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THE USE OF CONICAL AND CYLINDRICAL FIELDS IN

SUPERSONIC WING THEORY
By Robert T. Jones

Ames Aeronautical Laboratory

Some of the recent advances in the theory of thin airfoils are
‘presented with particular reference to extensions of the theory to
three—dimensional flows and to supersonic speeds.

The thin-—eirfoil theory is essentially a linearized theory of small
disturbances and the orgin of the concepts may be traced back to the
older theories of Munk and Ackeret. The pregent emphasis on three—
dimensional flows arose from the discovery that the type of two-dimensional
supersonic flow considered by Ackeret is aerodynsmically inefficient. The
search for aerodynamically efficient forms for supersonic flight alsc
focuses attention on the linear, or small-disturbance, theory since bodies
and wings creating large disturbances are thought to be aerodynamically
inefficient.

The newer development of the theory is the work of many iﬁvesﬁigators.
The present discussion, however, 1ls based largely on the conical—flow
theory first employed by Busemann (reference 1).

The term "thin airfoil™ is used to denote a thin, essentially flat
body, the -surface of which departs only slightly from the xy-plane., In
the general problem no restriction is made on the shape of the plan form,
but it is essential that the body be thin and flat in all vertical cross
sections; hence, slender bodiles of revolution are avoided.

The problem discussed herein is the calculation of the small
disturbance velocities u, v, and w 1in the external field produced by
the flight veloclty V of the airfoil.

As 18 well known in acoustics, air motions of small amplitude are
governed primarily by the simple properties of elasticity of volume and
density. In order to depict such motions mathematically, a frictionless,
perfectly elagstic fluid is, therefore, adopted and a velocity field wuvw
mugt be found which is consistent with Newton!s laws and which
agrees at the alrfoil surface with the outward, or normal, velocity
imparted by the motion of the airfoll. The application of Newtonts laws
to the motions of small elements of such.a simplified model fluid results
in the familiar wave equation for the velocity potential o,

where ¢ 1s the velocity of sound and @y = u, Py =V, Py =W.
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The description of the whole velocity field by a single scalar
potential ¢ 1s, of course, a great simplification and, as explained in
text books on hydrodynamics, this scalar potential occurs in every case
of frictionless motion in which the density p is a function of the
pressure only. The elements of such a fluid move only under the action
of "buoyancy" or pressure forces. When the density is dependent on the
Pressure only, variations of density occur only along the direction of
the buoyant force. This force then passes through the center of gravity
of each element and no rotation is produced. The existence of ¢ follows
from the absence of rotation. :

Of first interest in the airfoil problem are steady flows. The
steady flow consists of a fixed pattern of streamlines attached to the
airfoil and moving with it. In order to represent the steady flow, it
will be necessary to transform the stationary axes of equation (1) to axes

moving with the airfoil at the flight velocity V. The quantity -% Pit

o C
is then replaced by Eé'mxx and the equation becomes, after transposition,
C .

ve _
<l—;-é->q>xx+q>yy+q.)zz_o (2)
in which % 1s the Mach number M. The problem ls now the mathematical
one of finding a solution of equation (2) which agrees with the normal
boundary veloclty imparted by the airfoil. When the thin airfoil as
specified i1s used, it is found sufficient to replace the actual boundary
condition by an equivalent condltion on the vertical velocity w in
the chord plane; that is,

(w)z=0 = V%i

where %i is the slope of the airfoil gurface. It is important to note
that the gliding component of the alrfoill surface imparts ro motion to the
fluid since the fluid is frictionless. The error made in the equivalent
boundary condition at =z = O becomes appreciable only at distances of the
order of one wing thickness from the edge. The pressure distribution over
the airfoil surface may likewlse be taken as the pressure in the chord
plane and is obtained from the well-known formula for the pressure in a
sound wave

Dp = —p%%
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or, in steady flow

from which

Thus far, nothing has been said about subsonic— or supersonic—flight
velocities. This distinction arises in equation (2) and in the form of its
solutions when M Z 1.

Except for this distinction, variations of M are of no consequence
mathematically since they can be represented by an equivalent change in
the scale of x relative to the other coordinates. This change of scale
is known as the Prandtl-Glauert transformation and is given as

or

X
VMR -1

The formula to be used depends on whether the flight velocity 1s subsonic
or supersonic. In the latter case, the significance of the transformation
is easily seen, since this transformation serves to maintain the correct
inclination of the Mach waves to the line of flight at different speeds.
It should be noted that the sudden transition of the differential equation
from the elliptic to the hyperbolic type at M = 1.0 is a feature of the
steady-flow equation (equation (2)) and does not, of course, arise in
connection with equation (1).

xt =

The essentlal features of the steady flow at subsonic or supersonic
speeds can then be ascertained from solutions of the reduced or normalized
equations. For M = O,

q)xx + cpyy +4'q")zz =0 (3)
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and for M = 1.41,

Prx = Pyy — Ppy = O (4)

As may be shown by direct differentiation,-equations (3) and (4) possess
the primsry solutions

® = f(ox + By + 7z)
where a, B, and 7 are quantities determined so that for equation (3)

a? + B2 + 92 =

|
O

and so that for equation (4)
a® - p2-92 =0

The cylindrical flow field, which is the bagsis of the two—dimensional or
wing section theory, is obtained by speclalizing the primary solution

to the two coordinates x and z. In this case for equation (3)

a=1.0 and ¥ = 1; and for equation (4) « = 1.0 and 7 = 1.0 so that
the general solutlions for the cylindrical or two—dimensional flow field
become

¢ = f(x £ iz)

or

o
|

= f'(x £ iz)

+ iu

E A
It

The general solution 1s the basis of the Munk theory, as well as the more
exact wing sectlon analyses which depend on the theory of functions of a
complex variable. At supersonic speeds the corresponding solutions are
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o = f(x £ z)
or

u=f7'"(x £ z)

w==u

This latter form of solution, which represents a plane sound wave of

arbitrary intensity at 45° to the normalized coordinate axes, is the
basis of the Ackeret theory.

The general form of flow fileld given by solutlons of the two
foregoing types is 1llustrated in figure 1. The sketch on the left—hand
glde is the famillar subsonlc streamline pattern for a symmetrical biconvex
wing section. In the subsonic pattern the velocity and pressure disturbances
diminish uniformly with distance and in the case of steady flow the field
possesses a fore and aft symmetry which results In no pressure drag or wave
drag. The sketch on the right-hand side (fig. 1) illustrates the marked
difference in streamline pattern that arises when the crosswise velocity
of the cylindrical fleld is supersonic. In this case the phase relation
of u and w 1is shifted (from 1 to 1) and the pressure distribution
is antisymmetric, resulting in a wave drag. Thils drag appears as the
energy in the plane sound waves emanating from the airfoil. The change
from subsonic to supersonic type of flow field arises when the rate of
progress of the flow pattern through the still fluld exceeds the velocity
of sound. With cylindrical flow, the field 1s not affected by an axial
velocity of the cylinder and the pattern progresses at a rate determined
only by the crosswise motion of the cylinder. Hence, the subsonilc type
of flow may persist on a yawed wing even though the flight velocity is
supersonic. (See reference 2.)

The sketch in the lower part of figure 1 represents a cross section
of a conlcal flow field of the type originated by Busemann. The particular
case used for illustration herein 1s the flow produced by a flat plate
of triangular plan form moving point foremost at a-small angle of attack
(fig. 2). The Mach cone originates, of course, at the apex of the triangle
and the field Inside this cone is geometrically the same in all downstream
cross sectlons except for an expansion in scale along the x—axis. The
conical flow fleld may be obtalned by the superposition of primary solutions
of the form

u = Flax + ﬁy + 7z)
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If p = e, then the solution
u=F|-2ux + (1 + p2)y + 1(1 - uz)z]

represents a plane sound wave at an angle -8 +to the y—, z—axes. X
Superposition of such waves of strength ft(u) from 6 =0 to 8 = 2x
results in a solution analogous to Whittaker's solution; that is,

u = %f'(u) F[—Eux + (1 +p9y + 1(1 - u2)z] du
The quantity —2ux + (1 + u9)y + 1(1 — u2)z may be factored imto

(b — €) (u —%—- (y — iz) where

y + iz
x+ Vx2 —y2 - 22

The general solutlon for 0° 1s obtained when F 1s replaced by log;
that 1s,

€ =

u = ygf‘(u) log I:(u - €)(u -% (v - iZ)] dp
1 1
= (O £(w) + dis
h—e p-1
€
= ol [f(e)]
if the contour does not lnclude %:- and if f(w) du = 0 or, in other

words, if f is an analytic function (see reference 3).

If the flight velocity is subsonicythe argument ¢ 1s replaced by
y + iz '

x+Vx2+ 324 22

(see reference 4). In either case the form of the argument shows an
eggential similarity to an expanding cylindrical field (see reference 5).

In fact, for the slender conical field, where y2 + z2 may be neglected

The latter solution was given by W. F. Donkin in 1857

y + iz

in comparison with xg, the argument becomes simply o
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Although no analytic function of € which removes the distortion of
the conical field relative to the cylindrical field can be found, it is
possible to transform the field in such a way that the distortion is
removed in the neighborhood of the airfoll Iin the plane 2z = 0. The
degired transformation is obtained from the fact that

y + iz _  2e
X 1l + €€

' Since €& approaches ¢2 near z = 0, the analytic variable

2¢
1+ ¢

Z = 5

will approach y+ iz in the neighborhood of the chord plane inside the
b'd

Mach cone. The new variable z greatly simplifies the boundary conditions
inasmuch as the Mach cone is transformed into the positive and negative
branches of the real axis outside 1 and the interior of the Mach cone is
mapped into the whole plane. Figure 3 illustrates the effect of this
change of variable. :

The relation between u and w in the conical field is found from
the conditions for irrotational flow; that is,

ow  du

x| oz

In terms of the variable ¢

-1 -1
dw_2 ( €)c’i.u

or in terms of the variable =z

V 1 - 22

w=-1{] —————du
Z

It is interesting to note that the condition for a flat airfoil surface in
two—dimensional flow holds also for the conical field. In the two—
dimensional flow w = iu and the condition for a flat surface (constant w)
is simply that the function adopted for u has no imaginary part over the
region of the real axis covered by the airfoil (assuming that the real
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gsolutions for uw and w are used). In the conical flow, the quantity

V31— 22

z
that in this region the condition 1s unchanged.

is a real number over that part of the real axis between *1 s0

Figure 4 illustrates the solution for the flat triangular airfoil at
a small angle of attack as obtained by H. J. Stewart and M. I. Gurevich
(references 6 and 7) and also by Bartels and LaPorte (reference 8). The
constant value of w, denoted by wc, must be calculated to give the
relation between the 1lifting pressure and the angle of attack. The
gquantity m d1s the cotasgggi_gi the sweepback angle for M = VPEB for
other Mach numbers m = v M2 — 1 +times the cotangent of the sweep angle.

Other wing forms generally require the superposition of conical and
cylindrical flelds. Thus, in the case of the rectangular wing of wedge—
shaped section (fig. 5) the field is cylindrical up to the Mach come
originating at the corner of the wing and is conical inside this cone.

The solution for the flat triangular wing can be used as a starting
point tc obtain the pressure distribution over a sweptback wing. In this
process, which is explained in references 9 and 10, the desired wing plan
form is, in effect, cut out of the triangle by the superposition of conical
fields which cancel the 1lifting pressure over portions of the triangular
area extending beyond the desired outline. The process 1s simplified In
the gupersonic case by the limited zone of influence of the superimposed
fields. The lifting pressure distribution over a wing with 63° sweepback
is shown in figure 6. It will be noted that the 1lift distribution over the
foremost section 1s flat, as in the Ackeret theory, while farther along
the span the subsonic type of pressure distribution appropriate to the
reduced crosswise velocity appears. In this example the wing tips were
cut off in a direction parallel to the air stream and, in such cases, the
1ift drops sharply to zero in the region behind the Mach cone from the
tip corner.

The solution for a sweptback wing having curvilinear sections cannot
be obtained by the superposition of a finite number of conical fields but
requires an integration. Such a case is illustrated in figure 7, which
shows the pressure distributions at several sectlons of a symmetrical
biconvex wing at 0° angle of attack. This example serves to illustrate
the change in proceeding from subsonic to supersonic speed. Since the
angle of sweepback ls large, the change 1s not pronounced and occurs
primarily at the center sections of the wing. It is interesting to note

that the center sections of the wing have a pressure drag at subsonic speeds.' iL“
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Figure 1.- General form of cylindrical and conical flow fields.
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MACH CONE

Figure 2.- Flat plate of triangular plan form in conical flow field.
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Figure 4.- Solution for flat triangxilar airfoil at small angle of attack.
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Figure 5.- Cylindrical and conical flow fields about a rectangular wing having
a wedge-shape section.

Figure 6.- Lifting pressure distribution over a wing with 630 sweepback,
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Figure 7.~ Pressure distributions at several sections of a symmetrical
biconvex wing at 0° angle of attack.





