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A SURVEY OF FLUTTER
By I. E. Gerrick

‘Langley Aeronautical Laboratory

The field of flutter is concermed largely with a study of the
clrcumstances whereby a complicated elastlc structure such as an aircraft,
or the components of an aircraft, can interact wlth the surrounding air
stream and spontaneously extract energy to an extent that may cause damage
or destruction. The problems of the flutter fleld have expanded with
modern aircraft developments so that they involve and overlap very largs
parts of aerodynamics and mechanics. It is the purpose of this paper to
dwell on various aspects and concepts of this broad field.

A particularly simple example of flutter 1s the "fish tail” motion
due to mass unbalance of a control surface (common during World War I).
Suppose that a very heavy mass is placed at the trailing emd of a control
gsurface. If the motion of the wing 1s, say, upwards the inertis of the
mass tends to create a fixed polint at the control-surface trailing edge.
Hence the control surface deforms in such manner as to tend to increase
the 1ift, that i1s, the unbalanced mass brings into being an aerodynamic
force tending to increase the motion. In the downward part of the cycle,
similarly, there is a force tending to increase the motion. This "tail
wagging the dog™ type of control-surface flutter is satisfactorily ’
eliminated by proper dynamic mass balancing.

Modern aircraft are subject to various types of flutter troubles.
There is the classical type of flutter assoclated with a clean efficient
flow pattern, which usually, though not necessarily, involves the coupling
of several degrees of freedom of the structure. And there is another type
that is difficult to analyze which may involve separated flows, periodic
breskaways and reattachment of the flow, stalling conditions, shocks, and
various hysteresis or time-lag effects between the flow pattern and the
motion. In this type of flutter only a single degree of freedom of the
structure may be prominently involved (example, stall flutter). There
is also a possible merging of the types.

Common cures and remedies for flutter troubles are increased
stiffnesses (particularly torsional), decreased coupling as, for example,
masgs balancing of control surfaces, and increased damping. Because of
the great number of structural parameters, however, and of the various
kinds of modes and types of flutter, there is no field in which it is
more true that exceptions can be found .for every rule of thumb. This
means that (along with usual statistical, empirical, and experimental
studies) the problem should be exemined analytically along fundamental

lines. Since the primary source of the gelf-excited motion is the (uniform)

alr gtream itself, it will perhaps be worthwhile tc examine first the
basis of the nonstationary potential alr forces.

For the purpose of classifying the aerodynamic problems at both low
and high speeds, it is desirable to look at the general nonstationary
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flow equations for irrotational potential flow of a compressible fluid.
The governing differential equation for the velocity potential follows
from Euler's equations of motion and from the equation of continuity,
with the assumption that the pressure ils a function of density only and

with the use of the local speed of sound as c2 = %%.

The general equation satisfied by the veloc1ty potential may be put
into a very pretty 1nvar1ant form,

—-(——+ >¢ 2 (1)

where %—G- and V.y¢ (which is ng a + Vg g in rectangular

Cartesian coordinates) operate only on ¢, not on ¥, and where, for
example, for the adiabatic pressure—density relation, the local variable
speed of sound is given by
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Here 7 1is the adiabatic index (ratio of specific heats), and co is

the velocity of sound corresponding to v = 0. The invariant "wave equation“
form shows that the potential 1s propagated in the manner of a wave
disturbance of finite amplitude. (For a derivation of equation (1) see
appendix B of reference 1.)

Equation (1) serves to unify the discussion of the whole compressible—
potential—flow picture and it shows up the difficulties inherent in the
nonstationary, nonviscous flow problem in its unrestricted form. For

example, when %E is absent and the flow disturbances are not necessarily
small, the equation becomes one treated by Rayleigh, Janzen, Poggi,

and Kaplan. In a space of one dimension, for example, it reduces to the
equation of Riemann for aerial plane waves of finite amplitudes.

¢tt + 2¢x ¢xt "(%% - ¢x2> ¢xx =0 (3)

It is known that aeriasl plane waves of finite amplitudes cannot
preserve their forms (reference 2) but that compression wave fronts
steepen and rarefactions become less steep. dJust as a shock condition
awaits a compression front so too the past history of a rarefaction wave
cannot be indefinitely prolonged without encountering discontinuities.
Thus the existence of the continuous shockless pattern is for only a
finite time. In a certailn physical sense we must question the existence
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or creation of continuous steady flow patterns in the whole of space.
The steep front must be treated then by Rankine-—Hugoniot relations as a
shock condition. The temptation to assign similer phenomena to the
general flow, of which the one—dimensional unsteady case is a special
one, is very great. Then, it should not be surprising if the potential—
flow equations for continuous flow impose conditions impossible of physical
fulfillment just as iIn the Riemam: case. Physical phenomena such as shocks
and instabilitles and mathematical phenomena such as "limiting lines" can
then arise. Precise discussions of these phenomena in relation to boundary
conditions are matters of great difficulty. This subJject must be
considered to be in an incomplete state. .
If the velocity of propegation of disturbances is assumed infinite
(c. = »), equation (1) reduces to Laplace's equation for the incompressible
fluid:

v3g =0 (%)

Even this deceptively simple—looking equation leads to recondite matters
both of a physical and a mathematical nature, for it embraces the whole

of two— and three—dimensional incompressible potential flow, stationary

or nonstationary, for small or large disturbances.

Before discussing certain aspects of the physical picture, it is
of speclal interest to look at the small-disturbance linear equation to
which the original nonlinear equation may bé reduced. For stability
studies the main interest is often precisely in the small-disturbance
form of the equations. For small disturbances from a main-stream
veloclity V in the x—direction and with ¢ now regarded as a constant,
the disturbance velocity potential satisfies the equation

El@(g%.wg;)%:v% (5)

This equation contains, for V = 0, the equation for the propagation of

gsound. For steady flow, §Q = 0, 1t is the general equation for

ot
linearized subsonic and superéonic flow which leads, for example, to the
Prandtl-Glauert rule for subsonic flow and to the Ackeret rule for
supersonic flow. In the general nonstationary case it is the theoretical
basis for much of the existing work on the asrodynemical background of
flutter, both at subsonic and supersonic speeds. Thils is perhaps the proper
place to mention that equation (5) can also be associated with the purely
acoustical problem of moving sources of sound.

In the near—sonic region, however, the linearized theoretical basis
clearly requires modification as indicated by the Prandtl-Glauert and
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Ackeret rules leading to infinite slopes of the 1lift curve at M = 1.

It is likely that in this region it 1s necessary to employ iterative
methods and to take into account second—order and other effects including
viscosity and shape factors, but even the small-disturbance equation
appears differently. Thus if all velocitles are only slightly different

from the critical local velocity of sound - c* (c* = /== co> and 1f
7+1

the maln stream is in the x-direction, there 1s obtained for the equation
satisfled by the velocity potential

£ Bt -1 > ¢ = VQ¢ + (7 + 1) —--ldi <} L1y (6)

0*2 C* ax

or

Boi + 20*Fy — (7 + 1)(c*2 — c*@y) Gyy — c*2 (?yy +9,,)=0

This equation reduces in the steady case to a nonlinsar equation
leading to the transonic similarity rules discussed recently by Von Karmén
and others. Its use in conJunction wilth boundary conditions for solving
flow problems has not as yet been attempted. Clearly, difficulties of
mathematical and physical conceptions arise here too. There is a noteworthy
similarity of the structure of this equation with that of equation (3).

Physical conceptions bearing on the origin of 1ift and the genesis
of flow patterns are of specilal interest for nonstationary flows. The
role of the tralling edge in subsonic aerodynamics in distinguishing an
airfoll from a nonlifting body cannot be overstated. It 1s remarkadle
that the nature of the Kutta—Joukowskl condition for smooth flow at the
trailing edge has not been more deeply studled but rests only on descriptive
and plausible grounds. A fuller study of the flow mechanism must of course
invelve, in some measure, dissipation, the boundary layer, and the wake.

The trailing edge mey be considered the means for separating a zero
circulation into equal positive and negative parts, one part being left
bound to the alrfoll, the other free floating in the weke. It may be
recalled that the total circulation — the bound circulation over the
elrfoil and the free circulation over the surface of discontinulty which
the airfoil has left behind — satisfies the Helmholtz-Kelvin theorem and
vanishes. It 1s imstructive to describe this key mechanism in another wey.
Consider the nature of the disturbance flow pattern of a flat—plate airfoil
of infinite span undergoing a vertically downward motion; the main features
are the acceleration of the fluid dowmnward on the top and bottom sides and
the spilling of fluid upwards along both edges, the whole pattern akin
to that of two equal and opposite vortices. This flow pattern superposed
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with a uniform stream yields the noncirculatory flow pattern past a
straight—line airfoil at an angle of attack. Then the further effect of
the forward motion and of the trailing edge congists in effectively
"sliding ahead and slicing off" the back part of the disturbance flow
pattern thus leaving a bound circulation on the airfoil and a
countercirculation in the wake. Of course, the influence of the field
of floating vortices left behind in the wake muat also be taken into
account in analyzing the resulting pattern at the airfoil.

These conceptions are not self—evident but have since Lanchester
slowly evolved and are still crystallizing. It is of some interest to
note that without these concepts everyday natural phenomena such as the
dynamic nature of the flight of birds, which supposedly first stirred
men's imagination to attempt imitation of flight, remain imperfectly
understood. (See weference 3.)

The potential type of flow is actually more nearly realized physically
in the nonstationary than in the steady case. Thus for quick movements,
very high 1ift coefficients and more nearly theoretical values of the
slope of the 1ift curve can be realized. All this appears to be related
to the nonstationary processes in the boundary layer which "effectively”
yield a thinner boundary layer for higher frequencies; though to bring
in these effects directly is a highly complex affair. A basic
nondimensional paramester for comparing similar flows in the harmonically
oscillating case, directly relating in a significant manner frequency,
gize, and velocity, is the "reduced" frequency defined by the ratio of the
circular frequency times the half-chord to the main—stream velocity:

k =40
(-4

In the incompreassible nonstationary case there are two basic
procedures which turn out to be completely equivalent: (a) the Birnbaum
method followed up in particular by Cicala and Kiissner and (b) the Wagner
method followed up in particular by Glauert and Theodorsen.

(See references 4 to 10.)

In the Birnbaum method & distributlon of vorticity over the mean
chord is assumed in a particular form of an Infinite series (implioitly
going to zero at the trailing edge); relations between the bound vorticity
and the free vorticity are evaluated with consideration of the conditions
at the trailing edge and the boundary condition that the main flow plus
the induced flow at the airfoll surface corresponds with the actual motion
of the airfoil, so that the resulting comblned flow 1s at all times
tangential to the alrfoil surface. Knowledge of the local pressures is
obtained directly from the vorticity distributlon. It is of considerable
mathematical interest that an explicit solution can be obtained in the
two—dimensional incompressible case. (For example, see reference 1.)

In the Wagner method (which conveniently utilizes the principles
of conformal mapping) the trailing-edge condition plays a more explicit
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role. The flow pattern may be thought of as built up by superposition

of many elementary flows, each elementary flow being that of the straight—
line airfoil with an infinitesimal segment locally deflected; sach
elementary flow 1s composed of two parts, a noncirculatory flow pattern
corresponding to & source—sink or doublet distribution in the presence of
a finite line and the wake flow pattern corresponding to a distribution

of vortices generated at the trailing edge during the past history of

the motion. Again, from the local pressures, the integrated forces and
moments follow by integration.

It is instructive to polnt out that in the Wagner approach to the
problem, the veloclty potential or response to a sudden change of angle
of attack pleys an important part whlle in the Theodorsen developments
the steady—state response for the harmonically oscillating airfoil is
gignificant, and that these two functions are mated ones in the sense
of the Laplace or Fourier integral transforms. (See reference 12.) This
observation is an aid to the further application of the superposition
theorem and to the treatment of gusts and other transient conditions.
(See reference 13.)

The extension of the procedures to higher Mach numbers has been
the objective of much of the more recent work. Solutions of the original
linearized compressible—flow equetions (equation (5)) are sought which
can gerve to solve the boundary problem. Main references in the subsonic
case are the original paper by Posslo, a subsequent general formulation
by Kilssner, and a calculation procedure by Dietze (references 1k to 16).
It is noteworthy that the methods of the acceleration potential have
found prominent application in these subsonic—flow studies. Difficulties,
even in the plane case, arise: (1) The elementary solutions corresponding
to sources end doublets have a different structure and (2) the boundary
conditions lead to an integral equation with a highly complicated kernel
function. (Tt should be remarked thet the problem has also been treated
by utilizing directly the velocity potential. (See reference 17.) A
gimpler kernel function occurs, but certaln Mathieu functions are required
for further practical developments.)

Several procedures have been tried to obtain numericel solutions
of the integral boundary equation. Frazer and Skan (references 18 and 19)
glve a method of collocation in which boundary conditions are satisfied
at a set of points, leading to n equations in n unknowns. Another
procedure, a more flexible one, is the iteration procedure of Dietze
which in contrast with the other procedures also lends itself to aileron
calculations. Applications to flutter problems have been made in
geveral papers (for example, references 19 and 20). Of practical interest
are the facts that the Prandtl-Glauvert rule appears as a limiting case
for static instabilities and for low "reduced" frequency cases corresponding
to high -density wings and high altitudes and that, while in general the
compressibility effects are very complicated, the magnitudes of the effects
are not large in the range of validity of the linearized theory
(approximately M < 0.75) for structural parameters of normal and practical
concern.
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Of much interest too is the study of nonstationary air forces at
supersonic speeds. (See reference 21.) There is a peculiar reversal
of the role of the leading and tralling edges as compared with subsonic
conditions. Thus, there are the conditions necessary for an attached
shock at the leading edge that require a sufficlently sharp leading-edge
angle. Otherwise a detached shock ahead of the body and a mixed supersonic—
subsonic type of flow are involved. The trailing edge need play no
determining role as 1t does in the subsonic case and, in fact, a compression—
expansion wave mechanism is involved in the generation of 1ift. In general
the flow pattern must be pieced together (as in method of characteristics)
of several regions with various edge conditions and various conditions at
the Mach lines.

In the small-disturbance linearized treatment of oscillating air forces
(with no strong shocks or other large disturbances assumed present in the
underlying steady flow pattern) elementary source—type solutions play a
key role. The elementary source effect may be associated with a locally
deflected flow pattern and, in accordance with the similarity of the
acoustical and hydrodynamical problem as already observed, behaves as a
source of spherical sound waves in motion uniformly through the medium
with supersonic speed.

The moving—gource solutions have a considerable interest in themselves.
Historically, they are involved in the Doppler effect and were encountered
also in electrodynamics at the turn of the century (reference 22), in
somewhat dlsguised fashion from present forms, in the study of electrons
moving at speeds both above and below that of light. (The doctrine of
special relativity was still young.)

In order to illustrate briefly the source effects at supersonic speeds

there are presented figure 1 and the velocity potential relation
(reference 1):

¢ = % [%(t - 7)) + £t - Teﬂ

where
r=—1_ V(x-92- 0P -1z -2+ (z-07
M2 -1
T -IL‘.X"'E—E
1,2 "¢ M2 _ 1 *t e

The field point (x,y,z) at any time + 1is influenced by two waves
which originated at times T; and To earlier. A given fileld point
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at succegsive times T + Ty and T + To experiences, respectively, the

effect of penetration into the spherical wave front of a pulse created

at the origin at time T and the emergence out of the same wave front.

At penetration of the wave front for a positive source there is a
compression and subsequent equal expansion and, at emergence, the opposite
effect. The distance r occurring in the velocity—potential relation,
which in the case of a fixed source is the actual distance from the source
to the field point, is shown geomstrically in figure 1. At subsonic
speeds there is only the single effect of penetration into the wave front
because the fileld point never emerges from within the wave front.

The synthesis of solutions of boundary problems in terms of the
source golution (and its normal derivative corresponding to a doublet
solution) is of considerable general scope and velidity. The applications
form a wide field of research activity and it is regretted that they
must be passed by with so few words at this time. It is of interest to
mention that there are many papers now appearing in Russian dealing with
similar problems. (See for example, reference 23.)

These aerodynamic considerations have been dwelt on because the
motivating source of energy for flutter is the ailr stream itself and
it is necessary to have some ideas of the nature of the oscillating air
forces and moments which act, and their relative phases and emplitudes,
in order to assess or analyze flutter effects.

Attention is now diverted to the mechanical nature of the flutter
problem. For simplicity a configuration as in figure 2, an idealized
wing on springs, is first consldered. Corresponding to the two degrees
of freedom, vertical deflection h and rotation a, there are two
simultaneous differential equations, representing the equilibrium of
vertical forces and of moments about the axis of rotation:

hA + aB + hC = P

M

&D + HB + oE

where A and D are structural inertila terms, B 1is the coupling term
due to mass unbalance about the axis of rotation, C and E are elastic
restoring terms, and P and M, are terms of aerodynamic origin.

If the air forces appropriate to small sinusoidal motions are
employed, the flutter solution appears as a certain determinant put equal

to zero, (which represents the condition for a nontrivial solution of the
algebraic equations in h and a):

Aga,  Agn

Aca Acn



297

The individual terms are combinations of the inertia, elastic, and
asrodynemic effects. This solutlon states that mechanical equilibrium
is possible, that is, the laws of motion are satisfied, in the border
sinusoldal case at a certain airspeed with a certain frequency and with
certain amplitude and phase relations between the degrees of freedom.
The questlon of whether the border stabllity condition, corresponding
t0 a vanishing of the damping for the particular sinusoidal motion,
gseparates a damped oscillation from a growing (negatively damped )
oscillation, or vice versa, or 1is merely a resonance condition, is
answered by other considerations — for example, by further study of the
effects of the parameters, particularly structural damping, at the border
condition, or by physical arguments.

The flutter determinantal equation (which contains complex elements,
and hence is really two simultaneous equations) yields information on
both the flutter frequency and the flutter speed. Several procedures,
numerical, graphical, algebraic, and vectorial, for obtaining its solution,
or for varying the parameters in the neighborhood of a definite solution
have been developed. This phase of the flutter problem is a popular one
and is the subject of many papers in the literature. One procedure which
deserves special mention 1s the plotting of structursl damping against
airspeed as in reference 24 which treats directly the complex roots of
the equation. The imaginary parts can be interpreted as the damping needed
to obtain a flutter condition, negative damping then meaning that external
energy must be added, stability thus being indicated. The plots of the
imaginary parts of the complex roots against airspeed serve to measure the
nearness to flutter and to give an indication of the violence and the type
of flutter involved. (Of course after the flutter condition is encountered
and small disturbance limits are exceeded, nonlinear effects may take over
to limit the amplitude of oscillation, provided the structure holds
together.) It should be briefly mentioned at this point that in addition
1o the dynamic instability conditions, the determinantal equation also
contains the static instability conditions corresponding to wing
divergence or control reversal. As pointed out previously, in these
static cases in particular, the theoretical values need modifications
to represent more closely experimental values for example, of the slope
of the 1lift curve, center—-of—pressure location, and hinge—moment coefficients.

In order to improve the foregoing idealized simple picture it is
necessary to take into account a larger number of degrees of freedom and
to bring in three—dimensional -structural considerations. (See references 2L
to 28.) This end is readily accomplished by the classical methods of
Lagrangs in which each degree of freedom may represent a spanwise mode
of vibration (generalized coordinate) and the kinetic energy snd the
potential energy of the mechanical system play a central role. The terms

repregsenting the serodynamic energy are obtained from the work done by the
air forces in each coordinate.

The Lagrangian equations of motion representing the equilibrium in
the chosen degrees of freedom then lead, as before in the sinusoidal case,
to a characteristic flutter-stability equation in which the spanwise-mode
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effect is properly weighted end, conveniently, the mechanical potential
energy (as in the Rayleigh vibration-mode methods) may involve the
natural uncoupled frequencies of the structure. In this approach, matrix
methods arise in a very natural manner. In recent years the matrix
methods have become increasingly popular even with "practical"™ vibration
people and it is believed this trend should be fostered rather than
feared. It is however always a matter of taste and judgment and often
very difficult to choose the degrees of freedom and thelr number to
compromise properly between time, labor, physical grasp, and accuracy.

The problem of a continuous wing structure can also be set up as
an integro-partial differential equation (instead of a gystem of
gimultaneous ordinary differential equations) in which the modes of
vibration in the flutter condition are solved for rather than assumed.
It 1s recognized however that, in general, the problem involves elastic
problems which are too complex to be exsctly handled even without
congideration of the air forces and includes aerodynamic problems which
are complicated enough even in the steady case and for rigid structures.
In practice the procedures are iterative or approximate. (See reference 29.)
The uniform cantilever wing has recently been given such a treatment
(reference 30) with two-dimensional air forces assumed.

In fact In most flutter treatments two—dimensional alr forces have
been employed, frequently with over-—all corrections for finite span
inserted. Appropriate corrections for finite—span effects have occupied
the attention of several authors. (See references 31 to 35.) The subject,
however, is not in a too satisfactory state mainly because of complexity.
The nonstationary effects attributed to aspect ratio are, in general,
fairly small for moderate aspect ratios. There 1s room for both theoretical
and experimental contributions in this field for wings of small aspect
ratio.

A few words should perhaps be devoted to the subject of flutter of
sweptback wings, a study which has been only lightly touched on by
several writers. With sweepback the problem 1s complicated in both its
structural and its aerodynamic aspects. Structurally, there exists a
greater degree of coupling between bending and torsion as, for example,
for a curved or bent-back elastic axis. ZEven the conception of an elasgtic
axis, commonly used for unswept wings without large cut—outs, may, because
of crogs—stiffness effects, need to be replaced by the more general
conception of influence-coefficients. In its aerodynamic aspect there ig
a greater degree of coupling in the air forces; for example, the bending
deformation (dihedral effect) enters into the angle of attack of a wing
gsection. Thus a small dihedral leads to second—order effects for unswept
wings and to first—order effects for highly swept wings.

For an infinite uniform yawed wing (yawed at an angle not near 90°)
two—dimensional (low speed) considerations indicate that the flutter
speed increases by a factor of one over the cosine of the angle of yaw
or sweep. A finite yawed wing, mounted on springs permitting it to
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move vertically and to rotate about an axis, would be expected to have
a flutter speed with a factor of sweep higher than one over the cosine.
However, for a finite sweptback wing clamped at its root, the combined
effect of the elastic and aerodynamic coupling adversely affects the
flutter speed so that, in general, the factor iseconsiderably lowered.

There are many indications, however, that the static instability
aileron reversal (in which the rolling power vanishes at a certain
airspeed) rather than the dynamic instability may impose more severe
design requirements for sweptback wings (for example, reference 35) at
high speeds.

It has been possible to present here only a selection of aspects of
the flutter field. The whole story of modern experimental techniques
and research has had to be omitted. It is clear that measurement of
aercodynamic coefficients for nonstationary flow throughout the subsonic,
near—sonic, and supersonic speed ranges requires very exacting experimental
techniques and critical tests. In testing for flutter in some of these
speed ranges, it has been found convenient to employ, in addition to wind—
tunnel research, techniques utilizing bomb drops and rocket missiles.

Also required are the modern developments in pressure cells, straln gages,
and electronic, telemeter, and vibration equipment.

In closing this survey of flutter, 1t is again emphasized that the
physical classification of the flutter problem of a given structure is
not easy for an attempt must be made to recognize which of the abundant
gources of modes may be significantly involved and whether the type of
flow is primarily of the potential classical type or includes a merging
with other types of flow. In the near—sonic range, in perticular, there
1s a clash between the potential and separated flows and a susceptibility
to both kinds of flutter troubles. It is believed that refinements made
in the aerodynamic and mechanical aspects of the flutter problem to be
gignificant should to an extent keep in step with each other. It is
hoped that some of the many facets and challenges of the flutter problem
have been indicated.
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Figure 1.- Field of influence of a spherical source moving at a constant
supersonic velocity.

Figure 2.- Idealized wing configuration with two degrees of freedom.





