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A REVIEW OF PROPELLER THEORY
By Blake W. Corson, Jr.

Langley Aeronautical Laboratory
INTRODUCTION

Although the use of screw propellers for boats was introduced at
least as early as 1836, the scientific study of propellers may be
regarded as having begun in 1865 with the introduction of the slipstream-
momentum theory by Rankine which was followed in 1878 by an alternative
concept, the simple blade-element theory of W. Froude. In view of the
extreme simplicity of the assumptlons upon which the early theory is
based, the agreement of the analytical results with experience is
remarkably good. The fact that no further major advances in propeller
theory were made until about 1915 is due in part to the relatively
satisfactory results obtained with the early simple theory and indicates
that progress in propeller theory awalted the development of aircraft
and airfoil theory.

In the history of propeller theory there appear to be five out-
standing contributions which serve ag a background for a great number of
aggociated significant contributions. The major contributions are the
axial-momentum theory introduced by Rankine (reference 1) in 1865, the
simple blade-element theory of W. Froude (reference 2), 1878, the
concept of the vortex propeller theory by Lanchester (reference 3),
1907, the screw propeller with minimum induced energy loss by Betz
(reference 4), 1919, and Goldstein's solution for the radial distri-
bution of circulation for highest efficiency for a lightly loaded pro-
peller having a finite number of blades (reference 5), 1929. Since 1929
a number of notable contributions have been made to aerodynsmic pro-
peller theory, most of which stem from an attempt to extend the work of
Betz and Goldstein to consideration of a heavily loaded propeller and
the development of dual-rotation propeller theory.

A review of only the significant contributions to propeller theory
affords material for a voluminous textbook. The purpose of this paper
ig to mention briefly the significant features of the major contributions
and to discuss some of the more important developments made since the
introduction of Goldstein's work, especially those made during the recent
war years which have not received widespread publicity.

A list of the symbols used in this paper is included in the appendix.
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EARLY THEORY

Slmple Mbmentum Theory

In the development of the slipstream-axial-momentum theory Renkine
regarded the propeller as an actuator disk immersed in a fluid having a
uniform relative motion normal. to the plane of the disk as shown in
figure 1. The thrust exerted by the propeller results in a discontinuous
increase 1n total pressure of the slipstream as it passes through the
disk which is manifest as a continuous increase in slipstream axial
veloclty and an abrupt rise in static pressure In the derivation, use
is made of the laws of motion, Bernoulli's equation, continuity equatlon
and conservation of energy. The analysis indicates that the axial-
velocity Increase in the fully developed sllpstre&m where the static
pressure is the same as that of the Burrounding medium, is twice the
increase at the propeller. The fundemental and very useful relation for
Jet propulsive efficiency is

N == \ (1)

By assuming conservation of energy, an alternate expression involving
power coefflcient, advance ratio, and efficiency 1s derived:

.31 -1
Cp = =
> J

(2)
P ﬂ3

Equation (2) represents the absolute ultimate in efficiency obtainable
with a loaded propeller operating in an undisturbed stream; the only
loss considered is the axial kinetic energy in the slipstream which is
inseparable from the production of thrust. The variation of ideal
efficiency with advance ratio as indicated by the simple momentum theory
is shown in figure 2 and is compared with the efficiency indicated by
modern theory.

The simple momentum theory was inadequate in that it gave no
indication of the rate of slipstream contraction, failed to deal with
the friction losses of a real propeller, and falled to fix propeller
geometry except to demand the largest possible diameter.

Simple Blade-Element Theory

The simple blade-element theory introduced by W. Froude in 1878
and extended by Drzewiecki (reference 1 on p. 179 of reference 6) in
1892 ignored the concept of slipstream momentum and considered only the
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force and velocity vectors acting on the propeller blade sections. The
blade section at each radisl distance from the axis of rotation was
treated as an airfoil of indefinitely short span operating in a fluid
whose relative velocity was determined only by the propeller's rotational
gspeed and its forward motion. Application of the theory required the

use of experimentally determined airfoil characteristics (lift and drag
coefficients) and arbitrary assumptions of effective aspect ratio.

This theory, though far from being satisfactory, did enable
designers to fix propeller size and shape for given operating conditions
and permitted the calculation of propeller thrust, power, and profile
efficiency. The efficiency computation accounts for no losses except
the blade-section profile-drag or friction lcsses. The efficiency of a
blade element 7' 1is expressed as

tan ¢,

= tan (¢o + 7)

1

! (3)

where ¢o ig the nominal helix angle and 7 .is the angle whose tangent

ig the drag-lift ratic. The foregoing relation is simply the efficiency
of any screw involving friction and working without slip. Ths theory is
useless for conditions of low rates of advance but gives reasonably good
results at high advance ratios and does indicate that highest efficiency
can be obtained when the most effective parts of the propeller blade have
helix angles slightly less than 45°. Inasmuch as the energy relations
between the propeller and the surrounding medium are ignored, the theory
is Incomplete and glves no information for selection of optimum number
of blades or optimum blade shape. The optimum diameter indicated would
be merely that which resulted in lowest profile losses which is entirely
dependent upon the arbitrary selection of airfoil characteristics.

MODERN THEORY

The Vortex Theory

In the quarter century preceding World War I, considerable effort
was spent In trying to develop the older basic theories to have a more
realistic application to actual propellers. Most investigators realized
that the axial-velocity increment demanded by the simple momentum theory
must also exist to some extent for the blade-element theory, and early
attempts to improve the latter theory followed this approach. That is,
the effective axial velocity in which the propeller operated was assumed
to be the sum of the flight velocity and the velocity increment (at the
disk) calculated from the simple momentum theory or an empirically
determined portion thereof (reference 1l on p. 180 of reference 6 and
references 7 and 8). Also, during this period the slipstream-momentum
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theory was extended to include the slipstream rotation resulting from
propeller torque and was designated as the general momentum theory.

With the advent of modern airfoil theory characterized by the
association of 1lift with circulation and the related concept of a vortex
gystem for a finite airfoil consisting of bound and trailing vortlces a
new approach to the propeller problem was opened.

The concept proposed by Lanchester in 1907 (reference 3L upon which
the vortex theory of the propeller is based, is that the effective
velocity at which the blade sections of a propeller operate includes, .in
addition to the translational and rotational velocities, the velocity
induced by the propeller itself which is the strength at the propeller
blades of the velocity field of the trailing vortex system. This concept
igs based on Prandtl's airfoil theory. The simplest possible represen-
tation of such a system, analogous to the use of a horseshoe vortex to
represent a finite lifting airfoil, is shown in figure 3. The diagram
illustrates the propeller blades, each with a bound vortex and its
agsgoclated pair of trailing vortices, all of equal strength. From each
propeller blade one vortex tralls directly downstream with circulation
about the axis of rotatlon in the same sense as the propeller rotation,
the other vortex springing from the propeller tip trails along a helical
path with circulation opposite in sense to that of the axial trailing
vortex. It was realized, of course, that the real vortex system would
be determined by the radial distribution of load on the blade and would
be composed of a helicoidal sheet of vortex filasments springing from all
points along the blade. Employing such a concept, Joukowski developed a
vortex theory of screw propellers in 1912 (reference 8 on p. 180 of
reference 6) which he presented in final form in 1918 being forced by
the involved nature of the problem to the simplifying assumption of an
infinite number of blades. Original contributions in the development
of the vortex theory of propellers with an infinite number of blades have
been made by other investigators (references A5 and A7 of reference 9 and
references 10 to 13) of whom the most widely known in English speaking
countries is H. Glauert.

The egsential feature of the vortex theory is that the induced
velocity at the propeller blade can be calculated from a knowledge of
the vortex system of the wake and that in the resultant flow the blade
elements can be assumed to operate with the characteristics of an air-
foll having infinite aspect ratio. A further assumption made in the
application of blade-element theory is that the operation of a blade
element is not influenced by the operation of adjacent elements of the
same blade. Though not theoretically tenable, experiment has shown
that the assumption of independence of blade elements results in no
appreciable error (reference 1k4).

A typical vector diagram of the velocitles assumed to act on a
propeller blade element for the vortex theory is presented in figure L.
The axial and rotational components, v and 2nrn, respectively, are
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gpecified by the operating conditions. The critical problem in any
screw-propeller theory is the determination of the induced velocity Wi

which is the real velocity at the propeller blade element of the air
adjacent to the vortex sheet in a direction normal to the sheet. In the
application of the vortex theory it has been customary to resolve the
induced velocity into axial and rotational components and to compute
these "interference" velocities by means of the general momentum
equations. Satlsfactory routing procedures for application of the vortex
theory have been set up by Glauert and by Weick (references 15 and 16,
respectively).

Again referring to the vector dlagram (fig. 4) the efficiency of a
blade element by the vortex theory is shown to be

r___tangd 1-a’ (1)
tan (f + 7)1+ a

Equation (4) conveniently indicates the magnitudes of the three sources
of loss considered, that is, proflle-drag loss and the axial and rota-
tional induced losses.

When the vortex theory ls simplified by the assumption of a pro-
peller having an infinite number of frictionless blades, the induced
velocity at the propeller wy of the trailing-vortex system 1s the

same as that obtained by the general momentum equations and is given by

B
1T bxr sin ¢ 5)

where the product 3BI' is the total circulation about all blade elements
at the radius r.

In spite of the necessary simplifying assumptions, the vortex theory
has given results which agree reasonably well with experience and forms
the basis of modern propeller theory. It did fail, however, in the
important detail of showing the effect of the number of blades and, as
originally developed, did not indicate the optimum radial distribution
of blade loading. \

Screw Propeller with Minimum Induced Energy Loss

Adopting the concept of a propeller operating in accordance with
the vortex theory and producing a slipstream composed of a system of
trailing vortices, Betz proposed to determine the radial distribution of
circulation along the propeller blade (or distribution of vorticity in
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the slipstream) which for a given thrust would result in the smallest
energy loss (reference 4). Prandtl had shown that the condition of
minimim induced energy loss for a lifting airfoil is obtained when the
induced velocity in the wake, opposed to the direction of the lift, is
uniform along the span, which results in an elliptical spanwise loading.
Betz 's solution represents an extension of Prandtl's airfoil theory to
the case of a propeller. Just as in the case of a finite wing, the
system of vortex filaments trailing the spanwise wing elements is
regarded as forming a rigid sheetj so, for a propeller the vortex
filaments trailing along helical paths downstream from the propeller
blade elements are regarded as forming, behind each blade, a rigid
helicoidal vortex sheet (without any assumption at this point as to
whether the individual filaments continue to maintain their positions
relative to one another as they pass downstream).

In the wake of a thrusting propeller the helicoidal sheets have
both axial and rotational velocity components which, if the sheets are
rigid, can be resolved into a pure apparent axial motion or pure apparent
rotation. In any case the fluld between adjacent sheets adopts the same
general motion and, in addition, a radial velocity produced by its
tendency to flow around the edges of the sheets which produces the so-
called "tip loss" associated with a finite number of blades. In his
early treatment Betz assumed a lightly loaded propeller with negligible
slipstream contraction. He dealt with conditions in the wake far behind
the propeller and made use of Munk's displacement theorem by which a
small change in circulation can be assumed to be added at a point in the
wake rather than at the propeller blade.

Betz assumed that the radial distribution of circulation could be
varied at will by adding or subtracting increments of circulation at
various radii. He showed that to maintain a constant value of over-all
thrust an increment of circulation removed at one radius had to be
replaced at another by an increment having a strength inversely propor-
tional to the respective radii. He then investigated the possibility
of reducing the circulation at those radii where the induced loss was
high and increasing the circulation at radii where the induced loss was
small and thereby established the condition of minimum induced energy
loss to be that for which the helicoidal vortex sheets formed apparently
rigid screw surfaces of uniform pitch, under which conditions the blade
elements at all radii operated with equal efficiency (drag losses not
being considered).

Betz used rigorous proofs to establish the condition for minimum
induced energy loss for a screw propeller, to Jjustify the use of Munk's
displacement theorem, and toc show that the induced velocities in the
fully developed slipstream were twice as great as for corresponding
points at the propeller blades.

The condition for minimum induced energy loss is illustrated by the
vector diagrams of figure 5 for velocities in the wake far downstream
from the propeller. Betz's conclusion was that the induced velocity Wy
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normal to the local surface of the vortex sheet should vary radially so
that

= w = Constant

cos ¢

where w 1s the apparent axial motion of the rigid vortex sheets. The
real velocity LAY of the air at the surface of the helicoidal sheet has

both axial and rotational components which vary continuously along the
blade. However, to an observer far to one side of the slipstream viewing
the weke system in a direction normal to its axis, the vortex sheets

would appear to form rigld screw surfaces of uniform pitch and would
appear to move as a whole without rotation with the pure axial velocity w.

The foregoing concept of a rigid-wake system is adopted for conven-
ience in the mathematical treatment of the potential flow in the propeller
wake. Because the induced velocities 1n the far wake are twice as great
as at the propeller, the helicoidal vortex sheets undergo an initial
distortion in the region where the slipstream contracts and are assumed
then to form rigid screw surfaces of infinite length. Actually, the
surfaces roll up into concentrated spiral vortices, one for each blade,
and a single vortex along the axis equal to the combined. strength of
the spiral vortices. .

In the development of propeller theory various authors deal some-
times with conditions at the propeller blades and at other times with
thogse in the fully developed slipstream. In nearly all modern treatments
of the vortex theory conditions in the final wake (especially, the
apparent axial motion of the trailing helicoidal sheets) are the design
criterions. It is the responsibility of the individual to make certain
of an author's nomenclature before applying his results. The symbol w
is found in the literature to represent axial velocity of the helices
both in the final wake and at the propeller blades.

Effect of Number of Blades

In the development of the vortex theory the treatment of the pro-
reller was simplified by the agsumption of an infinite number of blades.
In this way the spacing between adjacent helicoidal vortex sheets is
made indefinitely small, the radial velocity components of the flow
around the edges of the vortex sheets are eliminated from the consider-
ations, and the circulation in a bound vortex does not become zero at
the blade tip. For physical propellers the foregoing simplification
must be abandoned; the spacing between the helicoidal sheets increases
as a function of advance ratio and inversely as the number of blades;
and further, the circulation in a bound vortex must become zero at the
blade tip as well as at the axis. However, the Betz condition for
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minimm induced energy loss that the helicoidal vortex sheets form screw
surfaces of uniform pitch remains valid.

Prandtl's solution.- In an addendum to Betz's paper (reference k),
Prandtl gave an epproximate solution for the radial distribution of
circulation for a propeller having few blades. Prandtl ignored the
helical nature of the flow behind a propeller and assumed the helicoidal
vortex sheets to be replaced by & succession of semi-infinite, rigid-
plane laminae normasl to the propeller axis. The distance between laminae
was taken equal to the normal distance at the slipstream boundary between
the corresponding helicoldal surfaces, and the edges of the laminae were
teken to lie in a plane tangent to the sllpstream boundary. Prandtl
investigated the two-dimensional field of flow around the edges of the
leminae vhen the ambient fluid moved normal to their planes with a
relative velocity w. Regarding the circulation as equal to the change
in the velocity potential across the laminase, Prandtl obtained a
distribution of circulation which was zero at the edge and increased with
distance from the edge. The results applied to a propeller give a radial
distribution of circulation which is a function of mumber of blades and
advance ratio and is zero at the blade tip. When equations presented
in reference 17 are combined, the approximate solution for optimum
distribution of circulation along the blade obtained by Prandtl is
given by equation (6) in terms of the circulation function

B 1\2
- 2(1=xh /(% +1]
K(x) = B2 _ x° 2 [2 <J>

T — arc cog8 e (6)

1+x0 %

When Goldstein's exact solution (discussed subsequently) is used as a
criterion, Prandtl's approximate solution gives good results for pro-
pellers having a large number of blades or having a small advance ratio,
that is, when the spacing between adjacent helicoldal sheets 1s
relatively small. For operation at large values of advance ratio, or
with few blades, the approximate solution is not accurate. In all cases
the approximate solution gives values of circulation larger than those
obtained by Goldstein's exact solution.

Goldstein's solutlon.- An exact solution for the radial distribution
of circulation in the helical wake of a propeller having few blades was
obtained by Goldstein and presented in 1929 (reference 5). Lock
(reference 18) states that the problem of pure hydrodynamics considered
by Goldstein is that of the potential flow of fluid past a rigid body
of a certain form moving with a uniform velocity. The form of the body
is a helicoidal surfasce of infinite length but finite radius, moving
parallel to its axis with uniform velocity w, or more generally any
finite number of such surfaces equally spaced on the same axis and of
the same radius, corresponding in number to the number of blades of the
airscrew.
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Goldstein deals with a propeller having few blades cperating in an
inviscid fluid so that the consideration of blade drag loss is elimi-
nated. He accepts as valid the Betz condition for minimum energy loss
as being realized when, at a great distance from the propeller, the
vortex sheets traliling the propeller blades form screw surfaces of
uniform pitch. Goldstein notes that acceptance of the foregoing condi-
tion is equivalent to neglecting the slipstream contraction and is
therefore valid only for lightly loaded propellers. In obtaining his
gsolution Goldstein deals only with conditions in the final wake and
states, as does Betz, that the induced velocity at a propeller blade is
one-half as great as that at a corresponding point in the wake.

In a few brief steps Goldsteln establishes the differential
equation for the potential flow which satisfies the boundary conditions.
However, the mathematical procedures used to obtain a solution are

intricate. The solution is obtained in terms of a circulation function
K(x)

The determination of the value of K(x) for a specific operating
condition involves the use of Bessel functions and_the evaluation of
infinite series.

A diagram of a propeller with its trailing vortex system is
presented in figure 6 to illustrate the definition of the circulation
function X(xz). This figure was taken in part from one presented in
reference 19. A four-blade propeller operating at a flight speed V
and rotational tip speed wmnD 18 represented. On the lower blade in
the figure the bound vorticity is represented by equipotential lines
which, when shed, continue downstream as trailing-vortex filaments,
the aggregate of which build the helicoidal vortex sheets. Goldstein
assumed a lightly loaded propeller with negligible slipstream contraction
8o that at the surface of a vortex sheet in the far wake the circulation
at a given radius could be equated to the circulation about the propeller
blade at the same radius. The circulation I' at a point on a vortex
sheet is equivalent to the difference in the velocity potential between
the upstream and downstream faces of the sheet taken along a path around
.the edge of the sheet.

By hypothesis the wake vortex system conforms to the Betz condition
for minimum energy loss and moves axially with velocity w with respect
to the surrounding medium. The axial spacing between adjacent helicoidal
gsheets is

Bn
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The quantity

'V + W
(Bn >W

represents the equivalent velocity potentlal resulting from the action
of the velocity w through the axial dilstance between adjacent sheets.
The circulation function X(x) 1is defined as the ratio of the circu-
lation I' to this velocity potential:

K(x) I

Bl'n
(V + w)w

The helix angle in the far wake 1s determined by the relation

V+w
2nrn

ten ¢ =

In defining the circulation function for lightly loaded propellers,
Goldstein regarded the wake velocity w as small compared to the flight
speed so that

_ B
K(x) T Vv

For propellers with a moderately heavy loading he notes that it is
more exact to desfine

One concept of the circulation function X(x) is that it represents
the fraction of the axial spacing between surfaces which, if acted
through by the constant velocity w, produces the same potential as does
the average of the real axlal-velocity component acting through the full
distance of the axial spacing. In other words, K(x)w is the average
value of the axial component of the induced velocity at a given radius.
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In the simple case of a propeller with an infinite number of blades
this is easily visualized. The helicoidal surfaces are indefinitely
closely spaced; there is no radial flow; and the average axial induced

velocity is the same as at the helicoldal surface and is w cos® ff:

K(x)w = w cos® ¢

B

=1

+ W
n

<

The total circulation BI' at a given radius 1s equivalent to the
velocity potential produced by the average axial induced veloclty acting
through the axial distance traversed in one turn.

In figure 6 a qualitative representation of the streamlines
referred to axes fixed in the surrounding fluid is shown on a plane
approximately normal to the helicoidal sheets at their edges. The
component of air velocity normal to a helicoldal sheet at any radius
is the same on both faces of the sheet. The radial component of the
veloclty, however, is different, being directed inward at the upstream
face and outward at the downstream face as a result of the tendency of
the air to flow around the edge of the sheet. Thils discontinuity of
the radial velocity at opposite faces of the helicoidal surface is a
measure of the vortex strength or circulation. The energy of the radial
flow accounts for the so-called "tip loss."

Goldstein presents values of the circulation function for a two-
blade propeller plotted as a function of the cotangent of the helix
angle with n/J as a parameter. He compares the values obtalned by his-
exact solution with those obtained from Prandtl's approximate solution.
Goldstein's results are shown in figure 7.

A comparison of the radial distribution of load for the simple
momentum theory, the vortex theory (B = =), and Goldstein theory is
presented in figure 8. In each case the propeller operates at an
advance ratio of 2.0 and a power coefficient of 0.2. The comparison is
of the thrust-grading curves. For the simple momentum theory this
curve is a straight line through the origin corresponding to a uniform
pressure rige across the disk. For the vortex theory for an infinite
number of blades there is no tip loss, and thrust is assumed to be
maintained at the blade tips. The curve for the Goldstein theory
illustrates that the circulation must drop to zero at the tip. The
table in the figure indicates the values of apparent axial velocity of
the vortex system resulting in each case, as well as the respective
values of efficiency.
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Lock. - Prior to Goldstein's work on propeller theory, the vortex
theorv for an infinite number of blades had come into widespread use,
and propeller investigators were familiar with the somewhat standardized
form of equations by which the vortex theory was applied. Lock and
Yeatman, in reference 20, show that the insertion of a factor k into
the standard equations for the vortex theory made these equations
applicable to propellers having a finite number of blades where

k = K(x)

cose¢

The circulation function K(x) is defined by Goldstein for
moderately loaded propellers as

_ __BImn
K(x) = (V + w)w

For the vortex theory for infinite number of blades the 01rcula—
tion function so defined is found to be

K(x) = _Bm
(V + ww

cose¢

]

Hence, for an infinite number of blades the function k defined by
Lock is unity:

=I.{££l._= 1.0

cosz¢

The critical velocity component in propeller-blade-element theory
is the induced velocity w; at the propeller blade normal to the

resultant velocity. ZFor the vortex theory for infinite number of blades
this induced velocity, where BI' 1is the total circulation around the

disk at radius r, is

BI
1 Lgr sin
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Lock shows that the equivalent expression for the vortex theory with
Goldstein's correction for a finite number of blades is

W = Bl
17 hxrk sin ¢

Values of kg lle, in general, between zero and unity. When the number

of blades approaches infinity, Goldstein's K(x) approaches c052¢ and
k approaches unlty. Lock and Yeatman have extended the computation of
Goldstein's K(x) to cases for propellers having two, three, and four
blades and have presented the results in charts showing Kk as a functiomn
of sgin ¢ with the radius as a parameter (reference 20). A sample chart
is shown in figure 9.

Crigler and Talkin (reference 21) present charts of K(x)/cos®(
for propellers having two, three, four, six, and eight blades. For such
propellers they also give very useful charts of ideal efficiency (blade-
section drag neglected) as a function of power coefficient, with blade
loading oc; at x = 0.7 and advance ratio as parameters, and show

. how these charts may be used to estimate quickly the over-all efficilency,

thrust coefficient, and power coefficlent, including the effects of drag.

Effect of Blade Profile Drag

In the development of propeller theory the potentiasl-fiow problem
is usually set up for idealized conditions. The flow field of the
propeller is regarded as belng established by the flight speed, pro-
reller rotational speed, and the velocities induced by the vortex system.
The propeller blades are replaced by bound vortices of the desired
gtrength, and the physical shape of a blade 1s ignored. The effects of
the blade section drag on potential flow are regarded as of second order
and are neglected. This 18 a loglcal procedure for establishing optimum
ideal blade loading and the associated induced flow field.

In the application of theory to design the blade section drag must
be considered because a large portion of the energy loss for a pro-
peller is that due to profile drag. ZLock (reference 22) makes a direct
computation of the profile-drag power loss as being, for each blade
element, the product of section drag and resultant velocity, which,
when integrated, gives the loss for the entire propeller. Weick (refer-
ence 16) bases propeller drag loss on the section drag-lift ratio,

- tan g

To T e (¢ +7)
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vhere

, c
tan 7y = E%

He shows that highest elemental efficiency is obtained when

_ o _7
¢ =45° - %

and, consequently, that from consideration of only drag, a propeller of
highest efficiency should be designed for an advance ratio slightly less
than 2.20 which corresponds to a helix angle of 45° at x = 0.7.

In & study of the induced flow field of propellers of highest
efficiency having a finite number of blades, Ferri (reference 23)
congiders the effect of blade section drag upon the ideal radial distri-
bution of circulation. He shows that as the drag-lift ratio is
increased an inboard shift of the blade loading is required to maintain
highest over-all efficiency-.

Hartman and Feldman (reference 24), basing their work on that of
Goldstein and Lock, offer a systematic procedure for the design of
propellers of hignest efficiency including the effect of blade-section
profile drag- They investigate the relation between the induced loss
and drag loss for a propeller and show that when a specific propeller
operates at its highest efficiency the drag loss is equal to the induced
loss. Thelr treatment of the propeller is analogous to that which, for
a finite wing, shows the maximum lift-drag ratio to be obtained when the
induced drag equals the profile drag. Although their analysis is not
rigorous, the conclusion is apparently substantiated by experiment. In
figure 10 the envelope efficiency and corresponding values of power
coefficient plotted against advance ratio are shown as solid-line curves.
These data, from reference 25, were obtained in the Langley propeller-
research tunnel for a 10-foot-diameter three-blade propeller, designated
as 5868-9, with spinner. For identical values of power coefficient and
advance ratio, the ideal efficiency of a three-blade propeller is shown
as a dash line. At the advance ratio for maximum efficiency the induced
loss is found to be very nearly equal to the drag loss. Similar compu-
tations for a number of different propellers have yielded like results.
This type of analysis provides one means of Judging the excellence of a
propeller design. Also, in selection of diameter, when the propeller
geometrical shape and operating conditions are fixed, the optimum
diameter is that which results in equal induced and profile-drag losses.

The systematic design procedure offered by Hartman and Feldman is
most readily applied when the NACA l6-series airfoil sections
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(reference 26) are used. These sections which were developed especially
for application to propellers have very high critical speeds and, at
present, are the blade sections most widely used in the design of high-
speed propellers.

Dual -Rotation Propellers

The history of dual-rotation propellers in the Inventional stage
begins almost as early as that for single-rotation propellers, but the
development of fundamental theory for dual propellers has not progressed
to a comparable stage. No rigorous proof for the optimum wake configu-
ration comparable to Betz's treatment for single-rotation propellersg has
been established, nor has a mathematical solution for the distribution
of the c1rculatlon along the blade been obtained. A large amount of
literature exists which deals with the practical phases of dusl rotation.
An approximate design procedure, proposed by Lock, based essentially on
single -rotation-propeller theory is presented in reference 27. A
congideration of the periodic effects in duasl-rotation propellers ig
treated in reference 28. A treatment of dual-rotation-propeller theory
and design believed to be basically sound, but dependent upon an
experimental approach, has been presented by Theodorsen (references 29
to 33). A simplified design procedure for dual propellers based upon
Theodorsen 's work has been presented by Crigler (reference 34).

The principal contributions to propeller theory made by Theodcrsen
are (1) the demonstration that the circulation function for any pro-
peller could be determined by an electrical analogy with relatively
simple apparatus and (2) the experimental determination of the circu-
lation function for dual-rotation propellers, a problem which presents
formidable difficulties to the mathematical approach.

Circulation function.- In dealing with single-rotation propellers
having a finite number of blades, both Prandtl and Goldstein solved for
the radial distribution of circulation along the propeller blade which
they expressed as a nondimensional ratio equal to a function of number
of blades, helix angle, and radius. For lightly loaded propellers,

K(x) = Vw = £(B, ¢, x)

or alternatively for moderately loaded propellers,

Theodorsen uses the latter definition.
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Mass coefficient.- A factor which Theodorsen uses extensively
in his treatment of propeller theory is the mass coefficient k which
is the average value over the propeller disk of the circulation
function X(x). The mass coefficient is the ratio of the equivalent
mass of air accelerated to the uniform velocity w in unit time to
the mass of air which passes through the propeller disk during the same
time. TFor a propeller with a finite number of blades, the equivalent
mass of air in a cylindrical element of thickness dr to which is
imparted the axial velocity w in one turn is

dm = p(2rr dr)EK(x)L+ ¥
n

By an integration over the disk, the equivalent total mass accelerated
to velocity w is

By definition,

Theodorsen has used an electrical-analogy method to determine
values of both the circulation function and the mass coefficient for a
wide variety of propellers.

Electrical analogy.- For dual-rotation propellers with symmetri-
cally loaded front and rear units, there is no net rotation in the
slipstream; the wake is composed of two sets of helicoidal surfaces
spiraling in opposite directions. The configuration of the wake
helices is the same whether the oppositely spiraling surfaces of
vorticity are regarded as intersecting each other, or as being reflected
from one another. For conditions far downstream in the weke of a single-
rotation propeller, the value of K(x) at a specified radius on the
helicoidal surface is obviously independent of axial position. This
independence of axial position does not hold for the circulation function
for dual-rotation propellers. The oppositely spiraled vortex sheets
intersect (or reflect) to form a symmetrical pattern moving downstream
with the velocity w. The circulation function K(X, 8) for dual-
rotation propellers is a periodic function of axial position, one cycle
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being the axial distance between successive intersections. The problems
involved in determining mathematicelly the circulation function for
dual-rotation propellers were regarded as insurmountably difficult, and
Theodorsen turned to the more expedient method of devising a
calculating machine to obtain this function. Theodorsen considered
investigation of the flow field about and forces on a rigid helicoid
when irmersed in a liquid and oscillated axially but discarded this
scheme as too dependent upon mechanical perfection. However, the
mathematical identity of the flow of an ideal fluid with the flow of an
electric current in a fleld of uniform resistance, when boundary condi-
tions are the same, made possible the experimental solution of this
problem by electrical analogy.

In the electrical method the counterpart of the rigid helicoidal
surfaces tralling the propeller blades is a geometrically similar
model of the wake surfaces made of nonconducting material (celluloid)-
A photograph of several of the wake models is presented as figure 11.
The wake model is immersed in a weak electrolytic solution (tap water)
in which an electric current flows in a uniform field parallel to the
model axis. In this setup electric current and electrical potential
are analogous to the velocity and velocity potential of fluid motion,
respectively. :

Apparatug.- The two types of measurements made with the electrical
method were determination point by point of the radial distribution of
the circulation function X(x) and determination of the mass coef-
ficient k.

A diagram of the apparatus used for measuring the value »f the
circulation function X(x) at points along the radius of the helical
surface is shown in figure 12. The arrangement is simply a Wheatstone
bridge with the usual galvanometer replaced by earphones, and the power
supply 1s alternating current having a frequency of 1000 cycles per
second. The null point is established by adjusting the variable
resistance until the signal becomes inaudible. The measurement is very
precise. The drop in electrical potential ©&E across a helicoidal
surface can be measured accurately at any radius and compared with the
potential drop E in a length of the uniform flow field equivalent to
the axial spacing between adjacent sheets. The electrical analogy shows
the circulation function to be

K(x) = %?

Somewhat similar apparatus (fig. 13) is used for measuring the mass
coefficient k which, being an integrated quantity, requires only a
gingle measurement for each model. Two arms of the Wheatstone bridge
are known resistances and the other two are the identical tanks of
electrolyte. The tank walls are nonconducting, but the top and bottom
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are copper plates in contact with the electrolyte. Between the copper
plates of one tank is inserted a model of the helicoidal wake coaxiaslly
with the tank. The increase in electrical resistance caused by the
presence of the wake model is equivalent to the addition of a potential
opposing that of the uniform flow and results in a decreased current.
Theodorsen gives rigorous proof that the mass coefficient is

where F and S are the cross-sectlonal areas of the wake model and
tank, respectively, I, 1s the current flowing in the unobstructed tank,

and AI is the change in current due to the presence of the wake model.

The reliability of the electrical-analogy method was verified by
a comparison of the experimental results with those obtained by the
exact theory (Goldstein) for the known case of a single-rotation pro-
peller having two blades. The comparison is given in figure 14 which
presents the mass coefflicient plotted against the advance ratio of the
wake. The agreement 1s excellent.
The difference in radial distribution of the circulation function
for single-rotetion and dual-rotation propellers is i1llustrated in
figure 15 for four-blade propellers operating at an advance ratio of 6.0.
The dual-rotation propeller 1s composed of two units of two blades each,
rotating in opposite directions. The value of X(x) is of necessity
zero at the blade tip for both propellers and zero at the axis also for
the single-rotation propeller, but for the dual-rotation propeller K(x)
increases continuously with distance from the tip and reaches a maximum
value at the axls of rotation. In order to draw an analogy between the
propeller and a wing, the single-rotation-propeller blade behaves in
effect as a wing having a span equal to the propeller radius, whereas
the dual-rotation-propeller blade acte as the semispan of a wing the
full gpan of which is the propeller diameter. Consider two oppositely
rotating blades of an ideal dual-rotation propeller when 180° apart. The
bound circulations on the two blades are symmetrical, equal, and are in
the same sense; hence there is no concentration of vorticity shed along
the axis of rotation as in the case of the single-rotation propeller.
If a comparison were made of the radial distribution of thrust for the
two propeller types, the thrust-grading curves for both would be zero
at the axis and at the tip, but the elemental values of thrust for the
dual-rotation propeller would, at all radii, be greater than those for
the single-rotation propeller 1f the same value of wake velocity w 1is
agsumed for both cases.

As mentioned in the discussion of the mass coefficient this factor
represents the portion of the slipstream flow effectively worked on by
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the propeller. A comparison of the mass coefficilents for four-blade
single-rotation and dual-rotation propellers is shown in figure 16.

At values of advance ratio currently in use for cruising operation,

Jd = 1.5 to 3.0, the mass coefficient for the dual-rotation propeller is
about twice that for the single, and about three times as great at
values of advance ratio from 4.0 to 5.0. This comparison shows that for
the case selected, for operation at equal values of induced loss the
power capacity of a dual-rotation propeller is much greater than that of
a gsingle-rotation propeller of equal diameter and solidity.

DISCUSSION

In his book on propeller theory (reference 33) Theodorsen comments
that the theory for dual-rotation propellers may be overidealized. The
ideal distribution of circulation cannot be obtained in practice by any
means known at present, because the theory demands a cyclic change in
the circulation function which in turn requires a cyclic change in blade
angle. The required cyclic pitch change is different for each radial
gtation and, therefore, cannot be obtained by a simple oscillation of a
blade in the hub.

The validity of the electrical analogy, though apparently well
verified by comparison with theory for single-rotation propellers, is
not completely established for dual-rotation propellers. The radial
lines of intersection of the sets of oppositely spiraling vortex sheets
represent regions of discontinuity. There is no guarantee that the
application of the electrical analogy with celluloid models of dual-
propeller wakes faithfully represents the operation of actual dual-
rotation air propellers, especially in the practical case in which the
dual units operate in tandem rather than in the same plane.

All propeller theory has been developed for operation in an
Incompressible fluid. The theories apply well in a compressible fluid
at subsonic speeds up to those at which the blade sections reach their
critical values of Mach number. At higher subsonic speeds some portion
of the blade always operates in a region of transonic flow, the blade
section 1ift and drag characteristics undergo rapid changes, and the
load distribution calculated for ideal conditions is meaningless. With
adequate knowledge of airfoil characteristics at transonic speeds, how-
ever, a propeller can be designed to operate with the ideal load
distribution for one particular operating condition in the transonic
region. The design of an efficient propeller with least induced energy
logs for operation at transonic and low supersonic speeds depends only
on the availability of airfoil characteristics for the corresponding
values of blade-section Mach number. Inasmuch as the propeller wake
velocity is only a few percent of the velocity of flight, the induced
velocities are entirely subsonic even for transonic and supersonic pro-
pellers. The theoretically desirable distribution of circulation along
the blade for incompressible flow should hold for transonic and low
supersonic flight speeds as well as it does in the low subsonic range-
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APPENDIX

SﬁdBOLS
a inflow velocity factor (B =
a' rotational interference velocity factor (B = )
B nunber of blades
b blade width (chord)
cq section drag coefficient
Cy section 1lift coefficient
Cp power coefficient (P/pn3D5)
Cr thrust coefficlent (T/pnzD)"’)
D propeller diasmeter
E electrical potential, volts
F cross-sectional area of model helicoidal wake proJjected on a

plane normal to axls
B total pressure
I electric current, amperes
I, electric current in uniform field, amperes
J advance ratio (V/nD)
K(x) the circulation function (__ZB_E:}__)
(V + w)w
e N

k mass coefficient .2‘[ K(x)x dx

0
L 1lift

m mass flow, slugs per second
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rotational speed, revolutions per second
power
static pressure

free-stream static pressure

propeller tip radius; electrical resistance, ohms.
radius to blade element

electrolytic-tank cross-sectional area

thrust

velocity of advance

resultant velocity at blade section

apparent axial velocity of wake helicoidal vortex sheets

induced velccity normal to hel}coidal surface (w cos ¢)

fraction of propeller-tip radius (r/R)

circulation
°q
C

efficiency

ideal efficiency, when no drag loss is assumed

blade-element efficiency

blade-element efficlency, when no induced energy loss is
assumed

angle measured in any plane normal to the axis of rotation,
with axis as center

Lock's factor K(x))
cos®¢

mass density of air, slugs per cubic foot



92

propeller solidity (Bb/axD)

aerodynamic helix angle

geometric helix angle <tan‘l .E.T_>
nx

angular velocity, radians per second
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Figure 2.- Ideal efficiency (frictionless propeller); C_ = 0.4.
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Figure 4.- Vector diagram of vortex blade-element theory; infinite numb-r
of blades,

97



98

BETZ CONDITION, coS & =w = CONSTANT

“I
AW
A

AXIAL VELOCITY
OF RIGID WAKE

GOLDSTEIN, K(x)E(VB_’_I;)"wé[ny] = f(B,$,r)
Bn w

Figure 8.- Circulation function, K(x); finite number of blades.



Figure 7.- Goldstein’s circulation function; two-blade propeller.
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(b) Four-blade dual rotation.

(c¢) Six-blade dual rotation.

Figure 11.- Typical celluloid wake models used in the electrical -analogy

experiments,
,
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Figure 14.- Electrical-analogy results compared with theory; B = 2.
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