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ANNOTA iI3N 

An analysis of kinetic equations which describe, in par- 

ticular, the establishment of the spectra of Langmuir turbu- 

lence is presented. For the analytical nuclei and linear in- 
crement, a stationary spectrum, if it exists, is concentrated 

on a variety of dimensionality, the smallest dimensionality- of the 
initial problemat. points, on closed lines or surfaces. In 

the case where stationary distribution consists of many peaks, 

with a sharp inclusion of the increment of pumping in the sys- 

tem, secondary turbulence occurs. The position of peaks is 

established but their amplitudescomplete undamped (in the ab- 

sence of noise) oscillations. It is pointed out that establish- 

ing spectra can occur only during adiabatic inclusion of pump- 

ing. Then, one realizes a quasi stationary condition. It is 

significant that the adiabatic condition here is more rigid 

than the ordinary (~t>>l, y -- the rate of pumping of oscil- 
lations, t -- the time of inclusion of instability) by several 
hundred times . 
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by 
3 =: 

L. A. Boltshov, A. M. Dykhne, V. P. Kiselev i 

and A. Kh. Pergament 

1. Introduction 

In a number of physical objects described in an approxi- i 
i 

mation of a solid medium, with a fairly high level of excita- I 
i 

tion, complex motion occurs which is iescribed in the language 
of mutually interacting-degrees of wave freedom: the Lanwulr . . turbu! i 

lence in ~lasma, acoustic turbulence, noise in amplified media. s ~ i d  
waves in magnets, etc. Motion of this type, with not too great 

I 

intensity of turbulent noise, can be described approximately 5 

as weak turbulence,as a kinetic equation for interacting waves 
1 

* 

with random phases. Interaction of the waves with nondecay by 5 
1 

the principle of dispersion is accomplished in the lowest mag- i 
3 - 

nitude according to intensity of the wave by induced scatter- $ 
ing on other exicitations (in the case of Lcngmuir turbulence - 5 
in an isothermal plasma, scattering of the waves occurs basic- d 

1 

ally 'in ions). 

A kinetic equation for the number of occupations n(g,t) 

is well known [1,2] 

;Ir 8 2  h h ,  +n, I A , , . & @ ' ! ~ ) ~ ~ K  + C, (1 ) 
@ 

I 

here yk is an incremer~c for decrement) of surging of waves in 

a linear approximation, Akki is a nucleus, which describes the 
process of the scattering; ck is the Intensity of the source 

*Numbers in the margin indicate the pagination in the foreign 
text. 



caused by thermal noise and induction processes of a higher 
order. 

In situations which are of interest from a point of view 
of heating plasina with an electric beam, or by electromagnetic 

3 

radiation, the intensity of excited waves is much larger than 
% 

1 
the level of thermal noise. The latter added to (1) then is : 

considerably smaller than the other members. There is inter- 

est in the study of the spectra of turbulence in timeperiods smaller 

than %n/ri(. The behavior of spectra for large time periods is con- 

sidered in reterences C3.63. /6 

The question of establishing the spectrum of Langmuir 

turbulence of plasma was studied wlthin the framework of 

equation (1) in a number of works [3-61. However, the study 

was lnzomplete [3], or contained a number of erroneous con- 

clusions [5]. 

We wish to approach the study of the spectrum from both 
positions, with the possibility of not using the specifics Ff 
Langmuir turbulence, expressed in the actual form of the func- 

tiors~g and Akkr. Wewill try to answer the following ques- 

tions : 

1) What are the possible types of stationary spectra? 

2: What are the characteristic traits of the spectra 
in the iast stages of evolution? 

3 )  Which can be nonstationary spectra and what are the 
causes for their establishment, or nonestablishment? 

2. Stationary Spectra. 
Stationary spectra, if such exist, satisfy the equation 



s p -  _. - -.-- 

nkrkmO ( 2 )  

Here the nonlinear increment 

f, = a. + J A 4 / W s ~  
( 3  

is possible to solve equation (2) of three types. 

(a) nh+O with all B (solid spectrumj. 
(b) nk#O in certain fields $ -- space. 
(c) nrZO for multiple small dimensions (on surfaces, 

on curves and at separate points 2 -- space). We will con- 

sider these possibilities in more detail. 

(a) Although examples exist in which there is the pos- /7 
sibility (a )  (for example [51), this possibility must be 

designated as exclusive. Moreover, in this case when all 2 
must satisfy the integral equation Tk=O. The so- 

lution of this equation, generally speaking, has a variable 

sign. The natural physical requirement for the positive 
state of nk can be satisfied only with a special coordinated 

selection of the function yk and Akk,. 

(b) In this case, there must be rk=O in fields where 
the spectrum is concentrated (that is, nk#O) and rk<O (for 
stability of a given spectrum) in all other regions of 2- 
spnce. We note that the function rk which satisfies this con- 
dition is an insignificant function of its independent vari- 

able $. It is easy to see that any non-analyticity and even 
break in the function n(Ef) introduced into rk cannot result 
in the non-analyticity of rk (inasmuch as n(gt) is integrated). 
Thus, the single cause of non-analyticity of rk can be non- 
analyticity of the nucleus Akkt or the linear increment yk. 
The "striped" spectrum can be stabilized if Akk, or y k  have 

characteristics as functions of their independent variables. 

3 



A model example with a nucleus can illustrate such a 
spectrum 

# > k t  f 'when 
# 

-jI when M * K  

f 
If y(k) has one maximum at point k=ko and r(ko)=-i(+w), then 

F a spectrum is realized .oncenkrateil nn m n m 4 a t n - 4 - k b  

= ' e n  
0 when w < c ( ,  

The peculiarity in nk when k=kn involves the peculiarity of 
- - V 

- 
the nucleus. 

It is interesting to note that for a nucleus which de- 

scribes the scattering of the Langmuir waves :in ions, with 

the use of which the Langmuir turbulence was studied in 

references 13-6,8], the Akk, nucleus can be both analytical 
(if the spectrum is concentrated in the k > > k D m  field, in 
this case scattering is-significant at large angles), and 

nonanalytical (if the spectrum is locallzefi in *he f q e l A  np --- "..Y * * " *U  .,I 

k c < k D m ,  where small angle scattering of the plasmons plays - - 
a significant role). 

(c) In the case of analytical functions Akk, and yk the 
most typical is the third variation in which the spectrum is 

concentrated to a multip1icit:q of dimensionality, the smallest dimen 
sionality of the initial problem at points, on lines or sur- 
faces. The existing lines or surfaces inevitably must be 



Thus, the spectrum cannot be concentrated on sections of the 

beams (notwithstanding the statement contained in reference 

151). In the variation of the rk function considered, on the 
aforementioned manifolds it has a maximum equarto zero and 

negative in all other space. In reference [53 the regular or 
singular character of the spectrum involves the width of the 

% increment in relation to the width of the Akk, nucleus. As 
is apparent from what has been presented above, the character 

of the spectrum is defined exclusively by the analytical 

properties of the Akk, nucleus and the linear increment of yk. 

During an analysis of establishing the spectrum of type 4 
(c) in a case of Langmuir turbulence, it is necessary to keep 
in mind that with adequate constriction of the peaks they can 

become nonstationary as to modulation [TI. This circumstance 

lin~its the use of the picture considered here to large time 

periods. 

Later on we will consider only the ( c )  type spectrum. 

When studying later stages of evolution of the spectra of this 

type, for simplicity, we will limit ourselves to a unidimen- 

sional case where the spectrum will be localized at N points 

xi(i=l ,...N) 

Then only when x=xi(i=l, ... N) r(x)=O and from requirements 

far stability of the given spectrum rf(xi)=O, and r(x)<O at 
all remaining points. For determining a given spectrum it 
is adequate t.0 solve tha system: 



The peculiarity of system (7) involves the fact that not 
only the position of the peaks of xi and their amplitude Nl 
are unknown but also the number of peaks N [illegible]. With 

weak instability (when :he Y increment is small and positive 

only in a narrow field according to x )  the distribution estab- 
lished consists only of one peak. As the increment increases 

the stability condition breaks down (r(x)<O everywhere except 

at one point) and at this point where this occurs, a second 

peak of the established distribution occurs. With a further 
increase in y ,  one can find a third peak or even more. 

A numerical determination was made of this stationary - /lo 
distribution for the nucleus 

(this nucleus makes the transition in the direction of large 

x )  and two model increments v ( x )  

Stationary distribution consists of one peak when 

Ccac2.21 and 1cBcl. 314. When 2.21a<3.3 and 1.3141B<1.724, 

the established spectrum contains two peaks. When as3.3 and 

B-1.724, a third peak is apparent and so forth. The coordin- 

ates and amplitudes of the first three peaks in relationship 

to a and B are presented in Figures 1-2. 

3. Evolution of the Structure of a Separate Peak. 
Now we will study the process of the tendency toward 

stationary distributlon of type (c). Here one can isolate 



b 
Figure 1. Yhe ;zlationship of coordinates 

of peaks of stationary distribu- 
tion to the level of pumping with 
model increments 



Figure 2. Relationships of the amplitude 
of peaks of stationary distri- 
bution to the level of pumping 
with model increments. 



two q u e s t i o n s .  The f i r b t  of  t h e s e  q u e s t i o n s  is on t h e  s t ~ u c -  - - -  -- 
t u r e  o f  a s e p a r a t e  peak i n  t h e  L a t e r  s t a g e s  o f  e v o l u t i o n  and 
t h e  second q u e s t i o n  l a  on t h e  b e h 4 v i o r  o f  t h e  spec t rum as a 
whole. When s t u d y i n g  t h e  s t r u c t u r e  o f  e s e p a r a t e  peak,  f o r  
s i m p l i c i t y ,  we w i l l  l i m i t  p r e s e n t a t i o n  t o  a c a s e  where s ta-  
t i o n a r y  d i s t r i b u t i o n  c o n t a i n s  a to tp .1  o f  one peak.  T h i s  s i t u -  
a t i o n  o c c u r s  w i t h  a f a i r l y  weak I n s t a b i l i t y  when t h e  i nc remen t  

Y ( x )  i s  s m a l l  and p o s i t i v e  i n  t h e  narrow f i e l d  o f  x. I n  t h i s  
c a s e ,  t h e  s t e . t l o n a r y  c o n d i t i o n  c o n s i s t s  of one peak l o c a t e d  a t  
a p o i n t  where y ( x ) = O .  For  l a r g e  t ime  v a l u e s ,  t h e  d i s t r i b u t i o n  
o f  n ( x )  which t e n d s  toward a 6-form, becomes f a i r l y  narrow.  /11 - 
T h i s  makes i t  p o s s i b l e  t o  expand t h e  G(x-x t )  n u c l e u s  t o  an I n t e g r a l  

I 
and a l s o  t h e  incretnent  y ( x )  i s  c l o s e  t o  t h e  s t a t i o n a r y  p o s i t i o n  
o f  t h e  peak.  For  t h e  Gauss ian  n u c l e u s  

I ( = ) =  -41. -/)3ct (11) 

The s o l u t i o n  of e q u a t i o n  ( 1 )  i s  w r i t t e n  i n  t h e  fn1lfit-,:-- @--- 

w l t h  c a l c u l a t i o n  o f  (il), (121, e q u a t i o n  (1) can b e  r e w r i t t e n  
a s  

I ( 1 3 )  

( 1 3 )  by 1, (x-xl  ) ( x - x ~  ) 2  and i n t e g r a t i n g  by 
we o b t a i n  



(18) 

Considering that No and x differ little frcm stationarv 

I 
" 

values, let us aseume Nl=N,-No, and leaving only linear mem- 
bers in (14) and (15) along Nl and xl we have wlth e calcula- 
tion of (18) 

By introducing z=xlt (21) from (19). (20). we Find /12 - 
" J' + -a  d e a  .L 

2p* -55P -qs 
(22) 

from which 

that is 

Thu8, the amplitude of the peak and the positiort of its 

center contain oscillating additions which decay wlth time. 

10 



The oscillations of the position of the center of the packet 

(st-3/4) decay most rapidly. The width of the packet decays 

like t-lI2 and finally oscillation of the height of the peak 
decays most slowly. 

A numerical study was made of the process of making a 
permanent establishment in this case. Equation (1) has the 

form 

where y(x)=x(l-x). The level of thermal noise .sk was selected 

as the initial level of n(x). (It appeared that the behavior 
of solving equation ( 2 6 )  hardly depends on the initial level 

of n(x).) Calculations were made with different noise levels - 
(during observation of the condition ck<<max(y)). We at- 

tempted to show the characteristics of the establishment 
process not depending on the noise level. 

With numerical integration according to time of the kinetic 

equation (26) the known explicit system with a second magnitude 

of precision was used which for equation 

can be writeen in the following form 

The integrzl in the right section of (26) is calculated accord- 

ing to the Simpson method and then preliminarily calculated 

values of the nucleus for different values of x are used. We 
note that n(xj was calculated as changing in time only in a 



certain limited field of values of x within which the full 
increment r (x )  is deliberately negative for any values of 
t and where one assumes n(x)=ck. 

The process of showing the soll~tion for a single peak 
permanent establishment has the following character. At 

first, in the field of the maximum increment, a broad peak 

develops (on the order of the width of the increment) which, 

having reached a fairly large value (approximately 100ymax) 

begins to shift toward the large values of x (by virtue of 

selecting the sign of the nucleus). Having overshot the 

position of permanent establishment, the peak is damped and 

shifts toward small values of x, and begins to increase once 
more when x is smaller than the stationary valuebut larger than 
x corresponding to the maximum increment. Evolution n(x) in 

time is presented in Figures 3-4 .  Establishment of the posi- 

tion of the peak occurs most rapidly (when ek=O.O1 for yts100, 

when ~~=0.001 for yt~2OO). The character of the appearance 

of the position of the center of the packet on a permanent 

establishment is shown in Figure 5, After establishing the 
position of the center of the packet, decay of the peak occurs 

with a simultaneous increase in its height (see Figure 7). 
Establishing the area of the packet occurs more slowly. With 

precision less than 1%, the area S=/n(x)dx appears on the* 

permanent establishment when ck=0.05 for time ytc200, and 

when ~~'0.01 for yt~600. Thus, the rate of appearance of the 

area of the packet on the permanent establishment strongly de- 

n(~), calculated according to the formula 

- - - - -  
-=A #* - - --- - 



F i g u r e  3. E v o l u t i o n  of n ( x )  f o r  small 
t i m e  v a l u e s .  The c u r v e s  
co r r e spond  t o  times: 1-yt=15,  
2-yt=3O, 3-yt=45, 4-yt=60, 
5-yt=75. 

h a r d l y  depends on t h e  l e v e l  o f  n o i s e  and b e g i n n i n g  w i t h  

~ t s 5 0  i s  s u b j e c t  t o  t h e  law t- lI2.  ( F i g u r e  6 shows t h e  r e -  
l a t i o n s h i p  o f  !LQ l / a  t o  a n t . )  

One s h o u l d  n o t e  t h a t  t h e  d i s t r i b u t i o n  o f  n ( x )  o b t a i n e d  
numer i ca l l y  i s  e s s e n t i a l l y  non-Gaussian. It i s  f a i r l y  sym- 
m e t r i c a l  r e l a t i v e  t o  t h e  c e n t e r ,  b u t  i t s  e x c e s s  S1  

a p p e a r s  t o  be  s e v e r a l  t i m e s  l a r g e r  t h a n  t h e  e x c e s s  f o r  Gauss i a n  

1 3  



----- --- -* -- 

Figure 4. Evolution of n(x) for large 
time values. The curves 
correspond to times: 1-yt=100, 
2-ytz200, 3-~t=300, 4-yt=400, 
5-yt=500. 

distribution equal to three. Thus, the asymptotics of (18), /14 - 
(24), (25) catch only a qualitative character of the solution 
on permanent establishment. 

It is significant that the area of the peak like the 

half-width is established slowly which, strictly speaking, 

causes doubt as to the existence in this case of the first 
T * 

stage of the process in which the energy balance is estab- 

lished between pumping and decay according to reference [8 ] .  



Puc 5 m 4 

Figure 5. Appearance of the position 
of the center of the packet 
on a permanent establish- 
ment. 

Figure 6. The relationship of the half- 
wldth of the peak to time in 
a logarithmic scale. 
(1 - calculated curve, 2 - a 
asymptotic.) 



Figure 7. The typical phase curve of 
establishing a two-peak 
permanent establishment 
with abrupt inclusion of 
the increment. 

' 

4. Setting up a Multipeak Permanent Establishment. / 14  3 - 2 

We will study the character of establishment in this case j 
where the distribution established consis~s of several peaks. 

If one assumes the existence of permanently established distri- 1 
bution, then one can describe nonstationary evolution of distri- 

bution for fairly large time periods. For this, we will assume i 1 

that distribution of density can be prevented as a superposl- 

tion equally depending on the time section <nk(t)> (which tends 



toward station(lry didltribution) and the oscillation addition 1 . 

f i t .  From formulas (2 ) ,  (3) we find 

The first three multipliers in the right part of expres- 

: f tion which, in accordance with what has been said above, con- 8 

1 1 sists of a series of 6-shaped peaks. Inasmuch as the fourth 
i 

I Ei 4 
i 

multiplier in (31) is limited in time (due to the oscillating 
1 ,  

I 

- i  character of fik) we have when t+- f 
f 

If a stationary solution exists, then even with the presence 

of an oscillation in the amplitudes of the peaks averaged for 

time, the value of nk coincides with nstk which automatically 

is completed if 

For studying the general picture of establishing the 

spectrum for large time intervals, one can use the peak 

character nk(t). Because the position of the peaks is 

established most rapidly, we will assume that nk(t) consists 

of N oscillating peaks with amplitudes N,, found at points 

corresponding to a stationary distribution. In this case, 

equation (1) is transformed to a system of nonlinear equa- 

tions, the first of which is presented in reference [5] 

I Here N, is the amplitude of a peak with the number a. In 

the case of a random number of peaks, the character of motion 

of the system close to the permanent establishment depends on 

the number of nondamped oscillations. To answer the question 

17 
-q_ 

.-=-A --=- 



as to the number of nondamped oscillations in a general case, /16 
one mainly uses a linear theory. However, with a fairly 
large number of peaks, this is difficult to do in actual 
practice. An exception is the case of interaction of waves 
which describe an antisymetrical matrix x. From the fact 

n 

that SpA=O and Reli10 (a condition of stability of a station- 
A 

ary distribution, li -- the intrinsic number of A) substan- 
tiation follows for all intrinsic frequencies of the system 
(absence of damping in all modes). These intrirlsic nondamp- 
ing modes can be excited in the system to a different level. I I 

For large numbers of such peaks this phenomenon 19 a singular 
secondary turbulence. It can be characterized by the func- 
tions of distribution according to the degree of excitation 
of these new modes. With a fairly high degree of excitation, 
the modes interact strongly and must be used by a system of 
nonlinear equations (31). The unusual character of this type 
of turbulence involves the fact that in a strongly perturbed 
distribution system, motion is realized with a finite number 
of degrees of freedom (on the order of the number of peaks). 

The question as to excitation of secondary turbulence is 
very complex and requires a separate study. Here we will limit 
ourselves to separate qualitative expressions. Initial in- 
stability leading to primary turbulence (positive nature of 
y at certain k) at the same time is included with a certain 
finite velocity. We will consider two separate cases: in 
the first of these the time of inclusion of the increment 
significantly increases the time for development of primary 

I I turbulence. 

In this case at any value of y, the system succeeds in 



becoming stationary and secondary turbulence does not develop. 

In the opposite extreme case of sudden inclusion of instab- a 

1 strongly developing secondary turbulence must occur. I 
f 

We will study the simplest case where the matrix A 2 a  in 

(34) is antisymmetrical and has a total of two peaks. Then 

we have 

(37) 

For this system 
ru, #,(W,-Y~ 

. 

- 8  

4(4-4,) (38) 

N1 + N h  - 6 4  -4, C * M ~ ~ L O ~ S ~  that is, (39) 

The phase trajectories of the (37) systemare closed lines with 
the center at a stationary' p o ~ i t i o n N ~ ~ ,  N2S. Thus, the system 

completes non-damping oscillation, not tending toward the 

permanent establishment. The amplitude of these oscillations 
depends on the initial conditions; then in the case of zero 

initial conditions, the span of oscillations is great. It is 

easy to prove that in this case the mean value of the exponent 

in (32) actually equals one. This condition rs neutrally 

i . stable -- small excitation leads to a system with one cycle 
f close to another. The introduction of noise into the right 

part of the model system of (37) results in the appearance of 
i a focus instead of a cycle and to the establishment of 

equilibrium. The rate ofapproachto a permanent establishment 



- -I-* _ -- 

is increased with an increase in noise. i 

i 

i 

A numerical study was made of the process of establishing 
3 

a solution for equation (26) when ! 

1 

r(s) 014f+*&) -a,# 
* 

- 
which when bu1.5 corresponds to stationary distribution from /18 ' - 
two peaks. Also the time of inclusion of the increment of 

instability was varied, producing 
-. 

r (41 - f + @N(t - ..q. (-(d&)8)j:' 

With an abrupt inclusion of the increment (tB=30) at first 

fairly rapidly (when yt~60) at points corresponding to sta- 

tionary distribution, two fairly broad peaks are established 
whose area varies arrd whose width gradually contracts, It 
is convenient to draw the phase trajectories of such a process, 

having applied along the axis of the coordinates the area of 

the first and second peaks. A typical example of this phase 
trajectory is shown in Figure 7, The system is completed by 
slowly damping oscillations around a stationary position. 

With slow inclusion of the increment (tB=200 and 

especially tB=400) the character of the process of establish- 

ment sharply changes and a quasi stationary condition for 
establishment is realized. Figure 8 shows phase trajectories 
of a system for different time inclusions (tg-30, 200, 400, 

respectively). Numerical calculations show that in inequalities 

( 3 5 ) ,  ( 3 6 )  it is necessary to substitute one for the small 
parameter *log2. This apparently involves the fact that for 
fairly narrow peaks n(x) differs noticeably from zero only at 

points where there is a small full increment r ( x )  (because 



r . a  I0 

I Fig. 8a 

Fig. 8c 

Figure 8. The relationship of the character 
of establiehing a two-peak permanent 
establl8hment of the time of inclu- 
sion of the lncrement time of in- 
clusion: a) tg-30, bf tg-200, 
c )  tg-400 



in the permanent establishment T'(y)-O). 

It Is natural that the rate of convergence toward a 
pemnaneqt establishment with an abrupt inclusion of the in- 

crement is increased with an increase in the noise level, 

Figure 9 shows phase trajectorie~ of the system when ck=O.O1 
and rk=O.OO1 (tg=30). m e n ,  for a low noise level (ck*O.OO1) 

the sections of the phase t~agectory when yt>200 are close to 

the maximum cycles of the model syscem ( 3 7 )  with the corrtspond- 
ing initial conditions, 

5. Conclusions /lg 
1. The character of the established spectrum of kinetic 

equation (1) is determined by the analytical properties of the 

nucleus A k k ,  and the linear increment yk. In a case of analytical 
Akk, and yk, the stationary spectrum, if it exists, is concen- 

trated on varied dimensionality, the snt~llest dlinensionality of 

the initial problem, at points on closed lines or surfaces. 

2 As an example of establishing a single peak permanent 
establ;?nment analytically and numerically it is pointed out 

that the height of the peak and th2 position of its center con- 

tain oscillation additives which decay with time. At first, 

the position of the peak is established significantly smaller 
than its area, Then distribution of the Intensity with'n the 

peak is essentially not Gaussian. P.? time of establishing a 
permanent establishment is several :. lrndr .O of times -8 *ger than 

l'ymax 

3 .  In a case when stationary distribution consists of 
many peaks, with the abrupt inelusion of the pumping increment 

into the system, secondary turbulence occurs, The position of 

the peaks is established and their amplitudes complete non- 

damped oxcillations. In the distribution system considered, 
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Figure 9 .  The relationship of the rate of setting up a permanent 
establishment with abrupt inclusion of the increment 
(tg=30) to the noise level. a )  ck=O.Ol, b) ck-0.001. 
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a finite number of degrees of freedom is excited (on the 
order of the number of peaks) , 

4. As an example of establishing two-peak stationary 
distribution, the question of the character of secondary 
turbulence ic studied in detail, It is pointed out that with 
abrupt inclusion of the increment, nonstability of the system 
completes non-damped (in the absence of noise) oscillations 

with large amplitude around a stationary position, During 

adiabatic inclusion of the increment (when the condition of 
adiabaticity is very rigid & 5.16-2) a quasi statlonary 
state of establishment is realized. 
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