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CHARACTERISTICS OF WING SECTIONS AT SUBCRITICAL SPEEDS
By Albert E. von Doenhoff and Laurence K. Loftin, Jr.
Langley Aeronautical Laboratory

The characteristics of wing sections at subcritical gpeeds have bsen
the subject of intensive research since the airplane was first invented.
The problem has been attacked both experimentally and theoretically. As a
result of these investigations, we have today a qualitative understanding
of nearly all the flow phenomena associated with the various character-
igtics and we ars able to calculate many of the characteristics theoret-
ically. The present paper represents an attempt to summarize briefly some
of the more important aspects of our theoretical and experimental knowl-
edge of the flow about airfoil sections and to indicate the way in which
this knowledge was used in the design of NACA 6-series or low-drag airfoils.
Acknowledgement is gratefully expressed for the expert guldance and many
original contributions of Mr. Eastman N. Jacobs, who supervised much of
the experimental work to be discussed and the application of the theoret-
ical methods to the design of improved airfoil sections.

One of the concepts most useful in understanding the behavior of
airfoil sections is that of the thin airfoil. For the purpose of deter-
mining the chordwise load distribution at various angles of attack, and
hence the angle of zero 1lift, the slope of the 1lift curve, and the
pitching-moment coefficient, the airfoil is considered to be replaced by
a curved line that is midway between the upper and lower surfaces of the
airfoil; that is, the airfoil is considered to be replaced by its mean
line. The usual form of mean-line theory as developed by Munk, Birnbaum,
Glavert, Theodorsen (references 1 to 5) and others assumes that the angle
of attack 1s small and that the slopes and ordinates are sufficiently
small that all effects of these quantities are proportional to their magni-
tude. In other words, the mean-line theory is a linearized theory. For
the purposes of the theory, the alr is assumed to be nonviscous and
incompressible.

The basic relations of thin-airfoil theory are given in figure 1.
Abscissas and ordinates are represented by x and Y, respectively.
The vertical component of induced velocity is v, the free-stream
velocity is V, and the angle of attack is a. Circulation of strength ¥
per unit length is assumed to be distributed along the mean line. This
circulation per unit length is equal to the difference in tangential
components of velocity between the upper and lower surfaces. Equation (1)
in figure 1 states that the flow must be tangential to the surface, that
is, there can be no flow through the mean line. Equetion (2) is a formula
for calculating the vertical component of induced velocity at any
station x, 1in terms of the distribution of circulation along the chord.

A problem can be solved by simultaneous solution of equations (1) and (2)
either by finding the distribution of 7 associated with a given mean

line at a given angle of attack, or by finding the mean line for a given
distribution of 7.
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Most practical airfoll sections are sufficiently thin that the
approximations of mean-line theory hold with good accuracy. Numerous
comparisons between theoretical and experimental results are available
in the literature for many types of airfoil sections. (See references 6
and 7.) In general, good agreement can be expected except in cases where
the flow has separated from the surface of the airfoil, as at high angles
of attack, large flap deflections, and so forth.

In spite of the many useful results obtained from thin-airfoil or
mean-line theory, the nature of the information regquired for a particular
Problem may frequently be beyond the scope of this simplified approach.

No information, of course, is glven concerning the actual distribution of
pressure over the surfaces of an airfoil, and as will be pointed out later,
such information 1s necessary for the design of improved airfoil sections.
In order to be able to compute the actual pressure distribution about an
airfoll, as opposed to the calculation of the chordwise loading, the more
elaborate methods of thick-airfoll theory must be used. This theory as
developed by Theodorsen and Garrick (references 8 and 9) is a rigorous
treatment of the problem of finding the perfect-fluid pressure distri-
bution about an alrfoil of arbitrary shape. The method consists essen-
tially of finding suitable conformal transformations to relate the known
flow about a circle to the unknown flow about the airfoil. An analysis
made by Joukowski which permits the direct transformation of the flow
about a circle into the flow about a particular type of airfoil, called a
Joukowski airfoil, has been known for a long time. In the Theodorsen
method, as shown in figure 2, the Joukowski transformation § = Z' + %?
is applied, in reverse, to the arbitrary airfoil. Since all airfoils can
be roughly approximated by a Joukowskl airfoil of about the same thickness,
the application of the Joukowskl transformation to the arbitrary

airfoil ({-plane) results in a nearly circular curv? in the Z'-plane, the
equation of which is given by the relation Z' = ae V+i6) According to the
Reimann theorem, any simple closed curve can be transformed into a circle.
Theodorsen found a particularly convenlent process for accomplishing this
result. By a process of successive approximations, the first one or two
steps of which are generally sufficient in practice, the distorted circle

i1s transformed into a true circle whose. equation is Z = ae @IOH@ where

! ¥ )+i(6-
WO is a constant. The transformation is given by %?-: eB% WO) ( ¢[]:
where the quantities (¢ -\wtb and (6 - §) represent the radial and
angular distortions between corresponding points in the near- and true-
circle planes. The flow about the arbitrary airfoil is found by applying
these transformations in reverse order to the known field of flow about
the true circle.

A comparlison between the pressure distribution found experimentally
and that computed by the Theodorsen method at a low angle of attack is
given in figure 3. (See also reference 7.) The solid line is the result

of the theoretical calculation and the test points represent the experi-
mental results.
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At higher angles of attack and 1ift coefficients, the agreement
between theory and experiment is generally not so close. Tais is due
to the formation of a relatively thick-boundary layer primarily along the
rear portion of the upper surface. Under such conditions, the angle of
attack at which a given 1lift coefficient is obtained experimentally is not
the seme as the theoretical angle of attack. Pinkerton (reference 10)
found that it was possible to obtain nearly perfect agreement between
measured and calculated pressure distributions by reducing the theoretical
circulation at a given angle of attack to the value corresponding to the
measured 1ift coefficient and then modifying the trailing-edge shape in
such a manner that the Kutta-Jdoukowski condition is satisfied. The modi-
fication of the airfoil shape corresponded closely to the estimated change
in the effective shape of the airfoil caused by the thickening of the
boundary layer.

It is often desirable to determine the effects of alrfoil thickness,
thickness form, and type and amount of camber on the pressure distribution
for large numbers of airfoils. Such calculations could, of course, be
carried out by using the Theodorsen method for each individual case. The
amount of computational labor involved in such a procedure, however, would
probably be excessive. Great simplification of methods for calculating
airfoil pressure distributions approximately was made possible by the work
of Allen which showed that the effects of thickness form and load distri-
bution could be considered separately. (See reference 11.)

The method is based essentially on the assumption that the velocity
distribution about an airfoil may be approximated by the following three
independent components (see fig. 4):

(1) The velocity over the symmstrical airfoil at zero angle of attack
(thickness). This velocity distribution can be obtained by the Theodorsen
method as previously discussed.

(2) The incremental velocity distribution corresponding to the load
distribution of the mean line at the design lift coefficient (camber).
The design 1lift coefficient is the lift cosfficient at which the flow
enters the leading edge of the mean line smoothly. This type of incre-
mental velocity distribution is a function only of the mean-line geometry
and can be obtained by the methods of thin-airfoil theory.

(3) The additional type of incremental velocity distribution associ-
ated with departure of the angle of attack or 1lift coefficient from the
design conditions (angle). This type of velocity distribution is, according
to thin-airfoil theory, independent of airfoil geometry and depends only
on this departure of the angle of attack. The additional type of velocity
distribution ovtained from thin-airfoil theory is of limited practical
application, however, bscause this simple theory leads to infinite values
of the velocity at the lesading edge. This difficulty, together with the
slight dependence of the additional velocity distribution on airfoil
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shape, is taken into account by calculating the velocity increments for
each symmetrical airfoil by the methods of thick-airfoil theory.

The final pressure dlstribution at an arbitrary angle of attack is

The plus sign is used for the upper surface and the minus sign for the
lower surface. The final diagram in figure Y4 shows the results of
summing the various components of the pressure distribution. The short-
dash line represents the pressure distribution about the symmetrical
airfoil at zero 1lift. The long-dash line gives the pressure distribution
about the cambered airfoil at the design 1ift coefficient. The solid
line gives the pressure distribution about the cambered section at a 1lift
coefficient higher than the design value.

The convenience of this method of calculating the pressure distri-
bution is primarily due to the avallability of tabulated values of the
necessary component velocity distributions for large numbers of symmet-
rical airfoils and mean lines. (See reference 7.)

Although the theories Just discussed permit the calculation of a
number of airfoll characteristics with good accuracy, since they are
essentially based on the concept of a perfect fluid, they give no direct
information about one of the most important airfoll characteristics,
namely, the drag. As will be shown later, however, these theories have
proved invaluable in the design of low-drag ailrfoil sections. Another
important characteristic about which no direct theoretical information
has been obtained is the maximum 1ift coefficient. Some discussion of
the maximum 1ift coefficient will be given in a paper by Sivells entitled
"Maximum-Lift and Stalling Characteristics of Wings." The present
discussion is concerned primarily with the drag.

From 1929 to 1937, extensive experimental investigations were made
of families of related airfoil sections in the NACA variable-density
wind tunnel. (See references 6 and 12 to 15.) A large amount of infor-
mation on the drag was accumulated in these investigations. In figure 5
are shown typical drag data at a low 1lift coefficient for one of the air-
foils tested. (See reference 14.) The drag coefficient Cq is plotted

as a function of Reynolds number R. The upper line is the drag coef-
Ticient for a flat plate with completely turbulent boundary-layer flow.
The lower line is the drag coefficient for a flat plate with completely
laminar flow. The comparison between the airfoil drag data and the flat-
plate skin friction indicates that nearly all the profile drag is attri-
butable to skin friction. Comparisons, such as this, made it apparent
that any pronounced reduction of the profile drag must be obtained by a
reduction of the skin friction -through increasing the relative extent of
the laminar boundary layer. Theoretical and experimental work on this
problem was begun late in 1937.
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The basic requirement for obtaining extensive regions of laminar
flow is that the pressure continuously decreases in the direction of flow
throughout the region in which laminar flow is expected. This requiremsnt
necessitated the development of methods which wculd permit the design of
airfoil sections having specified types of pressure distribution. The
method developed consists of a process of successive approximations in
which the ordinates and corresponding pressure distribution are calculated
with a high degree of accuracy. The pressure-distribution characteristics
thus obtained are compared with the characteristics desired. The nature
of the Theodorsen relations (shown in fig. 2) for thick airfoils is such
that it is not feasible to express the airfoil velocity distribution
directly as a function of the airfoil coordinates. There are, however,
relatively simple relations between the distortion parameters (W - Wd)

and (6 - §) relating the near and true circles and the airfoil coordi-
nates on one hand, and between these distortion parameters and the air-
foil velocity distribution on the other hand. (See reference 5.) The
airfoil coordinates and corresponding velocity distribution were, there-
fore, calculated from assumed values of the distortion parameters. The
choice 1is subject to certain simple conditions that insure closed symmet-
rical shapes for the basic thickness forms. (See reference 7.) Approxi-
mate relations were found by means of which it is possible to modify
successively the original choice of parameters so as to yield airfoils
having the desired type of velocity distribution. (See references 7T

and 16.) Another method of solving this problem has been developed by

Goldstein and was described in his recent Wright Brothers lecture. (See
reference 17.)

A typical pressure distribution for one of the low-drag airfoils
derived is shown in figure 6. It was noted previously that the type of
loading resulting from changes in angle of attack tends to meke the pres-
sures along one of the airfoil surfaces increase in the direction of flow.
Because of the desirability of obtaining low drag over a range of 1lift
coefficient, the magnitude of the favorable pressure gradient over the
forward part of the basic thickness form at zero lift should, therefore,
be greater than that of the unfavorable gradient corresponding to the
additional type of loading throughout a reasonable range of 1lift coefficient
The requirements of a wide low-drag range, good characteristics at high
subsonic speeds, and good maximum-1ift characteristics are somewhat con-
flicting. These conflicting requirements place an upper limit on the mag-
nitude of the low-drag range of 1lift coefficient for which the airfoil
should be designed. The optimum form for the pressure distribution is such
that at the extremities of the low-drag range of lift coefficient, the
Pressure gradient on the suction side of the airfoil becomes substantially
flat from a point near the leading edge to the original position of mini-
mum pressure. For the airfoil shown in figure 6, this condition exists at
a 1ift coefficient of 0.22. A more complete discussion of the problem of
finding the proper type of pressure distribution is given in reference 7.

The desirability of obtaining low drag corresponding to extensive
laminar flow at lift coefficients higher than those possible with the basic
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thickness form alone indicated the necessity for mean camber lines which
would shift the low-drag range to higher values of the 1ift coefficient,
but which would not at the same time decrease the range of 1ift coeffi-
cient for low drag. These requirements define a type of mean line that
has, at design conditions, & uniform chordwise distribution of load at
least as far back as the position of minimum pressure on the basic thick-
ness form. The method of deriving mean lines to have such prescribed
load distributions employs the previously discussed thin-airfoil theory,
and is relatively simple compared with the more usual problem of finding
the load distribution corresponding to & given mean line.

By the use of the theoretical methods discussed, a large number of
related airfoil sections designed for extensive laminar flow were derived.
Some method of designating members of this group of airfoils is necessary.
The NACA method can be explained by the designation shown in figure 6:

NACA 6k4,-015

The first digit is merely a series deslignation. The second digit gives
the position of minimum pressure on the basic thickness form at zero 1lift
in tenths of the chord measured from the leading edge. The subscript
gives the range of 1lift coefficient on either side of the design 1lift
coefficlent through which the pressure gradients on both surfaces are
favorable for laminar flow. The first digit following the dash gives the
design 1ift coefficient in tenths. (In this case, since the airfoil is
symmetrical, the value is Q.) The last two digits give the thickness
ratio in percent of the chord.

Approximately 100 of these related airfolls were investigated
experimentally. (See reference 7.) In order actually to achieve exten-
sive laminar flow at high Reynolds numbers, it is necessary that the
turbulence level of the wind-tunnel air stream be extremely small so as
to simulate Tlight conditions correctly. A description of the develop-
ment of low-turbulence wind tunnels is given in recent papers by Dryden
and Schubauer (reference 18) and Von Doenhoff and Abbott (reference 19).

Some of the results obtained from the experimental investigation
of NACA 6-series airfoils are presented in the next few figures. The
value of the drag coefficient in the low-drag range for smooth airfoils
is mainly a function of the Reynolds number and the relative extent of
the laminar layer and is moderately affected by the airfoil thickness
ratio and camber. The effect on minimum drag of the position of minimum
pressure, which determines the possible extent of laminar flow, is shown
in figure T for some NACA 6-gseries airfoils. (See reference 7.) The data
show a regular decrease in drag cosfficient with rearward movement of min-
imum pressure. Also shown in this figure is the minimum drag coefficient
of the older NACA 2415 airfoil section. Comparison shows that savings in
minimm drag of from 20 percent to 50 percent, depending upon the position
of minimum pressure, are possible by the use of the newer NACA 6-series
airfoils.
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The effect of Reynolds number upon the minimum drag of the
NACA 65h-h2l airfoil section is illustrated in figure 8. The data show
that the drag first decreases with increasing Reynolds number, after
which it levels off, then increases, and finally levels off again as the
Reynolds number 1is further increased. The behavior of the minimum drag
with increasing Reynolds number can be attributed to the variation in
relative strength of two interacting boundary-layer changes. The initial
decrease in minimum drag coefficient can be explained by the usual
decrease in skin-friction cosefficient which accompanies an increase in
Reynolds number. After a certain Reynolds number is reached, however,
the transition position begins to move forward along the airfoil. The
forward movement of transition, of course, decreases the relative extent
of low-drag laminar flow on the airfoil, and hence, the drag increases.
The Reynolds number range in which the data in the figure show the drag
to be relatively constant is a region in which the general decrease in
gkin friction and forward movement of transition are balanced with respect
to thelr opposite effects upon the drag. The subsequent increase of drag
with Reynolds number indicates that forward movement of transition is
predominating in this region. The drag ceases to increase when the
transition position comes fairly close to the leading edge. The data in
the chart for the highest Reynolds numbser correspond to this condition.
Further increases in Reynolds number should cause the drag cocefficient
to decrease. The scale-effect curve shown in the figure is character-
istic of those obtained for NACA 6-series airfoils. The Reynolds number
at which the transition position moves forward, however, depends upon the
degrees to which the pressure gradients on the airfoil are favorable. The
Reynolds number at which the different effects occur depends, therefore,
upon the detall design of the particular airfoil.

The development of mean lines designed to shift the low-drag range
to different values of the lift coefficient has already been discussed.
The effect of the addition of camber on the experimental drag polar is
shown in figure 9. (See also referencs 7.) The solid curve represents
the polar for a symmetrical 6-series airfoil section. The "bucket" i
the curve is the low-drag range; that is, the range of 1lift coefficient
through which extensive laminar flow is obtained on both surfaces. As
shown by the dash-line curve, the primary effect of the addition of camber
is to shift the low-drag range. The center of this range corresponds to

the design 1ift coefficient. The width of the low-drag range increases
with increasing airfoil thickness ratio.

The results discussed have been obtained from airfoil tests in which
the model surfaces were smooth and fair. Unfortunately, the surfaces of
airplane wings are oftentlimes both rough and unfair. Since laminar flow
cannot be maintained at practical values of the Reynolds number unless
the airfoil surfaces are aerodynamically smooth, 1t seemed desirable to
investigate the characteristics of NACA 6-series airfoils with surfaces
roughened sufficiently near the leading edge that fully developed turbu-
lent layers would exist. Results corresponding to such a surface condi-
tion would give the most pessimistic view of what might be expected from
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an airplane wing under any conditions short of physical damage or heavy
accretions of ice or mud, whereas the results for the smooth condition
would correspond to an optimum for which to strive. The effect of
roughness on the 1ift and drag characteristics of a typical NACA 6-series
airfoil section is shown in figure 10. (See also reference T.) It is
apparent that the roughness causes large decreases in the maximum 1ift
and large increases in the drag. Similar data from tests of various
types of airfoil sections show that the 1ift and drag characteristics of
airfoils of a given thickness ratio are relatively insensitive to the
shape of the basic thickness distributions when the leading edges are

roughs.

The entire discussion so far has been limited to Mach numbers
sufficiently low so that the flow could be considered incompressible. As
the Mach number is increased, the first-order effects of compressibility
are given by the Prandtl-Glauert relation (reference 20) which states
essentially that, in two-dimensional flow, the values of all pressure
coefficients formed from differences betwesn local static pressure and
free-stream static pressure are increased by the relation

)

[1- w2

where M, 1s the free-stream Mach number. This means, of course, that

the lift-curve slope 1s theoretically increased by the same factor, thus,

(acz
da /o W

where the subscript c¢ indicates compressible flow and the subscript 1
indicates incompressible flow. A comparison of the theoretical and experi-
mental valuss of the lift-curve slope for an NACA 6-series airfoil sectim
of 10-percent thickness is shown in figure 1l. (See also reference 21.)
The expression for the first-order effects of compressibility appears to
be valid for thin alrfoils up to surprisingly high values of the Mach
number. A second-order correction developed by Kaplan (reference 22) gives
results in better agreement with experiment at high subcritical values of
the Mach number. In general, the increase of 1ift coefficient with Mach
number becomes less as the airfoll thickness ratio is increased, and the
agresment betwesn theory and experiment for the thicker sections is less
gatisfactory.

The effect of compressibility on the drag at spesds below the
critical 1s rather difficult to evaluate. This difficulty arises from ths
fact that most high-speed test equipment is incapeble of separating the
effect of increasing Reynolds number which accompanies an increase in Mach
number. Some indication of the relative importance of the effect of Mach
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number on the drag at subcritical speeds, however, may be gained from
figure 12. (See also references 23 and 24.) The drag of the

NACA 0012-34 airfoil section at zero 1ift is plotted against Mach number
for a range of Reynolds number from 0.34 x 10° to 0.42 x 10° and for a

range of Reynolds number from 2.3 X 106 to 4.6 x 106. The large incre-
ment in drag between the high- and low-scale data in the subcritical
region is of about the magnitude that would be expected for such a change
in the Reynolds number. The data for the higher Reynolds number range
are in agreement with recent low-speed tests (M < 0.2) of a similar
airfoil which show a negligible scale effect on the minimum drag between

Reynolds numbers of 3.0 x 10~ and 6.0 X 106. From this discussion, it
would seem that the effect of Reynolds number is far more important at
subcritical speeds than the effect of Mach number. Since in any case
the pressure drag is a small part of the total drag, it would not be
expected that changes in local-pressure coefficients in accordance with
the Prandtl-Glauert relation would have any direct effect upon the drag.

The rather brief summery of the status of the airfoil problem Just
presented indicates that we have a fairly complete understanding of the
behavior of airfoll sections at subcritical speeds. The attainment of
laminar flow on airplane wings remains a problem bscause the surfaces of
guch wings are usually not sufficiently fair and smooth. Methods of
reducing the sensitivity of the laminar layer to surface imperfections
are now being investigated. The flow phenomena about an airfoil at
maximum 1lift also remain a problem. We have a qualitative understanding
of this problem, but research is needed before our ideas can be extended
to quantitative calculation.
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Figure 1.- Basic relations of thin-airfoil theory.
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Figure 3.- Comparison of theoretical and experimental pressure distributions.
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Figure 5.- Section drag coefficient ¢y of airfoil and flat plate plotted as
function of Reynolds number R.
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Figure 6.- Pressure distribution for NACA 642-—015 airfoil section.
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Effect of roughness on the lift and drag characteristics of a
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Figui‘e 11.- Comparison of the theoretical and experimental values of the
lift-curve slope for an NACA 68-series airfoil section of 10-percent
thickness.
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Figure 12.- Effect of Mach number on drag of NACA 0012-34 airfoil section
at zero lift,
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