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SUMMARY 

The DOE */NASA Mod-0-wind turbine tower is fabricated of pipe columns with 
channels as horizontal members and back-to-back angles as diagonals. In an at-
tempt to reduce tower shadow, wind tunnel tests were conducted on modifications 

OD 
of scale models of the tower and tower components. Removal of all panel blockage 
was simulated by deleting panel diagonals. This provided an optimum target shadow 
value for this type of tower configuration and was used as a reference configuration 
for comparative purposes in evaluating the following shadow abatement techniques. 

1. Small diameter tension rods as diagonal members. 
2. Round cross-section pipe as diagonal and horizontal members. 
3. Ellipses installed on horizontal members. 
4. Airfoils installed on vertical members. 
5. Surface roughness applied to vertical members. 

All techniques offered some reduction in tower shadow at all wind directions. 
Small diameter tension rods employed as tower diagonals resulted in the greatest 
increase in tower wake velocity, up to approximately 90 percent of the free stream 
value. The tower shadow abatement gained from the installation of tension rods, 
ellipses, weatbervaning airfoils, and/or surface roughness must be further evalu-
ated on a case-by-case basis for their structural characteristics and cost-,-"' 
effectiveness.

INTRODUCTION 

The Mod-0 wind turbine is a two-bladed propeller type rotor designed to 
operate on the downwind side of the open truss support tower (ref. 1). During 
operation, each blade must pass through the wake of the tower where the wind 
speeds are always lower than the surrounding unobstructed free wind. Some of 
the early Mod-0 test results showed that the blade root stresses were about 60 
percent higher than the expected design values because the wind speed reduction 
in the wake, the tower shadow, was greater than originally estimated. In an ef-
fort to reduce the blade stresses, methods of increasing the wind , speed in the 
wake of the DOE/NASA Mod-0 wind turbine tower were evaluated using scale 
models in a wind tunnel. 

An experimental investigation was conducted on scale models of the Mod-0 
tower to accurately determine its tower shadow (ref. 2). This investigation 
determined the tower shadow for a scale model of the Mod-0 tower, the tower 
with stairway and elevator rails removed (base tower), and a base tower of all 

*Formerly the Energy Research and Development Administration (ERDA).



tubular construction without gusset plate joints. The results confirmed that the 
Mod-O tower shadow was considerably larger than originally estimated and that: 

1. The presence of the stairs and equipment elevator rails caused very large 
reductions in wind speed in the wake of the tower. 

2. Towers constructed of all tubular members offer less wind resistance that 
those made with noncircular members. 

3. Average wind speed in the wake of the baseline tower is nearly independent 
of wind direction and independent of elevation. 

4. Wake wind speed reduction is largely determined by the tower blockage 
(solidity) upstream. 

In an effort to further identify and quantify techniques to reduce the tower 
shadow, tests were conducted on modifications of a 1/25 scale model of the open 
truss Mod-O tower in a low speed wind tunnel. The tower structure of the Mod-O 
wind turbine utilizes standard 8" pipe for the four column legs, back-to-back 
channels for the horizontal members, and back-to-back angles for the diagonals 
with gusset-plate attachments. On the scale model of the Mod-O base tower the 
"baseline" tower, square cross section members were used to simulate the hori-
zontal and diagonal members. 

Based on the conclusions and recommendations of the previous investigation 
(ref. 2), the following tower modifications seemed to merit further study: 

1. Diagonal members of small diameter wires to simulate tension rods. 
2. Round horizontal and diagonal members. 
3. Ellipses on the horizontal members. 
4. Airfoils on the vertical members. 

In addition, tests were conducted on isolated circular vertical cylinders to 
determine the effect of surface roughness variations. The effects of wind direc-
tion and tower elevation on tower shadow were also determined for each modifica-
tion.

The purpose of this report is to present the results of the tests conducted on 
the above modifications.	 - 

SYMBOLS 

C	 chord length of airfoil 

CD	 drag coefficient 

D	 diameter 

k	 diameter of surface roughness elements



3 

k/D	 degree of surface roughness 

p	 total pressure 

Pw	 wall static pressure 

Re	 Reynolds number 

t	 maximum thickness of airfoil 

V	 velocity 

v/v0	 velocity ratio 

w	 local projected width of the tower into a plane normal to oncoming un-
disturbed wind 

W	 reference tower width at elevation 19 7/16" on 1/25 scale model 

9	 wind direction 

width of wake 

/w	 wake-to-tower width ratio 

Ap	 differential pressure 

x	 axial distance from downstream face of tower to downstream pressure. 
probe

Subscripts: 

avg •average 

CL centerline 

min minimum 

o free-stream

APPARATUS AND PROCEDURE

Test Facility 

Test evaluations of Mod-O tower modifications were conducted in the Lewis 
Research Center (LeRC) icing tunnel. A schematic view of this single-return, 
closed-throat tunnel is shown in figure 1. The test section is rectangular in shape, 
9 ft wide, 5 ft high, and 20 ft long. Windows are provided on both sides and on the 
roof of the tunnel test section to allow observation of the model during testing. 
Tests were conducted at tunnel airspeeds of 64 and 100 mph, at ambient air tempera-
ture, and near atmospheric pressure. The Reynolds numbers based on the diameter 
of the legs were approximately 17, 000 and 27, 000. 
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Instrumentation and Data Reduction 

The instrumentation consisted of a traversing total pressure probe, a tunnel 
total pressure probe, and a tunnel wall static pressure sensor. The traversing 
total pressure probe was located downstream of the tower as illustrated in figure 2. 
Another view of the tunnel arrangement is shown in figure 3. 

The difference between the local total pressure (p) downstream of the tower 
and the wall static pressure (Pw) was measured by a differential pressure (hp) 
transducer. The tunnel total pressure probe was located upstream of the tower. 
The difference between the free stream total pressure (p0) and the wall static pres-
sure, the velocity head, was measured by a second Ap transducer. The output 
of the ip transducers and an analog module (fig. 4), were used to calculate the 
local values of the air velocity ratio V/V0 which were plotted on an X-Y plotter. 

Procedure 

Tests on tower configurations were conducted at a nominal free stream veloci-
ity of 100 mph, ambient air temperature, and near atmospheric pressure. Continu-
ous profiles of V/V0 were measured at a variety of elevations for wind approach 
angles measured relative to a line perpendicular to a typical face of the tower of 
00, 100, 350, and 400 as defined in figure 5. These profiles were obtained as a 
continuous plot on the X-Y recorder. 

Velocity ratios were obtained downstream of panels 3 and 4 (fig. 3), where the 
tower shadow has the greatest effect on the outer 50 percent of the rotor blade 
length. 

The tower shadow was characterised by the wake width and the average wind 
speed in the wake. Wake width was determined as the distance between the points 
nears the outer boundaries of each profile where V/V 0 = 0. 99. This wake mea-
surement was plotted as the wake to tower width ratio, /w, variation with eleva-
tion. The average velocity ratio, Vavg/Vo was determined by integrating each 
profile across the wake. The projected local tower width, w, was calculated from 
geometric features of panels 3 and 4 and the wind approach angle 0. 

TOWER MODEL CONFIGURATIONS TESTED 

Baseline Tower 

A 1/25 scale model of the Mod-0 wind turbine tower was chosen as the baseline 
tower (figs. 3 and 6). Scaled gusset-plates were used to attach the diagonals to the 
model tower.
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Diagonals Removed 

To determine the amount of shadow improvement obtainable by reducing or 
eliminating panel blockage as suggested in the previous investigation, first all 
diagonals were removed from each side of panels 3 and 4, and then one diagonal 
was replaced on each face (figs, 7 and 8). 

Removing all diagonals in panels 3 and 4 left only the vertical framework and 
horizontals between panels and thus eliminated all other blockage at that elevation. 
This was a reference case that was used to determine the minimum tower shadow 
on a tower model having only round vertical legs and square horizontal members, 
an admittedly impractical design.

Tension Rods 

One method of providing adequate strength in a tower while minimizing block-
age is to use diagonal tension rods. in place of angles. All of the square diagonals 
were removed from panels 3 and 4 and were replaced with small diameter rods 
(figs. 9 and 10).

All-pipe Tower 

A variation of a tower design that uses tension rods is one that is made of all 
tubular members, a modification reommended in the previous investigation. A 
model of two panels of such a tower was fabricated and tested (figs. 11 and. 12). 
As with the model using simulated tension rods, a definite spacing was provided 
between diagonal and horizontal members to minimize blockage at panel corners. 
For ease in mounting the model in the wind tunnel, the bottom horizontal members 
were fabricated of a square cross section shape.	 . 

Ellipses and Airfoils 

A basic method of reducing the wake size and drag coefficient of an object is 
to provide a more efficient aerodynamic shape. Therefore, it was decided to 
determine the effectiveness of airfoil and elliptical shaped shrouds on the round 
vertical legs and the square horizontal sections, respectively, on a tower model 
with the diagonal members removed. The purpose of these tests was to determine 
the lowest achievable tower shadow, recognizing that the use of airfoils on the 
vertical legs is probably not a cost-effective method for reducing the shadow. 
This tower configuration is shown in figure 13. Dimensions of the ellipses and 
airfoils are presented in figure 14.



Full Scale Airfoils 

Because the effectiveness of airfoils is dependent on Reynolds number Re, 
tests were run using airfoils that were much larger than those used on the tower 
model. Two in-line airfoils having the same thickness-to-chord ratio as the scale 
model airfoils were installed in the LeRC icing tunnel in the orientation shown in 
figure 15. The downstream probe location was chosen to provide the same size 
and distance relationship for both the full scale tower and the scale model tower. 
Velocity ratios profiles were obtained only at the midpoint horizontal plane of the 
airfoils.

Surface Roughness 

Another method of reducing the wake behind a round cross-section vertical 
member is to roughen the surface. Tests were conducted on roughened circular 
cylinders installed in the tunnel in the orientation shown in figure 16. The rough 
surface was obtained by carefully wrapping a 3-inch diameter cylinder with vari-
ous grades of garnet paper. These tests were conducted at a free stream velocity 
of 64 mph, which for this modification provides a Reynolds number comparable to 
the full, scale design. As with the isolated, full scale airfoil tests, velocity ratios 
were obtained at the midpoint horizontal plane of the vertical cylinder. 

RESULTS AND DISCUSSION 

The amount of wake wind speed data acquired in these tests is considerable 
and although much of it is included as plots in this report for the purpose of docu-
menting, it, only a portion of the data will be referred to explicitly. This data is 
presented as plots of: 

1. Horizontal profiles of V/V0 at selected elevations (appendix A). 
2. Vertical profiles of V/V0 , V/V0, Vmjn/Vo, and Vavg/Vo down wind of 

the tower model centerline (appendix B). 
3. Vertical profiles of /w (appendix C). 
4. Vavg/Vo versus wind approach angle 6 (appendix D). 
5. Wake characteristics of Ellipses, Airfoils, and Roughened Cylinders 

(appendix E). 

From these plots were derived the tower shadow characteristics for each con-
figuration and panels 3 and 4, and comparisons were made to determine the relative 
effectiveness of each configuration in reducing the tower shadow. The-results and 
conclusions derived from the analysis of this data are discussed below.
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TOWER SHADOW CHARACTERISTICS 

The tower shadow at each elevation is characterized by several features de-
rived from the velocity profiles in the wake at that elevation. These are the dimén-
sionless values of (1) the minimum velocity, Vmin/Vo, (2) the average velocity, 
Vavg/Vo, and (3) the wake width, z/w, at each elevation, where V 0 = the undis-
turbed free stream velocity and w the projected width of the tower on a plane 
perpendicular to V0. 

The value of Vmjn/Vo provides a crude measure of the "badness" of the 
shadow, and also provides information on the structural and geometric features of 
the tower that cause the wind speed to be the low. 

The characteristics that have the major impact on the wind turbine blades are 
the average velocity, Vavg, and the width A. The blade stresses are dependent 
on the difference (V0 - Vavg), the average velocity deficit, and the deficit width A. 
In this report, it was decided to present the data as Vavg/Vo and /w. 

Local Velocity Profile Characteristics 

Every horizontal and vertical profile of v/v 0 contains local peaks and valleys, 
as is illustrated in the figures of appendines A and B. The peaks occurdowntream 
of those regions of the tower where the solidity is the lowest (that is where little or 
no blockage exists) such as the triangular region between the diagonals, the vertical 
legs, aid. the. horizoiftalmembers for a wind appioach.angleof 00 (figs. 6, 10, and 

The valleys, on the other hand, occur directly downwind of a member, a group 
of members that are more or less in line one behind the other, and members that 
converge at a joint. The depth of the valley tends to increase with increasing up-
stream blockage and increasing departure from a streamline cross-section shape. 
Shapes such as squares, angles, channels, I beams, etc., are aerodynamically 
less efficient than cylinders, ellipsoids, and airfoils in that they, for the same pro-
jected width, produce wakes that are wider and persist for a greater distance down-
stream, and as a result have a much higher drag coefficient (refs. 3 and 4). 

Our analysis of the data revealed that the valleys are generally deepest in the 
wake of members that have the largest projected solidity, such as the vertical legs, 
horizontal members, and joints, and the highest drag coefficient, such as the square 
diagonals and horizontals and the joints. This is clearly seen in many of the figures 
in appendices A and B. 

To reduce the tower shadow (i. e., increase Vavg/Vo), it was apparent that the 
values of V/V0 in the wake, especially those of the valleys, would have to be



S 

raised. This could be accomplished by a one or more of the following changes with-
out drastically changing the basic tower configuration: (1) reduce the projected 
widths and number of diagonal members, and (2) use members with more efficient 
(lower drag) aerodynamic shapes. The size and spacing of the horizontal members 
were fixed, but not their shape. However, the size, number, and shape of the 
diagonals could be changed. Within these restrictions, changes were made to 
panels 3 and 4and tested and found to produce higher V/V 0 values in the wake 
than for the baseline tower which led to higher Vavg/Vo values. 

Effect of Various Modifications on Vavg/Vo and A/w 

Of the three shadow characteristics Vmin/Vo, Vavg/Vo, and A/w, those most 
affected by the amount of blockage and the shape of the members are Vmin/Vo and 
Vavg/Vo. A review of the horizontal profiles in appendix A shows that all the modi-
fications tested on panels 3 and 4, or on the all pipe model, generally produced high-
er values of V/V0 than the baseline tower. Changes in the diagonal elements alone 
produced much higher values of V/V 0 and Vavg/Vo almost everywhere in their 
wake except behind the vertical legs and the horizontal members. Removal of one 
or both diagonals from each face of a panel reduced the blockage. Small diameter 
tension rods also reduced the blockage, but, in addition, they were aerodynamically 
more efficient than the square diagonals they replaced. In the all pipe tower model, 
the round diagonals were of comparable width to the square ones. This. improved 
aerodynamic shape produced higher V/V0 and Vavg/Vo values with a negligible 
change in solidity. 

On the other hand, the airfoils on the vertical legs, ellipsoidal horizontal mem-
bers, and the roughened cylindrical legs (without diagonals) each produced improved 
characteristics in their wake without increasing the solidity (appendines A and B). 
It is believed that similar improvements would result if they were employed with 
diagonals present. 

The second most important wake characteristic is the wake width A. The 
magnitude of A is primarily determined by the local projected width w at each 
elevation. The blockage and the shape of the vertical legs have a second order ef -
fect on the ratio /w. Since w is dependent on the wind approach angle, A is 
likewise dependent on this angle. These conclusions are illustrated in appendix C 
where are shown plots of z/w versus height for various wind approach angles. 
These figures show that /w .increases slightly with height. This is partly due 
to an increase in solidity and partly due to the increased distance between the tower 
and the measurement plane (a wake width continuously increases as it moves down-
stream), More importantly, the figures in appendix C show that the effect of re-
ducing the tower solidity does indeed produce only a second order change in the 
L/w.
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Effect of Wind Approach Direction 

The wind direction primarily influenced the wake width A for reasons men-
tioned above, and the Vmjri/Vo and Vavg/Vo were influenced only to a minor 
extent. In appendix D are presented plots of Vavg/Vo as a function of the wind 
approach angle for selected representative elevations. In figure 17 is a plot of 
(Vavg/Vo) avg. versus the wind direction 6 for both panels 3 and 4. This average 
(Vavg/Vo) avg., is an arithmetic average of all the (V .vg/Vo) that was calculated 
for each 6 and each panel. Figure 17 summarizes the effects of the various mod-
ifications on the important tower shadow characteristic: (Vavg/Vo) avg. It is. clear-
ly seen that reduction of the solidity by reducing the size and number of the diago-
nal members and that the improved aerodynamic shapes lead to increased wind 
speed in the tower wake. 

SUMMARY OF RESULTS AND CONCLUSIONS 

Six tower shadow abatement techniques were investigated at various wind 
directions that permitted full speOtrum evaluation. All of the tested modifications 
provided reductions in tower shadow at all wind directions. In all

 cases, optimum. 
performance was obtained at an approach angle of about 40 0 because of improved 
relative orientation to the air. stream. 

As expected, the lowest tower shadow was obtained for the tower with all 
diagonals removed, a reference case, since this eliminated all panel interference 
and blockage. Since it is not considered probable that wind turbine towers will be 
fabricated without diagonal structural members, the shadow reduction performance 
of this configuration was used as the comparative goal for all other techniques. 
The major results of the investigation of the other tower shadow abatement tech-
niques are summarized below: 

1. Tension rod tower 

At a wind direction of 00, replacing the square cross-section diagonal mem-
bers with small diameter tension rods increased the minimum wind speed in the 
wake of the intersection from 71 to 87 percent of the free stream value; the aver-
age wind speed behind the tower at the elevation of this intersection increased 
from 83 to 88 percent. Since horizontal members remained the same, there was 
no appreciable effect on tower shadow downstream of the horizontals. The over-
all effect of the tension rod diagonals for all wind directions was to increase the 
average of the average velocity ratio through both of the test panels (panels .3 and 
4) from approximately 78 percent of the free stream velocity to approximately 
85 percent, as shown in figure 49. 	 .
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2. All-pipe tower 

Replacing the original square cross-section diagonal and horizontal members 
with round members retains the wake flow advantages of a round diagonal, as for 
the tension rods. This resulted in increasing the average velocity downstream of 
the diagonal intersection from 83 percent of the free stream value to 88 percent, 
identical to the improvement for the tower with tension rods. In the wake of the 
horizontal member, however, the average velocity ratio of the configurations with 
round cross-section members was not significantly different from that of the con-
figuration with square crpss-section members. In addition, the average effect of 
the all-pipe tower at wind approach directions other than 00 was to provide less 
shadow reduction than the tower with tension rod diagonals. This is shown clearly 
in figure 49. 

3. Installation of ellipses 

In an attempt to determine a method of reducing shadow behind the horizontal 
members which had a square cross-section, ellipses were attached to the vertical 
faces of these members at one elevation. The wind speeds in the wake of these 
members between the verticals increased from 62 to 90 percent of the free stream 
value; average wind speed behind the tower at this elevation increased from 81 to 
89 percent. This is equivalent to shadow improvement experienced at the diagonal 
intersection for both the tension rod and all-pipe tower configurations. Figure 49 
illustrates, however, that the average of the velocity ratio for both panels 3 and 4, 
and over the entire wind spectrum, showed considerable increase in downstream 
velocity over both the tension rod and all-pipe tower configurations. 

4. Attaching airfoils 

No improvement of tower shadow downstream of the circular vertical member 
was apparent from any of the above techniques except at the joints where the hori-
zontal and diagonal members meet the verticals. Since the actual tower has round 
cross-section verticals, airfoils were attached to these members. Average air 
speed in the wake of these members was increased from 78 to 95 percent of the 
free stream value for all wind directions. If airfoils are weathervaned, a very 
low tower shadow downstream of the vertical members would be realized. 

5. Surface roughness 

Another potentially less expensive technique for reducing tower shadow is the 
application of a rough surface to round cross-section members. This technique 
proved to be as effective as airfoils in improving velocity in the wake of vertical 
members. Furthermore, the effectiveness of a roughened vertical member is 
independent of wind direction. However, a particular surface roughness is effec-
tive only over a very narrow range of wind velocities.
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From the above tests, it was learned that the following alternatives should be 
considered in wind turbine tower design to increase the wind flow through the tower: 

1. Use small diameter tension rods or pipe as structural diagonals. 
2. Round cross-section (pipe) or elliptical members may provide a slight ad-

vantage as horizontal structural members. 
Othë±.locálized techniques have undetermined:practically and cost effective-

ness.

REFERENCES 

1. Puthoff, Richard L.; and Sirocky, Paul J.: Preliminary Design of a 100 kW 
Wind Turbine Generator. NASA TM X-71585, 1974. 

2. Savino, Joseph M.; and Wagner, Lee H.: Wind Tunnel Measurements of the 
Tower Shadow on Models of the ERDA/NASA 100 kW Wind Turbine Tower. 
NASA TM X-73548, 1976. 

3. Schlichting, Hermann (J. Kestin, transl.): Boundary Layer Theory. Sixth ed. 
McGraw-Hill, 1968. 

4. Hoerner, Sighard F.: Fluid-Dynamic Drag. Seconded. S. F. Hoerner, Mid-
land Park, New Jersey, 1958.



`-4 
Q) 

H 

U 
H 

C.) 

Q) 

a) 

a) 

4-4 
0 

C.) 
r4 I 
H

12



13

w 
In 
0 

U) 
U) 
C) 

ti-I 

0 

r. 
0 

Cd 

)-1 
0 

H



14 

FIGURE 3 - Tunnel Test Arrangement
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FIGURE 7 - Tower Configuration With One Diagonal Removed 
From Each Side of Panels 3 and 4
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FIGURE 8 - Schematic View of One Diagonal Removed 
From Each Side of Tower
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FIGURE 9 - Tower Configuration With Tension Rods Installed 
as Diagonals in Panels 3 and 4
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FIGURE 10 - Tension Rod Positioning
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FIGURE 11 - Model of Two All-Pipe Tower Panels
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APPENDIX A 

Velocity Ratio Profiles at Selected Elevations for Wind Directions of 00, 

100, 350, 400; All Tower Configurations
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APPENDIX B 

Variation of Vmin/Vo,	 and Average Velocity, Ratio with Elevation 

at Wind Directions of 0, 10, 35°, 40°; All Tower Configurations.
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FIGURE 27a 

Variation of Velocity Ratio with Elevation Downstream of the Baseline Tocer 
0 Centerline (Wind Direction 0) 
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FIGURE 27b 

Comparison of Variation of Centerline Velocity Ratio with Elevation for Baseline Tower 
and Tower with Diagonals Removed (Wind Direction 00) 
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FIGURE 27d 
Comparison of Variation of Centerline Velocity Ratio with Elevation for Baseline Tower, 

Tower with All Diagonals Removed, and All-Pipe Tower (Wind Direction 00) 
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Variation of Average Velocity Ratio for All-Pipe Tower 
Wind Direction of 100 
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APPENDIX C 

Variation of Wake to Tower Width Ratio with Elevation at Wind Directions of 

0°, 10, 35°, 40
0 ; All Tower Configurations.
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APPENDIX D 

Variation of Average Velocity Ratio with Wind Approach Angle for Selected 

Elevations.
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APPENDIX E 

Wake Characteristics of Ellipses, Airfoils 

and Roughened Cylinders 

The profiles measured in the wake of isolated ellipses, airfoils, and 
roughened cylinders are presented in Figures 45, 46, 47, and 48. These pro-
files were measured for the purpose of determining.the wake characteristics 
of these elements prior to testing them on the tower model. 

A comparison of the profile in the wake of the horizontals with ellipses 
on them with the profile in the wake of an isolated ellipse, show that the 
Vmjn/Vo are nearly the same. This suggests that the wake from the forward 
ellipse had little effect on wake of the downstream ellipse. 

The tests with in-line airfoils showed that there is a Reynolds Number 
effect that has an influence on the wake width and depth. The Reynolds Number 
of the airfoils on the tower model legs, 0.72 x 10 5 , was much lower than the 
value (3.45 x 105 ) for airfoils on the legs of the full size Mod-0 tower. At 
the lower Reynolds Number the airfoils on the model would produce a lower 
Vmin/Vo than in the wake of the full scale in-line airfoils. This was verified 
by measurements of V/Vo profiles that were made at both high and low Reynolds 
Numbers. These are shown in Figure 45. 

An investigation was conducted to evaluate levels of surface roughness and 
to define effectiveness because caution must be exercised when applying this 
concept. A particular surface roughness is effective in wake reduction only over 
a very narrow range of wind velocity or Reynolds Number. This is illustrated in 
Figure 46. The drag coefficient for circular cylinders of varying degrees of 
roughness is presented as a function of Reynolds Number. 'The drag coefficient 
is directly related to wake width, so that a low drag coefficient implies a small 
wake behind, the cylinder. The value of the Reynolds Number Is directly propor-
tional to wind velocity for a given diameter circular cylinder, low speed 
(incompressible) flow, and the viscosity of the air. For a given surface rough-
ness, the range of Reynolds Numbers, i.e., the range of wind velocities, over 
which the low drag and, hence, small wake width exists is very small. This 
range is much smaller than the range of Reynolds Numbers over which the wind 
turbine Is designed to operate. For example, the Mod-0 wind turl .ne Is designed 
to operate over a Reynolds Number range from 1.5 x 10 to 5 x 10 , wind speeds 
from 8 mph to 60 mph. From Figure 46, no single surface roughness is effective 
over nearly this wide a range of Reynolds Numbers. To be practical, therefore, 
the following factors must be evaluated: 

Range of wind speeds 

2. Ease of fabrication 

3. Weathering 

Six different degrees of surface roughness were investigated for reducing 
the wake behind a round cross-section vertical member. The tunnel wind speed 
was reduced to 64 mph for these tests in order to obtain a Reynolds Number 
comparable to the full scale tower value. The rough surfaces were obtained by
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carefully wrapping a 3-inch diameter cylinder with various grades of garnet 
paper. The effect of surface roughness on the wake is presented in Figure 47 
in terms of velocity profiles for the tunnel orientation shown in Figure 16. 
The degree of roughness is expressed in terms of the ratio of the diameter 
of the roughness particles to the diameter of the yertical member. The 

Reynolds Number is constant at a value of 1.5 x lO s , which is the full scale 

value at the design wind speed of 8 mph. As shown in Figure 47, the most 
effective value of surface roughness was 0.0024 (kID) for this application. 
This was to be expected from an examination of the curves of Figure 46. The 
velocity ratio profile for the most effective surface roughness (kID = 0.0024) 

is plotted in Figure 48, together with the profiles for a smooth cylinder 
and for the full scale airfoil. The wake velocity for this roughness con-
dition is 93% of the free stream value, essentially the same value as was 
obtained using the airfoils. Thus roughening the surface of a vertical 
member can be as effective in reducing its wake as installing airfoils. 
Furthermore, the effectiveness of a roughened vertical member would be 
independent of wind direction without requiring moving parts.
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