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DYNAMIC STABILITY
By Leonard Sternfield

Langley Aeronautical Laboratory

The problem of dynamic stability of airplanes is concerned with the
motion of an airplane following a disturbance from an initial condition
of equilibrium. Such disturbances may be caused by sudden gusts of wind
or by deflection of the control surfaces. If the motion of the airplane
caused by the disturbance damps, the airplane is said to be dynamically
stable; if the motion caused by the disturbance builds up, the airplane
is dynamically unstable. The mode of motion which may characterize
dynamic instability is either an aperiodic divergence or an unshable
ogscillation. For many airplanes, the divergence of the aperiodic mode
occurs at a slow rate and therefore pilots do not find this type of
instability troublesome; hence, these airplanes are considered satisfactory,
from the dynamic—stability viewpoint, even though the aperiodic mode is
divergent. The oscillatory mode, however, may be objectionable to ths
pilot despite the fact that the oscillation 1s stable. The present paper
on dynamic stability, therefore, will be malnly concerned with the
oscillatory mode of motion.

The general ‘equations of motion representing the motion of an airplane
are referred to a system of axes which are fixed In the airplane and move
with it. A system of axes that is commonly used by NACA authors is known
as the stability system of axes. (See fig. 1.) The stability axes
constitute an orthogonal 'system of axes having its origin at the center
of gravity and in which the Z-exis is in the plane of symmetry and
perpendicular to ths relative wind, the X-axis is in the plane of symmetry
and perpendicular to the Z-axis, and the Y-axis is perpendicular to the
plane of symmetry. An squation of motion referred to these axes is set
up for each one of the six degrees of freedom. Three of the equations
are obtained by equating the aircraft mass accelerations along each axis
to the aerodynamic forces and the other three equations are obtained by
equating the rate of change of moment of momentum about each axis to ths
aerodynamic moments. (See references 1 to 4.)

A complete treatment of the dynamic stability of alrplanes using ths
gix equations would be extremely lengthy and very complex. Certain
simplifying aspumptions have therefore been made to facilitate the
analysis. Since the airplane is symmetrical with respect to the plane
that includes the fuselage axis and is perpendicular to the span axis
and the sgsteady motion about which the disturbances occur is symmetrical
with regard to that plane, the six squations can be separated into a
symmetric or longitudinal group comsisting of three equatlions and an
agsymmetric or lateral group consisting of the other three equations, with
no coupling between the two groups. The dynamic—stability investigation
is therefore divided into two parts, & lateral—stability analysis and a
longitudinal—-stability analysis. The second assumption consists of the
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application of the theory of small oscillations to both lateral and longi-
tudinal stability, which means that second~order terms are neglected. The
third assumption is that the aerodynamic forces depend solely upon the
ingtantaneous motion of the airplans and not upon the rate at which the
motion is changing. That is, it is assumed that when the angle of attack
of the wing changes suddenly from one steady value to another, the 1lift
changes instantaneously — although actually the lift approaches asymptoti-—
cally the value corresponding to the new angle of attack.

The general methods involved in a dynamic-stability investigation will
be presented for the lateral-—stability analysis but a similar procedure is
also applicable to the longitudinal--stability analysis. The linearized
equations of motions, referred to the stability axes, used in the lateral—
stabllity analysis for the condition of controls fixed are as follows:

Roll ’
2“b(5x2Db2¢ . Kiszgw) - CIBB.+ %Czpr¢ + %czrnbw
Yaw
2%<KZ2Db2‘V * KXZDb2¢> = CnBB * ':éLCnpr¢ * %Cnrwa
Sideslip

EubCDbB + DbW> = CYBB + %CYéDb¢ + CL¢ + %CYrDbW + (CL tan £>¢

An equation of motion 1s presented for each one of the three degrees of
freedom involved in lateral motion: roll, yaw, and sideslip., On ths left—
hand side of the equations are written ths moment of inertia and product of
inertia times the acceleration and on the right—hand gide are written thse
aerodynamic forces or moments expressed as stability derivatives. These
equations are linear differential equations with constant coefficients and,
therefore, the solution of the equations of motion follows the usual

procedure for linear differential equations. Whan ¢Oexs is substituted
for @, voeks for ¥, and BOQXB for B in the equations written in determinant
form, A must be a root of the equation

L

AY+B3+ A"+ DL +E=0

Where the coefficients A, B, C, D, and E are functioneg of the mass and
aerodynamic paramsters of the equationes. The roots of this stability
equation determine the modez of motion. A real root indicates an aperiodic
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mode and a complex root indicates an oscillatory mode. The signs of the
roots determine the stability of the system. If the real roots are
negative and the real part of the complex roots is negative, the airplane
is dynamically stable. If any one of the real roots is positive or the
real part of the complex root is positive, the airplane is dynamically
unstable. The conditions for complete stability (reference 5) are

that all the coefficients of the stability equation and the

discriminant R = BCD — AD= — B E known as Routh's discriminant, be
positive. However, as mentioned previously, the mode which is of parti-—
cular interest is the oscillatory mode. The first step in the analysis
of the oscillatory mode is to determine the boundary for neutral oscill—
atory stability. This boundary is usually plotted as a function of two
of the mogt important stability derivatives affecting lateral stability —
the directional stability parameter CnB’ which expresses the variation

of yawing-moment coefficient with sideslip, and the effective dihedral
derivative Czﬁ, which expresses the variation of the rolling-moment

coefficient with sideslip. The necessary and sufficient conditions for
neutral osclillatory stability are that the coefficients of the stability
equation satisfy Routht!s discriminant set equal to zero and that the B-
and D-coefficients have the same sign. (See reference 5.) The lateral—
stability boundaries for a high-speed airplane are given in figure 2(a).
The ordinate in this figure is Cnb and the abscissa is CZB. The solid

boundary labeled R = O is the boundary for neutral oscillatory stability.
This boundary divides the quadrant into a stable and unstable region. For
example, for combinations of CnB and ClB located below this boundary,

that 1s, on the shaded side of the boundary, the oscillation of the airplans
is unstable., The dashed boundary labeled R = 0 satisfies the condition
that Routhts discriminant is zero but violates the condition that the B-
and D-coefficients must be of the same sign, because the B-—coefficient is
positive and the D—coefficlent 1s negative for combinations of Cj

and C, below the boundary D = O, Hence this curve R = 0 is not a

neutral—ogcillatory boundary. The curve obtained by setting the E—
coefficlent equal to zero is known as the splral—-stability boundary. This
boundary determines the stability of the numerlcally small real root, known
as the spiral mode. For combinations of Cp and C, on the shaded side

of the line E = O, the airplane is splrally unstable. There is one more
mode which usually occurs in lateral motion. This mode corresponds to the
heavy damping of the rolling motion due to the damping~in-roll derivative Czp.

In general, therefore, the four rcots obtained from the lateral-stability
equation usually consist of one conjugate complex pair and two real roots.
For some airplane configurations, both branches of R = 0 are true
neutral—oscillatory—-stability boundaries, as shown in figure 2(b). The
significance of the two boundaries can best bs understood by analyzing
the modes of motion for combinations of C, and CZB represented by

the points @), @, €', D, and (" in this figure. At point (4,
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the roots of the stability equation are two, negative real roots and one
conjugate complex pair with the real part negative. Hence, the airplane

is dynamically stable. Passing through the boundary E = O +to point
causes one of the real roots to change sign, which indicates that the
elrplane is dynamically unstable because of spiral instability. Upon
crossing the boundary R = 0 +to point (@),‘the real part of the complex
root changes sign as expected, which indicates that the oscillatory mode

is unstable. Thus far, the roots consisted of two real roots and ons
conjugate complex pair. At point Cﬁ), however, the solution of the
stabllity equation results in two pairs of complex roots with the real

part of each pair of roots negative. The period of the oscillation

which corresponds to one pair of the complex roots is about the same

order of magnitude as the period of the oscillation at points ‘. C) -
approximately 3 seconds. The period of the other oscillation is much
greater — for some alrplanes, the period of thie oscillation is of the
order of magnitude of 15 seconds. It is this long-period oscillation

which becomes unstable upon crossing the boundary R = O from point @3

to point CE). That is, at point CE two pairs of complex roots are
obtained with a positive real part of the complex roots that corresponds

to the long-period oscillation so that an unstable oscillation is indicated,
and a negative real part of the complex roots that corresponds to the short-
period oscillation so that a stable oscillation is indicated. - Thus the

two curves for R = 0 represent neutral-oscillatory—stability boundaries,
one boundary for the long-period oscillation and the other boundary for

the short-period oscillation.

The second step in the analysis of the oscillatory mode is to
determine the relation between the period and damping of the oscillation
in the stable region. As mentioned previously, a palr of complex roots
indicates an oscillatory mode. The real part of a complex root gives
the damping factor and the imaginary part of the complex root gives the
angular frequency of the oscillation from which the period is computed.
A convenlent measure of the damping is the time required for the amplitude
of a disturbance to damp to half amplitude. The ratio of the time
required to damp to half amplitude to the period results in the
number of cycles required to damp to half amplitude. Figure 3 shows the
curveg of constant period and constant deamping for a hypothetical air—
plane plotted as a function of QnB and CIB. (See reference 6.) The

values corresponding to the solid curves represent the tims in seconds
to damp to half amplitude. As this time increases, the damping of

the oscillation decreases. Ths solld curve labeled « is the neutral—
oacilletory—stability boundary; combinations of CnB and CZB located

below this boundary will result in an unsteble oscillation. The period
of the oscillation in ssconds 1s indicated by thes values corresponding

to the dashed curves. There are, at present, two schools of thought on
the question as to which region in the Cnﬁ’ CZB plane would result in

a more satisfactory type of cscillation., For example, if ths values
of C, and C, for a given airplane correspond to point A and it is

desired to lmprove the relation bestween the period and damping of the
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oscillation, one group ig of the opinion that the weathercock stability

of the airplane should be increased. Thus, in going from (@) to (:), the
damping of the oscillation is increased from 16 seconds to damp to

half amplitude at @ to 6 seconds at . But the period 1s shortened,
thereby causing the number of cycles to damp to half amplitude to increase
from 4 cycles at (@) to 6 cycles at CE). For this modification in the
design of the airplane, therefore, the damping in seconds is improved

but the damping in cycles is worsened. The opinion of the other group

is that the combinations of CnB and CZB should be restricted to a

small region near the origin, from point (@) to point (:). The damping

in seconds is now reduced but because the period is lengthened the damping
in cycles is improved, from 4 cycles at (:) to 1.67 cycles at (@). It is
apparent that the desired criterion cannot be determined by the dynamic—
stability investigator but must be based upon the opinions of pilots from
more extensive flight—test results. Once this criterion is established,
however, a figure similar to figure 3 which shows the curves of constant
period and constant damping is necessary to indicate the possible

. combinations of CnB and CZB that will satisfy the criterion.

The dynamic—stability calculations have thus far yielded only an
indication of the character of the free motion. The motion of the
airplane, subsequent to & disturbance from its trimmed condition, is
compounded of the several modes of motion in different proportions. The
motion can be calculated by applying the Heaviside Operatiocnal Calculus
or the Laplace transform to the equation of motion. The Laplace transform

. 18 congidered a more powerful method than the Hegviside methcd because
- the initial conditions of the problem, initial displacements or initial

velocities, are inherently taken into account by the Laplace transform.
The application of these methods to the calculation of airplane motions
can be found in several NACA and British reports. (See references 7
to 11.)

The present discussion has thus far been mainly concerned with the
general methods of dynamic—stabllity analysis. The effects of some of
the more important mass and aerodynamic parameters on thes lateral stability
will now be illustrated by showing the relative location of the neutral—
oscillatory—etgbility boundaries in the CnB, CZB plane as these mass

and aerodynamic parameters are varied.

Until recently, the product—of—inertia effect, which results from
the inclination of the principal longitudinal axis of inertia relative
to the flight path, has usually besen neglected in lateral—stability
analyses because some calculations for conventional airplanes had indicated
that to neglect the angularity of the principal longitudinal axis to the
flight path 4id not seriously affect the lateral stability (See reference 12.)
The angularity of the principal axis relative to ths flight path causes
the inertia forces to produce a coupling between the rolling and yawing
motions so that & rolling acceleration produces a yawing moment and a
yawing acceleration produces a rolling moment. Recent studies have
shown, however, that the product of insrtia may have a very pronounced
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effect on the lateral stability of pressnt—day alrplanes designed for
high—speed high—altituie flight becauss of high wing loadings, large
differences between rolling and yawing moments of inertia, and the
aerodynamic characteristics of low—aspect—ratio or swept wings. (See
references 13 to 15.)

There hag been-a trend in the deslgn of recent high-speed airplanes
toward the use of relatively large angles of wing incidence to permit
the fuselage to remain at a low angle of attack while the wing goes up
to the high angles of attack required because of the high sweep and
low aspect ratio, The purpose in designing the airplane so that the
fuselage remains at a small angle of attack is to reduce the fuselage
drag for high altitude or cruising flight or to reduce the fuselage
ground angle and thereby simplify the landing-gear design. The Iimportant
factor to consgider in analyzing the effect of wing incldence on the
lateral oscillatory stability is the inclination of the principal longl-—
tudinal axis relative to the flight path. Figure 4 shows the calculated
oscillatory—stability boundaries as a function of CnB and CZB for a
model tested in the Langley free—flight tunnsl with the wing set at two
engles of incidence, i, = 0° and i, = 10°. In each of these configu—

rations the model was flown at ths same 1ift coefficient which corresponded
to an angle of attack of 10° for the wing. The results indicate that when
the wing was set at 0° incidence, both the wing and the principal longi—
tudinal axis of the model, which coincided with the fuselage reference
axis, were inclined 10° above the flight path to obtain the 1ift coeffi—
cient for trim. For that condition, illustrated by the lower sketch in

the figure, the boundary falls in the lower region of the quadrant; thus,
oscillatory stability is indicated for a large number of combinations

of CnB and CzB located above the boundary. However, 1f the wing is

set at an angle of incldence to obtain 1lift (for this case 10°), ae has
been proposed in several designs, and the principal axis is alined along
ths flight path, the oscillatory boundary falls in the upper region of

ths quadrant and thus it is very difficult to obtain oscillatory stabllity
because the stable combinations of Cnﬂ and C.LB are limited to the

small region ahove this boundary. The stabilizing ghift in the boundary,
from i, = 10° to i, = 0°, 1is caused by the fact that the principal
longitudinal axis is inclined 10° above the flight path for iy, = 0°.
The boundaries indicate that the model with values of CnB and CZB
shown by the test point on the figure, that is, CnB gbout 0,0025

ani CIB approximately -0.003, is stable wben the incidence is 0° and

unstable when the incidence is 10°. This fact was verified by flight
teote of the model in the Langley free~flight tunnel. (See reference 1k.)

The important effect of the product of inertia on the oscillatory
atability is emphasized by figure 5. The boundaries presented in this
figure are for a high—speed airplane with a wing loading of 70 pounds
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per square foot cruising at an altitude of 30,000 feet. The boundaries
are again plotted as a function of CnB and CZB for two cases: Tho

upper boundary represents the case in which the principal axis is
inclined at an angle of 20 below the flight path at the nose, 7 = —2°,
and the lower boundary represents the case In which the principal axis
is alined with the flight path, n = 0°. A comparison of the two
boundaries shows a large destabilizing shift in the boundary as the
principal axis Talls below the flight path. That is, as the boundary
shifts upward from 1 = 0° to n = —20, +the stable region located above
the boundary is reduced. Such a marked shift in the boundary is caussd
by only 2° variation in the inclination of the principal longitudinal
axis to the flight path.

The effect of wing loading and altitude on the oscillastory—stability
boundary is illustrated by figure 6. The sffects of theas two parameters
are treated simultaneocusly by considering variation in thes relativse—
density factor wuyp, the ratio of the airplane density to air density, since

this factor varies directly with both wing loading and altitude. The
boundaries are shown for various values of Hyy e The values of uy, can

be interpreted in terms of wing loading and altitude as follows: A value
of up of 5 corresponds to a light plane with a wing loading of 10 pounds

per square foot at an altitude of 10,000 feet; a value of by of 30

corresponds to a World War II fighter with a wing loading of 40 pounds
per square foot at an altitude of 40,000 feet; and a value My of 1000

would correspond to a postwar high-speed design airplane with a wing
‘loading of 100 pounds per square foot flying at an altitude of 60,000
feet. It is apparent from this figure that an increase in wing loading
or altitude, or an increase in Hp s shifts the boundaries upward so

that a decrease in the stable region is indicated. However, it is impor—
tant to note that the most pronounced effect of wing loading and altitude
on stability occurs for values of Moy less than 30, in the range of light

aircraft degign, whereas for values of Hy above 30, wing loading and
altitude have very little effect on stability. (See reference 16.)

One of the most important stability derivatives affecting lateral
stabllity is the damping—in-roll derivative Clp’ which becomes smaller

as the sweepback 1s increased and as ths aspect ratio is decreased.
Flgure T shows the effect of Cl on the oscillatory-stability boundary.
P
The boundaries are plotted for several values of CZ : 0, 0.1, and -0.2.
b

The value of Cz for a straightswing conventional airplsne is about ~0.L

or -0.5. These boundaries were calculated for a hypothetical transonic
airplane and are intended only to indicate ths trends obtained as Cz
b
is varied. It is evident from the boundaries that reducing Cl reduced
. 4
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the lateral stability. Although the effect shown is typical for most
airplane designs, calculations have indicated that the reverse effect
might be present for some airplane configurations. The effect of some

of the other stability derivatives and mass characteristics on the lateral
oscillatory stability are presented in several NACA reports. (Sec
references 15 and 17 to 19.) .

The dynamic longitudinal stability of airplanes with controls fixed
has received very extensive treatment by many authors, among whom may
be mentioned Bryan, Bairstow, Wilson, and Zimmerman, (See references 1
to 3 and 20 to 22.) In general, the longitudinal motion consists of two
oscillatory modes — & slightly damped long—period oscillation, known as
the phugoid, and a heavily damped short—period ocacillation. Because of
the relation between the period and damping of each one of the oscillations,
the longitudinal stability of most alrplanes has been satisfactory to the
pilots.

An analysis of lateral or longitudinal motion of the airplane with
controls free involves an equation for an additional degree of freedom,
that is, for the motion of the control itself. The discussion of control-
free stability will be mainly concerned with ths rudder—free case,
although similar analyses have been carried out for the case of elsvator
free and aileron free. (See references 23 to 28.) Flight tests have
shown that, under certain conditions of rudder balance, undamped lateral
oscillations may occur when the rudder is freed. The oscillations
involve coupling between the yawing motions of ths airplane and movements
of the rudder and depend on the amount of friction in the control system.
Two of the most important parameters affecting the control-free stability
are the restoring moment parameter Ch&’ which expresses the variation of

rudder hinge-moment coefficient with rudder deflection, and the floating-
momsnt parameter ChW’ which expresses the variation of the hinge-moment

coefficient with the angle of yaw. Figure 8 shows the calculated rudder—
free—stability boundaries with the effect of frictlon in the control
system taken into account. Thess boundaries are plotted with Ch8 as
abscissa and ChW
positive floating tendency, that is, surfaces whose free movements tend
to oppoge any disturbance of the airplane. The boundaries indicate that,
for combinations of Ch5 and Ch¢ located on the shaded side of R = O,

ag ordinate. Pogitive values of ChW correspond to

the oseillation 1s unstable. If there is no solid friction in the system,
the completely stable reglon is between R = O and the divergence boundary.
However, if there 1s solid friction in the system, constant-amplitude
oacillations occur for combinatlons of Ch& and ChW located

between R = O and the curve labeled "friction boundary.” Ths amplitude
of the steady oscillation is proportional to the amount of solid friction
in the control gystem. Flight tests will bes necessary to indicate the
ruximum amount o steady oscillation that 1s allowable in an alrplane.
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The present paper indicates in general the effect of some of the
mass and aerodynamic parameters on the lateral oscillatory stability.
The results are illustrated for an alrplane or model with a given set
of values of mags and aerodynamic parameters. However, as shown in
more complete lateral—stability studies, amall variations in some of .
these parameters may cause a pronounced change In the oscillatory stabllity.
On the basis of these detailled studies, therefore, 1t appears necessary
to make a separate stability analysls for each airplane.

Some of the subjects that require further theoretical or experimental
research are:

1. The effects of the aercelasticity of wings on stabllity
derivatives and hence on dynamic stability

2. The effects of power on stability

3. Analysis of the snaking or lightly damped short—period
oscillations encountered recently in high-speed flight

4, Stability derivatives for transonic region

5. Analysis to determine important combinations of mass and
aerodynamic parameters which affect dynamic stability



240

Hy

APPENDIX

SYMBOLS AND COEFFICIENTS

angle of bank, radians
angle of azimuth, radians
v

angle of sideslip, radians (V)

sideslip velocity along the Y-axis, feet per second
airspeed, feet per second

mass density of alr, slugs per cublc foot

dynamic pressure, pounds per square foot (%ﬁvz)
wing span, feet

wing area, square feet

weight of airplane, pounds

mass of airplane, slugs (g-)

acceleration due to gravity, feet per second per second

m
e—d. t t —
relativ enslty factor <pr>

angle of attack of principal longitudinal axis of ailrplane,
positive when principal axis is above flight path, degrees

angle between flight path and horizontal axis, positive in a
climb, degrees

radius of gyration in roll about principal longitudinal axis,
feet

radius of gyration in yaw about the principal vertical axis,
feet

ncndimensional radiue of gyration in roll aboutv principal
kx
longitudinal axis —59



& P

Q
=

. 2k

nondimensional radixkts of gyration in yaw about principal
Z
vertical axis -%2

nondimensional radius of gyration in roll about longitudinal

stability axis \/ KX02 cos™n + K, “siny
o]

nondimensional radius of gyration in yaw about vertical

stability axis <\/ Ky 2 cos®n + Kxoesingn>
o C

nondimensional product—of-inertia parameter

((KZ02 - KX02>(sin 1 cos q))

time, seconds

' vt
distance along flight path, in spans (-ﬁ-—>

differential operator <$1—->
=

trim 1ift coefficient ("—’—%%‘?i-l)

Rolling m.oment)
qSb
Yawing moment
qSb )
Lateral force)

rolling-moment coefficlent (

yawing-moment coefficient (

lateral—force coéfficient < 3
a.

effective—dihedral derivative, rate of change of rolling—
moment coefficient with angle of sideslip, per radian

’ oC
in equaticns and per degree in figures <B—B—Z->

directional-stability derivative, rate of change of yawing-—
moment coefficient with angle of sideslip, per radian in

oC
equations and per degree in figures <6—£)

£
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lateral—force derivative, rate of change of lateral—force
- ac

coefficient with angle of sideslip, per radian <-—J§
oB

damping—in-yaw derivative, rate of change of yawing-moment
coefficlent with yawing—angular—velocity factor, psr

oC
radian | —e
a__.
2V
rate of change of yawing-moment coefficlent with rolling-
aC
engular-veloclty factor, per radian —_
382
av.

damplng—in-roll derivative, rate of éhange of rolling~moment
coefficient with rolling-engular—velocity factor, per

ac,
radian '~fg
2
2v
rate of change of rolling—moment coefficient with yawing-
oC
angular—velocity factor, per radian —L
=
2v
rate of change of lateral-force coefficient with rolling-
aCY
engular—velocity factor, per radien | ——
pb
Py
2V
rate of change of lateral-force coefficient with yawing-
oC
angular-velocity factor, per radlan I
32
av
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Figure 1.- The stability system of axes. Arrows indicate positive directions
- of moments, forces, and control-surface deflection,
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() The case for which only one of the two branches of the curve R =0 is
a boundary for neutral oscillatory stability.
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(b) The case for which both branches of the curve R = 0 are boundaries
for neutral oscillatory stability.

Flg‘ure 2.- Lateral-stability boundaries for two hypothetical high- speed -~
alrplane configurations.
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Figure 3.- Curves of constant period and constant damping.
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Figure 4.- Effect of wing incidence on the oscillatory stability of a model
tested in the Langley free-flight tunnel.
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Figure 5.~ Effect of the angle of attack of the principal longitudinal axis on
the oscillatory-stability boundary.
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Figure 6.- Effect of the relative-density factor Ky, on the oscillatory-
stability boundary.
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Flgure 7.- Effect of damping in roll on the lateral stability of a hlgh-
speed airplane.
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Figure 8.~ Calculated rudder-free-stability boundaries for conventional
attack airplane,





