

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

https://ntrs.nasa.gov/search.jsp?R=19800002568 2020-03-21T20:19:06+00:00Z

BEYSIK: LANGUAGE DESCRIPTION AND HANDBOOK FOR PROGRAY IL .RS
(SYSTEM FOR THE COLLECTIVE USE OF THE INSTITUTE OF SPACE

RESEARCH, ACADEMY OF SCIENCES USSR)

I. G. Orlov

Translation of "BEYSIK. Opisaniye Yazika i Rukovodstvo
dlya Programmista (Sistema kollektivnogo pol'zovaniya
IKI AN SSSR),"Academy of Sciences USSR, Institute of
Space Research, Moscow, Report Pr-476; 1979", -pp l:_;4`Z----`	 a

(NASA-TH-75680) BEYSIK: LANGUAGE 	 R80-10813
DESCRIPTION AND HANDBOOK FOR PROGRAMMERS
(SYSTEM FOR THE COLLECTIVE USE OF THE 	 Jvc /¢03 J001 ' A61
INSTITUTE OF SPACE RESEARCH, ACADEMY OF	 Unclas
SCIENCES (Rational Aeronautics and Space	 G3/61 45$x'0

-- ; Nqj-,

c1	 ^^

J

SSS^^^ Ad PZ 	 °y.

NATIONAL AERONAUTICS AND-SPACE ADMINISTRATION
WASHINGTON, D.C. 20546	 OCTOBER 1979

TABLE OF CONTENTS
	

i41

s
1.	 Introduction 1

I.I. Brief Description of the Language	 _ 1

1.2. BASIC symbols 3

1.3. Characteristic Features of BASIC Writing 4

1.4. Objects Used by the BASIC Algorithmic Language 5
=.5. Expressions of the BASIC Algorithmic Language 7
1.6. BASIC Standard Functions 8

2.	 BASIC Commands 9

2.1. RUN Command 9
2.2. SELECT PRINT Command 10

2.3. CLEAR Command 10

2.4. CONTINUE Command 11

2.5. LIST Command 12

2.6. LOAD Command 	 _._ _..w_.. , _ 12_....

2.7. SAVE Command 13

2.8. TRACE Command 14

2.9. RENUMBER Command 15

2.10. END Command 15

3.	 BASIC
i

Operators 15

3.1. Assignment Operator LET 16

3.2. Transfer Operator GOTO 17
3.3. Conditional Transfer Operator IF 18

3.4.	 , Cycle Organization Operators FOR and NEXT 19
3.5. Array Memory Distribution Operator DIM 21

3.6. DATA Operator 22

3.7. READ Operator 23
3.8. RESTORE Operator 24

3.9. Direct Input From Terminal Operator INPUT 24

3.10. Output Operator PRINT - 25

3.11. Transfer Operator GOSUB 27

I-NG Pl,C?E BLA .: ''OT b4 YRJ)	 i i i

3.12. RETURN Operator	 28

3.13• Transfer Operator ON	 28

3.14. STOP Operator29

3.15. User Function Deflni-.im. Operator-DEF 	 29

3.16. Matrix Operation Operator MAT 	 i	 31

3.17. Program Segment Dynamic Loading Operator

•	 FETCH	 32

4. BASIC Error Messages in the User Program

Entry and Interpretation Stage	 34
4.1.	 Error Message Codes 	 35

PA-VE P,.I;Ar.- - ,̀'OT FIL'o-p

iv

BASIC

Description of Language and Programmer Guide

I. G. Orlov

The BASIC algorithmic language is de-
scribed and a guide is presented for the
programmer using the language interpreter.
BASIC is a component of the display systems
developed by personnel of the Systems Pro-
gramming Laboratory of the Institute of Space
Studies of the AS USSR.

1.	 Introduction

The high-level algorithm language BASIC is a problem-

oriented programming language intended for the solution of

computational and engineering problems.

1.1 Brief Description of the Language

A fundamental feature of BASIC is operation in the dia-

log regime, i.e., the programmer can correct and debug the

program directly from the console.

A program written in BASIC consists of statements, each

of which occupies one line. The line length does not exceed

64 symbols. The statements are divided into BASIC commands

and BASIC operators.

The commands are used to establish the program execution

regimes, to print the program text, and to alter the transla-

tion End interpretation regimes.

*
Numbers in margin indicate pagination of original foreign text.

!3*

1

The operators form the executable part of the program.

They can be introduced both in the direct regime and in the

sequential interpretation regime.

The operators introduced in the direct regime do not

have line numbers. They are performed immediately after

input. A list of the operators which can be exec•ted in

the direct regime is presented in the corresponding section.

The operators introduced in the sequential interpretation
	

i!^
regime have numbers from 1 to 9999 and are executed in in-

creasing line number order. Any operator can be introduced

in this regime and the entry order need not be strictly se-

quential. After entry, the operators are sorted in increas-

ing number order (for simplicity and convenience of addition,

it is recommended that the operators be introduced with step

10). For replacement of an operator, the user must introduce

a new operator with the same number.. For removal of an opera-

tor introduced in the program regime, we need only introduce

its number separately.

Examples

xA Operator 10 A==W replaces

Operator 10 A=I

= 40 D . E * Operator 30 B=17 will be
)^ -- removed

After entry in the sequential interpretation regime, the

operators are checked for syntactic correctness and are con-

verted to an intermediate form in which they are stored in the

computer operative memory. The basic form of such an operator

is stored in the direct-access working file and can be printed

2

r r

out at any moment with the aid of the corresponding command.

All (or part) of the operators introduced in the sequential

interpretation regime can be catalogued in the library of

basic modules for later use.

When entering a program in BASIC, the user must remember

that all the blanks in the text (other than the blanks en-

closed in inverted commas or quotes) are ignored.

1.2 BASIC Symbols

The following symbols are used when writing programs in

the BASIC algorithmic language:

a)	 26 Latin letters: A.	 B,	 C,	 ...,	 X,	 Y,	 Z;

b)	 10 Arabic numerals: 0,1,2,3,4,5,6,7,8,9;
c)	 special signs:

space a not equal to

= equal to inverted comma

+ plus semicolon

minus

* asterisk

/ slash

•	 (open Daren

close paren

comma

period

> greater than

< less than

-7 negation

In addition, if the input and output devices use the

signs:

3

3

-s

i

R

] right bracket

left bracket

" quotation marks

1

then the following signs can also be used as symbols:

right paren

(left paren	 .

' inverted comma

respectively.

The remaining symbols of the alphanumeric set of any 	 !6
specific input or output device may appear between paired in-

verted co=as (quotes) or in the language operator REM.

1.3 'haracteristic Features of BASIC Writing

The modified Backus form is used in writing BASIC languate.

The syntactic elements in the definitions of the commands

and operators are enclosed in angle brackets: "<" and ">".

Optional elements are enclosed . in square brackets "I" and 11311,

Example	
defined

LE74 defined variable > ^it vdefinee ^=-expression-

The second element	
14'variable
	 is optional.defined

In case of repetition of one or more of the syntactic ele-

ments in the definitions, ellipses . . . can be used. In case

of selection from several possibilities, braces "{" and "}" can
E	 be used.

Example:

CLEM tt-9 3 ine number >1. C-line numberl I

s

In this colamand, we can use either the optional operand V or

operands in the form

aline number^l, I,(line numberA

The square brackets indicate the optional nature of both the

first and second operands.

1.4 Objects Used by the BASIC Algorithmic Language

The following objects can be used in the algorithmic

language program:

a) iumerical constants,

b) symbolic constants,

c) one-dimensional and two-dimensional arrays,

d) variables,

e) standard functions,	 _	 _....:.._....^_
f) user functions.

By (numerical) constant is meant any decimal number,

written with or without sign, with or without decimal point,

with or without exponent. If a number is followed by the
I

letter E, possibly followed by a sign and one or two decimal

numerals, this means that the number is to be multiplied by

the corresponding power of 10.

J7

i
F	 ^	 .

Examples of numerical constants:

d. 1211 + 8	 0.12•ID"	 .00) • O."JUJ

1	 1,0	 1.	 • 1.0

2.8793	 • 2,07 . 103	t1:-1 . 3,0.10-1

5

f

R

f.

Any number specified explicitly in the BASIC program is

a constant. Any set of symbols enclosed in inverted commas

or quotes which in the given case is not a part of a constant

is termed a symbolic constant. If the user wishes to make

an inverted comma a part of a symbolic constant, he ;rust re-

peat the inverted comma.

Examples of symbolic constants:

• A. F^ ^CDEF
A	

61

A variable in BASIC is a quantity which can alter its

value in the computational process. The name of the variable

is denoted by a Latin letter or by a letter and numeral.

;xamples of names of variables:

A,I . UI; DO-. E9

The first operator in which the variable is used must

assign it some value. A variable whose value has not been

defined cannot be used. In this case, an error message is

generated.

In BASIC an ensemble of like quantities combined under a

single name is termed an array. One-dimensional and two-

dimensional arrays are permitted. Since the array name is

denoted by a Latin letter (and there are 26), no more than

26 arrays can be used in BASIC. The array elements are

termed indexed variables. Arrays are identified either by

the operator DIM or by implication. The index is written in

parentheses after the array name A(7,6), B(2). The following

rules must be followed then using indexed variables:

1. Array indexing always begins with zero, thus to first

6

element of the one-dimensional array A will be

A W , while that of the two-dimensional array B
will be B(O X .

2. The maximal value of the index cannot exceed

3210241, but the array dimension may be limited

by the available computer memory volume.

3. The maximal value of the indexes for the arrays

is defined by the operator DIM, for arrays de-

fined by implication this value is equal to 117

(for one-dimensional arrays) or (10,1W) for two-
dimensional arrays.

4. Use in the program of the same names for indexed

and nonindexed variables is permitted. However,

one-dimensional and two-dimensional arrays cannot

have the same names.

5. An expression can be used as an array element index.

The result of calculation of the expression is

rounded to the closest integer.

Initially, all the array elements contain the maximal in

modulus negative number. Therefore, use of an undefined i.--

flexed variable leads to an error.

1.5 'Expressions of the BASIC Algorithmic Language

The BASIC algorithmic language admits arithmetic expressions,

which are used for the calculation"of some value. The expres-

sion is a complete entry indicating which quantities are to be

taken and what operations are to be performed on them in order

to calculate this value. The value of the arithmetic expression

is a real number. The simplest arithmetic expression consists

i

.

7

of an elementary expression, which is:

a) a constant,

b) a simple variable,

c) an indexed variable,

d) referral to a function,

e) an expression enclosed in parentheses.

Vlore complex expressions can be formed from the elementary ex-

pression by use of arithmetic operations. The following

arithmetic operations are admissible in BASIC:

a) addition	 (+)

b) subtraction	 (-)

c) multiplication (e)

d) division	 (/)
	

/10

e) exponentiation (e*)

The sequence of performance of the mathematical operations
coincides with the sequence used in mathematics. The use of

functions is permitted in BASIC. Reference to x function has

the form:
function .> i<argument>, t argument >, I

name

The function name consists of three letters., We differentiate

two classes of functions: user functions and standard func-

tions. The user function is defined in the operator DEF and

its name has the form:

FK41etter•

1.6 BASIC Standard Functions

Ten standard functions are used in the BASIC algorithmic

language: SIN, COS, TAN, ATN, LOG, EXP, INT, ABS, S6S, ND;

8

only a single argument is used for all the standard functions.

The ar—umants of the trigonometric functions SIN(x), COS(x),

TAN(x) ax- specified in radians; the result of calculation of

the function ATN(x) ie the principal value of the arctangent

in radians; the function LOG(x) is used to calculate-the natural

logarithm; and the function (EXP(x) is used to calculate the

exponential function. The function INT(x) is used to calcu-

late the whole part of the argument, i.e., INT(3.7)-3; INT(2.7)-

-3; INTO)-O. The function RND(x) is used to generate pseudo-

random numbers in the limits from 0 to 1, and the function:

ABS W is used to calculate the absolute magnitude of the

argument. It should be noted that in BASIC ':here is no differ-

ence between whole and real numbers. ,,,, ,In the computer memory,

all numbers are numbers with floating dec teal point.

2.	 BASIC Commands
	

I11

2.1 RUN Command

The program located in the operative;;memory begins to be

executed on the RUN command -- only the operators introduced

in the sequential interpretation regime are executed. The

command has the format:

RYN<1ine number >.

The memory distributed during the preceding execution of the

program (arrays defined by implication and simple variables)

is cleared by the RUN command without a line number, and an

indefinite value is assigned to all the array elements defined

explicitly. Execution of the program begins with the operator

having the smallest number. On the command RUN with a line

number, the program is executed, beginning with the selected

line. The variablef and the array elements retain the values

termination of execution of the program, the basic text and

values of all the variables are retained in the mena ory.

2.2 SEI T-CT PRINT Command

The SELECT PRINT command is used for printout of the text

•	 and results cf execution of the program. The command format

is: SELECT PRINT.

As a reault of performance of this command, all the lines

output to the terminal are stored in the working file of the .

system. Upon completion of operation with BASIC, the stored

lines are printed out. Operation of the SELECT PRINT command

is terminated upon performance of the STOP operator, and also 	 /12

upon performance of any operator in the direct regime. How-

ever,'the information previously stored in the working file

is retained. Upon entry of a new SELECT PRINT command, the

new information supplement that information already stored

in the working file.

If a printout device is not available to the system, the

first BASIC operator introduced after the SELECT PRINT command

• calls up an error message and the SELECT PRINT regime will be

termina^ed.

If the user wishes to print out the text of his program,

it is recommended that the LIST operator be-introduced after

the SELECT PRINT operator. In this case the program text out-

put to the terminal will be stored in the system working file

and printed out later.

2.3 CLEAR Corn andw

This co=and is used to erase the program and the values

of the variables and the arrays from the operative memory.

1G

The command has the format:

t	 iv)
CLEAR {dine number-, <line number >}

Use of the CLEAR command without parameters erases from

the operative memory the entire program and the values of

the variables and the arrays. CLEAR V assigns to all the

variables and the array elements indefinite values; the

memory assigned to arrays defined by implication is cleared.

The CLEAR command with indication of the line numbers removes

the part of the program text located between these numbers

(including the operators with the given numbers).

Examples:

CLEAR clear memory of program and

variables

CLEAR 1 1 9999 removes all the program text

while retaining the values of

the variables

CLEAR 7,81 removes -"-om the memory

operators with numbers from

7 to 81

CLEAR V clears the memory assigned to

the arrays defined by implica-

tion and assigns an indetermi-

nate value to all elements of

the explicitly defines: arrays

and variables

2.4 CONTINUE Connand

This command is used to renew operation of a program in-

terrupted by the user or as a result of occurrence of an error

in the program execution stage. The command has the format:

/13

11

CONTINUE

2.5 LIST Command

This command makes it possible to output the program text

located in the memory in the line number sequence. The command

has the following possible formats:

LIST ,(line numbers [,<line_ numberaj}

When using the LISTS format, the next 15 program lines

are output, after which the program stops. When using the

LIST command with indication of a single line number, only	 /14

this line is read out. When using two line number3, the lines

located between these numbers.(including the specified num-

bers) 'are output.

Examples:

LISTS	 The first 15 operators are

printed out; the second LISTS

command prints out the next

group of 15 operators, etc.

LIST 11,18	 Me text of all operators

having numbers from 10 to 18

is printed out.

2.6 LOAD Command

The LOAD command is used to load the program or part of

the program into the operative memory from the basic text

library. The command format is',

IOAD(P7 '4Name ►

12

r

With the presence in the LOAD command of the parameter P,

the program text and the values of the variables and the

arrays located in the operative memory remain unchanged.

In the absence of the parameter P, the operation of

the CLEAR command without parameters is modeled before

loading the program text from the library, i.e., the program

text located in the memory is removed and the memory assigned

to the arrays is.cleared; the variables take indeterminate

values. A name enclosed in inverted commas can contain no

more than eight symbols. The program with such a name is

sought initially in the individual library and then in the

systems library of basic texts in the sublibrary B.

Example:

LOAD 'TESTMAT I 	Clearing of the memory

and loading of the book

B.TESTMAT are accomplished

2.7 SAVE, Command

This command is used to catalog (enter) in the basic

module library the program text located in the operative

memory. The cc mand has the format:

SAVE .name-' [:.cline numh,r >),aine number >j

<Name > -- a line of no more than eight symbols,

defining the book name in the library

of basic modules.

The firs line number indicates which line of the program

is to be cataloged in the basic module library. If both line

numbers are omitted, the entire program text is cataloged.

/15

13

operator tracing regime. The command format is:

TRA08 ON

O"

The TRACE command with the parameter ON establishes the

tracing regime; when executed the TRACE message nnnn is printed

for each operator,

where nnnn -- number of the executed line.

The TRACE command with the parameter OFF cancels the trac-

ing regime.

14

2.9 RENUMBER Command

.

This command is used to renumber the program operators

located in the memory. The command format is:

R£HUMSER (,line nurber>j t,4 intager j

The first parameter defines the new number being assigned

to the first program operatdr. The second parameter (integer)

indicates the renumbering step. If the renumbering step is

omitted, it is taken equal to 10. If the first parameter is

omitted, it is taken equal to the step. The line numbers in

the operators ON, GOTO, GOSUB are renumbered automatically.

Example: /17

RENUMBER 25,5 Renumber the program with

step 5, the new number of

the first operator is 25.

2.10 END Command

On this command the BASIC interpreter terminates its

operation.

3.	 BASIC Operators

The BASIC operators are divided into executable and non-

executable. The executable operators indicate the sequence of

operations to be performed by the interpreter. The nonexecut-

able operators introduce information which the system requires

for operation or information which makes the program more easily

visualized. These operators reserve memory for the arrays.. (DIM

operator), define the use functions (DEF operator), define the

15

^r

j	 data which during execution of the program can be assigned

to the simple and indexed variables (DATA operator). The

commentary operator REM is used only to make the program

more convenient for reading. The nonexecutable operators

are processed by the system in the compilation stage; while

f	 in the interpretation stage they are dummy operators. The

position of the nonexecutable operators in the program is

immaterial; however, the user must remember that in case of

redefinition of an array or function the redefinition opera-

tor must have the same number as the first-definition operator.

Example.:

- 1 0 DIM JLOA)

2 A Diu A(5,6)

RAS X124 ERROR IH IJNZ 2

10 DIM A(5,6)

Array A of dimension

Or:3; Rr4) is defined;

improper attempt to re-

define the array-and

transfer it to the large"

memory;_

redefinition of the array

reserves for the array A

of dimension (0:5;11:6)
a memory of (5+1)(6+1)

machine words.

3.1 Assignment Operator LET

This operator is used to assign to variables the values

of an arithmetic expression or a constant. The command has

the format:

variable being - variable being
(LE T]< defined ? = l< defined '3 "j .•• <expression>

16

NUM

F'-' .

The LET operator calculates the value of the arithmetic
expression located to the right of the rightmost equality

sign in the line and assigns the result of calculation of

the expression to all the indexed variables.

The user must remember that the indexes of the variables

being defined are calculated before executing the first as-

signment.

Example:

The indexes of the array	 r_.

1$0e.(x,L)-Y..D0O. *Slti(3; 	 A(K,L) are calculated
before obtaining the

new value of K.

The operator LET can be executed both in the direct regime

and in the sequential interpretation regime.

Example:
	 /19

'4 0 UT A - 1 + :tItt (3.14/=(x)) V =P(4) t

7 0 B(7,9+3)	 Z(¢)	 T • 1+A+PNk (EXP(Z)).

3.2 Transfer Operator GOTO

The GOTO operator is used to change the normal program

execution sequence. The operator has the format:

GOTO -cline number>

The GOTO operator accomplishes unconditional transfer of

control to the line, the number of which is specified in the

operator. The GOTO operator cannot be executed in the direct

regime.

17

The IF operator is used to alter the order of execution

of the operators in the program as a function of the results

of comparison. The operator has the format:

1F <comparison>THEN (CQToj aline number>,

where.
arithmetic relational'arithmetic<comparisoa >;;: f expression: Xoperator >(expression)^relationa>> a>,1<1^.^s>F*R tt:t<>!><t^_!^	 --operator!

The relational operators denote:

> greater than,

A less than,,

>;P :> greater than or equal to,

c=,=< less than or equal to,

not equal to.

If the comparison is true transfer takes place to execu -
tion of the line with the number following THEN or GOTO. The.

word GOTO is an optional element and does not influence execu-

tion of the operator. The IF operator cannot be'executed in

the direct regime.

J20

kA	 18

3.4 Cycle Organization Operators FOR and NEXT

The FOR and NEXT operators are used to organize program

cycles. FOR defines cycle initiation, NEXT defines the end.

The operators have the formats:

FORS'
control ">-

ressiont> To4expression Z>variable.	 .

	

control	
lb'tEp<expression 343

NExr<^variab1aI

The control variable is a nonindexed variable with values

varying from expression 1 to expression 2 with step

equal to	 expression 3 .

The operators located between the operators FOR and n

NEXT are executed as many times as the FOR opera tor indicates.

If the phrase STEP expression 3 in the FOR operator is

omitted, the step is taken equal to 1.

The cycle consisting.of a single

operator with number 217 is re-

' peated four . times for 1 - 1, 4 0 71

10 the cycle is performed four

times.
For 1 - 1, 1 - 4 the cycle of

operators 20, 30 0 40 is performed.

For 1 - 7, 1 - 10 the cycle of

operators 20, 511, 617 is performed.

Cycle examples:
	

/21

10 FOR I n 1 TO 10 STEP

30 NLXT I

10 POR I-1 TO 10 STEP 3

&v 1 r J -%6 THEN 50

30 AM - SINt3 . 1 0 1/8)
40 IMT I
45 oo.v ©0

50 AM - -SIR (304.1/0)

60 1141T I
so RLM

The last example shows that NEXT must logically follow the

operator FOR.

19

9

it should be noted that the cycle may be terminated by

an operator FOR in which the name of the control variable
coincides with the name of the control variable of the un-
completed cycle.

s

Example:

10 FOR I w 111*3	 The operators are executed in20A(I)-CO3(3.140I/8)
30FORI +7T09 	 the following order: 10, 217,
4 0 T (I) T(x)+I/2
5018Z T I	 317, 4 pr , 50, 411a 517 0 40 0 517.

Nesting of the FOR cgcles is permitted. The maximal cycle

nesting level depends on the available memory size but must not

exceed 12.

Example:

10 FOR Iwo TO 3
20 FOR J-0 to 1+1
30 C(I.J)-14S1X(J•12)
40NSXTJ
50 MEXTI

If necessary, the NEXT operator of the outer cycle may

terminate the inner cycle.

Example:

10 FOR I-1 TO 3
20 Y0U J•2 TO 4	 Operator 35 is performed for
30 IF I y •J THEY 50
35 C(I,J)«0.	 the following indexes
40 NEXT J	 I J50 NEXT I

I 2
1 3

_	 I 4

2 3

2 4

3 4

20

The FOR and-NEXT operators cannot be used in the direct

regime.

3.5 Array Memory Distribution Operator DIM

The DIM operator.distributes the memory for one-dimensional

and two-dimensional arrays. The operator has the format:

array
DIM<name	 dimension >[,< dimension >1}

(,<array name > (tdimension>G(dimension

The dimensions indicated in the DIM operator after the

array name determine the maximal value of the index. The

minimal index value in BASIC is equal to 17. The array dimen-

sions must be integers. The use of expressions is not per-

mitted.

/MExample:

These arrays are defined
A - dimension (4:I0; 0:7);

W DDS A 00.7).D06).D(40)	
A _ dimension (4;I6);

D - dimensiou (6:40).

If the user utilizes an array without defining it in

the operator DIM, the one-dimensional array has the maximal

index lid, while the two-dimensional array has the maximal

index ltd * 10.

When using the operator DIM, the user must remember that:

a) the DIM operator may be found in any program location;

b) the memory can be distributed to several arrays by a single

DIM operator; the number of arrays in a single DIM ope.•a`cr

21

LA

is limited only by the BASIC

c) redistribution of the memory

operator is forbidden; if it

the memory to an array, this

a DIM operator with the same

case t::a memory reserved for

first DIM operator is clearer

line ,length;

to the ar -ays by a new DIM

is necessary to redistribute

can be done by introducing

number (however, in`this

the other arrays in the

9).

Example:

10 DIU AOLDOLD00,7)	
Eight words are reserved for

10 DIU A05)	
array A. 4 words for B, 88 words

for D.

16 words are reserved for a:-aay

A. arrays B and D become undo-

fined.

The user must remember that the memory cannot be dis-

tributed by implication to arrays used in matrix operations.

The DIM operator cannot be introduced in the direct regime

and is a nonexecutable operator.

. 3.6 DATA Operator

This operator is the set of values which in the course of

program execution are assigned to the indexed and nanindexed

variables with the aid of the READ operator. The operator has

the format:

DA►'7A t cons tent > C, i cona tant >7...

The constants in the DATA operator can have any form ad-

missible in BASIC and are separated by commas. If there are

several DATA operators in the program, they form the overall

22

Al

.	 n

f

ensemble of values in accordance with the operator numbers.

The DATA operator is nonexecutable and cannot be introduced

in the direct regime.	 -

Example:

10 DATA 10, 11, 12
	

A data block of six numbers
20 M example	 is formed:
30 DATA 13,4TE-T,-ttt-3	 10. U. Dt, 1S,MOO

3.7 READ operator

The operator is used to assign the variable values from

the block of data introduced with the aid of the DATA operators.

The operator has the format:

REMDt variable >[,t variable

The variables in the READ operator list may be indexed or

nonindexed. Each variable from the READ operator list takes

the values of the next constant from the data block. This con-

tinues until a value is assigned to all the variables of the

READ operator list or until the data block is exhausted. In
	 M

the latter case the next variable from tho READ operator list

takes the value of the first data block element.

Example:

After execution of the operator
20 AGU A,b,c,L,t,	 20 the values pf the variab t^.:
30 DAU +, 2.39;	 are: A = 1, B = 2; C = 3,

30 fAU 5.6.7

s0 UUD 7.01011	
After execution of the operator

5V the values of the variables

are: F=6, G = 7, H =1, I =2.

23

The operator is executable and can be introduced in the

direct regime.

3.8 RESTORE Operator

This operator is used to set the read indicator to a

definite location in the data block. The operator has the

format:

RESTORE ((element number).)

When using the RESTORE operator without a parameter, the

first data block element is assigned to the first element of

the variable list of the next READ operator. When using the

RESTORE operator with an element number, the READ indicator

is set to the data block element with the indicated number,

i.e., the first element of the data list of the next READ

operator takes the values of the data block element with the

number indicated in the RESTORE operator. The data block ele-

ments are numbered beginning with one. The RESTORE operator

is executable and can be introduced in the direct regime.

Example:
10 DATA 1,2.3,4,5.6.7

20 tuTA 6,9, 10	 As a result-of operation of the

30 XUD A 0 3 8 0	 program fragment the variables

4G W14V41 s	 take the values:
50 FIUD D.a	 A•1. H•2 . ^•3. -1.

i0 M3TO= 9	 1:•2, 1- 9, 0.10.
70 RUD Y.0

3.9 Direct Input From Terminal CPera 4or II%I?JT

This operator is used for operative input from the terminal

of the values of the indexed and nonirdexed i variables. The

operator has the format:

i

.`

/26

24

ItIPUT<element>(,<elementq

where <element> -- an indexed or nonindexed variable or

signed constant.

During execution of the INPUT operator, all its elements

are processed sequentially. If the element being processed is

a signed constant, the latter is output to the terminal in the

form of a line of signs. If the element being processed is an

indexed or nonindexed variable, execution of the user's pro-

gram is halted until a numerical constant is introduced from

the terminal. After entry of the numerical constant, its value

is assigned to the element being processed -- the variable.

Execution of the INPUT operator terminates after all the 	 /27

elements indicated in this operator have been processed.

Example:

INPUT 'A-?',A,'ARRAx',8(A),B(Ar7).B(A+2)

A•?	 -- output to terminal,

user introduces from , terminal _ .

r '	 ARRAY	 output to terminal

user inputs
-7.0	 -- from-
-2-B-3	 the terminal

i
After execution of the INPUT operator, the variable A is

equal to 12 and the elements of array . B: B(12), B(13), B(14)

are equal to l; -7, -9.VV2, respectively.

3.10 Output Operator PRINT

This operator is used to output information in zonal or

compact format. The operator has the format:

25

PRINT4element^[< .punctuation >.,.element>]...
sign

(. punctuation > -- comma for the zonal format
sign	 and a semicolon for the com-

pact format.

<element>	 expression, or line of symbols

This operator outputs all the list elements to the terminal.

In the zonal format case, each line is broken down into four

zones of 16 symbols each-. A comma standing before an element

which is to be output to an external unit means that the ele-

ment will be placed at the beginning of the next zone, and if	 /28

the last zone in the line is filled the element will be placed

at the beginning of the first zone of the new line.

Example:

10 MNT SI16- 141542/0).2+3.5.10*184

Print

O.6uuuuu4t:uuuuuu 5.5uuuuuuuuuuvu1dOOOMC.06.

In the compact format, a semicolon means that the following

element (subject to output) must be placed directly after the

preceding element if this preceding element is a line of symbols.

If the preceding element is the result of'calculation of an ex-

pression, the element being output is separated from the pre-

ceding element by a blank space.

Example:

As a result of execution of the

PRINT 1121 I .W 13	 operator 1pl, the line 1.a 2u A-)

will be output to the external

device.

26

z

rMF	 V

If in the PRINT operator-a comma or semicolon follows the

last element, the action of the punctuation sign extends to the

first element of the next PRINT operator.	 If the last element

of the preceding PRINT operator was not followed by a comma or

a semicolon, the elements of the ne -̂ +., PRINT operator-are output

from a new line.

Numerical values in the PRINT operator are printed in the

following format:

a)	 for values from the interval 	 [0.1; 106 1 	 the format

without an exponent is used; up to six significant

digits are output;

b)	 for values outside the interval 	 (o.j;	 IOG I 	 the

format with an exponent is used; up to six significant

digits are output; position 1 is set aside for the

sign and the number occupies up to 12 positions.

Example: /29

10 PRINT 1921

20 PRI14T U6,4151 A

30 PRINT 'PIVE10

Print:

The PRINT operator is executable and can be introduced in

the direct regime.

3.11
T
ransfer Operator GOSUB

This operator is used to transfer to a , subprkogram located

in the'text of the primary program. The operator has the

format:

405uS <operator number >

27

3

1

As a result of execution of the GOSUB operator, control is

transferred to the operator with the number indicated in the

GOSUB operator. The GOSUB operator remembers the number of

the operator following it for return from the subprogram.

Exit from the subprogram takes place on the basis of the

RETURN operator and control is transferred to the operator

following GOSUB.

Example:

10 GOSUB 250	
The following operators are

60 STOP

,.,	 executed: 50, 2517,	 30,
250 A • ,	 59f
300 RLTUiw

The GOSUB operator is executable and cannot be introduced

in the direct regime.

3.12 RETURN Operator 	 130

The RETURN operator transfers control to the operator

following the last executed GOSUB operator. The operator has

the format:

RETURN

The RETURN operator is executable but cannot be Introduced

in the direct regime.

3.13 Transfer Operator ON

The ON operator is a conditional transfer operator and has

the format:

0N<expression>G0T0<1ine number > [.dine numberol.••

The operator is used to create branching transfers in the

program.

0

28

_.ice-•.r3^-^t^e..a-a.. ^. -	 ^-=e	 t.^^z:':-.	 ...

-mow

x

When the operator is executed, the value of the arithmetic

expression standing after the key word ON is calculated. The
result of calculation of the expression is rounded to the
nearest integer. If the result of rounding is equal to 11
transfer takes place to the line whose number follows directly

the key word GOTO in the ON operator. If the result of round-
ing is equal to 2, transfer takes place to the line whose num-

ber is second in the line number list. If the result of round—

ing is larger than the number of numbers in the ON operator

list transfer takes place to the operator following the ON

operator. The operator is executable but cannot be introduced

in the direct regime.
F

3.14 STOP Operator	 /31

The STOP operator terminates execution of the user program

and has the format:

-'	 STOP

Upon execution of the STOP operator, the following text

is output:
;tr STOP AT nnan tsx

where nnnn is the number of the STOP operator. After output

of the text, operation of the program terminates. The STOP

operator is executable but cannot be introduced in the direct

regime.

3.15 User Function Definition Operator DEF

This operator is used to define the user function opera-

tors and makes it possible to define functions of both one and

several variables with the names FNA, FNB, FNC, ... FNZ.

29

The . operator has the format:
DEF MMetter. (4 parameter >(^(parameter

-	 name	 name
<e_xpress ion)

<parameter name> -- name of the variable used in

the expression

Upon referral in any program expression to the func-
tion

FN ;letter> (argument>[,cars-ument >]...^

the values of the arguments are calculated and the expression

indicated in the DER operator for the corresponding function

is calculated. When calculating this expression, the values of

the arguments calculated during referral to the function are

substituted in place of the values' of the variables whose

names .coincide with the names of the parameters. The expres-

sion in the DER operator may contain (in addition to parameters)

constants, indexed and nonindexed variables, and referrals to

the functions. The values of all the variables in the expres-

sion must be determined before calculating the function. The

function cannot refer to itself directly or indirectly. During

referral to the function, the arguments must be coordinated with

the parameters with regard to number and sequence. Any expres-

sion admissible in BASIC can be an argument.

Example:

10 D:MUt (x.9 i U)- UNA+31X + SIN(Y)

20A-U•%

30C m?11A(A,U,SI11 (COS(3.1415 /5))

In this example, the function RNA is defined-in the opera-

tor 10 with three parameters, X, Y, U. In the operator 3.0,

referral to the function FNA takes place. Upon referral, the

Rk,.	 30

parameter X takes the value of the argument A-11, the parame-

ter Y takes the value of the argument U-9. and the parameter
U takes the value of the argument	 SIN(COS(3.1415/5))•

The operator 30 is equivalent to the operator:

30 C-SIN (COS(3.141515))*A+3*A+S1N(U).

Application of user functions can be recommended in the 	 /33
case of multiple repetition of the same expressions; however,

the programmer must remember that in this case the computation

speed decreases.

3.16 Matrix Operation Operator MAT

This operator• is used to execute operations on matrices

(two-dimensional arrays). The operator has one of the follow-

ing formats:

MAT < array name. »carray name>C -operation Aarray name>
sign

or

MAT < arr ay name > = IN Y (K array name ,>)

< operation	 -these +"	 »	 w
sign •	 ,are	 M"'	 ., x

Multiplication, addition, subtraction and matrix inversion

can be performed in the MAT operator. In-the left side of the

MAT operator there is written the name of the array taking the

value, and in the right side there are written the names of

the operand matrices. Multiplication, addition, subtraction

and matrix inversion are performed in accordance with the rules

of matrix algebra, and the corresponding signs " + ", " - ",
it
	 ", INV are used to denote these operations. Inversion of,

matrices of dimension larger than 317 1 37 is forbidden.

Examples:

f

31

I
f

10 MAT A-A+!!
20 90 U-a•s
30 mAT z-Inv w
40 w►r x-zrrv(x)

3.17 Pro-gram Segment Dynamic Loading Operato r _FETCH

The FETCH operator is used to load (input) the program

parts (program segments) from the basic module library and to

transfer control to an operator with indicated number.

The operator has the format:

FETCH ((no. % t no. -2>j < segment . > [c no. 3 >^
name,

The following operations are performed using the FETCH

operator:

a) the operators from number 1 through number 2 located

in the operatative memory are removed (in the absence in the

operator of the parameters <number 1> , <number 2> all the

program operators located in the operative memory are removed);

b) the program segment with the name <segment name>

cataloged previously in the basic module library, is introduced;

c) control is transferred to the operator with the number

<number 3> (in the absence of the parameter number 	 con-

trol is transferred to the first operator of the segment intro-

duced from the library), The FETCH operator is used to execute

large programs, the text of which cannot be stored completely

in the operative memory. After execution of the FETCH operator,

the values of the variables and arrays remain in the operative

memory without changes, except for the arrays defined by the DIM

32

operators removed in the process of execution of the FETCH

operator.

The user must remember that use of the FETCH operator

slows markedly the program execution and it should not be used
unless absolutely necessary. It is recommended that only those
operators which are required in the segment being loaded be

stored in the memory. It is recommended that, from the very

beginning the individual DIM operators be used to define the 	 L,
memory for those arrays which are necessary only for the given

segment and the arrays which are necessary in the subsequent
segments.

The FETCH operator is executable and can be introduced in

the direct regime. A check for-the presence.of.the required

segment in the library takes place only at the moment of execu-

tion of the FETCH operator.

Example:

The following . segments are cataloged in the basic module

library:

1) segment with the name SEGMENT'

10 DIM A(4,4),B(?).C(4)

20 DZYM (X,Y) . (X:Y)•(X-Y)

30 A4 TA 1,20,40,60,8

40 FOR 1 .0 TO 4
50 RFAD D(I),C(I)

60 NEXT I
70 DIM D%4)
80 POR I. 1 70 4

50 FOR J-1 TO 4

100 A(I,J)-M(C(I),D(J))

119 NEXT I

120 NEXT(J)

130 PETO}I 40,139 ' SEGUVIT1 4 , 40

i

1	 a

r

33

a

•

2) segment with the name SEGMENTI

40 Pak 2f0 TO 40

S0 2(1)-A(112•{i*1 17? t l{C{x1z^•C{7c14)^

60 11EXT i

70tt ^c.s 40.70 •sNUBM'	 ►

3) segment with the name SEGMENT2

70 FOR 1.0 TO W
80 MNT

90 =T Y

10 $TOP

t	 If the user inputs from the terminal the directives

LOAD ' SEGMENT01

RUN

then initially there will be loaded into the memory the segment

operators 3EGMENTO with numbers from 10 to 130, then operators

40 to 120 will be performed, and the memory-set aside for array

D will be cleared. After this, the SEGMErTl segment operators

40 to 77 will be introduced and the operators with numbers 4p!

to 60 will be performed. The FETCH operator with number 70

leads to removal of the entire SEGMENTI segment and loading of

the operators 70 to 100. The FOR operator with number 711 takes

control. Execution of the entire program.is terminated by the

STOP operator with number 100.

4.	 BASIC Error Messages in the User Program

Entry and Interpretation Stage

An error message is generated in case of entry of syntactic-

ally incorrect BASIC operators and in case of onset of inadmiss-

ible conditions in the user interpretation stage. The error

messages have the following format:

34

SAS nfmn Viv'u: J XIJts tttt

where nnnn -- four-place error code;

tttt -- number of the operator in which the error is

discovered.

In case of errors in the operators in the direct regime

Z or the symbols e * e are printed in place of the number.

The codes 07171 - 17OFF are the syntactic error codes;

the codes 0101 - 171FF are the standard function execution error

codes.

4.1 Error Message Codes

Code	 Cause

0001 invalid operator number

0002 error in left side of LET 	 operator

0003 ambiguous operator

0004 in the READ operator the expression is not

used in the variable index

0005 error in syntax of expression or 	 error in

DIM operator constant list'

0006 error in DEF operator parameter list

0007 add number of inverted commas in a line

0008 incorrect constant

0009 nonexistent standard function

OOOA operator not completed

0003 error in DIM operator

OOOC redefinition of user function, and the numbers

of the DEF operators do not coincide

GOOD forbidden separator used in the PRINT operator

000E inverted comma in forbidden operator

.GOOF excessively long symbol constant in PRINT

i

35

0010 error in variable identifier in NEXT operation 	 t^
0011 comparison operation used in opera tor differing

from IF

0012 no comparison symbol in operator IF

0013 operator being removed is not present.

0014 excessively long program (large number of operators)

0015 it"	 "	 (long overall operator

' text)

-	 OOlc incorrect format of LIST command

-	 0017 more than A letters used in book name in SAVE

or LOAD commands

0018 book being loaded by LOAD command is not found in

the library

0019 no room in library for book being cataloged by

SAVE command

OOlr invalid number in RUN command

001B inadmissible operator in direct regime

001C incorrect syntax of FETCH command

OO1D "	 "	 RENUMBER operator

=	 001E "	 "	 "	 CLEAR operator

OO1F "	 "	 "	 SELECT operator or

Inaccessible printer

0021 right bracket missing in expression

0022 left bracket missing in expression or

excess comma is present

0023 array of dimension over 2 is defined or used

0024 conflicting distribution of memory by DIM 	 /39

operator, i.e., attempt to distribute memory

_ by two different operators

0025 excessively complex :expression

0026 memory inadequate a'or arrays

?	 OC27 undetermined error in expression syntax

0023 too many constants

O10C over-filling of order

'	 ,,6

I

OlOD disappearance of order

010E loss of significance (excessively small

numbers obtained in calculation)

01OF division by zero

0111 variable being used is not defined

0112 too many simple variables

0113 inadequate memory for distribution of array

by implication

0114 array index outside given bounds

0115 maximal cycle saturation exceeded

0116 too many parameters activated simultaneously

0117 undefined function is used

0118 number of argument when referring to user

function not equal to number of parameters in

DEF operator

0119 data black defined by the DATA operator is

exhausted

011B array used in matrix operator is not explicitly

defined

011C invalid dimensions for MAT operator

011D incorrect information entry during operation

of INPUT operator

0122 transfer to undefined opera^cor

0123 depth of transfers using GOSUB is exceeded

0124 use of RETURN without GOSUB operator

0126 array element possibly did not take initial value

0201 attempt to calculate TAN(x) with	 004- 141S02#24043.

0202 it	 tt	 t '	 TAN(x)	 with	 142,	 t4150#114(M
a R

/40

0203
	 it	 it	 ft

0204	 it	 o	 n

0206	 tt	 n	 tt

0207	 tt	 n	 tt

SIN(x) or COS(x) with
WD, 3.1415420260C

EXP(x) with 'x s174.6737

SQR(x) with 2c6

X0OY	 with k `if. Y 10*

37

r i

0208
0210
0211

0220
0224

attempt to calculate L00{x} with 46 9
zero determinant of matrix being inverted
attempt to invert matrix of dimension over
30030

forbidden input symbol
forbidden output symbol

38

operators removed in the process of execution of the FETCH

operator.

The user must remember that use of the FETCH operator

slows markedly the program execution and it should not be used
unless absolutely necessary. It is recommended that only those
operators which are required in the segment being loaded be

stored in the memory. It is recommended that, from the very

beginning the individual DIM operators be used to define the 	 L,
memory for those arrays which are necessary only for the given

segment and the arrays which are necessary in the subsequent
segments.

The FETCH operator is executable and can be introduced in

the direct regime. A check for-the presence.of.the required

segment in the library takes place only at the moment of execu-

tion of the FETCH operator.

Example:

The following . segments are cataloged in the basic module

library:

1) segment with the name SEGMENT'

10 DIM A(4,4),B(?).C(4)

20 DZYM (X,Y) . (X:Y)•(X-Y)

30 A4 TA 1,20,40,60,8

40 FOR 1 .0 TO 4
50 RFAD D(I),C(I)

60 NEXT I
70 DIM D%4)
80 POR I. 1 70 4

50 FOR J-1 TO 4

100 A(I,J)-M(C(I),D(J))

119 NEXT I

120 NEXT(J)

130 PETO}I 40,139 ' SEGUVIT1 4 , 40

i

1	 a

r

33

a

r i

0208
0210
0211

0220
0224

attempt to calculate L00{x} with 46 9
zero determinant of matrix being inverted
attempt to invert matrix of dimension over
30030

forbidden input symbol
forbidden output symbol

38

	1980002568.pdf
	0006A02.TIF
	0006A03.TIF
	0006A04.TIF
	0006A05.TIF
	0006A06.TIF
	0006A07.TIF
	0006A08.TIF
	0006A09.TIF
	0006A10.TIF
	0006A11.TIF
	0006A12.TIF
	0006A13.TIF
	0006A14.TIF
	0006B01.TIF
	0006B02.TIF
	0006B03.TIF
	0006B04.TIF
	0006B05.TIF
	0006B06.TIF
	0006B07.TIF
	0006B08.TIF
	0006B09.TIF
	0006B10.TIF
	0006B11.TIF
	0006B12.TIF
	0006B13.TIF
	0006B14.TIF
	0006C01.TIF
	0006C02.TIF
	0006C03.TIF
	0006C04.TIF
	0006C05.TIF
	0006C06.TIF
	0006C07.TIF
	0006C08.TIF
	0006C09.TIF
	0006C10.TIF
	0006C11.TIF
	0006C12.TIF
	0006C13.TIF
	0006C14.TIF

