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A SURVEY OF F L m  

Langley Aeronautical Laboratory 

The f i e l d  of f l u t t e r  is concerned largely with a study of the 
circumstances whereby a complicated e l a s t i c  s t ructure such as an a i r c ra f t ,  
o r  the components of an a i r c ra f t ,  can in terac t  with the surrounding a i r  
stream and spontaneously extract  energy t o  an extent that may cause 
or  destruction. The problems of the f l u t t e r  f i e l d  have expanded with 
modern a i r c r a f t  developments so t h a t  they involve and overlap very large 
parts  of aerodynamics and mechanics. It is the purpose of t h i s  paper t o  
dwell on various aspects and concepts of t h i s  broad f i e l d .  

A part icular ly simple example of f l u t t e r  is the " f i sh  t a i l "  motion 
due t o  mass unba.lance of a control surface (common during World W a r  I ) .  
Suppose that a very heavy mass Is placed at  the t r a i l i n g  end of a control 
surface. I f  the  motion of the wing is, say, upwards the i n e r t i a  of the 
mass tends t o  create a f ixed point a t  the  control--eurface t r a i l i n g  edge. 
Hence the control surface deforms i n  such manner as t o  tend t o  increase 
the  l i f t ,  t h a t  is, the  unbalanced mass brings in to  being an aerod;ynamic 
force tending t o  increase the motion. I n  the downward part  of the cycle, 
similarly, there is a force tending t o  increase the motion. This " t a i l  
wagging the dogn type of control-aurf ace f l u t t e r  is s a t  i s f  a c t w i l y  
eliminated by proper dynamic mass balancing. 

Modern a i r c r a f t  are  subject t o  various types of f l u t t e r  troubles. 
There is the c lass ica l  type of f l u t t e r  associated with a clean e f f i c i en t  
flow pattern, which usually, though not necessarily, involves the coupling 
of several degrees of freedom of the structure.  And there is another type 
that is d i f f i c u l t  t o  analyze which may involve separated flows, periodic 
breakaways and reattachment of the  flow, s t a l l i n g  conditions, shocks, and 
various hysteresis or time-lag ef fec ts  between the  flow pat tern and the 
motion. I n  t h i s  type of f l u t t e r  only a single degree of freedom of the 
s t ructure  ma^ be prominently involved (example, s tal l  f l u t t e r )  . Thsre 
is  also a possible merging of the types. 

Common cures and remedPes f o r  f l u t t e r  troubles a re  increased 
s t i f fnesses  (par t icular ly torsional),  decreased coupling as, f o r  example, 
mass balancing of control surfaces, and increased damping. Because of 
the great number of s t ruc tura l  parameters, however, and of the vwious 
kinds of modes and types of f l u t t e r ,  there is no f i e l d  i n  which it is 
more t rue  tha t  exceptions can be found f o r  every r u l e  of thumb. This 
means t h a t  (along with usual s t a t i s t i c a l ,  empirical, and experimental 
studies) the prol3lem should be examined analyt ical ly  along fundamental 
l ines .  Since the primary source of the self-exci ted motion is the (uniform) 
a i r  stream i t s e l f ,  it w i l l  perhaps be worthwhile t o  examine f i r s t  the 
basis of the nonstationary potent ial  a i r  forces. 

For the purpose of classifying the aerodynamic problem a t  both low 
and high speeds, it is  desirable t o  look a t  the general nonstationary 
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flow equations f o r  i r ro ta t iona l  potent ial  flow of a compressible f lu id .  
The governing d i f f e ren t i a l  equation f o r  the velocity potent ial  follows 
from Euler" equations of motion and from the equation of continuity, 
with the assumption that the pressure is a function of density only and 

with the use of the loca l  speed of sound as c2 = 9. 
dP 

The general equation sa t i s f i ed  by the velocity potent ial  m y  be put 
in to  a very pret ty  invariant form, 

a a a 
where - and T.v (which is  vx g + vy + v, - a t  a i n  rec tangdar  az - 
Cartesian coordinates) operate only on $, not on v, and where, fo r  
example, f o r  the  adiabatic pressure-density relat ion,  the loca l  variable 
speed of sound is given by 

Here 7 is the adiabatic index ( r a t i o  of specif ic  heats), and co is 
the velocity of sound corresponding t o  v = 0. The invariant "wave equation" 
form shows tha t  the potent ial  is propagated i n  the manner of a wave e 

disturbance of f i n i t e  mpli tude.   o or a derivation of 'equation (1) see 
appendix B of reference 1. ) 

Equation (1) serves t o  unify the discussion of the whole compressible- 
potential-flow picture and it shows up the d i f f i cu l t i e s  inherent i n  the 
nonstationarj, nonviscous flow problem I n  i ts  unrestricted f om. For 

example, when - is absent and the flow disturbances are  not necessarily a t  
small, the equation becomes one t reated by Rayleigh, Janzen, Poggi, 
and Kaplan. I n  a space of one dimension, f o r  example, it reduces t o  the 
equation of Riemann f o r  a e r i a l  plane waves of f i n i t e  amplitudes. 

It is  known tha t  a e r i a l  plane waves of f i n i t e  amplitudes cannot 
preserve t h e i r  forms (reference 2) but that compression wave fronts  
steepen and rarefactions become l e s s  steep. Just  as a shock condition 
awaits a compression f ront  so too the past history of a rarefaction wave 
cannot be indefini te ly prolonged without encountering discontinuities.  
Thus the existence of the continuous shockless pat tern is f o r  only a 
f i n i t e  time. I n  a cer ta in  physical sense we must question the existence 



o r  creation of continuous steady flow patterms i n  the whole of space. 
The steep f ront  m u s t  be t reated then by Rankine-Hugoniot re la t ions  as  a 
shock condition, The temptation t o  assign similar phenomena t o  the 
general flow, of which the one-dimensional unsteady case is a s p e c i d  
one, is very great.  Then, it should not be surprising if the potential- 
flow equations f o r  continuous flow impose conditions impossible of physical 
fulfi l lment just  as i n  the  RiemimA case. Physical phenomena such as shocks 
and i n s t a b i l i t i e s  and mathematical phenomena such as "limiting 1 i n e ~ "  can 
then ar ise .  Precise discussions of these phenomena i n  r e l a t ion  t o  boundary 
conditions a re  matters of great d i f f icu l ty .  This subject m u s t  be 
considered t o  be i n  an incomplete s t a t e .  

I f  the  velocity of propagation of disturbances is  assumed i n f i n i t e  
(c. = w), equation (1) reduces t o  Laplace's equation f o r  the incompressible 
f lu id  : 

Even t h i s  deceptively simple-looking equation leads t o  recondite matters 
both of a physical and a mathematical nature, f o r  it embraces the whole 
of two- a& threedimensional incompressible potent ial  flow, stationary 
or nonstationary, f o r  amall o r ' l a rge  disturbances. 

Before discussing cer ta in  aspects of the physical picture, it is 
of special  in te res t  t o  look a t  the  small-disturbance l inear  equation t o  
which the or iginal  nonlinear equation may be reduced. For s t a b i l i t y  
studies the main in teres t  is often precisely i n  the small-disturbance 
form of the equations, For amaEl disturbances from a main-tream 
velocity V i n  the x-direction and with c now regarded as a constant, 
the disturbance velocity potent ial  s a t i s f i e s  the equation 

This equation contains, f o r  V = 0, the equation,for the propagation of 

sound. For staady flow, 3 = 0, it is the general equation f o r  a t  
l inearized subsonic and super$onic flow which leads, f o r  example, t o  the 
Prandtl-Glauert ru l e  f o r  subsonic flow and t o  the Ackeret ru le  f o r  
supersonic flow. I n  the general nonstatiomqy case it is  the theore t ica l  
basis f o r  much o f t h e  exis t ing work on'the aerodynamical background of 
f l u t t e r ,  both a t  subsonic and supersonic speeds. This is perhaps the proper 
place t o  mention t h a t  equation ( 5 )  can also be associated with the purely 
acoustical problem of moving sources of sound. 

I n  the near--8onic region, however, the l inearized theore t ica l  basis 
c lear ly requires modification as indicated by the Prandt l4 lauer t  and 



Ackeret ru les  leading t o  in f in i t e  slopes of the l i f t  curve a t  M = 1. 
It is l ike ly  that i n  t h i s  region it is necessruy t o  employ i t e ra t ive  
methods and t o  take in to  account second-order and other e f fec ts  including 
viscosity and shape factors,  but even the small-disturbance equation 
appears different ly.  Thus if all veloci t ies  a re  only s l ight ly  different  

from the c r i t i c a l  l oca l  velocity of sound * c* (.* = ,/I m d  i f  
7 + l  

the  m i n  stream is  i n  the x-direction, there is .obtained f o r  th;, equation 
sa t i s f i ed  by the velocirty potent ial  

This equation reduces i n  the steady case t o  a nonlinear equation 
leading -to the transonic s lml lar i ty  ru les  discussed recently by Ton K&m& 
and others. Its use in conjunction with boundary conditions f o r  solving 
flow problems has not as yet  been attempted. Clearly, d i f f i cu l t i e s  of 
mathematical and pmsical. conceptions a r i se  here too. There is a noteworthy 
s imi lar i ty  of the s t ructure of t h i s  equation with t h a t  of equation' (3). 

Physical conceptions bearing on the origin of l i f t  and the genesis 
of flow patterns a re  of special  i n t e re s t  f o r  nonstationary flows. The 
ro le  of the t r a i l i n g  edge i n  subsonic aerodynamics i n  distinguishing an 
a i r f o i l  from a nonlifting body cannot be overstated. It is remarkable 
t h a t  the nature of the Kutta.-=Joukmski condition f o r  smooth flow a t  the 
t r a i l i n g  edge has not been more deeply studied but r e s t s  only on descriptive 
and plausible grounds. A f u l l e r  study of the flow mchanism must of course 
involve, i n  some measure, dissipation, the boundaq layer, and the wake. 

The t r a i l i n g  edge may be considered the means f o r  separating a zero 
circulat ion into equal posit ive and negative pasts, one part  being l e f t  
bound t o  the a i r fo i l ,  the other f r e e  f loa t ing  i n  the  wake. It may be 
recal led tha t  the t o t a l  c i rculat ion - the bound circulat ion over the 
a i r f o i l  and the f r ee  circulat ion over the  surface of discontinuity which 
the a b f o i l  has l e f t  behind - s a t i s f i e s  the Helmholtz-P;elvin theorem and 
vanishes. It is instruct ive t o  describe t h i s  key mechanism i n  another way. 
Consider the nature of the disturbance flow pattern of a flat-plate a i r f o i l  
of i n f in i t e  span undergoing a ver t ica l ly  downward motion; the main features 
are  the acceleration of the f l u i d  downward on the top and bottom sides and 
the sp i l l i ng  of f l u i d  upwards along both edges, the whole pattern akin 
t o  tha-t of two equal and opposite vortices.  This flow pat tern superposed 



with a uniform stream yields  the noncirculatory flow pat tern past a 
straight-line a i r f o i l  a t  an angle of attack. Then the  fur ther  e f fec t  of 
the forward motion and of the t r a i l i n g  edge consists i n  effect ively 
"sliding ahead and s l i c ing  off" the back part  of the disturbance flow 
pat tern thus leaving a bound circulat ion on the a i r f o i l  and a 
countercirculation i n  the wake. Of course, the influence of the f i e l d  
of f loat ing vortices l e f t  behind i n  the wake mut ,  nlso be taken into 
account i n  analyzing the  resul t ing pat tern at  the a i r f o i l .  

These conceptions a re  not self-evident but have since Lanchester 
slowly evolved and are  s t i l l  crystal l iz ing.  It is of some in t e res t  t o  
note tha t  without these concepts everyday natural  phenomena such as the 
dynamic nature of the f l i g h t  of birds, which supposedly f i r s t  s t i r r e d  
man" inagination t o  attempt imitation of f l i gh t ,  remain imperfectly 
understood. (see reference 3. ) 

The potent ial  type of flow is actual-ly more nearly real ized physically 
i n  the nonstationary than in the  steady case. Thus f o r  quick movements, 
very high l i f t  coefficients and more nearly theore t ica l  values of the 
slope of the l i f t  curve can be realized. All t h i s  appears t o  be re la ted  
t o  the nonatationary processes i n  the boundary l q e r  which "effectively" 
y ie ld  a thinner boundarg Layer f o r  higher frequencies; though t o  bring 
i n  these e f fec ts  d i rec t ly  is a highly complex a f fa i r .  A basic 
nondimensional parameter f o r  comparing similar flows i n  the hammnically 
osc i i la t ing  case, d i rec t ly  relat ing.  i n  a s ignif icant  manner frequency, 
size,  and velocity, is the "reduced" frequency defined by the r a t i o  of the 
circular  frequency times the half-chord t o  the main-atream velocity: 

I n  the incompressible nonstationary case there are  two basic 
procedures which turn  out t o  be completely equivalent: (a) the Birnbaum 
method followed up i n  par t icular  by Cicala and Kiissner and (b) the Wagner 
method followed up i n  par t icular  by Glauert and Theodorsen. 
(see references 4 t o  10. ) 

I n  the Birnbaum method a d is t r ibut ion  of vo r t i c i ty  over the mean 
chord is assumed i n  a par t icular  form of an in f in i t e  ser ies  (implicit ly 
going t o  zero a t  the t r a i l i n g  edge); re lat ions between the bound vor t ic i ty  
and the f r e e  vor t ic i ty  are  evaluated with consideration of the conditions 
a t  the t r a i l i n g  edge and the boundaq condition t h a t  the main flow plus 
the induced flow a t  the a i r f o i l  surface corresponds with the actual  motion 
of the a i r fo i l ,  so t h a t  the resul t ing ccmbined flow is a t  all times 
taagent ial  t o  the a i r f o i l  surface. ~lnowledge of the loca l  pressures i s  
obtained direct ly  from the vor t ic i ty  distribution. It is of considerable 
mathematical in te res t  t ha t  an expl ic i t  solution can be obtained i n  the 
twdimensional  incompressible case.  o or example, see reference 1.) 

I n  the Wagner method (which conveniently u t i l i zes  the principles 
of conformal mapping) the trailing-edge condition pla;ys a more expl ic i t  



ro l e ,  The flow pat tern may be thought of as b u i l t  up by superposition 
of many elementary flowa, each e lemntmy flow being that of the straight- 
l i n e  a i r f o i l  with an infinitesimal segment loca l ly  deflected; each 
elementary flow is composed of two parts, a noncirculatory flow pat tern 
corresponding t o  a source-sink or doublet d is t r ibut ion  i n  the presence of 
a fini-te l im and the wake flow pat tern co,rresponding t o  a d is t r ibut ion  
of vortices generat&d a t  the t r a i l i n g  edge during the past history of 
the mo-tion. Again, from the loca l  pressures, the integrated forces and 
moments follow. by integration. 

I-t is instruct ive t o  point out tha t  in the Wagner approach t o  the 
problem, the velocity potent ial  or response t o  a sudden c u e  of angle 
of attack plays an important part while i n  the Theodorsen developments 
the steady--state response f o r  the harmonically osc i l la t ing  a i r f o i l  is 
significant,  and t h a t  these two functions are  mated ones i n  the sense 
of the Laplace or Fourier in tegra l  transforms. (see reference 12.) This 
observation is  an a id  t o  the  fur ther  application of the superposition 
theorem and t o  the t r e a b n t  of gusts and other t ransient  conditions. 
(see reference 13.) 

The extension of the procedures t o  higher Mach numbers has been 
the objective of much of the  more recent work. Solutions of the or ig ina l  
l inearized compressible--flow equations (equation (5)) are  sought which 
can seme t o  solve the boundary problem. Main references i n  the  subsonic 
case are  the  or iginal  paper by Possio, a subsequent general formulation 
by Kiissner, and a calculation procedure by Dietze (references 14 t o  16). 
It is noteworthy tha t  the  methods of the acceleration potential. have 
found prominent application i n  these s u b s o n i o f l m  studies.  Diff icul t ies ,  
even i n  the pkum case, ar ise:  (1) The elementmy solutions corresponding 
t o  sources and doublets have a different  s t ructure and (2) the boundasy 
conditions lead t o  an in tegra l  equation with a highly complicated kernel 
function. (1t should be remarked t h a t  the  problem has also been t rea ted  
by u t i l i z ing  d i rec t ly  the velocity potential .  (see reference 17.) A 
simpler kernel function occurs, but cer ta in  Mathieu functions are  required 
f o r  fur ther  pract ical  developments. ) 

Several procedures have been t r i e d  t o  obtain numerical solutions 
of the in tegra l  boundarg equation. Frazer and Skaa (references 18 and 19) 
give a method of collocation i n  vhich bounbqy conditions a re  sa t i s f i ed  
a t  a s e t  of points, leading t o  n equations i n  n unknowns. Another 
procedure, a more f lex ib le  one, is the i t e ra t ion  procedure of Dietze 
b-liich i n  contrast with the other procedures a l so  lends i t s e l f  t o  ai leron 
calculations. Applications t o  f l u t t e r  problem8 have been made i n  
several papers ( for  example, references 19 and 20). Of p rac t ica l  i n t e re s t  
are  the f a c t s  t h a t  the Prandtl-Glauert ru le  appears as a l imit ing case. 
f o r  s t a t i c  i n s t a b i l i t i e s  and f o r  low "reduced" frequency cases corresponding 
t o  high.density wings and high a l t i tudes  and that ,  while i n  general the 
compressibility e f fec ts  are  very complicated, the magnitudes of the effects 
are not large i n  the range of va l id i ty  of the l inearized theory 
(approximately M < 0.75) f o r  s t ruc tura l  parameters of normal and pract ical  
concern. 



Of much in teres t  too is the  study of nonstationary air forces a t  
, supersonic speeds. (see reference 21. ) There is a peculiar reversal  

of the ro l e  of the leading and t r a i l i n g  edges as compared with subsonic 
conditions. Thus, there are  the  conditions necessary f o r  an attached 
shock a t  the leading edge t h a t  require a suf f ic ien t ly  sharp leading-edge 
angle. Otherwise a detached shock ahead of the body and a mixed supersonic- 
subsonic type of flow are involved. The t r a i l i n g  edge need play no 
determining r o l e  as it does i n  the  subsonic case and, i n  fact ,  a compression- 
expansion wave mechanism is involved i n  the generation of l i f t .  I n  general. 
the flow pat tern must be pieced together (as i n  method of character is t ics)  
of several regions with various edge conditions and various conditions a t  
the  Mach l ines .  

In  the smR1.1-disturbance l i m a r i z e d  treatment of osc i l la t ing  air forces 
(with no strong shocks or  other large disturbances assumed present i n  the 
underlying steady flow pattern) element- source-type solutions play a 
key role.  The elementasy source e f fec t  may be associated with a loca l ly  
deflected f l o w  pat tern and, i n  accordance with the s imilar i ty  of the 
acoustical and hydrodynamicdl problem as already observed, behaves as a 
source of spherical sound waves i n  motion uniformly through the medium 
wfth supersonic speed. 

The moving+ource solutions have a considerable in te res t  i n  themselves. 
Hfstoric&lly, they are  involved i n  the Doppler e f fec t  and were encountered 
also i n  electrodynamics a t  the turn  of the century (reference 221, i n  
samewhat disguised fashion from present f o m ,  i n  the study of electrons 
moving at  speeds both above and below t h a t  of l i gh t .   he doctrine of 
special  r e l a t i v i t y  was  s t i l l  ~oung.)  

In  order t o  i l l u s t r a t e  br ie f ly  the source e f fec ts  at  supersonic speeds 
there are  presented figure 1 and the velocity potent ial  r e l a t ion  
(reference 1) : 

where 

The f i e l d  point (x,y, z )  a t  any time t is influenced by two waves 
which originated a t  times T 1  and 7 2  ea r l i e r .  A given f i e l d  point 



a t  successive times T + 71 and T + ~2 experiences, respectively,  t he  

e f f e c t  of penetrat ion i n to  t he  spher ica l  wave f r o n t  of a pulse created 
at the  o r ig in  a t  time T and the' emergence out of t h e  same wave f ron t .  
A t  penetrat ion of t he  wave f r o n t  f o r  a posi t ive  source there  is  a 
compression and subsequent equal expansion and, a t  emergence, t he  opposite 
e f f ec t .  The distance r occurring i n  the'velocity-potential.  r e la t ion ,  
which i n  t he  case of a f ixed  source is the  ac tua l  distance from the  source 
t o  t he  f i e l d  point, is shown geometrically i n  f i gu re  1. A t  subsonic 
speeds there  is only thi3 s ing le  e f f ec t  of penetrat ion i n to  t h e  wave f r o n t  
because the  f i e l d  point never emerges from within  t he  wave f ron t .  

The synthesis  of solut ions  of boundary problems i n  terms of the  
source so lu t ion  (and its normal der ivat ive  corresponding t o  a doublet 
solut ion)  is of considerable general  scope and va l i d i t y .  The appl icat ions  
form a wide f i e l d  of research a c t i v i t y  and it is regre t ted  t h a t  they 
must be passed by with so  few words a t  t h i s  t%. It is of i n t e r e s t  t o  
mention t h a t  the re  a re  many papers now appearing i n  Russian dealing with 
similar problems. (see f o r  example, reference 23 .,) 

These aerodynamic considerations have been dwelt on because t he  
motivating source of energy f o r  f l u t t e r  is  t he  air stream i t s e l f  and 
it is  necessary t o  have some ideas of t he  nature of the  o s c i l l a t i n g  air  
forces  and moments which ,act, &d t h e i r  r e l a t i v e  phases and q l i t u d e s ,  
i n  order t o  assess  o r  analyze f l u t t e r  e f f ec t s .  

Attention is now diver ted t o  t he  mechanical nature of t he  f l u t t e r  
problem. For s impl ic i ty  a configuration as i n  f igure  2, an ideal ized 
wing on springs, is  f i r s t  .considered. Corresponding t o  the  two degrees 
of freedom, v e r t i c a l  de f lec t ion  h and r o t a t i o n  a, there  are two 
simultaneous d i f f e r e n t i a l  equations, representing t he  equilibrium of 
v e r t i c a l  forces  and of moments about t he  axis  of rota t ion:  

where A and D a re  s t r u c t u r a l  i n e r t i a  terms, B is the  coupling term 
due t o  mass unbalance about t he  axis  of rota t ion,  C and E a r e  e l a s t i c  
res to r ing  terms, and P and Mo a re  terms of aerodynamic or igin .  

I f  t he  air forces  appropriate t o  small s inusoidal  motions a r e  
employed, t he  f l u t t e r  so lu t ion  appears a s  a c e r t a in  determinant put equal 
t o  zero, (which represents t he  condit ion f o r  a non t r iv ia l  so lu t ion  of t h e  
algebraic equations i n  h and a) : 



The individual terms are  combinations of the iner t ia ,  e las t ic ,  and 
aerodynamic effects .  This solution s t a t e s  t h a t  mechanical equilibrium 
is possible, that is, the laws of motion are  sa t i s f ied ,  i n  the border 
sinusoidal case a t  a cer ta in  airspeed with a cer ta in  frequency and with 
cer tain amplitude and phase re la t ions  between the degrees of freedom. 
The quest ion of whether the border s t a b i l i t y  condition, corresponding 
t o  a vanishing of the damping f o r  the par t icular  sinusoidal motioz, 
separates a damped osc i l la t ion  from a growing (negatively damped) 
oscil lation, or vice versa, or  is merely a resonance condition, is 
answered by other considerations - f o r  example, by fur ther  study of the 
e f fec ts  of the parameters, par t icular ly s t ruc tura l  damping, a t  the border 
condition, or by physical arguments. 

The f l u t t e r  determinantal equation (which contains complex elements, 
and hence is r ea l ly  two simultaneous equations) yields  information on 
both the f l u t t e r  frequency and the f l u t t e r  speed. Several procedures, 
numerical, graphical, algebraic, and vectorial ,  f o r  obtaining i ts  solution, 
or f o r  varying the parameters i n  the neighborhood of a def in i te  solut ion 
have been developed. This phase of the f l u t t e r  problem is a popular one 
and is the subject of many papers i n  the l i t e ra tu re .  One procedure which 
deserves special  mention is the plot t ing of strmctural damping against 
airspeed as i n  reference 24 which t r e a t s  d i rec t ly  the complex roots of 
the equation. The imaginary parts  can be interpreted as the damping needed 
t o  obtain a f l u t t e r  condi$ion, negative damping then meaning tha t  external 
energy must be added, s t a b i l i t y  thus being indicated. The plots  of the 
imaginary parts  of the complex roots against airspeed serve t o  measure the 
nearness t o  f l u t t e r  and t o  give an indication of the violence and the type 
of f l u t t e r  involved. (of course a f t e r  the f l u t t e r  condition is encountered 
and small disturbance limits are  exceeded, nonlinear e f fec ts  may take over 
t o  l imi t  the amplitude of osci l la t ion,  provided the s t ructure holds 
together.) It should be br ie f ly  mentioned a t  t h i s  point that i n  addition 
t o  the dynamic ins t ab i l i t y  conditions, the determinantal equation a lso  
contains the s t a t i c  in s t ab i l i t y  conditions corresponding t o  wing 
divergence or  control reversal.  As pointed out previously, i n  these 
s t a t i c  cases i n  particular,  the theore t ica l  values need modifications 
t o  represent more closely experimental values f o r  example, of the slope 
of the l i f t  curve, center-of-pressure location, and hinge-moment coeff ic ients .  

I n  order t o  improve the foregoing idealized simple pizture it is 
necessary t o  take in to  account a larger  number of degees  of freedom and 
t o  bring i n  three-dimensional - s t ruc tura l  considerations. (see references 24 
t o  28.) This end is readily accomplished by the c lass ica l  methods of 
Lagrange i n  which each degree of freedom may represent a spanwise mode 
of vibration (generalized coordinate) and the kinet ic  energy and the 
potential  energy of the mechanical system play a central  ro le .  The tenqs 
representing the aerodynamic energy are  obtained fYom the work done by the 
a i r  forces i n  each coordinate. 

The Lagrangian equations of motion representing the equilibrium i n  
the chosen degrees of freedom then lead, as before i n  the sinusoidal case, 
t o  a character is t ic  f lu t t e r - s t ab i l i t y  equation i n  which the spanwise-mode 



ef fec t  is properly weighted and, conveniently, the mechanical potent ial  
energy (as  i n  the Rayleigh v ib ra t iomode  methods) may involve the 
natural  uncoupled frequencies of the structure.  I n  t h i s  approach, matrix 
methods ar i se  i n  a very nstural  manner. I n  recent years the matrix 
methods have become increasingly popular even with "practical" vibration 
people and it is  believed t h i s  trend sh0ul.d be fostered rather  than 
feared. It is  however always a matter of t a s t e  and judgment and often 
very d i f f i c u l t  t o  choose the degrees of freedom and t h e i r  number t o  
compromise properly between time, labor, physical grasp, and accuracy. 

The problem of a continuous wing structure can also be s e t  up as 
an in tegrwpar t ia l  d i f f e ren t i a l  equation (instead of a system of 
simultaneous ordinary d i f f e ren t i a l  equations) i n  which the modes of 
vibration i n  the f l u t t e r  condition are  solved f o r  rather  than assume&. 
It is recognized however that ,  i n  general, the problem involves e l a s t i c  
problems which are  too complex t o  be exactly handled even without 
consideration of the a i r  forces and includes aerodynamic problems which 
are  complicated enough even i n  the steady case and f o r  r i g i d  structures.  
I n  practice the procedures are  i t e ra t ive  or approximate. (see reference 29 .) 
The uniform cantilever wing has recently been given such a t r e a t m n t  
(reference 30) with two-dbnens ional a i r  forces assumed. 

I n  f a c t  i n  most f l u t t e r  treatments twdimensional  a i r  forces have 
been eniployed, frequently with over-al l  corrections f o r  f i n i t e  span 
inserted. Appropriate corrections f o r  finlte-span ef fec ts  have occupied 
the at tent ion of several authors. (see references 31 t o  35.) The subject, 
however, is not i n  a too sat isfactory s t a t e  mainly because of complexity. 
The nonstationary ef fec ts  a t t r ibuted  t o  aspect r a t i o  are, i n  general, 
f a i r l y  small f o r  moderate aspect ra t ios .  There is room f o r  both theoret ical  
and experimental contributions i n  t h i s  f i e l d  f o r  wings of small aspect 
r a t i o  . 

A few words should perhaps be devoted t o  the subject of f l u t t e r  of 
sweptback wings, a study which has been only l igh t ly  touched on by 
several m i t e r s .  With sweepback the problem is  complicated i n  both i ts  
s t ruc tura l  and i ts  aerodynamic aspects. Structurally,  there ex is t s  a 
greater degree of coupling between bending and tors ion as, f o r  example, 
f o r  a curved or bent-back e l a s t i c  axis. Even the conception of an e l a s t i c  
axis, commonly used f o r  unsxept w i n g s  without large cut-outs, may, because 
of cross--stiffness effects ,  need t o  be replaced by the more general 
conception of influence-coefficients.  I n  i t s  aerodynamic aspect there is 
a greater degree of coupling i n  the a i r  forces; f o r  example, the bending 
deformation (dihedral effect)  enters into the angle of attack of a wing 
section. Thus a small dihedral leads t o  second-order e f fec ts  fo r  unswept 
wings and t o  f i r s t -o rde r  e f fec ts  f o r  highly swept w i n g s .  

For an in f in i t e  uniform yawed w i n g  (yawed a t  an angle not near 90') 
two-dimensional (low speed) considerations indicate tha t  the f l u t t e r  . 
speed increases by a factor  of one over the cosine of the angle of yaw 
or sweep. A f i n i t e  yawed wing, mounted on springs permitting it t o  



move ver t ica l ly  and t o  ro ta te  about an axis, would be expected t o  have 
a f l u t t e r  speed with a factor  of sweep higher than one over the cosine. 
However, f o r  a f i n i t e  sweptback wing clamped a t  i t s  root, the combined 
ef fec t  of the e l a s t i c  and aerodpamic coupling adversely a f fec ts  the 
f l u t t e r  speed so that, i n  general, the factor  is-considerably lowered. 

There are  many indications, however, t ha t  the s t a t i c  in s t ab i l i t y  
ai leron reversal  ( i n  which the ro l l ing  power vanishes a t  a certain. 
airspeed) ra ther  than the dynamic ins t ab i l i t y  may impose more severe 
design requirements f o r  sweptback wings (for  example, reference 35) a t  
high speeds. 

t 

It has been possible t o  present here only a select ion of aspects of 
the f l u t t e r  f i e ld .  The whole story of modern experimental techniques 
and research has had t o  be omitted. It is  clear  that measurement of 
aerodynamic coefficients f o r  nonstat ionary flow througho7~t the subsonic, 
near-donic, and supersonic speed ranges requires very exacting experimental 
techniques and c r i t i c a l  t e s t s .  In  t e s t ing  f o r  f l u t t e r  i n  some of these 
speed ranges, it has been found convenient t o  employ, i n  addition t o  wind- 
tunnel research, techniques u t i l i z ing  bomb drops and rocket missiles.  
Also required are  the modern developments i n  pressure ce l l s ,  s t r a i n  gages, 
and electronic, telemeter, and vibrat ion e q u i p n t .  

I n  closing t h i s  survey of f l u t t e r ,  it is again emphasized tha t  the 
physical c lass i f ica t ion  of the f l u t t e r  problem of a given s t ructure is 
not easy f o r  an attempt must be made t o  recognize which of the abundant 
sources of modes may be significantly involved and whether the type of 
flow is primarily of the potent ial  c lass ica l  type or includes a merging 
with other types of flow. In the near--sonic range, i n  particular,  there 
is  a clash between the potent ial  and separated flows and a suscept ibi l i ty  
t o  both kinds of f l u t t e r  troubles. It is believed tha t  refinements made 
i n  the aerodynamic and mechanical. aspects of the f l u t t e r  problem t o  be 
s ignif icant  should t o  an extent keep i n  s tep with each other. It is 
hoped tha t  some of the many facets  and challenges of the f l u t t e r  problem 
have been indicated. 
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Figure 1. - Field of influence of a spherical source moving a t  a constant 
supersonic velocity. 

Figure 2.- Idealized wing configuration with two degrees of freedom. 




