ef,”; {1'] be the collection of functions [ defined on }' which are of class
C* inside euch subinterval {x,, X;,4) of1' and which have simple jump discon-
tinuitios in the (2111-2)“‘ derivative across the joints X, 1<i<p~-1, Similarly
dofine the space E,‘?r'},,[I"] and Dfr',’,, [,
Define Efr',';:'r_',,[l" X I"] as the space of funotions f{x,y) defined on T' X I" and
whose normal derivatives satisfy the conditions
(1°) Fég'*(:gr)e E;‘; (1], ¥x*eI', 0 S g 2m-2,
(2°) FEE:;B")E EX (1], ¥y* € I, 0€ v & 2m - 2,
"
For the trivitriate case we introduce, in an analogous fashion, the space
B2 220 IR ], whenR =1'x I'"XI", The partitionm' X n" X #" of R, yields

I fx lﬂx IM'
paralielpipeds denoted R e i=¢,pPLi=0Q' k= 0R',

Let the partial operators be
L, () =4, [f(x,y¥z2¥)], forall Y¥ake J9x 1",
.\Lf(x.y,z)eEfil;zl’,’,f'I’m{Ru}. M;CE) =my [f(x*y,2%)], forall xpzxel’ x I,
N (F) =n [f(x*y*2)] . forall x¥,y¥eI'x I’,

i=1,P, j=1,0, k= LR.
The [unctionals £, , 1 ¢ 1 £ P ave linear, continuous, defined on I:‘.‘:': {I'], and

of the following form:
| = f(xg) £ =0,p’
VI(x) € E:': (11,4, [Fx)) -

f [+ %

‘31.1 =1o -1,
(x.g)'c Op% e=1ip

Similarly on the spaces Efrg [1"], B [I"'] we defing the functionnls m,, j= IQ

w
and n, k= T,-I-{-
27



We intraduce as in scetions 1,2 and part one differential operators I‘Qx._ ﬂy’
i?.‘rIl of degree p, where I, Q, R > p.

Denole by Sx the collection of spline functions related to the differential
operator ¥ and the functionals 1,15 i€ p. The dimension of S, 1s P, Let
1Q, (xp s:1 be the cardinal base of 8.

A spling funetion s(x) « §, {or the case of the differentinl operator D, has
the following properties

(i) s(xy 1= a polynomial of degree less than or equal {o 2p-1 in each interval

[xi_,x 1,i=5:5t'i.. _

il
{if) the tirst 2p-2 dovivatives of s(x) are continuous at the joints x,;, 1= 0,P7-1,
Starting with this unified delinition we bave for the trivariate ease, we can

genorate the spline functions ol Gordon and Ahlberg-Nilson-Walsh,

2,2,2 W, J. Gordon's Bpline Funetions

Suppose we wish to obtain an intorpolatiop formuin

FGayz) = S(avz) ¢ r(uy,e), (49)
such that
AU NN BFD, Sy = 0 (50)

in the interior of the parallelpipeds R, e b= 0P, j=0,Q7, k= 0R', and that

the lollowing interpolation conditions arve satisfied:

|

L) =L, (8), i=1p,
M, () =M, (8), i=1,0,
N (D) =N (S), k=TR (51)

We donote by 8% the sdisint furm of the oporator D,
The gpline lunction s(x,y,2) was deflined in o different way by Gordon [18].
To obtain the analytie expression of s{x,y,2) and r{xX,y,%) we construct the

{following dingram:



Via analogous reasons as those of sections 1,2 and part 1 we can write the

following formulas:

P Q R
S(x.y,2) = Z L(f)d,(x)+ LM,(f)w‘,(Y)'r z N (F) X, (2) -

=l =1 kel
P Q P R
-3 ZLlM'(f)‘:“(x)wl(y)-Z ZL.Nk(f)Jrl(x)xk(z)- (52)
im] j=1 iml k=1
o, x AR
=3 IMNOYMX (@ 4 3T T YL M N @ (0¥ () Xy (2)
=1 kel iml i*! ksl
r (x,v,2) nj]]‘ G‘|‘(x.t)G;(y.u)G‘;(z.v)N:D‘ﬂ:ﬂuﬁ:ﬂvI'(t,u.v)dtt' idv (53)
R

where Gj(x,t) is the function which appears in the error formula for a univariate

spline
f(x)= S(x)+ r(x) (54)
p'=1
S(x) = Z L(He, (x) (55)
iml
1 L |
r(x) :J‘ {Gl(x.t) - Z @, (x)4 i [G(x.t)]} 9:-‘3, f(t)dt =
0 iml ;
1
:f G:(x.t)D:th(t)dt. (56)
0
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G, (x,t) is the corresponding Green's function of the boundary value problem
DID, f(x) = e(x)

a n * .
féog =0, f(x) e C‘p[I']_.I.)"_D_’.‘_..._e(x)e 21

R —

(a)
f(1)=0, a=0,p-1, (57)

In the sum which appears in the integral, we consider all the functionals »ﬂi ,
i= '1_,-1‘5,with the exception of those in the boundary value problem (7). (See
Bivkho!fl and de Boor {6]).

The functions Gj(y,u) and Gy (z,u) arve similarly defined.

The analylic expressions of the spline function s(x,y,z) and the error r(x,y,z)

were obtained in a different way than Gordon's, in [18], for the bivariate case.

Minimization Property

Gordon's spline function minimizes the pseudo-norm
D

HJ (8,88, f(x,y,z)]° dxdydz, (58)
Rl!

with respect to all functions which are in the space gk e [Ru} , and which satisfy

the interpolation conditions (51). (See [18], for the example),

2.2,3 Multi-variable Spline Functions Introduced by
Allberg, Nilson and Walsh

We are looking for an interpolation lormula
f(x,y,2) = Sl(x,y.z) + r(x,y,z}, (59)
such that S, (x,y,2) satisfies the equations
L()flgx 8 1(x,y,z) =0,
i@fﬁy S (xy,2) =0,
10:’10: S,(xy,2) =0, (60)
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in each of the parallelpipeds R iR with the [ollowing interpolation conditions

LM NS ) =L MM (E), =i=LF, j=Tq k=Tk (61)
This definition is given in [1]. The authors have not studied the corresponding
error (see also [9]). The diagiam resembes that of part one section two but we
replace N,, Ny, N, by 8, Sy, 8,. We have the formulas:

P

Q R
Sy (xyz)= ) )0 3T LM N () d () (¥) X, (2), (62)

izl }j=1 k=l

P Q
rayiz) = ) ) B ) | G v) T, [LM,¢Hldy +

izl j=1 &

Q R _ P R
£y )X () J G (xit) B8, [MN (F)]dt + §_ 3 &, (x) X, ().
he &

j=t k=l izl kal

P
J Ga (v 70 [L,N(F)Idu= 3" 6 ,(x) ﬂ Gy (y,u) G3 (z,v) 78,070 [L (£)] dudv -
| G :

iml

Q o -] N* ES
IR H G (%, t) Gy (z,v) D0, 978, [M (F)]dtdv -
Ifx IJH

=1

R
= ) Xy (2) H GS(x,t) Gy (y,u) BT D 070, [N, (F)) dtdu
le IHJ

k=1

+ J[{ Gy (x,t) G5 (y,u) G5 (z:v) Qik@tmfﬂuﬂ:clgv [f(t,u,v)] dtdudy. (63)
. RU .

Minimization Property

The spline function s, (X,y,2) minimizes the pseudo-norm of (68} with respect
to all the functions in the space C*+"*® [R ] which satisfy the interpelation con-

ditions (61). (See [1]).

REMARKS
We can similarly introduce spline functions in n variables interpolating
hypersurfaces in j variables j = 1,n-1. Using univariate spline -functinns we can
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generate a lattice of projeetors whose "minimal" projector will be the tensor
product splines and whose "maximal" projector will be a spline function in n
variables, inferpolating a netfwork of hypersurfaces in n - 1 variables. Of course
of great interest will be all the spectrum of intermediate splines interpolating
hypersurfaces in any number of variables from one to n - 1, It is unnecessary
to mention the great importance to have at hand the lattice of corresponding re-

mainders for numerous problems in numerical analysis.
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