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THE USE OF SOURCE AND SINK CONCEPTS IN THE CALCULATION
OF WING CHARACTERISTICS AT SUPERSONIC SPEEDS
By Clinton E. Brown

Langley Aeronautical Laboratory

The calculation of wing characteristics within the line- .. _--
is performed by a superposition of known solutions of & mor
elementary nature. In incompressible flow the use of sourc
and vortex solutions has proven very useful, perhaps because
elementary solutions themselves have been easy to visualize; certi .,
the idea of building up a body of revolution by a continuous distribu—
tion of sources and sinks is a natural one. At supersonic speeds the
use of sources, doublets, and vortices can lead to many simplifications
and glve the student a physical picture of what is occurring in the flow.
Von Kdrmén and Moore (reference 1) were first to introduce source and
sink concepts to supersonic aerodynamics when they calculated the flow
about bodies of revolution by an axial distribution of sources. In 1935,
at the Volta Congress, Von Kdrmén (reference 2) suggested the use of
surface source distributions in the calculation of wing characteristics
and thus laid the ground work for much of the present work.

Unfortunately, the spherical symmetry of incompressible source flow
is lost as the velocity of the stream becomes greater than the speed of
sound, as may be seen by comparison of the potential function ¢ of a
source in incompressible flow and supersonic flow:

Pu=0 = £ (1)

\/x2 + y2 + 22

and

K

\/x? = (2 - 1)(52 + 22)

(2)

¢M>1 =

where K 1is the strength of the source and M 1s Mach number of the
undisturbed stream. Prandtl (reference 3) has given a very good
derivation of the potential function of a supersonic source system that
uses a superposition of sources fixed in the fluid but varying in strength
with time. Consider a body moving at supersonic speed through a
compressible fluid originally at rest. The motion produced must satisfy
a differential equation which, upon restriction to motions that are small
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compared with the velocity of sound, becomes the wave equation in three
dimensions, well-known in mathematical physics. That is,

_’_]___ 52¢ ) 52¢ . 82¢ . 52¢
02 a_tQ BXE ayE, 522

(3)

where c¢ is the speed of sound.

The solution of this equation representing a fixed source of fluid
is also known and more complicated solutions may be built up by distri-
buting sources in the fluid. In order to get to the solution for a body
or disturbance moving through the fluid, Prandtl assumes the x—axis or
flight axis to be covered with sources, each source being fixed and
having strength vary with time. (See fig. 1.) As a given disturbance
moving along the z—axis reaches any source, that source starts to flow,
flows according to a common law, and ceases to flow when the disturbance
has passed. The potential at any point (x,y,z) in the fluid is then
made up of the contribution from each source in accordance with the
known expression for the potential function of the source flow. This
expression is given in figure 1 for a source located at a point on the
x-axis and is ag follows:

f(t-'r-B->
c

dg = — dx?
7 R

where t 1is the time, T is the time at which the source started to
flow, c¢ 1s the speed of sound, R 1s the distance between the source
and field point, and f 1s the law which governs the strength of the
source flow. As no disturbance can be produced at the point (%,5,2)
until the sound or pressure wave reaches the field polnt, the potential
ig only affected by those sources the initial waves of which have already
reached ths field point at the time +t. It should be noticed that lines
from the initial point of the disturbance tangent to the wave fronts

from the sources form the Mach cone or region of influence of the distur—
bance. The potential will then be expressed as an integral and will be

s function of the space coordinates and time. If, however, the obser—
vation point 1s allowed to move along at the same speed as the distur—
bance, the time element disappears, and finally an Integral expression

is obtained for a system of sources moving at a supersonic Mach number M.
The following expression was used by Von Karman and Moore (reference 1) in
computing the flow over slender bodies of revolution at supersonic gpseds:
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In this equatibn, the field point is at (x,y,z) and the position on thé
axis x; may be considered to be the location of a supersonic point

source having as its potential field the expression of eQuation (2).

For wing problems, however, lifting surfaces, and therefore surface
source distributions, are of interest. The potential at any point in the
gpace will then be made up of the contributions from sources distributea
over a region of the xy—plane and may be written as a double summation or
integral:

by n8o
8( X,y )dx,dy
¢S="' (ll 11 (5)

by Jag \/(x—xl)e-—(Mz_— l)[(y-—yl)é+ 22]

In this expression the quantity g xl,yl) is the expression describing
the source intensity at the point (xl,yl). Care must be taken in
choosing the limite in the integral so that the area of integration
includes only those sources which can effect the field point, that is,
the sources which contain the field point in their Mach cones.

The velocity component normal to the xy—plane containing the sources
is obtained by differentiating the potential function with respect to z.
Puckett (reference 4) and others have shown that this normal velocity at
a point on the surface z = 0 1is affected only by the sources in the
immediate vicinity of the point and is given by the expression

v, = %g = +ng(x,y) (6)

+z->0

Tt is seen that the normal velocity is discontinuous at the surface and
of magnitude proportional to the local-—source strength. This result is
not surprising if it is remembered that the source solutions used in the
previous derivation produced a radial flow and therefore could not
produce a velocity normal to the plane containing the source except
directly at the source itself.

At the surface, the slope of the streamlines is given to a first
approximation by '

2 = tan 6 X @ (7)
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The source distribution over the surface then produces a splitting
of the flow streamlines and is therefore capable of representing the
effect of thickness on & wing plan form. For example, on & wing of
given plan form the surface slopes are known and, hence, from equations (6)
and (7) the source distribution is knmown. The potential function for the
wing can therefore be calculated by inserting for ngl,yl) in equation (5)

the expression obtained from equations (6) and (7) to obtain

bo pap

. 6 dx_4q
v, (xl’yl) 1%1
P — = — (8)

" by Uay \/(f'C - x7)2 - (M2 - 1)&;; - 71)% + 22]

Once the potential function is known, i1t is possible to obtain the
velocities by differentiation. The method for calculating the pressure
distribution and drag of symmetrical wings at zero angle of attack is
thus direct and involves only the solution of definite integrals. This
method has numerous applications in calculating the drag of supersonic
wings, Rectangular wings, triangular wings, and tapered and untapered
sweptback wings having various airfoll sections have been calculated and
are available. -

As has been seen, a source distribution produces & parting of the
flow and hence an ldentical flow pattern above and below the xy-—plane.
Sources alone, therefore, will not produce a lifting force on a body.

What is needed is a potential function which is discontinuous at
the plene of the wing and which will, therefore, produce a difference
of pressure or 1ift on the wing. If the vertical velocity produced by a
source distribution is used as & new potential function, this type of
potential function can be obtained because, as demonstrated previously,
the normal velocity is discontinuous at the plane of the sources. The
new potential function, which is the derivative of a source potential,
is called a doublet potential because it can be formed by an operation
on a double sheet of positive and negative sources. The doublet potential
may be written now as

r ~N
P2 pf2 K(*1577)3%, %,
- e (9)
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and by referring again to equation (6) it is seen that the potential at
the surface z = 0 is

' ¢D = tuk(x,y)
tz—>0 (10)

where k(x,y) is the doublet— or source—distribution function. At the
surface, the x~, y—, and z—component velocities may be written as follows:

. vxo= %g = izr%% (11)
tz—>
vy = B_ = in—a-lf (12)
+z->0 R o
2 b2 pe2 k(x.,y,)dx,dy
_og 3 J_ 1°71)77171 (13)

T2 T3 dz2

Inasmich as the pressure is proportional to the x—component velocity,
it can be seen that there is a difference in pressure or 1lift wherever §£
X
existe., The z—component of the disturbance velocity is found to be contin-—
uous at the surface and the streamlines above and below the surface are
therefore deflected in the same direction. The doublet distribution is
thus capable of representing the effects of camber and angle of attack of

wings.

In problems in which the camber or angle of attack is given and the
pressure distribution is required, the doublet—distribution method is
rather difficult to use because the doublet distribution function is not
known but is beneath the integral signs, as in equation (13). The camber
or angle of attack can give the value of the vertical velocity v,, but
the function k(xl,yl), the doublet distribution, is not known. This
type of equation, called an integral equation, is often quite difficult

to evaluate.
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When the pressure distribution is given, the potential on the
surface and, therefore, the doublet distribution can be calculated
directly. The camber can then be obtained by calculating the vertical
velocity at each point. The difficulty of solving an integral equation
ig therefore not met in this case.

In order to illustrate briefly the mahner in which camber lines may
be calculated, consider a uniformly loaded triangular wing. The pressure

coefficient may be prescribed as a constant A and, therefore, from the
pressure equation, vy "is constant; that is,

— = e = A (14)

Inasmuch as the potential is the integral of the velocity vy by
definition, the potential on the surface becomes

AV
8,0 = fvx ax = = =2 [x + F(z)] (15)

At the lesding edge, however, ¢ = 0 and, therefore, the unknown
function F(y) may be evaluated as follows:

x = |y| tan A (16)
hence
F(y) = - |7| tan A (17)

where A is angle of sweepback.

Since the surface potential distribution and doublet distribution
are equal except for a constant factor =, the potential of the complete
flow is given by the doublet distribution as

rbe ap

- t A dx. 4
§ =5 o (a7 7 ') )

N s
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This integral can now be evaluated and, from the potential function
obtained, the vertical velocity at the surface may be computed; thus
the camber lines can be found. The camber on such a wing has been
given already by Jones in reference 5.

In the solution of the integrals used in this paper the order of
integration and differentiation is found to be quite important. The
solutions are difficult because the elemsntary solution is not defined
at its Mach cone. Hadamard (reference 6) has treated such problems,
however, and Heaslet and Lomax (reference 7) have applied his procedure
to the solution of wing problems.,

The foregoing method of doublet distributions can be tied in with
the familiar vortex—theory concept of incompressible flow. Cansider a
_three—-dimensional wing represented by & certain doublet or surface~
potential distribution. The circulation I about a chordwise strip can
be computed in the usual manner by integrating the velocities along a
.1line directly above and below the surface. The circulation thus becomes

T.E.

I = (vxak“’vx

Z)dx =g, — ¢ | (19)

L.E.

The integration is complete at the trailing edge because the
x—~component—velocity difference vanishes at this point. The potential
difference in the wake becomes, then, only & function of y. The pressure
on the strip is given by the relation

The 1ift on the strip of width dy is then
T'E.
aL . ;
— = (&pq = Ap)dx = oV, T (21)
y
LOEO
This equation shows that ths Joukowski;hypothesis is valid also in the

supersconic range of flight and the famlliar concepts of vortex flow must .
apply. It wlll Pe interesting to show how a horseshoe vortex can be found
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by a doublet distribution. In the gketch, consider the area in the xy-plane
enclosed by the straight lines to be uniformly covered by doublets.

o

Vo

—C

S

The surface potential in this region will also be constant as discussed
previously. The circulation computed along any circuit enclosing the
boundary of the region will then be a constant which is proportional to
the strength of the doublet distribution. The doublet distribution is
therefore seen to be equivalent to a single vortex line along the
boundary of the region considered. This result is directly analogous

to that found in incompressible flow; however, the induced velocity
fields in the two cases are different except at & large distance behind
the 1lifting line where they become the same. Any wing and its wake msy
be represented by a vortex distribution in the usual manner, although

for supersonic wing problems the lifting-line theory is unsatisfactory
because of the discontinuities present in the solutions which make the
asgumptions used in lifting—line theory very poor indeed. The alternative
is, of course, to proceed to a surface distribution of vortices or
doublets in which case the objections are overcome. Calculations of this
type have been performed by Schlichting. (See reference 8.) At a great
distance behind the wing, the change in potential with respect to the
flight direction approaches zero and the differential equation of motion

2 N2 2

ax® a4y az?

approaches Laplace’s equation in two dimensions involving only the cross—
flow velocities. The downwash produced by the wing is then seen to be
affected by only the traliling vortex system as in incompressible flow,
(See reference 9.) It might be supposed that the induced drag of the
wing could be calculated from the energy in the wake; however, an
additional amount of energy due to 1lift is found to be transported to
infinity by the sound waves produced at the wing. (See reference 10.)
The calculation of the induced drag for certain cases requires the use of
second—order terms, which were originally dropped in the analysis. The
use of such terms is, therefore quite a controversial subJect. Available
information on the subject, however, indicates that a procedure in which
thesz berms are included is at least gqualitatively correct.
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Puckett and others have demonstrated that under certain conditions the
flow over lifting surfaces may be obtained by source distributions instead
of doublet distributions which involve integral equations. Such conditions
arise when the flow component normal to a leading edge is supersonic; then,
the two sides becomes independent. This fact is illustrated by the first
sketch of figure 2. The region of influence of a disturbance on one side
of the triangular wing does not intersect the leading edge; hence, the
effect of the disturbance is not felt on the opposite side. The pressure
distribution on the surface for the case in which the opposite surface
forms a wedge is the same as that for the case in which the opposite side
is coincident with the original surface. The potential can therefore be
found for both cases by the source—distribution method.

The second sketch in figure 2 indicates that when the flow component
normal to the leading edge is subsonic, the two surfaces are not indepen—
dent, and the source distribution method cannot be used without further
consideration. Evvard (reference 11) has found a very ingenious way to
extend the source—distribution method for calculating lift to those cases
in which the leading-—edge components of velocity become subsonic. It is
assumed that the wing leading edge is extended until the normal component
of flow is supersonic and the two sides become independent. The problenm
is then to determine the proper source distribution over the wing extension
that makes the potential difference in thls region zero. In figure 2 the
region on the wing extension affecting the field point shown is labeled A.
Evvard discovered that the effect of the proper source distribution cover
this area was equal but opposite in sign to the effect produced by the
sources in region B. The potential at the fleld point can therefore be
calculated by performing an integration of the sources over region C.
Problems involving the use of two interacting wing extensions are no
longer as simple but can still be done. The aforementioned method is
indeed of great utility as it is very simple to apply and obviates the
necessity for solving integral equations.

The theoretical work discussed herein must be carefully checked
experimentally before it can be trusted to any great extent. At this
time it is too early to set down the limits of applicebility, such as
the Mach number range, maximum angle of attack, or thickness ratios;
however, the fact that the theory is of great value cannot be questioned
inasmuch as the results provide analytic expressions from which trends
and the effects of variation of parameters may be found.
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Figure 1.- Source system in motion,
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Figure 2.- Illustration of Evvard’s method.





