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ELEMENTS OF THE THECRY OF MOLECULAR SPECTRA

L. A. Gribov i

FOREWARD . ' ]

In this paper we present the basic aspects of the theory - /2%
Eoncerning the spectra of multiatomic molecules: the classifi-
cation of the forms of motions in a molecule, the methods for
determining the corresponding Schroudinger levels, the spectral
types and the selection rules. The paper is intended for a wide
circle of astrophysicists who are interested iIn the spectral
properties of molecules so as to ldentify their presence and
state in outer space. |

f In recent years a whole series of molecules have been dis-
-covered in outer space, including multiatomic molecules. There
is reliable evidence that such molecules as formaldehyde, ammonia,
methylacetylene, acetaldehyde, methyl aicohol,*etc. exist there.
At present mdre than 20 molecules and molecular ions all told
are known which are found in outer space. In this connection
, the interest of astrophysicists in these formations which'are
new to them is understandable.

The search for molecular formations in space and their inter-
pretation, their identification is carried out by means of spec-
tra. Basically these spectra are recorded at present in the
radio-frequency range, but obviously In subsequent étages both
radlation and absorption in the infrared, as well as in the ultra-
violet regions of the spectrum will be used to recofd_and identify
molecules. In other words, research will be conductédgin all .
ranges where molecular spectra appear. v

#Numbers in the margin indicate.pagination of original foreign text.
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A molecule is a system which is significantly more complex /,
than an atom. Along with the motions of the electrons, there
exist in molecules felative motions of the nucleil inside the
molecule (vibratory motidns), as well as the motions of the
entire molecule as a whole¢ (rotary motions)¥*. As a result,

molecular spectra possess significantly greater varlety than /4

atomlc spectra. Consequently the interpretation of molecular
spectra and thelr theoretical calculation become problems which

*are lncomparably more complex than the problem of calculating

and interpreting atomic spectra.

The purpose of the present lecture is to give a brief resume
of the basic aspects of the theory which deals with the mole=-
culare spectra of multiatomic molecules and to indicate the
éomputational approaches which can be used to study the mole-
cular spectra of multiatomic molecules in order to interpret
them and to analyze possible dhanges in the spectra due to var-
ious kiﬁds of influences on a molecule. Naturally, the brevity
of the lecture does not allow us to dwell on many important
subtiled questions in the theory of molecular spectra; therefore
we shall restrict ourselves to a discussion of the most funda- .
mental theoretical aspects of the subject.’ ‘

At first glance it may appear that the "astrophysicist-
molecularist" hardly ever‘encounters problems involving a de-
tailed study ard, a fortiori, the calculation of a molecular

spectrum. - Indeed, if a molecule is in a basiec state in an approxi-

mations thereto, then its spectral identification can be carried
out by means of a chart or by a more complex approach based on

a so=-called artificial intelligence. The development of special
automated systems for identifying molecules by means of their
spectra has now become one of the most intensely developing
trends in instrumental analytic chemistry, or more ‘precisely,

analytic physies. . The reader can acquaint himself with sdme of

¥Translational movements are of no interest to us.
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the most important aS\ects of this branch of science by consulting J g
the review [1]. HoweVer, it is clear, a fortiorli, that under

the conditions of outer space, where molecules are subjected to

the influence of quite powerful ultraviolet radiation and x-rays,'
molecules can be found in the most wvaried states, including those /5_

that are highly ionized. Here the problem of identifying them

spectrally 1s extremely complicated and can rarely be done with-

out a detailed theoretical analysis of the possible spectral i
" transitions between the energy levels of the "suspected" mole-
cule or ion. It is precilsely for this reason that the con-
temporary astrophysicist is obliged to know at' least the basics
of the theory of molecular'spectra. The reader who wishes to
acquire a more profound knowledge of this theory may consult
the monographs [2-6].
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l. Classification of Molecular Mbtions, the Equations for
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As is well known, in order to define and study the energy
levels of any complex system, it is necessary to formulate and
solve the appropriate Schroedihger equation. In The case of
multiatomic molecules this equation can be written as follows:

S EIrTI Rpr T
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(T(q,h'?(Q)*V §: &+ V(@ up)z{;,efz ’{'(q o, 0 (1)

Herel a”‘(%) is the operator which expresses the kinetic
energy of the electrons,

is the kinetlic energy operator of the nuclel of
the molecules;
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V =V (9,9. is the operator for the Coulomb attraction between -
@9 the electrons and the nuclei , or the operator of
the electron-nucleus interaction; S
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V «y (@) 1is the operator of the Coulomb repulsion between
A the nuclel, or the operator of the nuclear inter- /6_
action;

Vo= V;(i) is the operator of the Coulomb repulsion between
the electrons, or the electron-electron.inter-
action;

\.ﬂ)

and é) are respectively the election and nuclear co-
orcdinates.

In this form the equation is called the Coulomb approxima=
tion equation. More complex interactions such as the electron- !
orbital effects, spin effects, etc., can only be taken into
account in the higher approximations of the contemporary spec-
trum theory of multiatom molecules, since they lead to small
correctlons and correspondingly to very small changes in the
spectra which are difficult to record experimentally as & rule.
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The Schroedinger equation in the form (1) cannot be solved
exactly and therefore in order to obtain information about the
energy levels in multliatom systems it is necessary tq make a
whole series of supplementary assumptions and to apply the
technique of approximate calculations which is based principally
on various versions of variational methods.

g? The basiec apprpximation which is used to calculate the
gf energy levels corresponding to the movements of electrons 1s
; the so-called adiabatic approximation. The ability to use this } 
approximation is based on the fact that the operator of the , -
kinetic energy of the electrons and the nuclei contains the
opposite masses of the electrons and the nuclei. Since the
masses of the nuclel exceed the mass of the electrons many times
cver, the intrinsic equation describing the purely electronic
movements can be obtained if it 1s assumed as a first step that
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the masses of the atoms are infinitely heavy relative to the
electron masses. ' |

In this case the operator of the kinetic energy of the npclei

in (1) can be entirely omitted, and the energy contributed by -

the nuclei-nuclel repulsion is simply considered as an_addi-
tion to the energy of the purely electron movement. In this
case the problem becomes a problem ooncernihg the movement of
*electrons in a field of immoble nuclei. The corresponding equa=-
tion for this problem is: ' .

A . o )
(T;UV*KR(‘L)*%(‘V’%)OPJ%}' E, % (. (2)

On solving this equation, we obtain the values of the
energy levels which correspond to the pﬁrely electron movement,
or, as one says, the value of the electron energy levels. If
vie select some fixed arrangement of the electroﬁs relative to
each other, then to thls fixed position of the nuclei there will
correspond its own set of electron encrgy levels. If the rela-
tive arrangement of the nuclei is changed, then we obtain a
new problem concerning the electron energy level. On solving it;
we find a new set of values of the energy levels. ‘

If a moleculewib deformed over a sufficiently wide interval,
then eack value of the energy level is a function of the mutual
arrangement of the nuclei, and will depend on the parameters
Just as on the coordinates which descfibe the arrangement of the
nuclei relative to each octher. Since these very same coordinates
can be used to describe the purely vibratory movements, we shall
henceforth say that each electron energy level is a parametric
functign of the vibratory coordinates. Each value of the electfon
energy Em(w (m =£,2,3...). will be stored on some smooth surface
called a potential surface of the molecule. There will be as
many surfaces (in the case of the two-atom molecules -~ potentilal

curves) as there are values Q;J(QL . The potential surfaces - /8
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of multiatom molecules are extremely varied. The form of these
surfaces 1s essential to an understanding .of the nature of mole-
cular spectra and therefore it is useful to give at least a
rough classification after we have distinguished their possible
forms as follows. ‘

1. Potential surfaces with a single minimum.

For the one-dimensional. vase or section such a potential
surface is shown schematicel 13 in ¥ilg. la. This potential sur- TR
; face 1s characteristic of many moigcules, especially in the so-
L called basic or equilibrium configurations. The minimum energy
value corresponding to such a surface represents the energy of
a molecule in the basic state, and the set of relative coordin-m".
ates of the nuclel corresponds to the equilibrium configuration
of the molecule. Molecules which.are in states with a single
minimum have a clearly expressed geometric form. After computing
the position of this minumum as a function of the relative co-

S G e &

configuration of the molecule and, c&nsequently its form.
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i Fig. 1. Schematic representations of the potential - :
' curves or sections of potential surfaces. ‘

ordinates of the nucleil we can find the equilibrium geometric -~ - -
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2. Potentia1\§hrfaces with two or more minima. " /9 _

Often situations are encountered in which the potential
surface has two or more minima'along one or several coordinate-
:axes (ef. Fig. 1b, e). This'ogcurs, e.g., in the ammonia mole-
cule in the case of the coordinate corﬂesponding to the movement
of the nitrogen atom shown in Fig. 2.

Fig. 2. Inversion movemeht (shown by the

arrow) of the nitrogen atom in an ammonia
molecule.

oL R T N

Fig. 3. Trans- (a) and cis- (b) isomers of a
molecule of dl=chlorethylene.
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{g The nitrogen atom with the highest probability is arranged either

‘ ~above or velow the pléne of the three hydrogen atoms. When it

= has attained a sufficiently laﬁgé amplitude this atom may "cut

it through" this plane and go over into a lower state. The potential
 % curve representing this movement has the form shown in Fig. 1b.
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The existence of such potential surfaces?with two minima leads
to & characteristic phenomenon in spectra wiiich is called in-
version doubli_g. 3

)

\

Surfaces with two minima arise when so-called cis- and
trans-isometry occurs. Examples of this type of isometry are

ﬁr . ,
' )

Fig. i, Rotational isomers of a molecule of di-
chlorethane (view along the C-C bond).

As a rule, the transition of a cis~isomer into dftrans—
isomer requires a significant amount of’energy. Therefore the
potential barrier separating the two molecular states turns out
to be so high that we, -may speak of the existence of two different
molecules (respectively the eis- and trans-isomers)., Potential
surfaces with many. minima are encountered when there is so-called

...............

An example,of rotational isometry corresponding to the
potential curve in Fig. lc is shown in Fig. 4,

If the potentlial barrier separating different possible sur-
face configurations of molecules is sufficiently high.and broad,
.then we may'speak of several’different;molecules corresponding
to different rotational isomérs,‘ano when analyzing their spectra,
simply consider each'of these possible isomers individually. '

shown in Fig. 3. /10
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If however, as is often the case, the potential barrier
separating individual isomeric forms is not very large, then such
an approach is incorrect and it i1s necessary to solve the problem,
taking into accéount the multi-minima property of the potential
surface. The presence of several minima in this case may lead
to the appcarance of a number of energy levels which differ
very little from each other. In individual cases these levels
are'situated S0 near one another that in the spectrum they do

‘not appear individually, but only an expansion of the absorption ~ /11
or radiation bands 1s observed.

3. The third characteristic type of potential surface
comprises surfaces which have neither a single minimum nor very
deep minima (ef. Fig. 1d). Such surfaces correspond to unstable
molecular states. This type of surface results in the appear-
ance of discontinuous spectra. '

4. PFinally, the fourth type of potential surface is a
surface which has gullies of either extended or annular form.
These surfaces arise when there is degeneracy of the electron
state, and they also result in the appearance of definite pecu=~
liarities in the electron and vibratory spectra of multlatom
molecules. When a sufficiently prolonged gully is present rela—
tive to certain coordinates, the concept of the form of the'
molecule may become meaningless.

To solve the Schroedinger equation for the movement of
. electrons is an extremely complicated problem, and the soliution
cannot be expressed in analytic form.

_ However, there are specific methods for obtaining appro-

i ximate solutions tc this equation. Later‘we shall give a brief
characterization of these methods. For the present we shall only
_'Q show that, although the result is merely approximate, neverthe-

. less, by means of the contemporary theory of electron.shells it
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is possidble in the case of multlatom molecules to calculate
numerically both the parameters of the potential surfaces of"

molecules as well as the eriergy levels to a degree of precision”  fl‘”ﬂ£
which is sufficient in many cases to 1nteﬂpret reliably at least - }"3'1
the basic absorption and radiation bands iin the spectra of mole- =¥

\'
n

cules which sometimes contain tens of atoms. /'This especially
concerns systems which posseséﬁsosca%iéd"dﬁfugate bonds. Among
such systems are the molecules of benzene, naphthalene, anthra-

*cine, compounds of the diene type, etc.

It
\“\

If we know the solution (the energy values and the eigen- O
functions) of equation (2), then 1t,1is natural to seek the solu=- o
tion of (1) in the form:

i Al i S

%, 0=%6.0%0 | )

Here and below we »nall assume that all the eigen-functions
are real. The symbol Q ‘and the notation @W(q 60 emphasize
the parametric dependencé of this funection on the nuclear co=-
ordinates. 3

{ : .
Let us substitute (3) into the expression for the mean
value of the Hamiltonian of (1):

W(q,@‘qf (@1 +1g ‘?F(q 0)‘2?(0)dzid

o - O 3,
R A A T T U

{4)

Here

) Va-a. 59 .._ﬂﬁ R ' (5)

Integrating in (4) with respect to the electron coordinates,
and taking into account the orthonormalization of the functions
and assuming that‘the function ‘@g(@,gﬁ depends weakly on the
nuclear coordinites (this is correct in the absence of electron

5
i

EERSTE T b T
)
o

e
8




Jain aauliE A B o . a P
. . . B "
o L. - i " .
. PR K
Vol

degeneracy), so that we may neglect the effect of the differen-

tial operator 'Tg on this function, we obtain 2
H j‘awu)[’f‘ *-F(O)]"H’(@)W (6) ;
(recall that ££ depends parametrically on the nuclear coordin-
ates).
‘ Selecting some origin of reference (usually the minimum ST
point of the potential surface is chosen), we represent E (Q)
in the form ' ) .
w 1G)+ £ Q/ ‘ . B :
Then H= S (.1t , - ) | o
J - :
. i
(7) |
| - | 7;1
where - _ ' o
hz L +az |
Thus we may conclude that the intrinsic equation for nuclear 13 y
; motions must be
¥ A _ ' ‘ ,
[T (Q@+aE (@)% (@=E, % (o, @)
f This treatment conforms to the adiabatic approximation in
4 which it i1s possible to .separate the electron and nuclear motions. :
g The values of the energy levels are then calculated by means ' 'ﬁ
4 of the formula: f
: £, E' U)* I, . |
iw i
513
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equations of the type (8) with differient potential functions
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The role of the potential energy in equationﬂ(B) is filled
by the term AL, (), "which represents the 'increment in the
mean value of the total electron energy in comparison to the
initial value, taking into account thk anleus-nucleus repulsion.
The quantities Af((/ and vv‘,q are calculated for each electron
state. Consequently, in order to investigate completely the
nuclear movements, it is necessary to solve a large number of

i

‘corresponding to the potential surfaces.

In order to separate the electron and nuclear variables, we

must introduce supplementary assumptions. A precise solution
of the problem can be obtained if we construct a wave function
in the form of linear combinations of adiabatic wave functions.-
This involves computing the various kinds of matrlix elements of
the electron-nucleus interaction and solving homogeneous alge=-
braic equations. Generally speaking, this does not present any
basic difficulties, but it is a very laborious\problem. In

- ordinary theoretical calculations of spectra such operations are
‘not performed. Corrections for nonadiabaticity become essential '
only when the potential surfaces of two or more electron states s

come together. Ordinarlly this occurs only at individual points
which as a rule are remote from a minimum. in this case elec=-
tron degeneracy arises and the corrections due to the energy

of the nuclear motions are not small in comparison‘with the dis=-
tance between. the energy levels correspondiné to the purely
electron motions. The nuclear motion removes this'degeneraCy
and results in specific effects.“ One of the most interesting

- of these is the Jain-Teller effect [7]

We shall consider only those cases in which we can confine
ourselves to the adiabatic approximation. ,_Then the nuclear motion

- can be described by the Schroedinger equation of type (8). The
: potential part of this equation depends obviously only on the

change in the relative arrangement of the nuclei. If the entire
system of nuclei is translated or rotated then the potential
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part should not vary here. Therefore a further simplfication of

the equations can be achieved if we introduce a sultable system:
of coordinates which describe individually the relative motions

of the nuclei (or their oscillations) and the rotation and the

translational motion of a molecule as a whole. The kinetic energy

operator of the nuclel for a multiatomic molecule has the follow=-.
ing form in an aribtrary system of curvilinear coordinates:

A oo e o Tin R .
T.q”"nganI a0k<)"rl”" 2@, /. Qo)

Here the an are the elements 6flthe so-called matnix'of

the kinematic coefficients(T) ;. ... e ot
rrf' is the determinant of this matrix.
The matrix of the kinematic coefficients contains the

elements written in the selected curv;linear coordinates, which
are included in the-classical expression for the kinetic energy

AT

of a set of material points. As well known, this expression is ' /15
given by a quadratic form:
| el s B
Tkun 2 f;,cknFL73»'

- where fi' are the pulses conjugate to the chosen vibrational
coordinates (describing the deformations of the
molecule), the rotational and translational
coordinates. The latter are invoked to char- 7
acterize the motions of the molecule as a
whole. '

The elements an form a square symmetric matrix and in the
general case they themsleves depend on the curvilinear (in parti-
cular, the vibrational) coordinates. . ‘

13
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Mathematically the separation of the variables (the vibra~
tional, rotational and translational) is connected with vhe trans—i
formation of coordinates under which the matrix T is reduced
to block form.

If the isolation of the translatlional motions cah,befcarriedf
out in the simplest fashion, then the separation of the'yibraa .
tional and rotational motlons cannot be performed precisely in
‘the case of a multiatom molecule. One of the reasons for this

~ 1is that the very concept of the rotation of a system 1s not.

completely defined in this case 1f the system itself is deformed
in the process of rotation.

Indeed, if we are dealing with a solid body, then in this
case its position in space can be characterized by specifying
the angles between the directions of the principal moments of
inertia and the axes of the external system of coordinates or
the Euler angles. In a solid body the directions of these
principal moments of inertia are fixed relative to the body
itself. If, however, the body is not solid, but similar to a
molecule in the state of performing vibratory (relative) move-

ments, then the values of the prineipal moments of inertia{vary /16

over time both due to the fact that the body rotates in space as

a whole, as well as because it is deformed. Only in‘gge two-atom
molecule is the location of the axis of the molecule iﬁéependenf
of its deformatlon, -and in this case the 1solation of the oscilla-
tions from the rotations can be carried out completely. In the
multiatom molecule such an approach not connee%ediwiﬁw-the oscil-
lations cannot be introduced successfully and therefore the
scparation of the oscillations from the rotations can be performed
only approximately.. We cannot dwell on this important and inter-.b
esting question and we refer the reader to the speclal literature
[8]. v .

Let us,aséume, however, ﬁhat such a separation has been

carried out. .In this case the kinetic energy,operator'fon'the

14
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nuclear motion can be répresented in the form:

7; b il * T} 1

Accordingly the equations for the vibrational and rotational mo-
tions separate out and have the form:

e aE)¥ SR

e (1)

(12)

The coefficients contained in the‘equation'for'the rotational
motion depend parametrically in the gengral case on the coordinates
describing the defrrmation of the molecule. Therefore, generally_

speaking, the equations (12) must be solved for the different
oscillatory states of the molecule.

Only in a speecific approxi-
mation can this be omitted. : B
Finally, the complete wave functions of the molecule in the
adiabatic approximation and 1n the approximation to the complete

separation of the oscillations and rotations can be written in
the following form: v ' '

Qe QUL QD '74’40‘ )
A (13)

Accordingly the total energy of the system can be represented in ' /17
the form: '

where Ek' and gz are respectively the eigen-values of equations
(11) and (12).
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1
o Therefore the system of levels of a multiatom molecule can ;
_§ be represented schematically as follows (cf. Fig. 5). During 1
_ f the interaction of an electromagnetic wave with the molecule, or %
f if the molecule is in a disturbed state, then various transi- :
tions between energy levels can occur (ef. Fig. 5), resulting in
the appearance of radiation or absorption spectfa. . "
. £ &, ‘
E R ,‘ /)] k¥ e e s s RPN !
i h\t E)' i
—_— s 2 v
! == = ;
: ——— M =] 1
; —_—= i Lon 2 &
o —_— ° 3
) fi A 5/’( % - :\i
F ; . 14
; ; £y 3
ol ‘ o ] :
g ? ' 2 fee— , Gonf | @ i
; o === == i ’ f-
o ~ f == R g :
5 i 1
. o = A <] © ;
¥ E 4 ‘\ —_——— i I)‘
S A o
SO = B a—— =
2 i i s i wallber st aiie’ -
% Fig. 5. Scheme of the levels. and possible transi-
L tions (of spectra) in a multiatom molecule, ;
% _ .
1 - purely rotational transition; Zlg ;
2 - purely vibrational transitions;
3 - purely electron transitions;
16
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4 - vibrational-rotational transitions;

5 - electron-vibrational transitions;

, 6 - electron-vibrational-rotational transitions;

Since the system of levels turns out to be extremely rich,
then naturally, the spectra of molecules also turns out to be
extremely varied.

Let us give the characteristies of the basic types of mole-
cular spectra.

JRPtes—,

2. The Types of*Moleéhlar Spectra

If the transitions between the rotational levels of the same

- electron and vibrational states are completed, then the so-called

purely rotational spectra appear (cf. Fig. 5). The electro-
magnetic radlation or absorption related to these spectra cor-
respond to the remote infrared or the microwave radio region.

If the transitions between the vibrational levels of the
same electron state are comp.eted, then there arise purely vib-
rational spectra (ef. Fig. 5). The radiation or absorption fre-
qﬁencieg corresponding to these spectra lie in the near or the
medium infrared region (the corresponding wa&e lengths ‘occupy a

range of approximately 2 to 100 microns). . .As a-rule, however, =ww.

along-with the purely vibrationallmovements, rotational movements
also build up, or the transitions between the rotational energy
levels which are close to the glven vibrational energy level are
completed. Therefore the vibrational-rotational spectrum appears
and the so-called rotational structure of the vibrational Absorp4 o
tion or radiation bands 1s observed. ' An example of 'such a spec=-

trum is shown in Fig. 6. e / o /19
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Fig. 6. A vibrational-rotational absorption._
band of a molecule of methane in the 1340 em
~region.

1

If the transition between the various electron energy_levéls
is completed (cf. Fig. 5), then, as a rule, transitions are
observed simultaneously between the vibratlonal and rotational

states corresponding to the different electron levels. Spectra

Since the rotational energy levels in complex molecules are
crowded very close to each other, tﬁé individual rotational
tfansitions are often not observed. Blurs are obtalned. Often,
especially in large molecules, which turn out to have many
vibrational levels that are often located 1n the spectrum, the

- individual transitions represented in Fig. 5 also do not appear,
and as a result, broad, diffuse radiation or absorption bands are

formed.
Fig- 7.

An example of the corresponding spectrum is shown in

Such are the basic features of the various kinés of molecular
spectra. | |
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Fig. 7. Tﬁe electron absorption band
of a butadiene molecule.
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Let us now turn to the solution of the Schroedinger equa-
tion for electron, vibrational and rotational mdtions.

3. Solution of the Moleeular Equations.

1. The electron equation.

The Schroudinger equation for electron motions has no exact
_analytic solution. Even the problem of the movement of a single
_‘electron in a field of many centers is indeterminate. 1In a real
molecule there are many electrons, all of which interact with
- each other. This, of course, substantlially complicates the
problem.

‘ The entire space in which electrons may move can be roughly
divided into two parts: the first, which comprises the Spade
between the nuclei as well as that close to them; and the second,
which 1s the peripheral space. In the peripheral region the :
action of the nuclei is reminiscent of the action of a concen= -

-

-
e s i e . e

trated charge and the electron orbits take on the features of B W
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is ained, and the total removal of an electron, i.e., the
ionicavion limit for a molecule corresponds to the 1limiting

case of an electron transition. 1In a'good approximation the
energles of the Rydberg ‘states can be represented by the Rydberg
formula: I ' o

""). =A - R;'c
ST e

é N R oty o1y it ¥ e s gt b LT AR o

"where A 1s the ilonization limit of ‘the molecule; ' ‘221'

'R 1s the Rydberg constant;;
m 1s the principal quantum number;

o 1 is the Rydberg correction -which assumes values
"~ for different molecules 1ying in the interval from
0.1 to 1.2, ‘
. ! .
The clrcumstances are significantly more'complicated in
the case of the inter- and near-nuclear region. ' '

s 318 e et o

In this region the electrons move in a very complicated
field of nuclear attraction. It is impossible to obtain an
even approximately analytical eXpression‘for’the‘energy levels .
and the eigen-functions in the general caSe.} Only certain
states of linear and plane aromatic molecules with a developed
conjugate constitute an exception. Here we: may use models va
free electrons in potential ¢ontainers of different forms as
qualitative characteristics (theggpeealled‘metallic,models).

The general principles for solving_the electron'problem are
as follows. If at the first stage we neglect the interaction '
of the electrons with each other, then the problem of the motion

. of electrons 1s similar to the problem of an atom with a single

electron. There 1s one difference, howeVer., The present problem
is solved for a field with many centers. The‘Hamiltoniaﬁ“of this

20
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problem, ”. is given by Ny = La‘ Lﬁ ; « The ﬂorrespondh
ing solutions can be found by the variat*onal me*hod from: the =™ " ..

. extremum condition for the total electron energy in the field

of the nuclei, after selecting an appropriate sample fﬁnction
(molecular orbital). A linear combination of the atomic orbi-

tals (abbreviation: MO LCAO) which has the form -
- | L
o= L C. '-Z" .
r P kRO | (14)
is used for this purpose. .Here the coefficients Ck are certain

variational parameters which are subject to determination on the
basis of the variational method.

The functions Xk are non-variational funcéions; for this
purpose somewhat simplified atomic hydrogen-like funetions are
usually assumed which correspond to the basic electron state of

each of the atoms entering into the compsoition of the molecule.

Each function Xk or atomic orbital is centered on the corres-
ponding nucleus. Thus the molecular orbital 1s constructed

as a function defined on the entlire space of the‘molecu1é being
studied.

The mean value of the operator f{’w in (14) equals the -
quadratic form H“” Z ck,n /z,, with elements

1} ='!‘ o) * . '

Pin l;k}Q fgder . The external values of this quadratic
form are found exactly by means of the supplementary requirement
of orthonormality imposed_on the functions (on the ellipsoid

= ¢ .J-., —_— .
S ch nka , Sin= f/'b",z #r g, ) and they are the

approximat» eigen-values of the Schroudinger equation with the

0
operator }i . Thus the matter reduces to the caleulation

of the matrix elements hkn and Skn and finding the eigen-numbers

and vectors of the pair of quadratic forms Eﬁmu and S.

21
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To each eigen-numbar'Ex:) there corresponds it orbital
) y : : :
Qi;“%;ck R N ~, where the 'Cénv " ave the elements ]
of the corresponding eigen-vector. It is'immediately evident
that since the number of the coefficients "C" in the linear com=
binations of the atomic orbitals is finite then as a result,
on solving the corresponding Schroudinger equation by’ means of _
this procedure we shall find a finite set of energy levels, . /23
'whereas,‘generally'speaking tovthis equation'there'correspondS’ :
‘an infinite number of energy levels. Therefore the energy of
the basic electron state and that of a nnmber of nearby states
are usually calculatedt The states corresponding to highly
excited levels have not, as a rule, been successfully determined
with satisfactory precision by means of such a scheme. '

The functions 7}04 characterize the spatial states of tne
electrons. In the case of the characteristics of the spin
- states the functions yw,, dominate the spin components a and B
{corresponding to the proJections of the spin +1/2 and -1/2). ° L
This yields the so-called spin-orbitals. Henceforth we shall
always assume that the molecular orbitals are spin-orbitals.
Such a simple representétion of the spin-orbitals is possible
if we neglect the spin-orbital interaction, as 1s usua]ly the
case. -

If there are many electrons in the‘system, then it is nec-
essary to arrange them with respect to the spin-orbitals in '
accordance with the Pauli principle. which assigns to each of them
its own number. Each possible arrangement of the electrons
with respect to'the‘Spin-orbitalsucorresponds to one of the
possible electron configurations - The energy of.such. a.configura-.wiu

. tion is E=ZE ™ - and the eigen-function Y- /7 lf"b' , where '

‘ the summation is over all the spin-orbitals. We must take into
account the fact that the spin-orbitals which differ only in their
spin components have the same energy.' '
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The electron configurations which differ from each other .
only in the number of electrons filling the spin-orbitals evi-
dently . possess the same energy. Thus each state with the elgen-
function ?{%, J‘U' is IJV') -fold degenerate in accordance with “
“the number of different arrangements of "N" electrons with res- /2
pect to "N" spin-orbitals. The general" expression for.the
electron elgen-function must then be sought in the form of a
linear combination of expressions of the type £1¥if) with
| . different arrangements of the electrons with respect to the

spin-orbitals. | '

The reasons connected with the Paulil principie and the
antisymmetry of the electron function relative to the trans-
position of any pair of electrons lead to an eigen-function in
the form of the Slater determinant

i) 9% . ¢ | |

i 'f..'”'“ f?w() LF’::U’) D

P == u,?'”’a), A CIITNE N (15) o

‘ Mﬂf, : Ce e - V |
| qu(z, #j?(f) o ?J,‘(ﬁO

e

In this determinant the function ﬁf” is one of the "N"
spin-orbitals occupiled in the givén electron configuration. In ?
parentheses the numbers of the electrons are shown which are in o %
the spin-orbitals.

, {0 ,

If the functions *;4 - are found with a sufficiently high
degree of precision and the numﬁer of A0 is large, then the
' solution of the Schroudinger electron equation, can be agaln

PN

Rt g aks A

R

23

T I IR T CEY TRy



B S k. LIy

s
o

vk SRR
P a2 L g

P TN

ik

PSR TR s

T e NIRRT

found, taking into account the electron-electron interactions.by

the variation method with a function in the form of a linear

combination of Slater determinants (the method of superposition

configurations), i.e., in the form Q ﬁ-” {; , in every case

for a number of lower electron sﬁates. The situation, again

reduces to a search for the external values of the quadratlic.......

form Ha :,ZC‘ Cj"h"! with elements H jCP "’ d’ dg

on the sphere 3.1 ffd~. It should be noted that the elements.
?ﬂé = 0 when the configurations 'ﬁ» and ‘% correspond to

States with different values of the projections of the total

spins for the multiselectron system.i

Now let us concentrate on one important circumstance. Sup- /25

pose that we have configurations ¢°'ﬁ.= and‘# *y COrres-
ponding to the same spatial state, but with a different distri-
bution of spin components and spin-orbita*s.

This is shown schematically in Fig. 9,

— =
o

P Lo i 3
H- R e A

Fig. 9. Scheme of the possible arrangement

of four electrons with respect to three energy.
levels, leading to the appearance of triplet
and singlet states.

If we neglect the electron-electron interactions,.then all
four electron configurations will have the same energy; Four-
fold degeneracy occurs.‘ Taking into account this interaction
and calculating the elements M.. ¢i » we find that H h&,#=0 e
d' =Hat0 M=l ety = % hﬁs~s (states_with differ-
ent projections of total spln orbitals) H,,#=0 .. The eigen-

24
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numbers of the corresponding matrices are ﬁ}='@1 » £}=}e,

EJ = /&i.:j -+ IX{JQ' Y and .}4 ,7)] /“ f' ’ Where H ' *
Thus we have ... <&=&¥; (Note: the subscript means "Trip—
let") and Eoywra=Ey ° (Here the subscript means "singlet").

Consequently, taking account of the electron-electron interaction =
partially removes the degeneracy of the configurations andwleadswwWN1”

to the appearance of multiplets (in the given case of a singlet
and a triplet). Moreover, it turns out that E;mu’zwmkﬁggiﬁh
‘which 1s a special case of the so-called Gund rule. In the gen-
eral case the multiplet degeneracy is determined by the formula'
(28 + 1), where S is the maximum valﬁe of the projection of the
total spin for the molecule. In the triplet state max S +1
and in the singlet state, SZ 0.

Reai*calculaﬁions of electron state% are not performed with
A (D)

orbital equations with the operator “, , but with the so-called

self-congruent orbitals which are: found by means of the solution
of the Schroudinger equation corresponding to the motion of an
electron in the field of all the nuclei and the average fleld
of all the electrons. Consideration of this question lies out-
side the scope of this lecture. We shall only show that each ‘

P molecular orbital is represented as previously in the form of
a LCAO. The use of self-congurent orbitals makes it possible to

greatly reduce the number of determinants in their linear com-
bination.

Such is the general scheme for solvipg.ﬂumerically‘the‘
Schroudinger equation in the case cf electron motions.

L, 'The'EquatiOn'df Vibrations.

The Hamiltonian of the equation for the relative nuclear
metions has the form

.2 e 9 . . 9 .
- A : 1, -
H’f-" n ]"r{ ’ . - ""AE;,(Q):

.

’
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where fﬁn and |{| contain only elements corresponding solely
"to the deformations of the molecule. The most frequently used
generalized coordinates are the changes in the lengths of the
bonds, the valence angles and other geometric parameters of a

molecule.

.

The equation with }ﬂ: has a discrete solution when.the poten-

' tilal surface possesses a’' deep minimum and the motion“occurs near
+it. If the surface does not have a minimum or has a very shallow
minimum, then the spectrum obtalined is disoontinuous. If there
" is all told one minimum for the potential surface (the case of

the basic and near-basic states), then it 1s possible to expand
tne potential term in a series with respect to the coordinates.a

In a good approximation in«very many cases i1t 1s possible

to limit ourselves just to the quadratic terms in this expansion.

»Moreover, for small deformations we can assume that the coeffi-.
cients an and /T | are constant ' As a result we obtain an

oseillators. Its solution can be .obtained by separating the
variables;through'reduoing the pair of quadratic forms

Tluw Zkale(aa) o ; L

and - . . N

4 [ FEN, o
001“2 @, 90)0"0/5 .

to a sum of squares. As a result, we obtain the sum of the
Hamiltonians of the harmonic oscillators.

Tnen for the energy levels of the entire'molecule we have
the following simple formula:

— + /":;"'). _L. R ‘; )
EpmhZea (30 e
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! where U,™* are the vibrational quantum numbers, each of which -
‘ takes on all the values 0, 1, 2, ... and “} of the classical ' o |
normal oscillation frequencies of the system. '

Thus each vibrational energy level is described by a set
of vibrational quantum numbers, whose number.equals the -numbep-w—.-..
of vibrational degrees of freedom for the given molecule. If
the molecule contains N atoms, then the number ¢i vibrational
quantom.numbers equals 3#/- ¢ for non-linear molecules and
34 - for linear molecules. The eigen-functions have the form:'lA

i
QAi 1 i
= [ P
?»r..kl Ly

FRRP vy

i SR

it ) _ , ‘ _
where 41' are the elgen- functions of the harmonic oscillators.

Tbn form of certain eigen-functions for a single harmonic /28
.oscillator is shown in Fig. 10.

A e b e 00 o s i I et

, ‘Flg. 10. The form of the éigen-
T e funetions of a harmonic ascillator
L ‘ ‘ for low energy states.

e S TR ISR AT R
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Eigen~functions have a domain ofvdefinitipn which corresponds
approximately to tbe'domain of the possible oscillations of the
analogous classical system. For various effects of'avmoiecule,‘
transitions are possible between the vibrational energyflevels.

It is assumed that they are separated intos basic, or funda-
mental ‘transitions, to which correspond tpe transition between

27
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‘two energy levels differing from each ‘other by only one quantunm
number, varying by unity; overtone transitions when one of the
quantum numbers changes by more than a unit, and the so-~called o %
composite transitions which correspond to changes of two or more '
:\ quantum numbers by a unit or other number, Tne'scheme‘of,possible

» transitions for absorption 1s shown in Fig. 11. . TRk

£ ‘ ;.

: (1,,0) = ST S

: 3 . (2,00) i

1 A ‘ (,0.0) - -

f . ‘ : A . - =

g , | | ' 7z -3 — 000 o S

b . .
,;é v | , Fig. 11. The scheme of vibrational ' f | _,'

e B transitions: ‘ : ‘

- 1 - the basic transition; 2 - over- , SO ©:
tone transition; 3 -~ composite tran-. o PR B
sition. The quantum numbers are shown ‘ '
in parentheses for the levels when-
there are three degrees of freedom.

‘ .

In more complex cases it 1s necessary to include stili'higher /29
terms of the expansion of the potential energy in a serles in
~terms of the vibrational coordinates, and to express the coeffi—
cients 7., as functions of these coordinates. Thus the so-ca;;ed

kinematie and dynamic anharmonic1ty appears. This is especially
essential 'in those cases when the molecules are strongly. excited

Y i 4 b g

or when a transition occurs between two electron states.n_The ,
transitions which correspond to large vibrational quantom numbers
are anharmonic as a rnle. In the case of a two~-atom molecule-
‘the corresponding energy levels can be expressed in _ the following
simple form with a high degree of acouracy




PSRRI TR L T
Sk N " - - N N B

T A T I N T T e e -
LR Tl M R E EE Las . A . .

L T TS R

errres .
e !
' : an) ;. G 1'9" '
S Y mze fa 1 .
‘Em:h wlr + 2) | 2L \tf “* 2) ‘ (.17)

‘must be found by numerical methods.

!

The coefficient 9¢ is called the'&ﬁharmonic=Cbefficient.
In the case of multiatom molecules such a simple formula cannot i
be obtained in the general case, and the anharmonlic energy levels : 3?

i

At the present time a number of methods have been developed : S
for solving the anharmonic problem. They can be applied provided
that the vibrational quantum numbers are not very large. In
attempting to solve the anharmonic problem for oscillation° with
a very large amplitude we encounter substantial dif riculties
of a different kind. One of the greatest difficulties is that
we have scarcely any information in the case of multiatom mole-
cules concerning the form of the potential surface in the region
remote from a minimum. ‘

When the potential surface has two or more minima the solu-
tion of the problem is possible provided we are able to find
coordinates in the entire set of coordinates for which multiple
minima exist. Thus, e.g., for an ammonia molecule ‘it 1s possible
to introduce a coordinate corresponding to the movement of a - /30

A P S

nitrcgen atom over the plane of the atoms of hydrogen such that

on the corresponding section of the potential surface there are Nt
In this case the potentiel is represented approximately i

two minima.
in the form:

The solution of the equation with such a potential can be’
obtained in the form of linear comblnatlons of harmonic wave
funections, if in the 1nitia1 ‘approximation only the term AQ is

29 .
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rétained; the coefficlents in these linear qombination can be
found by the variational method. The energy levels for such a"
problem are arranged in pairs, and the,distance between each
doublet is insignificant and decreases from the lowest pair to
the highest (inversion doubling). 1In the case cbrresponding to
the presence of rotational isomers it is possible to iqproduce
so-called coordinates of internal rotation and to solve the
corresponding problem with the help of the rotator function with
'supplementary terms which correspond to fhe periodic potential.
The appropriate technique also exists.

Thus in principle it is possible in the most varied cases
to investigate the problem corresponding to the relative motions
of the nuclei of a molecule. A : !

3. The Equation oft Rotations.

The rotational Schroudinger equation contain a Hamiltonian
of the general type (10) written in rotational coordinates. The
potential part in this equation 1s absent. An analytic solution.
is possible only in certain particular cases. Thus, e.g., for ‘
rigid, linear molecules and a molecule of the spheriqal top type
(to this type belong molecules with a high degree qf'symmetry,
all three of whose principal moments of inertia Ix’ Iy and Iz
are equal) the Hamiltonian contains the angular part of the
Laplacian written in spherical coordinates. The corresponding /31"
eigen-values (energy levels) have the simple form i

:

3
|

E =BI(Tri). Cas

i3

i R

Here B 1s a constant inversely proportional to the moment of
inertia of the molecule (25»«-% ) and T 1s the rotational
quantum number which takes on the values ¢, 1, 2, .:. An ana-
logous expression for the energy levels can be obtalned also for
_molecules of the symmetric tpp type ‘(‘Ia-=Iy7£AIz)" ; bowever,
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for nonsymmetric tops this is ‘impossible and a oolution is only
possible in numerical form. a

It must also be noted that, since a rotating molecule also

oscillates, the coefficient B m&st be assumed to depend on vibra=

tional coordipates, strictly speaking. This results in correc-
tions to formula (10). . '

The greater the moment of inertia I, the smaller the coeffi-
cient B and,‘therefore, the smaller distancé'between the rota-
tional energy levels. Consequently in large molecules the rota=-
tional structure in the spectrum is unresolved and diffuse,
quasicontinuous spectra results.

If all that was said above is taken into consideration, ﬁhén
we obtain the following formula ‘

()"1

E _Ea wﬁhf‘wf(yf ')s-B TiT+1) | (_19)}

nvT

for the energy levels of a molecule in the simplest case.

The superscripti“n" refers to thé'electroﬁ'states;'the'sub-
seript "k" enumerates the oscillatory degrees of freedom. The
fact that the frequencles of the osclllations ’C%?? and the co-
efficient B(n) depend on the electron state of the molecule is -
taken into account. Strictly speaking, B(n) depends on the
oscillatory states also; formula (19) is-valid, of course, only "
- for those states whose potential surfaces have'sufficiently deep
minima such that oscillations are'poésible_and'it«is possible to
. speak of definite forms of the molecule. If the potential sur-
faces have no minima, then we obtain the continuous spectra of
the solutions of the Schroudinger eqwation which cannot be -

expressed analytically.

/32 -
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4, 'SelectiOn‘Rnles

Molecules absorbd or radiate electromagnetic waves 1f tran=
51tions between energy 1evels ocecur, Two important circums-.
stances determine the possibility of such transitlons and, cone

sequently, the intensity of" the observed lines and .bands.in.the......

spectra.

The first 1is connected with the'popnlation'of the levels,
Clearly, transitions from some initial state can occur 1n prin—
ciple only if at least part of the molecules of the given set
are in this state. Under ordinary conditions the arrangement of
molecules. according to energy levels is .determined by the. '
Boltzmann temperature distribution. However, the inversion
population, which is widely used in lazer systems, is possible,
Since, as a rule, the number of molecules at high levels 1s less
that at low levels, especially at the basic_ levels, the radiation.
spectra are less intense than the absorption speotra. :

The second factor is the selection rules. Although none
of the selection rules 1s absolutely rigorous, however, their
action 1s very essential and to a significant degree‘it;char~
acterizes not pnly the qualitative, but also the quantitative
pictore of the spectra. '

According to the basiec quantum mechanical positions the
probability of an optical transition between energy levels is .
given by the square of the matrix element for the operator of
the molecular dipole moment, i.e., by the square of an integral
of the form:

- The superscripts indicate the combining states.
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Quadripole and more complicated transitions are also possible;
however, they are significantly less intense, Therefore we shall
limit ourselves to dipole transitions. '

i

In accordance with the three types of movements in a molecule

and the three types of spectra, let us consider the probability - 5=

of transitions for purely electron, vibrational and rotational

spectra, and also for electron-vibrational—rotational and vibra-
tional-rotational spectra. B

.

e AT R "

. For purely electron transitions (or transitions between

' electron states) the following important selection rules hold.

1. Transitions between states with different projections :
of ‘total electron spins are forbidden.(the so-called intercombin- -

" ational transitions). In particular, singlet-triplet transi-

tions are prohibited. This prohibition is easily derived if we.
take into consideration the fact that in the Coulomb approxima-
tion the spatial and spin parts in the elgen-functions are
separated and the orthonormality integral for spin components
arises in the expression for the matrix element of the optical
transition. The prohibition is lifted when'the spin-orbital
interactions are taken into account. The'prohibition against v
singlet~triplet transitions leads to the appearance of prolonged )

e

A N TN T PN R

luminescence (phosphorescence) in the radiation spectra of multia*“f'M"Mi‘,f

atom molecules.

2. Multielectron transitions are prohibited (during a dipole f
transition it 1s possible to change the spatial state of only
one electron). This rule arises because the matrix element of
a dipole moment between two determinant functions of different‘
eiectron configurations is nonzero only if;these_configurationsw 'Z_ﬂ
differ by at most one spin-orbital. In its turn this is related
to the fact that the operator of the electron dipole moment is .
the sum of single-electron components.
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When we convert to more precise expressions for the multi- o3
electron wave function, this prohibition is'again lifted and ‘ i
multielectron transitions become possible, although the probability
of their occurrence is low;! '

3. In the case of an optical transition the electron con- e
verts from one spin-orbital to another. If these orbitals \
possess spatial symmetry, which happens in symmetric molecules, |
‘then the prohibitions apply with regard to symmetry. Transi-
tions are permitted only between spin-orbitals with a different

parity reiative to the center of inversion.

4. The following prohibition is related to the presence
of a vibrational state in the expression for the total wave
function of a multiatom molecule. In the approximation to the .
total separation of the electron and nuclear motions in the 1n-‘
tegral (20), a factor of the form

.M’,"'(Q)‘%’,’:(O)d@' . (21) L 4

is isolated (the superscripts indicate the different combining

electron states). It is called the sugerposition integral.

\

It 1s obvious that this integral is zero and the transition
15 prohibited for those combinations of vibrational levels of e
combining states where the regions essentially do not overlap in '
which the functions " and 2? are appreciably different from
zero. If the vibrational states,correspond to the regions lying
inside the potential depressions formed by the respective poten-
tial surfaces of the combining electron states, then this 'condi-
tion 1s satisfled, provided that the minima of the potential sur- .
faces are markedly displaced relative to each other. If two - /35
combining states have potential surfaces with sufficlently deep I
minima and thesé minima are not greatly shifted with respect to
each other, then spectra arise which are either discrete -- when
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a vibrational structure is observed -~ or which ‘have an. unresolved o A
vibrational structure, but there are absorption bands of finite'. ' 'g';5§
width. 'If one of the combining states has a potential surface ' !

without minima, then a continuous spectrum is observed.
y _
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In the case of electron-vibrational transitions the so-called

' Franck-Condon principle 1is closely related to the adiabatic
approximation. It states that electron transitions occur in the
-presence of an unchanged molecular}geometry, i.e., so rapidly b
that the nucleil of the atoms do not succeed in 'shifting notice- | QQﬂ,i!T
ably. We say that the electron transition ocecurs parallel to the _”;,Lﬁé

energy axis {"along the vertical") on the diagram of E’ =FE (Qh

where Q 1s the set of vibrational coordinates which characterize o b
the deformation of the molecule. Consequently, if in the coor- S }
dinate space, the extrema of the vibrational functions of a com- : N ~f
bining electron—vibrational state coincide With,the regions in . “' '}
which the vibrational functions of another conbining electrdni ) ' » 1
vibrational state are zero, then such a transition is forbidden. y ;; fg
This 1is shown schematically in Fig. 12. . T

Fig. 12. Schematic representation

of the possible electron=-vibrational

transitions: the transition is ‘ ' L
permitted (1); prohibited (2). R

In order for a transition to be permitted it 1s necessary /36
that these extrema overlap in at least one region. The greater
i -~ these overlaps, the greater the probability of the transition.
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Therefore, 1f two potential surfaces of combining states are near
each other and differ only by a shift "along the vertical " then"
the vibrational eigen-functions of these states are also close
together, and, thus, due to their orthogonality the integral h
(21) turns out to be nonzero (the transition is permitted) only

for those comblnations of vibrationals levels of combining states

‘which have identical sets of vibrational qﬁantum numbers (i.e.,
dz=0 ). When the electron-vibrational interactions are
"partially taken into account, the transitions with dv=:i{ and
even those with Adv=*2 (but with lower probability) become
permissible. If the potential surfaces of electron states differ

markedly from each other, then all other transitions also become
possible. R |

When the molecules in combining electron‘states have“symé*
metry, only those transitions are permitted for which the inte-
grand in (21) is fully symmetric. As we have already shown, the
potential surfaces of combining states can be different: they

“have a different form, minima in different regions of the space‘

of the coordinates Q, etc. As a result, the distribution of the
intensities in the vibrational components of the electron bands
varies widely.. In other words, the contonrs of the electroné
vibrational bands vary within broad limits. The bands can be
wide, narrow, symmetric, nonsymmetric, etc. This is demonstrated
schematically in Pigs. 13 ‘and 14, where for two cases of reci-
procally situated potential surfaces (curves) the most probable

transitions are shown and the contours of the electron-vibrational_

absorption bands are obtained.

The vibrational energy levels inside each combining electron /37

state 1is characterized by a set ol'corresponding quantum numbers.

In the harmonilec approximation to the transitions between the vib-
rational levels of a single electron state the following selec- / 8

tion rules hold: only those transitions are permitted for which '
no more than one quantum number changes by unity.” This selection.

36
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Fig. 13. The arrangement of the potential surfaces - /37
and the form of the band contour in the ‘case of a
vertical displacement of the surfaces. 'The prob-

abllities of transitions are reduced from 1 to 3, ' - )vué

Example of an extremely asymmetric band. .

2=
v

Fig. 14. An example. of the formation of a contour.
which 1s almost symmetrical (ef. also the caption ‘
to Fig. 13).

rule is connected with the behavior of the harmonic coscilla- ' ﬂ‘

tion of the eigen-functions with respect to their center (ef.
Fig. 10). Taking anharmonicity into account removes these
restrictions: transitions between levels become poésible in
which the quantum numbers vary by more than unity or several
quantum numbers change. The general pule can be formulated as

37
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‘the molecule does not change. In particular this applies to the
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follows: the greater the difference in the .quantum humbers of
two combining vibrational states, the lower'the probability of /
the corresponding transition. Thils rule, together with the
familiar reservation, is alsoc applicable to combining states .
corresponding to different electron levels. ]

In the vibrational spectrum all transitions are prohibited
which correspond to deformations such that the dipole moment of

so-called fully symmetric motions in molecules possessing a center "“%%
of symmetry. Not all oscillations symmetric relative to this I8
center appear 1in absorption or radiation spectra.

For the purely rotational spectra only the transitlons are ) i
permissible for which the changes in the ‘quantum numbers accord S
with the equation Z}a' t{ ; also .lt 1s necessary that the mole- i ST
cule possess a nonzero dipole moment in_the‘corresponding elec- ‘
tron-vibrational state. There are no dipoleless molecules with
a'purely rotational spectrun. ) ‘

!

If a transition between rotational levels of different
vibrat*onal states is completed, but involves one electron state,
then thbkselection rules become complicated. In the spectra the
characteristic sets of lines are obtalned which are designed ;
as the R (AT=4) , @{4T% , and‘/a(a?':-tj) branches. The ' /39
selection rules for the transitions between the rotational levels
of different electron-vibrational states are analogous. It 1s
essential, however, that for different electron states the con-
stants B differ markedly from each other. Since the expression NSRRI
for the difference of the energies of the levels contains linear -
and quadratic terms relative to T, it can turn out that the
quadratic term becomes larger than the linear, which leads to !~
concentration of the lines of one of the branches and to its
rotation. We obtain the characteristlic sharp boundary of" the
spectral band -- the edge of the band. ‘

38
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The appearance of the P, Q, R branches for this case is
shown in Fig/ 15. ' \

S 1)

Fig. 15. The appearance of the frequency
branches when B> R5"

The set of prohibition rules mentioned leads to the fact
that far from all the transitions betweeﬁ'thé varlous energy
levels will really appear in the spéctrum. As a result thé’
spectrum.becomes simpler and more visiblé; ‘ ‘

The selection rules with respect to symmetry are important
in particular because the'typical picturé‘of'the'spectra emérging
here can be used to identify the membérship of a moleculé in
the appropriate symmetry group.

In conclusion let us again mention that the selection rules
shown here are rigorous only when definite assumptions are
satisfied: the adiabatic, harmonic hypotheses, the rigid tbp,

and absorption and radiation bands appear corresponding t) the '
transitions prphiblted in the approximation theory. It is neces=
sary to take this into account when interpreting,spedtra, espec~
12liy in excited states where many simplifying assumptions turn
out not to be satisfied. | : : |
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ete. In real molecules deviations from these strict rules arise /40
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kstructures in the basic organic compounds of any degree of

5. Computational Possibilitiles of the Theory of Molecular

Spectra.

The contemporary theory of molecular spectra not only .
makes it possible to clarify the basic mechanisms which are
observed in these spectra, but also to carry out numerical cal=-
culations comparable with an experiment, These calculations are
a basic interpretation of the spectra anq indisputably should,

"also play their role in the investigation of objects in outer

space.

If we speak of complex molecules, then, with thé\exception
of the calculations of rotational spectra, in all the remaining
cases the computational theory is constructed on a semi-empirical

basis. Thus, for example, when calculating the vibrational struc-

ture the derivatives
( 92[:})
9@ 88, 4

<{20232540@ Z}

and

parameters When calculating elcctron spectra various matrix

elements or their components which correspond'to the appropriate
variational problem, are incroduced as empirical parameters.
Similar pavameters are sought for some molecules, then they are
transferred pract cally unchanged to other more compliex mole-
cules containling the same structural elements. This makes it
possible to carry out predictive calculaﬁionSJon-the schtraﬁof
complex systems. Today such calculations can be performed for
the rotational structure of any molenule ‘and the vibrational

complexity, including polymer formations. For electron spectra

8
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basically only the lowest electron states are calcuylated, but
this is done for extremely complex molecules also,

Through the monographs presented in the list of references
the reader can acquaint himself with the technique of such cal-
culations. .

. It is extremely gratif&ing that for the performance of
different types of calculations a significant supply of special
programs has been created for domestic electronic computers.
In these programs the representation of the input data is so
simple that the performance of concrete calcﬁlations in many

instances is accessible to persons not highly qualified in the

theory of molecular spectra.

In conclusion let us add that when observing spectra and
comparing them with calculated spectra it is possible with the
help of the solution of the inverse spéctral problems to obtain
a mass of valuable information about the structure and the pro-
perties of molecules and ions. This constitutes one of the

principal problems of molecular spectroscopy.
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