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THE SIGNIFICANCE OF WING END CONFIGURATION

IN AIRFOIL DESIGN FOR CIVIL AVIATION AIRCRAFT

H. Zimmer
Dornier GmbH, Friedrichshafen, West Germany

1 . Introduction

In general aviation two problem areas have gained attention /'2*

in the past years, the solution of which is aimed for via a criti-

cal review of the classical airfoil theory:

1) Because air traffic is becoming more dense and above all

because of the introduction of the large capacity aircraft,

the structure of wake vortex had to be more closely examined

DO » O^J > CsoJ , as it may become dangerous for a smaller

aircraft following if caught in the wake of a large capacity

airplane;

2) climbing fuel costs force development of more economical

aircraft than presently exist f5J , {21J .

Each problem area is interwoven with the other, as suitable

airfoil modi fications are the only means of dealing with them.

The present report is concerned with the second problem of

drag reduction. Here, too, there are several areas from which

to make a beginning. A large portion of aircraft drag is due to

surface friction. Studies are being conducted on decreasing this

portion by means of artificial laminarization or also via a

yielding wall[2lj . Other measures consist in decreasing trim

drag through active control. Interference drag, caused by the

interaction of aircraft and drive parts may also be reduced with

the aid of suitable design [5j. Another significant portion is /3

* Numbers in the mare-in indicate pagination in the foreign text.



profile drag. Application of the principles of supercritical

aerodynamics led to improvements in high and low velocity ranges

at Dornier [22] , [2̂ 7 .

Subject of the following study is the lift dependent induced

drag.

Aircraft performance in commercial aviation (e.g. climb rate

and range) may only be improved - given the above-mentioned con-

tributors to 'drag - by designing airfoils of greater span, or

length, than have been normally applied to the present time. In

the case of a square airfoil, for example, induced drag rnay be

reduced by approx. 11 ;.o by increasing extension from 8 to 9 in

climbing, but a problem lies in the fact that airfoil v/eight in-

creases by approx. 12 %. In order not to endanger the increase

in aerodynamic performance by the increased structure v/eight, ex-

tensive studies were carried out recently, some of which will be

briefly reviewed here.

2. Basic Data

The greatest circulation gradient of an airfoil naturally

occurs at the outer ends. As a result of the flow around the

wing tips and the boundary turbulence the airfoil flow also ex-

hibits greatest deviation from the two-dimensional profile flow.

This shows that special attention must be paid to the wing ends

in wing design. /4

Basic knowledge on induced drag stems from the beginnings

of the airfoil theory. As an example in ?ig.. 1 the induced drag

of several non-planar configurations is compared with that of the

elliptical airfoil Q] , [2] , |4] , f5] • ITon-planar configiirations

are therefore suitable for obtaining a considerable reduction in

induced drag at a given span. This figure also shows, for ex-

ample, that wing tips with several slots and end plates have

approximately the same effect. Since a significant decrease in

induced drag is possible using these, they have again become the



subject of numerous studies in the past years.

In the case of an aircraft, however, interest is not so much

centered on this relationship of induced drag to that of elliptical

airfoil as the induced drag itself. Through the simple considera-

tions in Pig. 2 below it becomes clear that in the expression for

induced drag the influence of span dominates, as this occurs as a

square function, while the ratio of induced drag is daily linear.

In this figure various non-planar airfoil systems v/ith a very low

relative ind<aced drag are compared with the planar single airfoils

of identical actual induced drag, having in each case a corres-

ponding calculated larger span. In examples 3 to 5 the single

airfoil would have a span 41 % larger, as indicated, but it cannot

be simply stated which airfoil system could be constructed v/ith

less cost and weight. In addition, present aspects of construction

forbid such relatively high airfoil systems, leading to a substan-

tially smaller difference in practical wing design.

3. Other Studies

At this point a brief review of other studies in this area

with respect to the practical applications is of interest. Example

6 following Pig. 2 with a 15 % winglet height corresponds to a

spanloader project of Boeing (j5J , shown in Pig. 3 v/ith other con-

figurations, also with three winglets. The high glide number of

the configuration in [5] , hov/ever, could only be achieved with the

aid of artifical laminarization (Pig. 3, middle). The configura-

tion in [7] (below) was tested in flight. Low drag and decreased

wake vortex intensity was proven, llote the opposite stagger of

winglet of the upper two configurations in comparison to that below.

Two further spanloader configurations v/ith large endplates are

shov/n in Pig. 4 as in [sj and [9j . In Pig. 5 the Whit comb wing-

lets are shown as in [5] , [10] , [11] , [18] , [19] . (The project des-

cribed in [18] has since been cancelled). There winglets in a

form ready for application, modified for a short takeoff and landing

aircraft (lAI-Arava in [*I2] , f24] ), can be seen in Pig. 6 above. In

this figure another two wing end forms often employed in general

aviation are shown [1 3J .

3



4. Studies at Dornier /6

In an experimental and theoretical study various wing end

forms were also examined at Dornier with the aim of achieving a

drag reduction while maintaining smallest possible structural and

weight disadvantages, respectively, expressed in wetted surfaces

and airfoil root-tending moment.

4.1 Experiment

The most interesting results from the first measuring phase

in the Dornier water tunnel [15] are summarized in Fig. 7 in the

form of polar curves of drag. Various wing end forms were attached

to a rectangular half span model [J 7] . As can "be seen in the polar

curves, the configurations 2 and 3 v.atli triangular edge and four

winglets, respectively, are distinctly "better than the rectangular

wing except for a small drawback in sero drag. This is, of course,

not surprising, since comparable forms causing vortex fanning out are

employed almost without exception in nature. It was further demon-

strated that interference of winglets to one another is very impor-

tant. ' \vhen two each are positioned as in configuration 3 in the

optimum biplane arrangement in [25] , [26] , [27] , the polar curve is

favorable; however, when evernly arranged as in configuration 4,

the polar curve is considerably more unfavorable, although -there

should be hardly any difference according to calculations. A

series of other wing end forms were studied (Pig. 8). These are,

however, uninteresting for application because of the greater

detrimental drag.

4.2 Theory /?

It was concluded in the analysis of measurement results and

the flow observations that along with the simple triangular edge

a slotted airfoil edge with triangular shape should also be of

interest (?ig. 9). The two v;inglets are again positioned in this

figure in the most favorable biplane arrangement possible. Other

angle -positions, however, were also studied.



Calculations were carried out with the aid of the vortex-end

procedure in [j 4] . As indicated in Pig. 10, the influence of

various wake forms was examined. Since wings of average extension

are generally employed in aviation (6 - 12), calculations v/ere not

based on a self-adjusting wake vortex, but rather a fixed choice

was made of these various forms and they v/ere then compared with

one another.

The differences in theoretical induced drag amount to approx.

1 ;'j with a lift coefficient of 1.2. 'The difference does not in-

crease until in the case of form 5, as a result of dissipation, a

wake vortex shorter than 20 airfoil depths is assumed. For reasons

of simplification the non-linear wake form 2 was therefore used as

a "base in all subsequent calculations.

For airfoil weight the following relation was used as a first

approximation, i.e. the change of wetted surface and the change of

airfoil root-bending moment are a direct measure of change in air-

foil weight.

As an example from the calculations the local coefficients of

lift and induced drag of the slotted and the triangular wing edge

in Fig. 9 are compared to one another in Fig. 11. 3? means of the

slotted form the tips on the outer edge are reduced. It is further /8

noteworthy that winglet A generates a thrust as a result of its

forward positioning as shown in Fig. 9.

4.2.1 Airfoil Comparison at the Same Extension

A theoretical comparison was made now between planar and non-

planar wing end forms. As can be seen in Pig. 12 the comparison

was first carried out at the same extension. Here lift, wing root-

bending moment and induced drag of the rectangular airfoil and two

airfoils with variously pointed triangular edge v/ere compared with

the values of the elliptical airfoil. It was demonstrated that the

airfoil with backwards pointing triangular edge behaves as an ellip-

tical airfoil with the exception of small differences, whereas the



airfoil with forward pointing triangular edge "behaves as a rectan-

gular airfoil as far as drag is concerned. -The rectangular airfoil

has the largest relative weight.

The comparison of various airfoils is carried out with a

lift coefficient of 1, approximately corresponding to climbing.

This ca.se is of special significance for flight safety in general

aviation, as a reduction in drag by engine failure greatly affects

the remaining climbing capability.

In Pig. 13 the data of the most important airfoils studied

is summarized. Pirst shown is the induced drag and then a simple

formulation of friction drag influenced by the wetted surface, the

two of which together compose the total drag. In column A the

position numbers are listed only if the aerodynamic performance of

each individual arrangement is taken into consideration. Thus the /_9_

airfoil Kith the Vfhitcomb winglets is in position 1 , the slotted

airfoil edge in Fig. 9 in position 4 and 3, respectively, the ellip-

tical airfoil and the simple triangular edge in position 7 and the

configurations from the water tunnel measurements of Pig. 7 with

four winglets occupy the last positions. If only relative airfoil

weight is taken into consideration, the order according to column B

is headed by the elliptical airfoil, then there follow the airfoils

with slotted and triangular edge in positions 2 and 3. The con-

figurations with vertical winglets and endplates now assume posi-

tions 9 and 10. If the aerodynamic performance and the relative

weight are now evaluated equally, the order in column A - 3 results.

The slotted forms of Pig. 9 are in positions 1 and 2, the elliptical

airfoil in position 3. The triangular edge and the vertical winglets

occupy position 4 and the endplates follow with number 6.

It becomes clear from these results that the aerodynamic advantages

of the airfoil with endplates may only be utilized when the consider-

ably enlarged root-bending moment is dealt with correspondingly. In

the spanloader configurations of Pigures 3 and 4 this is done by

evenly distributing the disposable load over the entire span, thus

effecting an ;airfoil stress reduction. In the case of the modified



lAI-Arava in Fig. 6, the prerequisites are favorable in that the

airfoil is supported by struts and the larger root bending moment

is intercepted along the strut. However problems may occur in

jrawing with the roll control as shown in flight test of Arava,|j 2J .

4.2.2 Airfoil Comparison with Identical Area and Identical

Base Airfoil /10

Especially the comparison of identical airfoil area and identi-

cal base airfoil is of practical interest, as it is conceivable that

airfoil edge form be subsequently modified in advance project stages

or even in completed aircraft. In Fig. 14 several results of airfoil

end forms are summarized, interesting for applications, i.e. they

appear to be realizable without too great an expense. 'The airfoil

ends on a rectangular airfoil of 7.07 extension were varied, so that

the project area remained unchanged. Using these considerations

there r'esult vrxrioiis individual extensions. If the aerodynamic per-

formance in Column A is taken into consideration, however, then the

form with the spread winglets assumes position 1, the form with tri-

angular edge position 2 and that with vertically placed wiiiglets

position 3. The conventional edge curve (DO-28) is at position 6

and the rectangular airfoil at position 7. When considering only

the relative weight the last is now in the first position, followed

by the conventional edge curve and in third place the slotted edge

curve. Vertical winglets and endplates are the final positions.

When aerodynamics and structure weight are evaluated equally, the

edge form with spread winglets is first, followed, by the slotted

and the triangular form in second place, the vertical winglets and

the endplates follow the conventional forms at the end.

5. Studies at the SF7LR

In connection with these results basic experimental studies

were conducted by the DF71R on a conceptual model of an airfoil

of present technology for general aviation. In two measuring

phases a rectangular airfoil was equipped with various planar and

non-planar airfoil ends of identical projection area. Extensive

7



measurements were taken of force, pressure distribution and wake,

in addition to making flow visible [j>sj , [29] . The most important

results of the first measuring phase in connection with the present

studies may "be seen in Pig. 15. 'The airfoil v/ith triangular edge

exhibits a drag reduced by 13 /' in the upper G. range as compared

to the rectangular airfoil. The measured difference corresponds

exactly to that expected in the calculations. Reason for the max-

imum lift not being especially high is the thin symmetrical pro-

file ("M -~ °}
-'-J--!-^\— -!-;_}«_,•/•

In a further study the triangular, edge was tilted up and down

at various angles up to vertical (endplate) while maintaining the

same surface. 1'To improvements could be achieved in polar curve,

in agreement v/ith theoretical considerations and other studies

(e.g. [17] ).

In the second measuring phase the airfoil edge as in Pig. 9

was measured v/ith the winglets in two positions. The most important

results are shown in Pig. 16. The slotted form 5 has the best polar

curve of all measured configurations, at small C, values the spread

form is of the same value. When 0- = 0.3 the airfoil drag is 13 $

less than that of the rectangular airfoil and 8 % less than that of

the airfoil v/ith triangular edge. This means that the calculated /12

thrust effect of the v/inglets A in Pig. 11 was confirmed in the mea-

surements. It was additionally demonstrated, that this form has

no greater zero drag than -the rectangular airfoil. As is further

shown in Pig. 16, the polar curve of the spread form 6 becomes less

favorable with increasing coefficient of lift, although it should

be better according to calculations than the slotted form. The

tendency from the water tunnel measurements in Pig. 7 are again

confirmed here, i.e. when the winglets do not have an optimal in-

fluence on each other, they do not lead to the desired effect.

This effect is to be explained by the interaction of potential

flow and boundary layer [27]. When only the potential flow is

taken into consideration, erroneous results are achieved, in the

case where several v/inglets are under observation (e.g. the slotted

form is in position 4 in Pig. 14 according to calculations, but

8



in position 1 according to measurements).

6. Application of Results

It was demonstrated that even relatively small alterations on

v/ing tips have a distinct influence on the polar curve. In addi-

tion results showed that modifications in the airfoil plane such as
the simple and the slotted triangular edge are, on the whole, more

effective than non-planar modifications. Therefore the application

possibility of results achieved on two typical commercial aviation

aircraft is discussed in conclusion.

6.1 Improvement of Climbing Rate /1_3

The airfoil of present technology developed at Dornier for

general aviation was tested in a wind tunnel with various airfoil
end forms. It was possible to be equipped with a conventional edge

curve ('DO-28" type as in Fig. 15) and with a triangular edge. As
the circulation distribution at the lower left shows for 10° angle

of inclination, by means of the relatively small alteration the

gradient of circulation becomes flatter over the entire span,

meaning that the wake vortex intensity is reduced. The induced
drag decreases in this case by approximately 10 %, Although the

extension increases by 13 Ji, the relative airfoil weight increases

by only 3.2 %. If an affine alteration of basic shape with con-
ventional edge is made to achieve the same rise in extension, the
weight increase would be four times as much with the same area.

In Fig. 1? at the right the polar curve measured for the total
arrangement as with both v/ing end forms is also given JJ50J . Al-

though in normal flight (0.̂ 0.3) no difference occurs between

polar curves, in climbing (C,.~1.2) a reduction of total drag of

10 /o is determined.

6_,2 Improvement in Range

In Fig. 18 several characteristic quantities of two sub-

sonic transporters with modified wing ends are compared with one



another, specifically the Tanker KC-135 described in (jl 1J with and

without winglets and the Airbus A-300 with straight and triangular

wing edge as described in \J>\\ • ^-ae winglets, for example, reduce

induced drag by 17 % and the total drag by 6.2 % while the trian- /14

gular edge on the Airbus decreases the induced drag by 14 .'£ and

total drag by 5 %• v/ing weight is increased here by 3.8 Jo, v/hile

when using these considerations the winglets increase the wing

weight by 5.4 %• The decision has to be made whether to strengthen

the wing susequently ana partial^ lose the gain in range once more,

or to leave the main wing structure unchanged' and limit rnanuever-

ability.

10
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Fig. 13
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ĈD
CD
CXJ
CD

.CD

-<J-
CD
CD

LO
PV!
-J-
CD
CD

m\
Ixi

*/i 7
l) J

V 1

N\

CXI

^^

CO
LO
CD

PO
CD

PO

r_

CO
LO
CD
CD

^ _

cSa
CD
Pvl
CD
CD

^_
CXI
CD

CD

PO
CD
CD

1/1M '

\

V

--T

.
CO

PO
PsI
PO

^T—

T—

CO
CD
LO
LO

CD

CO
LO
*— "
PsI
CD

< î
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