@ https://ntrs.nasa.gov/search.jsp?R=19800002568 2020-03-21T20:19:06+00:00Z

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

¥ ’) i ‘ ‘ L 7 H o
_NASA TM-75680

NASA TECHNICAL MEMORANDUM

BEYSIK: LANGUAGE DESCRIPTION AND HANDBOOK FOR PROGRAMIERS
(SYSTEM FOR THE COLLECTIVE USE OF THE INSTITUTE OF SPACE
RESEARCH, ACADEMY OF SCIENCES USSR)

" I.G. Orlov

Translation of "BEYSIK. Opisaniye Yazika i Rukovodstvo

dlya Programmista (Sistema kollektivnogo pol'zovaniya

IKI AN SSSR),"Academy of Sciences USSR, Institute of

Space Research, Moscow, Report Pr-476-, 1979, pp. l=42.77~"" "~ -

(NASA-TN-75680) BEYSIK: LANGUAGE N80-10813
DESCRIPTION AND HANDBOOK YOR PROGRAMMERS ot :
(SYSTEN POR THE COLLECTIVE USE OP THE He ,903 ImF Aol
IRSTITUTE OF SPACE RESEARCH, ACADENY OF Unclas o
SCIENCES (National Aeronautics and Space §58¢€0 o

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546 OCTOBER 1979

s

R AR S St S foo e iR

SPRTOT———

i
:
i
H
1
3
i
;

TABLE OF CONTENTS

1. Introduction e

1.1.

.

o
w

o
Oy Ul 4T
- . .

2.1.

L3

A

LA J O S AC TN \O T AU B AN B AV B AV B AV
.
O 00 3 O UV &&= N
. . . L4 L] . .

3.1.
3.2.
3.3.

.

w b w w ww
O N O U =

-

3.10.
3.11.

(o]
(@]

Brief Description of the Language
BASIC symbols
Characteristic Features of BASIC Writing

Cbjects Used by the BASIC Algorithmic Language -

Expressions of the BASIC Algorithmic Language
BASIC Standard Functions

BASIC Commands

RUN Command

SELECT PRINT Command
CLEAR Command
CONTINUE Command
LIST Command

LOAD Command B e

SAVE Command
TRACE Command
RENUMBER Command
END Command

BASIC Operators

Assignment Operator LET

Transfer Operator GOTO

Conditional Transfer Operator IF

Cycle Organization Operators FOR and NEXT
Array Memory Distribution Ope?ator DIM
DATA Operator i

READ Operator

RESTORE Operator _
Direct Input From Terminal Operator INPUT
Output Operator PRINT

Transfer Operator GOSUB

CNING PACE DLANT. MOT FILMED 114

0o ~3 U oW

10
10
11
12

12...

13
14
15
15

15
16
17
18
19
21
22
23
24
24
25
27

R i s R Rl R e T

3.12. RETURN Operator

3.13. Trans
3.14. STOP.

3.15. TUser Function Defini“’i n Operator DEF
3.15. Matrix Operation Operator MAT
3.17. Program Segment Dynamic Loading Operator

. FETCH

4. BASIC Error Messages in the User Program

Entry and In
4.1. Error

Ay
LNNG

fer Operator ON
Operator

terpretation Stage
Message Codes

PACE DLAN'. DMOT FILAE

28
28
29
29
31

32

34
35

BASIC
Description of Language and Programmer Guide

I. G. Orlov

The BASIC algorithmic language 1s de=-
scribed and a guide is presented for the
programmer using the language interpreter.
BASIC 1s a component of the display systems
developed by personnel of the Systems Pro-
gramming Laboratory of the Institute of Space
Studies of the AS USSR.

1. Introduction /3%

The high-level algorithm language BASIC is a problem-
oriented programming language intended for the solution of
computational and engineering problems.

1.1 Brief Description of the Language

A fundamental feature of BASIC 1s operation in the dia-
log regime, i.e., the programmer can correct and debug the
program directly from the console.

A program written in BASIC consists of statements, each
of which occupies one line. The line length does not exceed
64 symbols. The statements are divided into BASIC commands
and BASIC operators.

The commands are used to establish the program executlon
regimes, to print the program text, and to alter the transla-
tion end interpretation regimes.

AT T TR YT

#*
Numbers in margin indicate pagination of original foreign text.

The operators form the executable part of the program.
They can be introduced both in the direct regime and in the
sequential interpretation regime. ‘

The operators introduced in the direct regime do not
have line numbers. They are performed immediately after
input. A list of the operatoré which can be execited in
the direct regime is presented in the corresponding section.

The operators introduced in the sequential interpretation /b
regime have numbers from 1 to 9999 and are executed in in-
creasing line number order. .hny operator can be introduced
in this regime and the entry order need not be strictly se-
cuential. After entry, the operators are sorted in increas-
ing number order (for simplicity and convenience of addition,
it is recommended that the operators be introduced with step
10). "For replacement of an operator, the user must introduce
a new operator with the same number. For removal of an opera=-
tor introduced in the program regime, we need only introduce
its qumber separately. '

- Examples
19 F I | .
26 0wz Operator 1 A== replaces
16 1 a6 Operator 14 A=I
2 ¢ Reb
6 Dok Operator 30 B=f will be
)¢ - removed

After entry in the sequential interpretation regime, the
operators are checked for syntactlic correctness and are con-
'verted to an intermediate form in which they are stored in the
computer operative memory. The basic form of such an operator
is stored in the direct-access working file and can be pr;nted

|
;

out at any moment with the aid of the corresponding command.

All (or part) of the operators introduced in the sequential o

interpretation regime can be catalogued in the library of
basic modules for later use.

When entering a program in BASIC, the user must remember
that all the blanks in the text (other than the blanks en-

closed in inverted commas or quotes) are ignored.

1.2 BASIC Symbels

The following symbols are used when writing programs in
the BASIC algorithmic language:

a) 26 Latin letters:
b) 10 Arabie numerals:

¢) special signs:

<

space
equal to
plus
minus

‘asterisk

slash

open paren
close paren
comma
period
greater than
less than

~ negation

In addition, 1if the input and output devices use the

signs:

A, B, C,

w not equal to
inverted comma

»

oy X, Y,
¢,1,2,3,4,5,6,7,8,9;

semicolon

zZ,

. i e i AR
e ok iR WA .

S R TR R I

1 right bracket
[left bracket
" quotation marks

then the following signs can also be used as symbols:

) right paren -
(left paren
' inverted comma

respectively.
The remaining symbols of the alphanumeric set of any /6
specific input or output device may appear between paired in-

verted cormas (quotes) or in the language operator REM.

1.3 ’haracteristic Features of BASIC Writing

The modified Backus form is used in writing BASIC languate.

The syntactic elements in the definitions of tﬁe commaﬁds
and operators are enclosed in angle brackets: "<" and ">",
Optional elements are enclosed in square brackets "[" and "]".

Examples
P , defined

LET¢ defined variable >=k“variable'>]=-expression-
i

The second element {<;defi“ed‘>l is optional.
‘variable :

In case of repetition of one or more of the syntactic ele-
ments in the definitions, ellipses . . . can be used. 1In case
of selection from several possibilities, braces “{" and "}" can
be used.)

l

Example:
cLeat {(<11ne qumber1, {1ine nunbar]}

In this command, we can use either the optional opefﬁnd V or
operands in the form

[<1ine number’] , [<1ine number>]

The square brackets indicate the optional nature of both the:
first and second operands.

1.4 Objects Used by the BASIC Algorithmic Language /1

The following objects can be used in the algorithmic
language program:

a) uumerical constants,

b) symbolic constants,

¢) one-dimensional and two-dimensional arrays,

d) variables, |

e) standard functions, VUV
£) user functions.

By (numerical) constant is meant any decimal number,
written with or without sign, with or without decimal point,
with or without exponent. 1If a nupber is followed by the
letter E, possibly followed by a sign and one or two decimal
numerals, this means that the number 1s to be multiplied by
the corresponding power of 10.

Examples of numerical constants:

- £.126 4 8 « <0.12+10° FTIRENY
1 - “O ‘c L d 1.0 '
2.8783 = 2,67°10° 3E=1 » 3,0.107)

B A Ly T

Any number speéified explicitly in the BASIC program is
a constant. Any set of symbols enclosed in inverted commas
or quotes which in the given case 1s not a part of a constant
is termed a symbolic constant. If the user wishes to make
an inverted comma a part of a symbolic constant, he must re-
peat the inverted comma.

Examples of symbolic constants:

" 'Au b oCDEF’
w" e
A variable in BASIC is a quantity which can alter its /8
value in the computational process. The name of the variable

is denoted by a Latin letter or by a letter and numeral.

Examples of names of variables:

A2 UL.DI ES

The first operator in which the variable 1s used must
assign 1t some value. A variable whose value has not been
defined cannot be used. In this case, an error message 1is
generated.

In BASIC an ensemble of like quantities combinéd under a
single name 1s termed an array. One-dimensional and two-
dimensional srrays are permitted. Since the array name 1s
denoted by a Latin letter (and there are 26), no more than
26 arrays can be used in BASIC. The array elements are
termed indexed variables. Arrays are identified either by
the operator DIM or by implicatiori. The index is written in
parentheses after the array name A(7,6), B(2). The following
rules must be followed then using indexed variables:

1. Array indexing always begins with zero, thus the first

S v Sy ———— ot

T W‘W""’W‘W’W‘W'W‘W"W g

element of the one-dimensionai‘array A will be
A(#), while that of the two-dimensional array B
will be B(Z,9).

2. The maximal value of the index cannot exceed
3210241, but the array dimension may be limited
by the available computer memory volume.

3. The maximal value of the indexes for the arrays
is defined by the crerator DIM, for arrays de-
fined by implication this value 1s equal to 1¢
(for one-dimensional arrays) or (1#,19) for two=-
dimensional arrays. :

4. Use in the program of the same names for indexed .
and nonindexed variables 1s permitted. However,
one-dimensional and two-dimensional arrays cannot
have the same names. '

5. An expression can be used as an array element index.
The result of calculation of the expression is
rounded to the closest integer.

Initially, all the array elements contain the maximal in
modulus negative number. Therefore, use of an undefined ir-
dexed variable leads to an error. o T

C e

1.5 Expressions of the BASIC Algprithmic Language

The BASIC algorithmic language admits arithmetic expressions,
which are used for the calculation/ of some value. The expres-
sion 1s a complete entry indicating which quantities are to be
taken and what operations are to be performed on them in order
to calculate this value., The value of the arithmetic expression
is a real number. The simplest arithmetic expression consists

of an elementary expression, which 1is:

a) a constant,

b) a simple variable,

¢) an indexed variable, .
d) referral to a function,

e) an expression enclosed in parentheses.

More complex expressions can be formed from the elementary ex-
pression by use of arithmetic operations. The following
arithmetic operations are admissibie in BASIC:

a) addition (+)
b) subtraction (=)
¢) multiplication (*)
d) division (/)
e) exponentiation (¥##)

The sequence of performance of the mathematical operations
coincides with the sequence used in mathematics. The use of
functions 1s permitted in BASIC. Reference to a function has

the form:
functipn

name

> cargumenty, cargument>,

The function name consists of three lettérs., We differentiate
two classes of functions: user functions and standard func-
tions. The user function 1s defined in the operator DEF and
its name has the form:

Fhetter

1.6 BASIC Standard Functions

Ten standard functions are used in the BASIC algorithmic
language: SIN, COS, TAN, ATN, LOG, EXP, INT, ABS, SQR, RiD;

only a single argument is used for all the standaré functions.
The arguments of the trigonometric functions SIN(x), Cos(x),
TAN(x) arx. specified in radians; the result of calculation of
the funetion ATN(x) is the principal value of the arctangent

in radians; the function LOG(X) is used to calculate-the natural
logarithm; and the function (EXP(x) is used to calculate the
exponential function. The function INT(x) is used to calcu-
late the whole part of the argument, i.e., INT(3.7)=3; INT(2.7)=
-3; INT(Z)=@. The function RND(x) is used to generate pseudo-
random numbers in the limits from @ to 1, and the function:
ABS(x) is used to calculate the absolute magnitude of the
argument. It should be noted that in BASIC ‘here is no differ~
ence between whole and real numbers. \In the computer memory,
all numbers are numbers with floating decimal point.

2. BASIC Commands /11
2.1 RUN Command

The program located in the operative memory begins to be
executed on the RUN command -- only the operators introduced
in the sequential interpretation regime are executed. The
command has the format:

RUK<line number>.

The memory distributed during the preceding execution of the
program (arrays defined by implication and simple variables)
15 cleared by the RUN command without a line number, and an
indefinite value is assigned to all the array elements defined
explicitly. Execution cf the program begins with the operator
having the smallest number. On the command RUN with a line

' number, the program is executed, beginning with the selected

0 ‘ line. The variables and the array elements retain the values
! obtained during the last execution of the program. After

Rl Bl i i | L T

oy e it

termination of execution of the program, the basic text and
values of all the variables are retained in the menory.

2.2 SELZCT PRINT Command

The SELECT PRINT command 1s used for printout of the text
and results cof executicn ol the program. The command format
is: SELECT PRINT.

As a result of performance of this command, all the lines
output to the terminal are stored in the working file of the
system. Upon coinpletion of operation with BASIC, the stored
lines are printed out. Operation of the SELECT PRINT command
is terminated upon performance of thg_STOP operator, and also
upon performance of any operator in the direct regime. How=-
ever, the information previously stored in the working fille
is retained. Upon entry of a new SELECT PRINT command, the
new information supplement : that information already stored
in the working file.

If a printout device is not avallable to the system, the
first BASIC operator introduced after the SELECT PRINT command
calls up an error message and the SELECT PRINT regime will be
terminated. ’

If the user wishes to print out the text cf hls progranm,
it is recommended that the LIST operator be introduced after
the SELECT PRINT operator. In this case the program text out-
put to the terminal will be stored in the system working flle
and printed out .ater.

2.3 LEAR Command

This command is used to erase the program and the values
of the variables and the arrays from the operative memory.

N
[
n

The command has the format:

v)
CLEAR {‘line_px_mb er,<line number >)

Use of the CLEAR command without parameters eraées from
the operative memory the entire program and the values of
the variables and the arrays. CLEAR V assigns to all the
variables and the array elements indefinite values; the
memory assigned to arrays defined by implication is cleared.
The CLEAR command with indication of the line numbers removes
the part of the program text located between these numbers
(including the operators with the given numbers).

Examples:

CLEAR clear memory of program and
variables

CLEAR 1,9999 . removes all the program text

. While retaining the values of

the variables |

CLEAR 7,81 removes “»om the memory
operators with numbers from
7 to 81

CLEAR V clears the ‘memory assigned to

the arrays defined by implicae~
tion and assigns an indetermi-
nate value to all elements of
the explicitly defined arrays
and variables

2.4 CONTINUE Command

This command is used to renew operation of a program in-
terrupted by the user or as a resualt of occurrence of an error

in the program execution stage, The command has the format:

11

N
[
OV

D < 17 L PP T e g ves

*

CONTINUE -

2.5 LIST Command

This command makes it possible to output the program text

located in the memory in the line number sequence. The command

has the following possible formats:

g o
LIST {Qine numbers[,<line number>]}

When using the LISTS format, the next 15 program lines
are output, after which the program stops. When using the
LIST command with indication of a single line number, only
this line is read out. When using two line numbers, the lines
located between these numbers-(including the specified num-
bers) ‘are output. '

Examples:

LISTS The first 15 operators are
' printed out; the second LISTS
command prints out the next
group of 15 operators, etc.
LIST 12,18 . Tlie text of all operators
having numbers from 10 to 18
is printed out.

2.6 LOAD Command

Tne LOAD command is used to load the program or part of
the program into the operative memory from the basic text
library. The command format is;:

LOAD(p] '<Name’

With the presence in the LOAD command of the parameter P,
the program text and the values of the variables and the
arrays located in the operative memory remain unchanged.

In the absence of the parameter P, the operation of
the CLEAR command without parameters is modeled before
loading the ﬂrogram text from the library, i.e., the program
text located in the memory is removed and the memory assigned
to the arrays is cleared; the variables take indeterminate
values. A name enclosed in inverted commas can contain no
more than eight symbols. The program with such a name is
sought initially in the individual library and then in the
systems library of basic texts in the sublibrary B.

Example:
P

™~
bt
18

LOAD 'TESTMAT! Clearing of the memory
and loading of the book
B.TESTMAT are accomplished

2.7 SAVE Command

Thls command is used to catalog (enter) in the bkasic
7 module library the program text located in the operative
4 memory. The command has the format:

SAVE ‘name' [{<line numb~r>],<line number>)

: <Name > -~ a line of no more than eight symbols,
defining the book name in the library ’
of basic modules.

The first line number indicates which line of the program
is to be cataloged in the basic module library. If beth line
1 numbers are omitted, the entire program text is cataloged.

13

Cataloging of the program 1s possible only 1nto ‘the individual ,
basic text library -- into the sublibrary B. The use of spe- f l o
cial symbals in the name is not recommended, since books with |
Asucﬁ names cannot always be processed by the systems program
LIBRARIAR. The program eataloged using the SAVE command can _
later be used with the aid of the LOAD command. The user must
: remember that only operators introduced which can be in the
*'sequential 1nterpretatlon regime ean be cataloged. '

Exanmples:

SAVE 'TESTMAT' . The entire program text 1s

cataloged under the name
, B.TESTMAT;
- i
 SAVE'TESTINV1', 174 The operators beginning with /16

number 177 are cataloged under
the name B.TESTINV1.

2.8 TRACE Command

The TRACE command is used to establish or cancel the
operator tracing regime. The command format is:

ON
TRACE
orp

The TRACE command with the parameter ON establishes the
tracing regime; when executed the TRACE message nnnn 1s printed
for each operator,

where nnnn -- number of the executed line.

The TRACE command with the parameter OFF cancels the trac-
ing regime.

14

2.9 RENUMBER Command

This command is used to renumber the program operators
located in the memory. The command format is:

RENUMBER [«1ine numbers)(,« integer 3]

The first parameter defifies the new number being assigned
to the first program operatér. The second parameter (integer)
indicates the renumbering step. If the renumbering step is
omitted, 1t is taken equal to 10. If the first parameter is
omitted, i1t is taken equal to the step. The line numbers in
the operators ON, GOTO, GOSUB are renumbered automatically.

Example:

RENUMBER 25,5 Renumber the program with
step 5, the new number of
the first operator is 25.

2.10 END Command

On thils command the BASIC interpreter terminates its
operation. '

3. BASIC Operators

The BASIC operators are divided into executable and non-
executable. The executable operators indicate the sequence of
operations to be performed by the interpreter. The nonexecut-
able operators introduce information which the system requires
for operation or information which makes the program more easily

N
-3

visualized. These operators reserve memory for the arrays . (DIM o

operator), define the use functions (DEF operator), define the

15

T T

#o

data which during execution!of the program can be assigned

to the simple and 1ndexed variables (DATA operator). The
commentary operator R“M is used only to make the program

more convenlent for reading. The nonexecutable operators

are processed by the system in the compifation stage; while

in the interpretation stage they are dummy operators. The
position of the nonexecutable operators in the program is
immaterial; however, the user must remember that in case of
redefinition of an array or function the redefinition ‘opera-
tor must have the same number as the first-definition operator.

Example: K : S A8

‘Array A of dimensioﬂ

(#:3; #4) is defined;
AP DIN A(D,4) improper attempt to re-
24 DIM AC5,6) f define‘the array -and

BAS $24 ERROR IN LINE 20 transfer it to the large

16 DK A(S5,6)

memory;

redefinition of the array
reserves for the array A
of dimension (@:5;@:6)

a memory of (5+1)(6+1)
machine words.

3.1 Assignment Operator LET

Thls operator is used to assign to variables the values
of an arithmetic expression or a constant. The command has
the format:

variable being . variable being
[LET] defined > = L(defined)'J <expression>

The LET operator calculates the value of the arithmetic
expression located to the right offthe rightmost equality
sign in the line and assigns the result of calculation of
the expression to all the indexed varilables.

The user must remember that the indexes of the variables
being defined are calculated before executing the first as-
signment. \

Example:
The indexes of the array

WH LK, L) nKeIt 16, #5IH(3) A(K,L) are calculated
before obtaining the

new value of X.

The operator LET can be executed both in the direct regime
and in the sequential interpretation regime.

Example:

4PLET A = 1 o JIN (3.14/100(x)) ¥ EXP(4):
TOB(T,Ee3) = B(P) = T « 1+eAePNL (EXP(Z)),

3.2 Transfer Operator GOTO

The GOTO operator is used to change the normal program
execution sequence. The operator has the format:

¢0T0 <line number>

The GOTO operator accomplishes unconditional transfer of
control to the line, the number of which is specifled in the
operator. The GOTO operator cannot be executed in the direct

regime.

17

"™~

i ot i i

‘Example:

10 A ey : In this example a program

20010 5¢ : fragment is executed not in
3¢ X= SIN(A) the increasing number order
498« /2 ' but rather in the order:
SPRY @ A2 19; 2@; 50)

3 ? .

3.3 Conditional Transfer Opersator IF

The IF operator is used to alter the order of execution
of the operators in the program as & function of the results
of comparison. The operator has the format:

If <ct_>mpdfis_on'> THEN fGO'_fQ] ¢line number,

where,
‘arithmetic relational arithmetic
<comparison >..-(expression’ Xoperator ‘expression

(.r‘;;:g‘:ﬁ:]) a»|<|> sladic nie K3 I>CI).

The relational operators denote:

> greater than,

< less than,,
>=,3> greater than or equal to,
<=,=¢ less than or equal to,
£>>¢, not equal to.

If the comparison is true transfer takes place to execu-.
tion of the line with the number following THEN or GOTO. The.
word GOTO 1s an optional element and does not influence execu=-
tion of the operator. The IF operator cannot be executed in
the direct regime. |

"~
nN
(e]

3.4 Cycle Organization Operators FOR and NEXT

The FOR and NEXT operators are used to organize program
cycles. FOR defines cycle 1n1tiation, NEXT defines the end.
The operators have the fornats:

FOR(LEﬁ&Zﬂ?Z)-expressiont)To¢expression2>
(6TEP<expression 3>)
NEXTC control, ‘
<avariablel>

The control variable is a nonindexed’variable with values
varying from expression 1l to expression 2 with step
equal to expression 3 .

The operators located between the operators FOR and n
NEXT are executed as many times as the FOR operator indicates.
If the phrase STEP expression 3 in the PCR operator is
omitted, the step is taken equal to 1.

Cycle examples:

10 POR I=1 TO 10 STEP 1 The cycle consisting of a single
20 A(1)=),Vamu/2 ator with number 2¢ is re
30 NEXT I oper :

" peated four times for 1 = 1, 4, 7,

16 FOR 1«1 70 10 SIEP 3 17 the cycle is performed four

ev sr 135 THEN 50

30 A(I) = 8IN().14%1/8) times.

40 NEXT I For 1 =1, 1 = 4 the cycle of

45 GOTV 80

50 A(I) = =SIN (3.14°1/0) operators 2¢, 3¢, 4¢ is performed.
60 NZXT I For 1 = 7, 1 = 10 the cycle of

80 R :

operators 2¢, 5@, 60 1s performed.

The last example shows that NEXT must logically follow the
operator FOR.

19

/21

it should be noted that the cycle may be terminated by
an operator FOR in which the name of the control variable
coincides with the name of the control variable of the un-
completed cycle. '

Example:

10 POR I = 120) ‘The operators are executed in

20A(X)=C05().14¢1/8)
JOPORIATTO9 the following order: 1¢, 2,
305 1) - HI/2 39, 42, 5@, 4@, 50, 4@, 5¢.

Nesting of the FOR cycles i1s permitted. The maximal cyclb
nesting level depends on the available memory size but must not
exceed 12,

Example:

10 POR In0 70)
20 FOR Ju0 20 1¢%
30 C(X,J)=Xe81N(J*12)

ONEXTJ
50 WEXTX
If necessary, the NEXT operator of the outer cycle may /22

_ terminate the inner cycle.

Example:
10 FOR I1 D0)
20 JOR Je2 TO 4 Operator 35 1s performed for
- 3 arrayeg, e %0 the following indexes)
2 ¥ L
3 I 2
.;- 1 3
- I 4
' 2 3
2 4
g -

L
2
3
1
-3

The FOR and NEXT operators cannot be used in the direct
regime.

3.5 Array Memory Distribution Operator DIM

The DIM operator distributes the memory for one~dimensional
and two-dimensional arrays. The operator has the format: '

pIng ::;:’:) (¢ dimension >[,< dimension ’])

[,(array name >(<c}imension>[,<.dimex_mion 3))...

The dimensions indicated in the DIM operator after the
array name determine the maximal value of the index. The
minimal index value in BASIC is equal to Z. The array dimen-
sions must be integers. The use of expressions is not per-
mitted.

Example: ' Z23

These arrays are defined

A - dimension (.6:16; 8:7;
10 D¢ A (10,7),B(16),D(40) i - dimension (f:16);

D - dimensiou (8:48).

If the user utilizes an array without defining it in
the operator DIM, the one-dimensional array has the maximal
index 1¢, while the two~-dimensional array has the maximal
index 17 * 10.

When using the operator DIM, the user must remember that:
a) the DIM operator may be found in any program location;
b) the memory can be distributed to several arrays by a single
DIM operator; the number of arrays in a single DIM opecator -

21

is limited only by the BASIC line .length;

redistribution of the memory to the ar -ays by a new DIM
operator is forbldden; if it is necessary to redistribute
the memory to an array, this can be done by introducing ‘
a DIM operator with the same number (however, in‘this
case ti2 memory reserved for the other arrays in the
first DIM operator is cleared).

Example:

Eight words are reserved for
array A, 4 words for B, 88 words
for D.)
16 words are reserved for a:-cay
A, arrays B and D become unde-
fined. '

10 dIu A(7),D(3),D(30,7)
10 DIXN A(15)

The user must remember that the memory cannot be dis-
tributed by implication to arrays used in matrix operations.
The DIM operator cannot be introduced in the direct regime
and is a nonexecutable operator.

3.6 DATA Operator

This operator is the set of values which in the course of
program execution are assigned to the indexed and nonindexed
variables with the aid of the READ operator. The operator has
the format:

DATA ¢constant > [, < constant 3)...

The constants in the DATA operator can.have'any form ad-
missible in BASIC and are separated by commas. If there are
several DATA operators in the program, they form the overall

%

i T E o

e ol o e

ensemble of values in accordance with the operator numbers.

The DATA operator is nonexecutable and cannot be introduced
in the direct regime, o

Example:

1% DATA ¥, 11, V2 A data block of six numbers
W REX example is formed:

P DATA 1),17E~1,~1B-) 18, 11, 13, 13, 1787,

.INI
3.7 READ operator

The operator i1s used to assign the variable values from
the block of data introduced with the aid of the DATA operators.
The operator has the format:

READC varisble >(,< variable 5.

[T e e

The variables in the READ operator list may be indexed or
nonindexed. Each variable rromithe READ operator list takes
the values of the next constant from the data block. This con-
tinues until a value is assigned to all the varliables of the
READ operator list or until the data block is exhausted. In
" the latter case the next variable from the READ operator list
takes the value of the first data block element.

Example:

After execution of the operator
25 READ 4,B,C,0,8, 27 the valies of the variablew
3 WTA 1,2,3,4 are: A=1,B=2;Cw=3,
3% DATA 5,6,7 Dul, BwS;

53 UEAD 2,0,4,1 After execution of the operator

5¢ the values of the variables
are: P=6,G= 7, H=sl, I =2,

The operator is executable and can be introduced in the
direct regine.

3.8 RESTORE Operator

This operator is used to set the read indicator to a
definite location in the data block. The operator has the
format:

RESTORE [celement numbers]

When using the RESTORE operator without a parameter, the
first data block element 1s assigned to the first element of
the variable list of the next READ operator. Vhen using the
RESTORE operator with an element number, the READ indiecator
is set to the data block element with the indicated number,
i.e., the first element of the data list of the next READ
operator takes the values of the data block element with the
number Indicated in the RESTORE operator. The data block ele-
ments are numbered beginning with one. The RESTORE operator
is executable and can be introduced in the direct regime.

Example:

14 DaTA 1,2,),4,5,8,7

27 ATA 8,9, 19 As a result-of operation of the
34 KEAD A,3,0 program fragment the varisbles
45 RE3IORE take the values:

53 READ D,B ’ As1, Be2, Ce), Det,

6P RESTORE 9 Ee2, =9, =14,

T READ 2,6

3.9 Direct Innut Frem Terminal Cperator INPUT

This operator 1s used for operative input from the terminal
¢f the values of the indexed and nonindexed variables. The
operator has the format:

24

~

INPUTcelement > [¢elements)

~where <element> -- an indexed or nonindexed variadle or.
| signed constant.

During execution of the INPUT operator, 8ll its elements
are proéessed sequentially. If-the element being processed is
a signed constant, the latter is output to the terminal in the
form of a line of signs. If the element being processed 1s an
indexed or nonindexed variable, execution of the user's pro-
gram is halted until a numerical constant is introduced from
the terminal. After entry of the numerical constant, its value
is assigned to the element being processed -- the variable.

Execution of the INPUT operator terminates after all the
elements indicated in this operator have been processed.

Example:
IKPUT 'A=?',2,'ARRAY?,B(A),B(A+1) ,B(A+2)
-- output to terminal

1231 -- user introduces from terminal
ARRAY -~ output to terminal

1 : user inputs

7.8 - {from.

-2.5=3 the terminal

i
After execution of the INPUT operator, the variable A is
equal to 12 and the elements of array B: B(12), B(13), B(14)
are equal to 1; -7, -@.0@2, respectively.

3.10 Qutput Operator PRINT

This operator is used to output 1nf6rmation in zonal or
compact format. The operator has the format:

25

/27

=~

e i 7 g NI T T T

PRINT<element> ¢ punctuation scelements]..
‘sign
¢. punctuation -~ comma for the zonal format
- sign and a semicolon for the com-
pact format. ‘ l
<element> <. expression or line of symbols

This operator outputs all the 1list elements to the terminal.

In the zonal format case, each line 1s broken down inte four
zones of 16 symbols each. A comma standing before an element
which 1s to be output to an external unit means that the ele-
ment will be placed at the beginning of the next zone, and if
the last zone in the line 1is filled the element will be placed
at the beginning of the first zone of the new line.

Example:

1 PRINT SINC3.141592/6),243.5, 198154

Print

oS buuuLLuuLNL Y S.9uvuuuuLLL LU L 1008D0EL 06,

In the compact format, a semicolon means that the following
element (subject to output) must be placed directly after the
preceding element if this preceding element is a line of symbols.
If the preceding element 1is the result of calculation of an ex-
pression, the element being output 1s separated from the pre-
ceding element by a blank space.

Example:
As a result of execution of the
“8 PRINT 1,21'58¢ 53 operator 1@, the line 1x2uA+d
will be output to the external
device.

26

If in the PRINT operator a comma or semicolon follows the
last element, the action of the punctuation sign extends to the

" first element of the next PRINT operator. If the last element
L of the preceding PRINT operator was ‘not followed by a comma or

a semicolon, the elements of the ne PRINT operator.are output

”fi,fram a new line.

Numerical values in the PRINT operator are printed in the

following format:

a) for values from the interval [O.I; 106) , the format
without an exponent is used; up to six significant
digits are output; :

b) for values outside the interval [oI; 1%] , the
format with an exponent is used; up to six significadt
digits are output; position 1 1s set aslde for the
sign and the number occupies up to 12 positilons.

Example: _

19 PRINT 1,2; ~
2§ PRINT JE6,4;5;

3@ IRINT 'FIVE';S

Print:

uiuuuuu;‘uuuuuuUu 2un@30006EC P uvuw huluins

The PRINT operator 1s executable and can be introduced in
the direct regime.

3.11 Transfer Operator GOSUB

This operator is used to transfer to a .subprogram located
in the text of the primary program. The operator has the
format:

05u@ <operator ‘number >

F -
g
S

N
N

e gt s LR e e ka3

TP AT

As a result of execution of the GOSUB operator, control 1is
transferred to the operator with the number indicated in the
GOSUB operator. The GOSUB operator remembers the number of
the operator following it for return from the subprogram. ‘
Exit from the subprogram takes place on the basis of the

RETURN operator and control is transferred to the operator
following GOSUB.

Example:

10 6OSUB 250 The following operators are

60 S0P

. executed: 5@, 25¢, ..., 3¢7,
250 4 = 1 54 .
300 RETURN

The GOSUB operator is executable and cannot be introduced
in the direct regime. -

T T o TR A g

3.12 RETURN Operator /30

The RETURN operator transfers control to the operator P
following the last executed GOSUB operator. The operator has
the format: '

B (e

RETURN

The RETURN operator is executable but cannot be Introduced
in the direct regime.

3.13 Transfer Operator ON

The ON operator is a conditional transfer operator and has
the format:

ON<expression> G070 <line number? (,¢line number®]..

The operator 1s used to create branching transfers in the
progran.

28

i s

M. s L et Ut

When the operator is executed, the value of the arithmetic
expression standing after the key word ON is calculated. The
result of calculation of the expression is rounded to the ‘
nearest integer. If the result of rounding is equal to 1,
transfer takes place to the line whose number follows directly
the key word GOTO in the ON operator. If the result of round=-
ing is egqual to 2, transfer takes place to the line whose num-
ber is second in the line number list. If the result of round-
ing is larger than the number of numbers in the ON operator
list transfer takes place to the operator following the ON
operator. The operator is executable but cannot be introduced
in the direct regime.

3.14 STOP Operator

The STOP operator terminates execution of the user program
and has the format:
STOP

Upon execution of the STOP operator, the following text

is output: v
£25 STOP AT nnan 35X

where nnnn is the number of the STOP operator. After output
of the text, operation of the program terminates, The STOP
operator 1s executable but cannot be introduced in the direct
reginme.

3.15 User PFunction Definition Operator DEF

This operator 1s used to define the user function opera-
tors and makes it possible to define functions of both one and
several varlables with the names FNA, FNB, FNC, ... FNZ.

29

The operator has the format:
‘ N parameter ter >..)=
DEF FN detters (¢ P ane ! >« pa;:zg T 5]..)

<expression) ‘ 4

<parameter name> -- name of the variable used in
the expression .

Upon referral in any program expression to the func- .
tion

FN <letter> (¢argument > [< argument >])

the values of the arguments are calculated and the expression
indicated in the DEF operator for the corresponding function

is calculated. When calculating this expression, the values of
the arguments calculated durlng referral to the function are
substituted in place of the values of the variables whose

names coincide with the names of the parameters. The expres-

. sion in the DEF operator may contain (in addition to parameters)
constants, indexed and nonindexed varlables, and referrals to
the functions. The values of all the variables in the expres-
sion must be determined before calculating the function. The
funetion cannot refer to 1tself directly or indirectly. During
referral to the function, the arguments must be coordinated with

_ the parameters with regard to number and sequence. Any expres-
sion admissible in BASIC can be an érgument.

Example:

18 DEFFIL (x,¥,U)= U¥A+3sX + SINH(Y)
2@AUnP

3PCertiA(A,U, 51N (€0S(3.1415/5)) ,

ST TR G T T T By

In this example, the function FNA is defined in the opera-
tor 1¢ with three parameters, X, Y, U. In the operator 37,
referral to the function FNA takes place. Upon referral, the

parameter X takes the value of the argument A=, the parame=-
ter Y takes the value of the argument U={, and the parameter
U takes the value of the argument SIK(C05(3.1415/5)).

The operator 37 1s equivalent to the dperator:

38 C«S1N (COS(3.1415/5))2A+3°A+S1H(U). *

Application of user functions can be recommended n the
case of multiple repetition of the same expressions; however,
the programmer must remember that in this case the computation
speed decreases.

3.16 Matrix Operation Operator MAT

This operatc: is used to execute operations on matrices

(two-dimensional arrays). The operator has one of the follow-‘

ing formats:

MAT ¢ array name >Xarray name’(opexiation){array name>
- -~ sign
or

MAT < array named= INY (¢ array name.))
¢ opgraion > -ERESet, v
Multiplication, addition, subtraction and matrix inversion

can be performed in the MAT operator. 1In-the left side of the
MAT operator there is written the name of the array taking the
value, and in the right side there are written the names of
the operand matrices. Multiplication, addition, subtraction
and matrix inversion are performed in accordance with the rules
of matrix algebra, and the corresponding signs " + ", " - ¥,
" # " INV are used to denote these operations. Inversion of"
matrices of dimension larger than 3¢ % 3¢ is forbidden.

Examples:

31

SR IR S o L P o L St

il

it b T G i S

ATV L e e e v %

16 MAT AsA4l
20 MAT BaAel

39 MAT Zalnv(X)
48 MAD XalNV(x)

3.17 Program Segment Dynamic Loading Operator FETCH a /34

The FETCH operator i1s used to load (input) the program
parts (program segments) from the basic module library and to
transfer control to an operator with indicated number.

The operator has the format:

FETCH (¢ no. 1>,¢ mo. 2>]¢ 2°FMeRT: ¢ o, 3))

The following operations are performed using the FETCH
operator:

a) the operators from number 1 through number 2 located
in the operatative memory are removed (in the absence in the
operator of the parameters <number 1> , <number 2> all the
program operators located in the operative memory are removed);

b) the program segment with the name <segment name> ,
cataloged previously in the basic module library, 1s introduced;

¢) control is transferred to the operator with the number
<number 3> (in the absence of the parameter number con-
trol is transferred to the first operator of the segment intro-
duced from the library). The FETCH operator is used to execute
large programs, the text of which cannot be stored completely
in the operative memory. After execution of the FETCH operator,
the values of the variables and arrays remain in the operative
memory without changes, excebt for the arrays defined by the DIM

32

operators removed in the process of execution of the FETCH
operator.

The user must remember that use of the FETCH operator
slows markedly the program execution and it should not be used
unless absclutely necessary. It 1s recommended that only those
operators which are required in the segment being loaded be
stored in the memory. It is recommended that from the very
beginning the individual DIM operators be used to define the /35
memory for those arrays which are necessary only for the given
segment and the arrays which are necessary in the subsequent

segments.

3
" - S i T

The FETCH operator is executable and can be 1ntroduced in
the direct regime. A check for'the presence. of the required
segment in the library takes place only at the moment of execu-
tion of the FETCH operator.

P

Example:

The following segments are cataloged in the basic module
library:

1) segment with the name SEGMENTZ
16 DIM A(4,4),B(7).c(4) !
2F DEFMNA (X,Y) » (Xo¥)O(X-Y)
36 DATA 1,2,3,4,5,6,7,8
45 FOR 1«0 70 §
5% READ D(1),0(I)
€5 NEXT I
76 DIN D\4)
8 POR I=1 70 4
S8 POR J=i T0 4
198 A(1,d)=FRA{C(1),D(J})
11 FEXT I
12§ KEXT(J)
136 PETON 48,130 'SEGABNTIY, 4P

33

- -——

2) segment with the name SEGMENT1

48 FOK 10 TO 44)

58 BLI)=A(X/2, (141)73)+7RA(C(1/2),06(1/8))

68 uExT X .

76 FETON 48,7 'SECMENT2' .)
3) segment with the name SEGMENT2 /36

70 YOR I3 T0 43

. 85 FRIND 'B(',X,'),%"8(1), S e e
S# XBXT X '
166 BTOP

. If the user inputs from the terminal the directives

LOAD 'SEGMENTZ'
RUN

then initially there will be loaded into the memory the segment
operators SEGMENTZ with numbers from 1¢ to 13¢, then operators
Lg to 12¢ will be performed, and the memory set aside for array
D will be cleared. After this, the SEGMEINT]1 segment operators
4g to 77 will be introduced and the operators with numbers uf
to 6F will be performed. The FETCH operator with number 7¢
leads to removal of the entire SEGMENT1 segment and loading of

_ the operators 7¢ to 1¢@. The FOR operator with number 77 takes
control. Execution of the entire program.is terminated by the
STOP operator with number 100.

L, BASIC Error Messages in the User Program
Entry and Interpretation Stage

An error message is generated in case of entry of syntactic-
- ally incorrect BASIC operators and in case of onset of inadmiss-
i1ble conditions in the user interpretation stage. The error
messages have the following format:

34

BAS nnan EFoon S KINE dtat

where nnnn -- four-place erro: code;
tttt ~-= number of the operator in which the error is

Z or

u’l

0001
0002
0003
0004

0005

0006
0c07
0008
0009
0004A
C00B
Q00C

000D
00CE

* 000F

discovered.

In case of errors in the operators in the direct regine
the symbols # % # # ane printed in place of the number.

The codes FPP@l - PPFF are the syntactic error codes;
the codes §1f1 - P1FF are the standard function execution error
codes.

Error Message Codes

Code

Cause

invalid operator number

error in left side of LET .operator
ambiguous operator

in the READ operator the expression is not
used in the variable index

error in syntax of expression or error in
DIM operator constant list

error in DEF operator parameter list

add number of inverted commas in a line
incorrect constant

nonexistent standard function

operator not completed

error in DIM operator

redefinition of user function, and the numbers
of the DEF operators do not coincide

forbidden separator used in the PRINT operator
inverted comma in forbidden operator
excessively long symbol constant in PRINT

/31

0010
0011

0012
0013
0014
0015

0016
0c17

0018

0019

0014
0018
001C
001D
001E
001lF

0021
0022

0023
0024

0025
0026
0ca7
0028
010C

error in variable identifier in NEXT operation /38
comparison operation used in opera.or differing
from IF

no comparison symbol in operator IF

operator being removed 18 not present. -
excessively long program (large number of operators)
" L (long overall operator
text)

incorrect format of LIST command

more than 8 letters used in book name in SAVE

or LOAD commands

book being loaded by LOAD command is not found in
the library

no room in library for book being cataloged by
SAVE command

invalid number in RUN command

inadmissible operator in direct regime

incorrect syntux of FETCH command

" " " RENUMBER operator

" " " CLEAR operator

" " " SELECT operator or
inaccessible printer

right bracket missing in expression

left bracket missing in expression or

excess comma 1s present

array of dimension over 2 1s defined or used
conflicting distribution of memory by DINM /39
operator, i1.e., attempt to distribute memory

by two different operators

excessively complex oxpression

memory inadequate for arrays'

undetermined error in expression syntax

too many constants
over=-illing of order

010D
010E

C10F
0111
0112
0113

0114
0115
0116
0117
0118

0119

011B

011cC
011D

0la22
0123
0124
0126
0201
0202

0203

0204
0206
0207

disappearance of order

loss of significance (excessively small

numbers obtained in calculation)

division by zero

variable being used is not defined

too many simple variables

inadequate memory for distribution of array

by implication

array index outside given bounds

maximal cycle saturation exceeded

t00 many ﬁarameters activated simultaneously
undefined function 1is used

number of argument when referring to user
function not equal to number of parameters in
DEF operator

data block defined by the DATA operator is
exhausted

array used in matrix operator is not explicitly
defined

invalid dimensions for MAT operator

incorrect information entry during operation /40
of INPUT operator

transfer to undefined operacor

depth of transfers using GOSUB is exceeded

use of RETURN without GOSUB operator

array element possibly d4i1d not take initial value
attempt to calculate TAN(x) with Ki>3.141502620045,

" "o TAN(x) with (x=3461562031e000

" "o SIN(x) or COS(x) with
' Imi>» J.141552020 0t¢

" "o EXP(x) with ‘x>174.67%
" noon SQR(x) with %< £
" " oon X0y with x¢ g, Y¢7

37

0208
0210
0211

0220
0224

38

attempt to calculate LOG(x) with %&¢F

zZero determinant of matrix dbeing inverted
attempt to invert matrix of dimension over
30%30

forbidden input symbol

forbiAden output symbol

operators removed in the process of execution of the FETCH
operator.

The user must remember that use of the FETCH operator
slows markedly the program execution and it should not be used
unless absclutely necessary. It 1s recommended that only those
operators which are required in the segment being loaded be
stored in the memory. It is recommended that from the very
beginning the individual DIM operators be used to define the /35
memory for those arrays which are necessary only for the given
segment and the arrays which are necessary in the subsequent

segments.

3
" - S i T

The FETCH operator is executable and can be 1ntroduced in
the direct regime. A check for'the presence. of the required
segment in the library takes place only at the moment of execu-
tion of the FETCH operator.

P

Example:

The following segments are cataloged in the basic module
library:

1) segment with the name SEGMENTZ
16 DIM A(4,4),B(7).c(4) !
2F DEFMNA (X,Y) » (Xo¥)O(X-Y)
36 DATA 1,2,3,4,5,6,7,8
45 FOR 1«0 70 §
5% READ D(1),0(I)
€5 NEXT I
76 DIN D\4)
8 POR I=1 70 4
S8 POR J=i T0 4
198 A(1,d)=FRA{C(1),D(J})
11 FEXT I
12§ KEXT(J)
136 PETON 48,130 'SEGABNTIY, 4P

33

0208
0210
0211

0220
0224

38

attempt to calculate LOG(x) with %&¢F

zZero determinant of matrix dbeing inverted
attempt to invert matrix of dimension over
30%30

forbidden input symbol

forbiAden output symbol

	1980002568.pdf
	0006A02.TIF
	0006A03.TIF
	0006A04.TIF
	0006A05.TIF
	0006A06.TIF
	0006A07.TIF
	0006A08.TIF
	0006A09.TIF
	0006A10.TIF
	0006A11.TIF
	0006A12.TIF
	0006A13.TIF
	0006A14.TIF
	0006B01.TIF
	0006B02.TIF
	0006B03.TIF
	0006B04.TIF
	0006B05.TIF
	0006B06.TIF
	0006B07.TIF
	0006B08.TIF
	0006B09.TIF
	0006B10.TIF
	0006B11.TIF
	0006B12.TIF
	0006B13.TIF
	0006B14.TIF
	0006C01.TIF
	0006C02.TIF
	0006C03.TIF
	0006C04.TIF
	0006C05.TIF
	0006C06.TIF
	0006C07.TIF
	0006C08.TIF
	0006C09.TIF
	0006C10.TIF
	0006C11.TIF
	0006C12.TIF
	0006C13.TIF
	0006C14.TIF

