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The propagation and mutual transfsrmatiénzof'acoustic and
thermal waves 1s investigated in media with a high radiative press-
ure, The investigation 1s carried out by means of the equations of
hydrodynamics for matter and of the radlative praﬁsfer equatlons in
a moving medium (in the first order with respest to v/c) in the
Eddington approximation. A number of model problems whlch explain
the physies of the phenomenon are solved in the first part of the
paper: Waves in a homogeneous medium with an ébrupt Jump in opacity’
and in a medium of varlable opacity. In the second part the outflow
of waves 1s studled in the 'atmospheres of‘astréphysical objects;
the accretion disks around black holes and very massive stars. The
characteristics of the luminoslty variability of Cygnus X~-1 and of
the nuclei of galaxies are examined in'thsse models. The presence
of convection and turbulence genesrates acoustic.waves whose spectrum '
upon outflow inco transparept layers is determined by the conditions:
of transmission and of damping. Varisbility of the radiation is '
connected with fluctuapions of the photospheric’témperature and that.
of the corona because of variable heating. Tﬁe characteristic timesi

.of variability agree well with observations for all the objects, but"

it is difficult to obtain a sufficient amplitude for the brightness
fluctuations for very massive stars. .

I. THE BASIC EQUATIONS AND THE CASE OF A HOMOGENEOUS MEDIUM  ./5

INTRODUCTION

ks

In astrophysical objects conditlons are éften encountered whereA'

. the radiation pressure significantly exceeds the gas pressure,

although the material mass is determiﬁéd b the gas. A typiecal
example are massive stars, which are well described by an Emden poly-
trope with n=3, and where the ratio B of the gas pressure to the

- radiative pressure equals (see [1])

p=Py/P =p (i8 Mo"/Mym’- oW
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Here pu is the number of nucleons for one particle;-for hydrogen p=0.§.
At M>72M the radlation pressure 1s already greater than the gas
preSsure, and for very massive stars with M>10. M » Which are used as .
models for a quasar or for the nucleus of a galaxy (see [2]), B<<l.
For these objects and also in the theoretical investigation of x=-ray .
sources, a model of disk accretion onto a blacﬁ hole is often con-

sidered (see [3] through [6]). For a fairly large luminosity L,

<<l occurs for the central region of the disk.

Convective instablility is a characterlstic property cf regions
with a predominance of radiative pressure (B<<l) " For very massive
stars the presence of convection follows from the .condition of radia-‘
tive equilibrium (see [2] and also [7]), ahd convective instabllity
of regions with B<<l for disk accretion were shown in [8] (also see

[91).

Convection in the subphotospheric'layers'of a star or of a disk -

.will wnavoidably lead to the appearance of' a mechanical, undulating

energy flux which disappears at a small optical_thickness T<<1l, being’

-transformed into heat. This leads to the formation of a hot gaseous

corona that 1s similar to the solar corona, whose temperature T is
much greater than the photospheric temperature T of® One succeeds in-

‘explaining certain features of the Cygnus X-1 radiation source with L"

the presence of a corona iIn an accretion disk around a black hole
(see [87, [10] and [11]; moreover, the structure of the corona can be :
determined to a significant degree by the magnetic field (see [12]).

- It is also pOSSlble that the examination of the coronas around very

massive stars will turn out to be necessary to explain the properties
of certain quasars or active nuclel,

The flux of mechanical energy that is generated in the convective:-

‘zone is transferred outward, by sound or Alfven and magnetosonic

waves Into layers with t<<1 through the outer radiative regions. If
the radiation pressuris is negligibly small in the convective zone and
in the photosphere, then the mechanical energy flux (with no magnetic .

' A
2 . Fr = 29V,
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field) is where v 1s the velocity of the ﬁaterial-in the wave and Vg
is the speed of sound that occurs practically wit hout damping in a

‘region where 1<l. Transformation of the wave into a shock wave and

dissipation of the magnetic field occur there, ahd the mechanical’

and magnetic energles go Into heating the corona. If B<<l, then only
a small fraction of the flux F that is generated in an.optically ‘
thick region goes to heat the corona (see [8]). The great attentua-
tion of the mechanical energy flux upon its outflow into a trans- ‘
barent region under the conditlions B<<i is conhected with two circum-'
stances. First, upon going over from a region;where T>>1 o one o
where T<<l, the speed of sound which, inside'thié zone is related

"to the radiative pressure and outside of it, at T<<1l, to the gas

pressure, decreases: Vg (T<<l)/v (t>>1) = 62 : ‘The second reasor

~for the decrease of F is the strong damping of the sound waves that LT
-is connected with radiative friction and with radiative heat con-

ductivity.

-

A crude estimate for the total attenuation of fhe energy flux '
by 6_1 times was used in [8]. The propagation of sound and thermal . .
waves in a medium with RB<<1l and the transfer inmechanical energy
into the transparent layers above the photosphere are investigated
in the present paper.  The entire investigation is carried out on the .
basis of the equations of hydrodynamiqs for matter and of the equa-
tion of transfer for radiation, which is usedfin.the Eddington appro#—

" imation which allows one to describe the transparent and opaque
Aregions in a single form. A flat geometry is .consldered and the

effects of sphericity are neglected. -Terms of the crder of ~ v/c

_are taken into account in the equation of'traﬁsfer as 1s the case

also in [13] and [14].

In the first part of the paper, a simple:derivation of the
equation of transfer in a moving medium is givep“in Paragraph 2 and
the basic equations are shown there- :In the following paragraphs
the propagation of waves 1s investigated without”a magnetic fleld
uander the conditions B<<l: of a wave in a homogeneous medium and
in a medium with an abrupt jump of opacity, In the second part the

. s .
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outflow of a wave from a plane, static-atmosphére 1s invesgitated.
Numerical estimates are.made for the flux ofimechanical energy in a
model of disk accretion and in a very massive star, The estimate

of a damping of B-l times that has been used in [8] turned out to be :
failrly good., The condition for the wutflow of a wave into a trans-
parent region smngles out a characteristic frequency whiﬂh can be
connected with the observed frequencies of the fluctuations and
brigatness variabllities in the x-ray sources Cygnus X~1 and

€ircinus X-1, and also in some nuclel of gelaxies-and in quasars.

In conclusion, numerical estimates are carfiedgout'that are connected
with the existence of the characteristic frequency and the observa-
tional consequences of the model are given} '

Irsppmo—

I. Set-up of the problem and the basic equations. . /8

Upon’ the outflow of a wave into a transparent region, it is
necessary to use an equation of transfer with allowance for motion
of the matter. 1In reglons with t>>1 it is sufficient to 1imit one-
self to the equations of radiative thermal conductivity, however,
for t<<l, the flux and'the density o the radiative energy are not

connected unambiguously and it is necessary to;oonsider at least the’

Eddington two-moment approximation. The equatioh:of transfer in

‘moving matter with allowance for ~v/2 was.derived by a fairly complex

"geometric" method in [13] and [14]. Here we shall show a simpler

method for deriving these equations that is mentioned in [14] but has -
not been carried out there. In an arbitrary inertial frame of refer- .

ence and in the framework of the specilal theory of relativity, the
equation of transfer-has the form (see [15])

EE S ANEROE fwoﬂv,, Lrlefnd)

o

(2)

Here Iu 1s the spectral intensity of the radiation, Y, is the fre- -
quency, J and k are the coefficients of emission and of absorption,

o}
which include scattering, and no is the direction of propagation of
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the radiation. All the quantities with an igdéx,"o" are determined
in the inertial frame of referencé. The coefficients of emission
and absorption are most simply expressed by the ﬁroperties of the
matter 1. the system with respect to which the‘matfer is at rest.
Let us call this system a Lagranglian system. Let us limit ourselves
to a plane, one-dimensional case where all‘the'quéntitiqs depend

only on the one spatial variable Zge Then

AoV = ¢ q(nﬁv“‘ :
oo = Moy, 4 f"'” on AT feln

(3)

, L
If the matter is moving with a velocity v in the z-direction, then

the frequency v and the cosine y of the angle‘iq the Lagranglan

systerr are connected with the quantities in the inertial system by
relations (see [14]) that are written down with an accuracy ~v/c:
Ve, (4- )JoV/C). \)45-‘\)(‘-*}" V‘/C.}. L : (4)
),\:: /'4\-" '\,\'/C * )“: v ), /\‘o’)l « (4 #“)‘U/C:.
The distribution function n(g, 3, t) of the photons in phase
space is related to the intensity IU by the rélétion (see [161])
1 "o . : : .
L= £ l‘-y . . (5)
g\ft '\J'b B .
From the invariance of the .distribution functionyh with respect to
: Lorentz transformations, invariance follows ﬁor the quantity
* 3 T N ’ o,
IQ./\"o = L;./\) . . S (6)
Using Equation (6), one can write down the left~hand part of Equa- »
tion (2) in an invariant form and then the invariance of the right- .
hand part of Equation (2) will be reduced to the relations
. 1 . : v '
j\’o/vp = 3\'/\>,? X S (7)
k\,.\). = k' \,‘
The equation dto/uo=dt/u was taken into account here and Relations
(6) and (7) were used in [13] and [14]. '
]
! 5
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Let us write down Equation (2) in the gmat)'Lagranzian system
where, with the necessary accuracy with respe¢t to v/e . e o

?

Lot me fpedder) L (8)
’ ?' * .

)

.

Taking the transformations and iupvariants (4), (6) and (7)

_into account, Equation (2) with allowance'for}Equation (3) to an
"accuracy of v/c, is written down in the form

4 __g_u ')N B ,‘1‘3{"&’ L KR )
cat Y Par 'E'avw ﬁ% q

: (9)
- Loy 3L g k%o

2 ’2)». :1'

One can write down the equation of contlnﬁity.in Lagrangian coordi-
nates in the form dz/dm = 1/p or, after differentiation,

Qv T = - /P O_P/?’L (10)
After substituting Equation (10) into Equauion (9), we shall finalli
obtain an equation which also follows from [14] for r-w:

‘;'3.»‘ 'DI,) R
t 5 s ppl . 2t Op g : ’ao’ab -
R S T *. )}- I T (11)
, (¢- £ 20 1o .
/“ C‘f’J ’3}; "bf. k ""t/

If, in addition to pure absorption, scatfering occurs, then one
can, for a condition of local thermodynamic eduilibriam (LTE), write' .
down (see [171]) ' ' _ - !
jv = daBJ(—T) * GV‘SI,AQ/J‘W,
. : o (12)
&": O“’*G"s Gv":G"‘"GTnc'.' G, =6.65 10-:"
Here av and o are the coefficients.of. absorption and scattering for<:~
electrons, B (T) is the Planck function, ng is the concentration of :
electrons, and O is the Thomson cross- section. ,The scattering is
considered to be coherent and isotropic. . Thgse approximatons are

B g AT 50 y;
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b) Equations for the moments in_the Eddinguon APPLOA-TEs

— ) Gmn S dman g

A system of angular moments %hat is obtained after multiplying
Equation (11) by 3 and integration with respect to from -1 to
+]1 is often used for an approximate solution of the problem instead
of Equation (11). The fipst two moment equations have the form

L g Y AT N e (g L
C ('oi J ey <j“ 3% J o+ E:E)' "SL ":DV
[ e N S PN ) . (P 3 ‘
F AL G- a0 @B - w
y « - (13)
iy Wy Va2 INY 4 B0 :
- e - " P et 0 P -4 54 LD -
eAL " P 1 Epan gy iy W)
-, l v
= - (& v gy,
The following moments are introduced here:
) $ .
- L ) &
Jv- 251‘{\"%}1' \"\J—Aj*-lv }-‘Ar:’
- (14)

3 s '
K =i. 'I L‘é ';wi__ \4 '
o T N T

If one is not interested in effects connected with iines, then
one can average Equation (13) with respect to frequency. We obtain

Afb;y, H I '« . ','? g
<G " Pegm 7 op ek G AR B

Planck function B(T)=acTu/Uﬂ, a=7.56-10-15 in.cgs units. The average
absorption coefficlents with the weights Jo“and‘HU'are usu&lly”expre;sed
and ags the Rosseland mean,‘resgectively‘(sge [14])

: © o B - fedodn o (15)

1. | | | sl

5 ot Ak, o

§ L8 AN | 3 W "

SEJ et " Veim cp"bg H” B(O(VHVVIV - GH- (16)

? Here o_ i1s the absorptilon coefficient averaged with respect to the /12

R,
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In later calculations we shall consider aU as independent of v (the
; grey approximation) and ap-aR= Oe Let us notice that, upon averag-
; ing with respect to frequency, the third moment N falls out of

'Equations (15) and (16) for the moments,

We shall solve the problem in the Eddington approximation, that

is, let us set
4
K=45J. , (18)

This approximation is fulfilled withlhign.acéuracy for a large
optical thickness 1, and for small T values the error is small; we
"have K=0.41J in a plane, grey atmosphere at 1= b (see [17] and [18]).
Finally, in the Eddington approximation, the equations for the
moments have the form: .

gy ] B 1 B G R (19)
ML 12T 2L Lo, ©(20)

¢) Hydrodynamic_equations_for matter

— e ey i SR G e twm e S S

PO S

§ T In a gravity field with a gravitational acneleratjon g=const>0

~N
o]

‘the equation of motion has the form:

é _ B - g4 I‘J.(ouG}H

o

; o1 ’bm ‘M ' (21)
Here the gas pressure 1s PngpT/u. R=8.3" 107 in cgs units, and u is

the number of baryons for one particle, The last term in Equation

(21) represents the force acting on the matter from the direction of.,
the radiation flux. The equation which takes into account the ex-
change of energy between matter and radiation has the form:

8 : |

L . e - e e emammﬁfﬁﬁb‘w_‘uﬁew;ﬂ: ey
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500+ Rs(p) - (J-B), - (22)

where Eg=RT/u(Y~1) and v is the ratio pf épecific‘heat for the gas.
One must add the equation of continulty in Lagrangian coordinates
- Equation (10) to Equations (21) and (22). We shall show that the
complete system of Equation (10) and Equations (19) through (22)
; Jleads to the correct form of the law of conservation of energy with
an accuracy to terms “{v/c). The density Er’ ergs/gm, preséure Pr’
dynes/cmg, and energy flux-Fr, ergs/cmz-sec,'df the radiation are
expressed by the moments J and H: !

e o, O BRHUNN

E. =JF%'€:SI\, d&2 dv = szl d}«duz ?1'-‘-] (23)
R-3pE = 527,

£ o= J ’_AAQ v = QJRJI r.cl),« cl\) l(TH

T
L}

Multiplying Equation (21) by v, Equation.(l9) by 4m/p and adding
| this equation to Equation (22), using.dv/dm for the expression 3p/dt
| in Equation (10), we obtain

1

r\tCE v‘b l‘—fq‘ 8£>=

I v 1 * ARV
- - ..-(P\r) - (HTH) nr’b J Pc(aﬁ)\'l (24)
Let us express the last term in Equation (2&) by means of Equation
(20). Neglectlng terms of higher'order than (v/pc Y9H/%t and ,Llﬁ

(vH/c Yav/om, we obtain, taking Equation (23) into account, an equa—,
tion of the conservation of energy in’ the“form.

’B_(Ea -- . E, *3¢>- ..;ﬁ.-n(%'\r \pu> ("WH)
(25)
Here on the left stand the thermal, radiation, potential and kinetlc:
energy for a unilt of material mass under the derivation sign, the
first term on the right expresses the work of the pressure forces, -
and the second term is the divergenéé of the radiation flux.
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d) Selection of the_absorption and scattering coefficients

Wa e weh v B e Do Baem  Sems  Swe  Sww o i e I s R A M

#
H

It is more convenient to introduce. the opacities e

= (1 S)p, X, = xfp. | (26)
in Equations (19) through (22) instead of the coe fficienbs o and o,

Under the conditions considered below, the ca,:flcient of brak~-
ing absorption a is much less than the coefficien* of scabtering for
électrons (see [18]):

Qe

-
-

-9 '
oAt mp T D073
co LT ;o (27)

On the othexr hand, at sufficiently high témberatures the energy
of a photon changes due to Compton processes'(fqr an invariant num-
ber of photons), which will lead to an exchange of energy between the
gas and radiation and must be taken into account*in Equations (19)
and (22). In view of the great complexity of a rigcrous allowance

for non-coherent Compton scattering in a non-homogeneous medium, we

shall limit ourselves to two limiting cases., In the first case we
shall completely neglect absorption {pure scatteping)

(1) ®, = G‘/j) e, L 02 (e X)) cnt/n,

. 5 .
em®/gm 28
2, -~ O, . gm, (28)

' XH 1s the concentration of hydrogen by Weight.

In the second case let us consider Comptdh scattering which
acts as a source of absorption: b
(II) &, = o, = ® . '
(29)

*,In the examples considered below the fraction’of'the mechanical

energy flowing out from the photosphere is practically ldentical in .

Cases (I) and (II). Actually, the case of Compton scattering corres-
ponds to an intermediate case 0< ®, « a.,

10
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o, The linearized gauations for snall disturbances at P ST

Let us introducé the Lagrangians of the small disturbances
es S‘T N '.;((;.'I_ . SJ ﬁ'sS\H ‘"}.S‘
] ‘\ k] 3 Y ] Ja‘ ~P (30)
with respeet to the equilibrium solution of Equations (}0) and (19)
through (22): '

pemy, Ty, TG).Bew, Hreonst,

K
, Y ! (31)
Let us also set all the quantities of Equations (30) o exp(-iwt);

then from Equations (10) and (19) through (22) we obtain:

ch\i“ ) 'P‘ “ _ (32)

2h- o= w g ‘5‘41-1','3@5 (33)
GEALE »,\'acjtl\ i 2:7;.’%\\ p _b’r (34)

. Wy - tm(@&.@ . ('\’(“\) . s t (35)
4=, a7 - ‘“’ru rA AR AN “Dp 5; ‘ , (3‘6)

Eliminating B from Equations (33) through (36) by means of Equation
(32), we shall obtain

“

¢« *

- elf al'is b .
BirGm TR s a (- g (37)
. . ’ ".
JANp o, el o 2w d L (38)
O e E;‘»:c. 4\{1 ac.c:_.H qé\""o S
R " ’ i o (39)
. xX, ’
ol ( Rp? - Pp - ==K,
6= War o€, § MP dd/clm . ) : (40)
4 . T :
, & QCT —-\QQ/) (a ‘/
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In *quabion (28), Case (I), setting:r‘no, we have from Equa-

tions {»0) and (37) for Case (I): ' ' .
0~ -(nﬂ)?-\ oy felom o ~ (41a)

S"" Yo c(_e) " r\'\' W &&4 . 0, v » . (”2)
cp dm am‘ X i :

- In Equation (29), Case (II), let us immedlatély allow4for the
smallness of the quantity B=P /P <<1, and also let us cunsider the
‘case where the inequity , .
P /m.?c < 4, A (43)
is fulfilled. This 1nequaiity is fulfilled aé osecillation fre-
quencies that are not too high. Takiﬁg inequality (43) into account
one can neglect the second term in the denominator of Equation (40)
and obtain, for Case (II):

b= 1208 308 dyfim

hx, nc"'

41b)
an

IQ:U‘
Y
-3

B

| (

Taking Equation (Ulob) into accourit, the quantity in the right-~h
part of Equation (37) equals o

% (§macTYO/m) = = (OB [43) by /otem,, - (b)
By virtue of the inequality B<<l, thls term is much smaller than thg
last term in the left~hand part of Equation (37) and one can neglect '
it, Thus, Equation (42) is valid both in Case (I) and also in Case
(IT). Let us now eliminate 6 from Equation (39) - Using Equation
(§la), in Case (I) we obtain from Equation (39)

(I): __d_‘ P 4y hm%
w? a (XP dm> g\. (“”a)

In case (II), using Equation (41b), we obtain from Equabion (39),

_ with allowance for inequality (43):

(II): 4 : ) .

- (T - dy\ . @b& : '
Wy (3 e .?p 553 e (Lhb)
Equations (38), (42) and (44) will be used in later calculations in
regard to the variables y, h and J. ’

3. Waves in a homogeneous medium¥

. ¥This case was also considered in [29].
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In this case H=0 all the equilibrium values in Equations (31)
,are constant, among them p=const, and insbead of Inequality (43)
one can use the stronger inequality

W /e ac'.ja << A or t‘:‘t/«.f«‘ﬂd%L (45)
This inequality indicates the smallness of the free path .of a photon
{=4/>p in comparison with the distance divided by EW which a
photon risses through freely in the period of the vibrations., One
can look for the solution of Egquations (38), (42) ‘and (44) in a

homogeneous medium in the form exp (ikz). K Alsd ﬁaking Condition (HS)f

into account to simplify Equation (38), we shall obtain

. : )
A =0 : . (46)
«g' A " —T.“ ‘“i‘) " o
- -g)v\ ' CP\ %‘{‘ % ‘6-0'
(I> 4 3 Xe | . (Qi - X '[P% Q‘)\ = O'

(IT) 1‘~:’“9\-;E¢I‘-—é-$5 4 (- fl){‘) 0.,

P L
2 P G e Bkt g TR

Equating the determinant of the system of Equations (M6) to zero,
introducing the notations . .

,,\I_ _1_8_ p.- -2 ,‘3} N e
'“-:',')S)s \ﬁ'bfaw SR . (’47)

and allowing for the fact that B<<l, we obtain;the_dispersion equa-'
_tion in the form: - :

N T R T WA VA
v R R (0B W) <t "7

~

. (48)
For Case (I) the adiabatic speed of sound Vo from Equation (47)

enters into Equation (48), and for Case (II) the isothermal speed
" of sound v§=Pg/p enters instead of Voo that.is;'Eéuations (47) and
(48) are applicable for Case (II) if one sets ykl,

In thils paper only forced vibrations'(acéprding.to the termino- :

logy of [19]) are considered, where w 4s considered real and given,
and k2 1s found from Equation (48). 'We obtain

13
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Taking the smallness of vg/v§m6<<l into account in Equation (49),
we obtain ‘ .

] L *
&‘,; _‘9_. *“ aw\f,

. Wy c(«f&;‘ N - 3 _ | (50)
S ' 2 ‘(
S (R A Y
BERGE St u?[}«(ﬁ%):L ) (51)

.The solution of Equation (50) describes tﬁe propagétion of waves
that are associated with the gas pressure., If absorption is absent
(Case I), then the waves are adiabatic, and in the case of strong
‘coupling of gas and radiation (Case II) the speed of sound becomes
isothermal. The solution of Equation (Bl)vdesqfibes adlabatic waves
that are associated-with radiation pressure. The frequency

' Wy = 3\-‘: /ct (52>
1is eritical for both types of waves, For m<<@i, we have
Voo . oo\ o
.3 A 2 e (53a)
&, ﬁ\l‘ (Lc\) (‘l 20‘)‘ ‘
i~ =2
y &I.-'-' 1 J' (& 4 10‘ . !
. (53b)
For w>w,, we obtain )
W S T
!?.‘-; t —\-;a({ PN i—:") . ’ ‘ (Sua)
tow, . - J oW ‘. B
AR I CLl ) (540)

It follows from Equation (53) that the 10W—frequency distur-
bances of the radiation pressure Pr are propagated with a velocity
Vo, (Equation (53b)) almost without damping, and the propagation of
low=frequency disturpances In the gas assumes Qhé;character of

14
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"diffusion" waves (Equation (53a)) with a coefficient of diffusion

g-v /w Bcl/3.. ™ese waves describe the leveling of the inhomo-

.genelty in the gas ("entropy" disturbances). " on bhe contrary, the
lhigh—zrequency disturbances 1n the gas are propagated as sound waves /20

(Equation (54a)) and in the radiation they assume the character of
thermal waves (Equation (54b)) with a coefficient of temperature con-

4, A medium with an abrupt jump of opacity;;'

Let us consider a medium in which p, T and Pé are homogeneous

- and the opacity is ., It undergoes an abrupt jump in the plane o
. 8=0, The quantities 1 and Wy undergo the same kind of abrupt jump

in this plane. Let =e, (2<o)>>ac. (z-,-o) A wave which is propagated
in the direction of 1ncreas1ng 8 can change the nature of its propa-
gation at =0 if o "_ S T P SN N

Ot G e D BhEas Mgmemt s)
Short-wavelength disturbances in a nomogeneous meddum w>>wA rapldly -
damp out even in the case where their propagation has the nature of
the wave of Equation (54a). The damping 1ength equals ld1-2v /w2
2/3cv l/v r, Which at small. B can become on the order of the lengthf
of the free path 1 of the photons. On the other hand the damping |

of long waves is very weak; .from Equation (53b) we have 1;,%2v w0 /w ‘

A

‘ductivity Xp =1/3¢l (compare with [20]). Let.us remember that, for -
e the waves in a gas are isothermal, '

=6v3/clw+°° for w+0. Thus, it makes sense taq investigate the transifv~

tion of only the fairly long waves through the abrupt jump at w=0,
The case of Inequality (55) that is cons1dered below is the most
interesting one from the point of view of later appllcatlons.

The wave of Equation (53b), upon passing through an abrupt jump:
of opacity, 1s split into four waves: the two reflected waves of
Equation (53) and the two transmissian waves.wh;ch, for >0, w>wg

already belong to waves of the Equation (54),type. "It is obvious that,

at the point of the abrupt jump of opacity, the y displacements, dis-.

turbances of the gas pressure Pg=Pg(B/p +8/T) and of the first moment

15
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J which characterizes the radlation pressure of Equation (23) remain

continuous,
the condition of the absence of an energy sink or source at the
place of the abrupt jump. If Ao is the amplitude of the incident
wave, Al and A2 are the amplitudes of the reflecté@ waves of the
Equation (53) type, and B, and B, are the amplitudes of the trans-
mission waves of the Equation (54) tyr.,
continuity condition for the physical u**”;ities at the abrupt Jump
at =0 in the form

Aot‘ * AA%'*.A-;:}
%ﬁ’ﬂvLa55 py

To obtain the amplitudes of Al, A2, Bl and B,
one must express the amplitudesn for different q values by some

= By 4 Bu
M T (56)

as functions of Ags

defined q_, using Equations (46), (32) and (U41), and solve the four -

linear non-homogeneous equations which have been obtailned. If one
adopts g —J, then one can write down the remaining continuous quan-
tities, using Conditions (45) and B<<l in the" form
L 2 : .o
he-igp b ’_a?};bk

s J= cmw A (57)

(1)%% (3. .i;\>’ Cf} Vk_ :—_ A' "7

.‘The solution of the system of Equation (56), taking Equation (53),

(SM) and (57) into account, has the form for q=j. -
A T N u_‘
Ay =2 WLt “'"‘/@ - ey ]
=-[1-2 ';'33 O”')}Ao:\v
}A%1

X R =S PO

By = -2 209l <4..)

J

(58)

16

The continuity of the second moment ‘h also follows from

hen one éan write down the
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.For q=y we have

-

,___1{— (s \)[4 (- )“2.,) = (44 )\f: ]Aoa, . :
(1 Lr (\n)le‘,, . (59)

. 5‘ = 1[&— (_l.'-i‘)\/;-—g "“':)@-X'A"%v.

- 23 J{x COVEER Aoy

The relations (58) and (59) are valid for both Cases (I) and
(II) if one assumes vg to be equal to the adiabatic and the isother-
mal speeds of sound respectively. The terms ~w/wA~mB/m, and v /v
were neglected in comparison with unity in all quantities. It follows
from Equations (58) and (59) that, upon passage through an abrupt

fjump of the type of Inequality (55), an almostfcomplete reflection

occurs for a radiation wave of the Equation (53v)" type. The ampli=-

,tudes of the remaining j-waves are significantiy smaller than Azj’

the shift of the discontinulty point generates a transmission gas
wave of almost the same amplitude '
~ | A - . v :
8] ~| ‘”'Jl RN (60) /23
Thus, upon passage through the abrupt jump of opacity, a wave trans-..
formation occurs such that the wave whichvpossesses the minimum '

" damping "survives'". Relation (60) shows that ¥, the amplitude of

the wave with minimum damping 1s almost cqﬁtinubue at the abrupt jump.

We also considered the gquestion of a'wavefﬁransformation for the
case where the opacity (and the paths of the phdtonsiﬁ) change con-
tinuously. Here the system of Equations (38), (39) and (Hé) is
reduced to one equation for the displacement of‘y=(a dashed line
indicates a derivative with respect to a): o




e . o T WA T T T — T ST wm——S B RS

mE

i (61

It was assumed that for =<-@ the path £ i1s constant {=¢, , for

> A v YE ;
(' N+ 242 55 4"+ B y)= o0,

28 £=0y, and for 8 « » « Bthe path increased monotonically from’

€y to ¢, , and, moreover, the relation €(») was selected in the
form of a fifth degree polynomial in such a manner that-
¢ (22 -0*)?, ‘ (62)

, ' . .
Then E,@ R and ¢” are continuous for all &. The parameter 16, the
half-width of the transition region, varied in different variants
of the calculation from values 0¢:%% to @?>)%L , where
is the wavelength in the gas (without allowance -for damping).

Equation (61) was solved numerically‘by an‘implicit fifth order
Adams type method (see [21]). In order to obtain a solution for :
Equation "(61) which corresponds physically to .a radiation wave going
from tre region p¢.@ , we started in the following manner. First,.
a "radiation" wave going in the direction of increasing & was given
at wz+b& , From this the initial conditions for y. (that is, y, y',

y'' and y''') were obtained for m=.¢ and an.intégration'"backward"

of Equation (61) was cdrried out from 2=i6 to 2:-0 . From the /24
Yy ¥', ¥y'' and y''' values at w--£ the amplitﬁdes of four waves
(radiation and gas, incildent and reflected) were found. Next the same
procdedure was repeated where the initial conditions for R4 0 corres—
ponded to a purely "gas" wave. A linear éombination of these two
solutions in which the amplitude of the incident gas wave equals zero

: for 2=-€ 1s also the solution sought (a radiation wave 1ls incldent;
. waves of both types are reflected and transmitted) To check the

accuracy, a repeated calculation was carried out from 2--8 to 8

- wWith the initial condition found for ==-¢ . ' The accuracy is usually
" better than 10-5 and only for ég{oza is an error of =10 -3 accumulated.

The results of calculating amplitudes are shown in Table I for
values of the parameters L

18
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Co/Cn = 10%, ~2/vra10?, awly/e e 1070, :

w/W, = 1071, /= 10, S | g

€/Aq =001, 0., I & I0, :
(64)

It is evident from Table I that, for small values of 6/2g . the E

results agree well with Equation (59) that have been obtained for

an abrupt jump of opacity (upon oomparison 1t 18 necessary to men=
tion that the quantities discarded in Equation (59) amount to % I0%

in this example). Even in the case of ¢= 7\ one can use the relations
for the modulus of the amplitude for an abrupt Jump by an order of
magnitude (this case is most important for us'for later applications).
And only in the case of an extended transition zone@:Io?\are the
amplitudes of the transmission gas waves smaller than would follow
from the simple principle for the transmission of a wave with a
minimum damping. Here the point 1s that the ga$'waves are formed

. in a region that i1s larger than thelr wave length, they are coherent -
‘and, by interfering, they extinguish each other (Ya. B. Zel'dovich 4

turned our attention to this fact).

ny
o
&)

II. ASTROPHYSICAL APPLICATIONS

|

5. A plane equilibrium atmosphere

Let us now go over to considering the propagation of waves in
astrophysical atmospheric objects with B<<1.-.We §hall use the
approximation of a plane atmosphere in a qons@ant;field of gravity
which, in the majority of practical casesg allows one to obtain
sufficient accuracy. Equations (10) and (19)}thrpugh (22) for a
static atmosphere assume the form

:.T‘%\z é; ’ c:i(—t“l = m‘CB—J) 2 D= J‘
. ; | _
%‘é{—;\;—x.H‘ i_%‘; - og s lg__c_a__r. H.'. - (65)

The solution of the system of Equation (65) for: a known steady flux '~

has the form J-9- Qz:r , 4. m&n—**) 'T.rT('c* 3)

19
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For H<<H, the solution, Equation (66), is éedu ed to the well-
known solution for a plane atmosphere (see [17]). For the solution,
Equation (66), the characteristie frequency wl,isalfrom Equation
(52), a function of the optical thickness T:

.

w0, LA (430 - 67y .

If a wave 1s generated at To>>l and its’ frgquency ww, (r ),
then, at w>w (O), there exists such a 71, at which u-wl(T), and
at T<Tl, the nature of the wave's propagation phanges. At 1551
z<0, the solution, Equation (66), has the form. .

- - cT“ 4 \ '

J—.b— ‘_‘7‘_3; ’ T =47:‘c\ 3T_"(‘T:'C"~ Z_2__6_
LY b (1 By o -

P" 3 G 3 T‘} H'. —9' " ) (68).

2e - { (3" -] npu z&bﬁjso,

For 1<<l, &>0, from Equation (66) we have:

ﬁﬁiﬂ I Tk ‘M
J Bf' - DT L q —-c-:-;, <> (69)

. [/
2=-2,0% T for »(%)=0, z.gcrzi)‘/{_ L% p.

with such a choice of the constants of integratioh the quantities T,
p, and & are continuous for a transition from Equation (68) to

Equation (69) at the point T=2/3.

6. The propagation df‘waves'in'a'glane'afmosphere

The waves in a plane atmosphere are described by Equations (38),
(42) and (44). Going over to the variable & 1nstead of m, let us
write them down in the form i - JSL A dy o 2490 ) dy
5)( “‘ .wdz'sr. H()O,

, o1 4
“28*3{%*‘9““ d (70)

3T %

nlt
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The equilibrium solution is defined By the system of Equation /27
(68). One can obtain a solution of the system. ‘of Equation (70) in :
a quasi-classical approximation

‘és > 5 = :f(i)‘eu]: ,(4 chl?.) N (71)

.Leaving the main terms of the expansion, we obtain by substitutinz
Equation (71) in Equation (70), ' ‘

b= 0k 3—53 “"“’Ha o, (72)
W 1 aT" '
"'55‘”‘ke"‘ -5-3-; kh)'}J-:. O,
L —-A r p. . 1 ‘p : : . : '
2 = KA g - R )oKy g ey

Let us use an inequality of the type of Inequalities (45) _
w/e ®e P, << 4 , . (73)

‘with Po from Equation (68), The system of Equétion (72), which
differs from the system of Equation (46) describing the propagatilon
of waves in a homogeneous medium, only by the presence of the last
term in the first equation. If one uses the ihegqalities

P4 ang w [kex .@4; (7)
whlch are assumed as being always fulfillea, then -the dispersion
equation 1s reduced to Equation (48) if the quén%ities Ver Vi and
= 4[3%3 are considered to be variables defined by the system of

Equation (68).
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As was noted in paragraph 5, the only tybé‘of'waves that propa- f
gate with low damping in an optically Lhick medium are low-frequency
(w<<ml) waves that are defined by Equation (53b) " The damping of
this wave 1s given by its imaginary part which in the case of

Equation (71), has the form IR Zgg
, afele . o (de . ’
S Im (b,\c‘?. = éw j‘i:"\—" - GNO‘SSQUI’ i
. (75)
. QL
dwl * (2C N\ m
== o 8:!"&"” ( ,tss/s = ’ (WHS" r'b—t

w2zl

The amplitude of the displacement A4, which equals A at t= Too has f
the form . . e
A=A G/ f e expl-w, (e ..-;,—ws)]‘ .

' (76)
To calculate the factor f(T) in front of the exponential, one can
use the Iollowing expansion terms after Suostitutlng Equation (T71)
into Equation (70). However, this requires fairly cumbersome cal- .
culations. Therefore, let us find £(r) from simple physical consider-
ations. Along with the wave damping, which is contained in the
exponent's index, the amplitude of the wave must increase during 1its
propagation outward through decreasing density; This intensification
must also be exactly contained in the factor f(t). If there were
no damping, then the energy flux F transferred.by;the wave would

F-:-'P%l('r";.w" dw/db = cons‘f{ S (77
Taking p from Equation (68) and k from Equation (53b) into acoount,

F"»- _f’('c)'u'/" 'F(v) =16

bé constant.

we have

co | (78)

From Equations (78) and (76) we obtain the change of the wave's

amplitude at w<<wl in the form

o va )
A A(T3( /T) bcy‘ [Ln-'r:—&_i VHP ( -fl‘)] (79)

Mmax (4, ) 4T ¢ o, W)= uJ‘ .
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The value of Ty up to which Equation (79) is valid, equals, with

allowance for Equations (67) and (68):

wet LWL 4 oe, © o
= . "
C T e R, a’\‘,; ®, I Vigh LPvipn

—— “
4
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e o gnepean- cem"y...;.

In the majority of cases we shall conslder waves for which 7;>1,

then, from Equation (80) i1t follows that
(»D/Gf'.y,, .Ur\n\n > '\yrp\s/c\

which can be fulfilled simultaneously with Inequalities (73) and (74)i
It T1>l then, at t<t,;the wave changes 1its character and ‘begins to be '
determined by Relations (54). Although a gas wave (Equation- (54a))
is dampled slightly after one vibration peridd: for a given length
Az it is, for 7=t1,, damped much more strongly than a thermal wave

(see Equation (54p)):

Tk, e}/ Tk, (e) = 4 (0, N@/& R PRY: /ru .-

The amplitude of a thermal wave (Equation (Sub)) in the quasi- classi-.
cal approximation of Equation (71) has, using Condition (77) to
determine f£(t) and the solution of Equation (8}, the form:

F- ~ 'Fl('“) ,t-\ll , {(‘t> o 't_'»‘/“

A= AG) ™ exp [“‘”(ay )'"CT”“'-f"‘)l

maxr (4, 'L\~-:c't‘.

The damping for gas and thermal waves in Equationf(su) becomes ident:

ical f 3/ 2
ca or T.m(ﬁ) Im(h) TaT, s 2T N, /u "'3755"

If 12<1 in Equation (84), then the solution Equation (83) is extended
to 1=1 after which one must use a solution for an optically thin

region. Otherwise when,




T TP

e V4 T A A e e . ok savsantiicteadiiiiie i A k4 1Y T s s g

3. G hW

— Y
T 71' > 2 "

g » ut .V 5‘\ c\f‘ " .

' e £ (85)
there is a reglon 1<t<T, where a gas wave (Equgt;on (54a)) has less
damping. Using Equations (54a), (71), (77) and (68), we obtain

F ) “‘t‘("'):rm’ {(-E) " ,‘.1[“" - (869

.

i D7 N el
.AwA(V.)(r./'t)" expl 4t (4) (2,1%%:)‘,‘ )]

e mm gmee e mmm wew  Gmm e S ps pem) e eme  mew e e wem s

In the limit of small optical thickness 7<<l’ the solution,
Equation (69), of Equajlen (65) is valid and the system of Equation
(70) is greatly simplified. At small T, jvh occurs, since J=2H in
Solution (69) and also T=const. One can estimate the terms with '
derivatives in Equation (70) by infroducing the .characteristic wave-:,
length A for a disturbance. By comparing the terms with h and 4j/dz -
in the first of Equation (70) and with j and dh/dz in the second of

| Equation (70), it 1s easy to see thatJthe terms w;th derivatives
always predominate if 93\’&, wl ’ 10)\/0 » ;L, -
which 1is always valld for 1<<l. 1In this'case; from the first two
of Equation (70) with allowance for Equation (69), it follows that: /31

Prem———
}

i~ dwy - I LRt
. BEMy, helZay, by, TN, (88)

The constants of integration in Equation (885 WPich arise during the '
~solution of Equation (70) have been set equal to zero. They are
connected with boundary radiation sources which do not depend on the |
local y displacements. These sources are assqmed;to be absent. Subé ‘
stituting Equations (69) and (88) into the third of Equation (70) and
taking Equation (69) into a¢count, we shall obtain

Yo »ua :.l.&ii‘ " % mc,.u> cl\j M wz?. I( Q'\ ‘j =0, . ‘ .

2, N . '
3 2 . -.‘ - | (89)
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Equation (89) is, with allowance for Inequalifies (87), valid for

case (I) at the adiabatic veloeity (y=5/3) and for Case (II) for an
isothermal Vi (y=1). EquatiQn (89) has an exact solution y o exp(iksz),
Substituting this form of solution into Equation (89) and introducing :
the characteristic length from Equation (69), we obtain '

N . . W wph
W= R - Lk, o i3 uT Jeno,

From this, we have R
T o o= . mimer -- ’ .‘-'— GT‘ ‘/z
k 22.'[ &z" <1 )1 " (91)
The "+" sipgn is e¢hosen for waves propagating ouﬁwards. If
Wwrv./272, ' ) ' :
e (92)

then the gas waves propagate in an isotronic athosbhere, otherwise

the atmosphere vibrates as a whole (see [197). Fofmally the propa~-
gation of some wave follows from Equation (86) at w<<v /2zo, but in

this limi?ing case the second of Inequalities (87)'is violated, and /32
therefore, Equation (91) is unsuitable for this case. ,If the radia-

tive damping is sufficiently small ' '

4% ol's HOF-S- TR
w% o
Po= 2R 2 ot s qary, (93)

then, from Equation (91) we have the expansion

. &'4-5:'2’49({*?“?"‘9‘1)

(o)

The first term of Equation (94) determines the increase of amplitude
in an exponential atmosphere for a constant energy flux. In ful-
filling the condition vg<<cB the radiative damping in Equation (94) -
1s always weaker than the intensification, and. ‘the formation of a
shock wave occurs. The wave amplitude in the c&se of Equation (94)
changes, with allowance for Equation (69), according to the law:

A= Al %\exP{u,(% 5 & 31-‘\(”3(‘9“‘“?' (%)

— o — o — — — — oo} v — — t—
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Lot us find she dependence of the acoustic energy flux F on
optical thickness, using relations that have been derived above, ,

. Let us introduce the dimensionless parameters

I O S (96)

'f"‘ sani’ W.S,C
We shall adopt from now on the value 1=2/3 as the.boundary between
the rransparent and opaque reglons, Using Equations (77) and (79),
we have for the region t>max (2/3, Ty ' .

[ (2 = Pl enpl §57e0 (v ""‘)l (97)
‘For T, 2/3 in the region max (2/3,T2)<T<Tl, we have from Equation (833
F(’t‘> n-f?('(",)(:xl,,\:?‘.@ G (':5'“ _,.C6/H>'—\ (98) 1.31

If 7 >2/3 also, then in the region 2/3<T<T2, using Equation (86),

we have 3 | .
TG = Fryenp | 2L = . Y (e ) (99)

In the transparent region t<2/3, we have from Equation (95)
FE=FEEON e, g e, (200)

s has been shown in Paragraph 5, upon the wave'sfgoing over into a
region with different parameters and for a change of the type of wave,

there is a characteristic quantity which “maiﬁtains itself", the

amplitude of the wave with the smallest damping. 1In a plane stellar

atmosphere the type of wave changes at the poiqts T=Ty, T, and 2/3..

For finding the fraction of acoustic flux which arises at T>>T, and .

which flows out into the region 1<2/3, we shall use this condition

5? continuity. As follows from the previous examination, three cases

are possible * ‘
I) Tl<2/3.

In this case the solutlon of Equation (97)‘immediately goes over
into Equation (lOO), the wave velocity and the energy flux undergo ah
abrupt jump of ~g%, and we obtain o - /3M

Fam): @) Te)expld 6o m@;,,?' o

2) T >2/3, o T, 2/3.

(101)
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In this case, Solution (97) Joins withlEguatﬁon (98) and,
moreover, in view of the preservatlion of the type of wave, the energy
flux at =T, is continuous, but at t=2/3, Equation (98) goes over
into uquation (100) with an abrupt jump of Lhe acoustic energy flux

of NB” We have | | /34
F(2/0)= (3% 35‘,)'/ *Peeyexp 4 Gl (g B ) |
' 6 ¥ 58 .58\ : '
(O A R (102)
3) T2>2/3.

Here a continuous transition from Equatien'(97) to Equation
(98) occurs, then a transition with an abruot jump of ~B* from _
Equation (98) to Equation (99) and, finally, & continuous transition
from Equation (99) to Equation (100). We have

bl

FG/)= (2 )" P expls®” ~<>

(103)
%1‘26”"(2 S gp\ V3, SRl o
s ST ) Bged () )]
d) The outflow of waves from_a_plage_aﬁmgsghgrg in_the

— b - cvn - mam e e G eus  wwm .

- Condition (92) is, taking Expressions (68)}&5& (69) for P, and B
Zq into account, written down in the form ' ' :

NG W o
- - :‘4) .« ot

Here T is the temperature of the gas in a tranbparent region. As was -
noted in [8], [10] and [11l], for turbulent disks - accreting onto a ‘
black hole, the presence of an acoustic energy flux and its transfor-'.
mation into heat, and also the heating of the gas‘by the disk's
Vradiation, which creates a non-conservative radiative force, lead to

5
v
IR J

I ST NG < el T 8 2
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the formation of a corona in which the Lemperabure T 1s considerably
higher than the temperature T=2 1/‘Tef which 1s presenf in an equil~
1brium isothermal atmosphere. Coronas also apparently exist around ., .
very massive stars. The presence of a corona will lead to the weak-
ening of Criterion (104) for wave transmission,.whibh formally will

be reduced to inecreases of T and v_,. This will lead to a broader

band of outflowing waves and to a stronger acoustical heating, A
seeming "shining through'" of the star's atmosphere-becurs upon the /35
férmation of & corona. The increase of the corona's temperature is
limited by the fact that the,intrinsic energy losses of the coronal

gas, which are determined by Bremsstrahlung and inverse Compton radia=
tion for a radiative f{lux of photons from the photosphere, become
significant. A magnetic fileld can play an important role in the pro-

cess of forming a corona (see [12]).

The transition zone from the photosphere from t=2/3 to the corona
plays an important role in determining the fraction of the acoustic
energy flux which flows outward. '

If the thickness of the transition zdne dC 1s much less than
the characteristic wavelength AC=2ﬂ/kc, kc= /vg withAmc from Criter-
ion (L04) then one can evidently replace T by Tc‘in Criterion (104).
In this case the band of frequencles increases for outflowing waves
and the fraction of the outflowing acoustic flux increases. If
dc>> o? then the presence ofua corona musf not affedt the frequency
of the outflowing waves and one can use the equilibrium parameters of
the gas¥® everywhere. In reality d can be mAC; therefore, we shall us@V
the equations that have been obtalned above with the equilibrium temp-.
erature T of the atmosphere for all estimates, but'let us take into
account the fact that the frequency of a'transmittéd wave can be of
the same order or even somewhat less than wC(Tf‘fpom Inequaliby (104).

L

* With a corona present, waves with w (T.) <w<m (T) flow out into the
corona but their energy flux near tfie Sase of the corona is reduced
by the factor exp(und /A )

28




-

7. Numerical results

Let us calculate what fraction of the acoustilic flux generated

at large optical depths can flow out into the trensparent atmosyhere ng

and heat it., The location of an acoustic wave's transition into a
shock wave depends on the initial amplitude. We shall consilder the

value of the optical thickness for the transition as the free parametef‘
The calculation has been carried out for two different situations

T .
out
in which the role of radiative pressure is great: 1) an accretion

disk, and 2) the atmosphere of a very massive star.

In the case of an accretion disk leOrg, where r is the Schwarz;
schild radius of a bhlack hole, was considered as ‘the region of maxi-
mum energy release., The mass of the black hole.was taken as equal
to, 1ow . The turbulence parameter ut~0 1. Sﬁecifying the parameter
m—M/N op determines all the properties of the disk if a model of the
vertical structure has been chosen., We conuidered two variants of the
vertical structbure; the adiabatic structure that has been obtained in-:
[8] with a polytropic index n=3 and the n=1 structure obtalned in [9].
The results for different frequencies are presented in Table 2., In
this table the limiting frequency dc from Inequallty (104) 1is taken
at the equilibrium atmospheric temperature-w1uhout allowing for the
existence of a corona. Therefore, in reality, waves with w slightly

lower than y, can also be transmitted.

The results of similar calculations for very'massive stars
(see [2]) that are considered as models for quasars are shown in

Table 3.

From the results it is evident that the . crude estimate of the
fraction of the outflowing flux (mB=Pg/Pr)-thaﬁ_has been used in [8] .

is actually valid in order of magnitude for frequenciles that are typi--

cal for a disk (with AVZ ). The high frequenciles rapildly decay '
exponentially, This fact isolates the characteristic frequency (more

precisely, the band of frequencies) among the waves. which heat the-
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corona of the disk. Let us repeat the factors which lead to such an
isolation: 1) an isolated region in the disk with a maximum temper- T
ature and maximum energy release; 2) low frequeﬁcies do not pass :
through into the corona (besides their generatien is also impeded);

and 3), the high frequencies decay rapidly.

\
W .
-3

8. Comparison with observational data

-

‘ As follows from the previous examination, each object (a disk,
or a Very massive star) possesses a characteristic frequency that is.
determined in Inequality (104). Waves generated by convection with
a frequency close to w, flow out into the atmosphere, disturb it, 'f'
and can lead to the observed fluctuations of brightness. It is of
interest to compare the characteristic frequencies.resulting from
theory with the observed times for the fluctuations of brightness for ',
those objects in which one can suppose accretion_disks or very massive
stars., )

a) The Cygnus_X-1 X-ray source

This source, in which the presence of a black‘hole and accretion,nz
disk is supposed, is strongly fluctuating in the entire range of
periods from 10-3to ZLO'L‘l sec (see [22]). As follows from Table 2,
the characteristic fluctuation period caused by. the outflow of
acoustic waves into the atmosphere amounts to from 5 to 10 millisecs.
The detection of a quasi-period t=10 millisec in the x-ray radiation
of Cygnus X-1 (see [22]) may be associated with the outflow of waves
into the, atmosphere above a convective disk. fnu[22] the existence
of a quasi-period of ~10 millisec is associated with the revolution
of ‘hot spots around a black hole (see [23]). One can indicate several
observational differences between these two mechanisms for the fluc— 4"
tuations. During the revolution of a hot spot,which spirals in toward
the black hole, the period of fluctuation in eécb series must decrease},
At the same time the characteristic frequency which depends on the ‘
star's mass, does not change as a functionlof lhminosity. If the

same fluctuations are caused by convection, then'the period in a
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given series must be approximately constant, butjupon an lncrease of
luminosity, the characteristic period increasés approximately pro-
portionally to the luminosity, as follows from Table 2, Let us

also notice the difference in the spectral variation of the two
mechanisms: the spectrum in a puiée does not chahge during a revolu-
tion, but as a result of convection the hardest spectrum must be at /38
maximum brightness., However, an increase of the spectrum's hardness

must be noticeable only on the shortest time scales (<10 millisecs).

Fér longer intervals the connection of the specﬁrum with luminosity

1s considerably more complex, since different regions of the disk,

the flares in which can be uncorrelated, gi&e contributions to

different parts of the spectrum. Therefore, the absence of a simple
connection of the spectrum with luminosity that has been noted in [2&]4.
cannot serve as an argument against explaining phe_spectrum of Cygnus.. .
X-1 by a Compton process, Let us nouice that the mechanism we have
considered can give fluctuations that are weakly correlated in time .
and can imitate the white noise that has been obtalned from an analysis:
of observations of the brightness fluctuations for Cygnus X=-1 (see

[24] and [25]).

»

b) The nuclei of active galaxies and quasars.

The nature of quasars and of the compaét nuclei of galaxies has f:
been unclear up to now but the physical processes that have been con- .,
sidered in this paper occur in at least two exiéting models: the )
disks around very massive black holes (see:[3]) and very large stars
(see [2]). It is also of intervest here to compare the observed pro- - -
perties of variability with the predictions of the model. Rapid fluc::
tuations of luminosity with a quasi-period of'ﬁloo days are observed
in the nucleus of the Seyfert galaxy NGC 4151 (mi30 days see [26])
and in the object 0J 287 (~v184 days), which is;a’BL Lacertae type
object (see [27]). These quasi-periods agree well with the character-
istic %eriods of the frequencies in a model fo? a:veny masslive star '
of n10 M® (see Table 3). According to the data of Table 3, one can
estimate that, in a model of an accretion disk. around a black hole,

for & hole mass of mlOBM® these periods cbfréébqhﬁwtoma'iuﬁzﬁoéity ”“ﬁ
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L=0.1 Lc' As is especia}ly noticed by observers (see, for example,
[27]), "Phase change (which 1s evidently sharp) with preservation
of the period is a feature of the periodicity of the rapid component
in the nuclei of Seyfert galaxles". Thils property agreds well with
the convective-wave nature of rapid fluctuations.

A tendency for an increase of the quasi-period for the fluctua-
tions with luminosity, an approximate constancy:of ‘the period in
each glven series of observations, and also an increase of the hard-
ness of the spectrum at maximum brightness are the general properties
of the convective-wave mechanism for brightnessyasvfluctuations both

N
)
\O

i

in a model for a very large mass star and also in a model for a turbu-~

lent convective disk around a very massive black hole.

However, the role of radiation pressure is very great and the

damping of acousticec waves 1s very strong in both these models.. It is -

clear from Table 3 that in this case the outflowing acoustical flux
amounts to no more than ~v1% of the flux genérated at a large optical
depth, which 1s significantly less than the observed amplitude of
variability. It appears to us that the transfer of energy by other
types of waves (for example, by magneto-acoustié waves) will also be
strongly impeded in this case, since damping of them by radiative
friction will occur effectively. This difficulty becomes especially
Important in a model of a very massive star, whefe there the mechan-
isms of variability that are specific for an accretion d;sk are not
present (also see our paper [28]). |

Cmnazh At e s KRR

In conclusion, let us quote the main fesults of the paper.

1. Equations have been obtained whicﬁ take into account v/c

‘terms and which describe the propagatipn of planeilinear waves 1in a

medium with high radiative pressure, wﬁere'the«radiat;ve transfer 1s ;

described by the Eddington approximation.
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2. The damping and transformation of wayes have been investl-
gated in model problems (an abrupt jump of opacity and a zone of

: variable opacity).

i o e e s b b s,

3. The outflow 1s considered of waves 1into the atmosphere and
corona of an accretion disk and of a very massive star. .,

4, The characteristic times of variability have been obtained
for the Cygnus X=-1 source and for the active nucleli of galaxies and jZﬂg
of quasars and the difficultles of the model for a very massive star":ﬂ
in the latter case have been indicated, w '

The authors are grateful to Ya. B. Zel‘dovich for important
remarks. We thank Ch. Kunash and M. M., Basko for making avalilable

the material of [21].
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TABLE 1 p 4

v . .
£

The complex amplitudes of waves which were formed in the transition .j
region with variable opaclty. The amplitude of an incident radiation
wave 1s Ao=l, the inprease of a photon path C&/C 'n , and the velo-
city ratio of the gas wave to the radlation wave is vg/vr=0.l. The
frequency of the wave w is selected such that awl,/c = 107, , w/wA=0.1, o
and w/wg=10. The parameter £ is the half-width of the transition -
zone (see Equation (62)), A, and A2 are the amplitudes of the reflected
waves at the point 2=+8 , and BJ and 82 are those of the transmitted
waves at the point 2=-0( . The caseb/A, =Cis an analytical calcula- -
tion of the abrupt jump (see Equation (59)), and the remaining variants

zpr—

are by numerical calculation,

%/1‘\5 Al. A W B 4 61 i
o | -0.247 + 0.247i 0.558 - 0,447 I.IC5 + 0 4 0.045 + 0I5 ¢ | -
0.0I| -C.248 + 0.2564 0.478 = £.236 ¢ LLI7 - 0.09¢ ¢ 0.052 + 0,182 {
0.1 | -0.250 + 0.223 0.478 - 0.234 { 1,169 + 0,091 ¢ 0.05I + 0.189
1.0 | -0.185 + 0.026 i 0.494 - 0.203 1 -0.027 + 1.022 1 0.040 + 0.I38 ¢ |
| 10 | -0.0052- 0.00I21 | 0.3I6 + 0.17I < -0.085 + 0,022 4 | ~0,049 + 0,0831
i
i
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TABLE 2 L2

—
*

The outflowing acoustilcal flux F In an accretion disk around a
vlack hole of M=1OM for an outflow optical thickness Tout (meaning: :
outflow optical thickness) for different values of the parameters m= .
A/mcr, = P /Pr’ wavelengths A relative to the half-thicKness of the
disk & with corresponding values of the period t, and the oscilla-
fion frequencies w in fractions of the limiting frequency wc obtained '
without allowance for the heating of the atmosphere.

-

v .

. '! & Al Ll - /% .
™oy 3 i1
, odel Tl O mil Tt T el comt -0
E : . seg. . out__|. out..‘.out -
; (o] [our 2 | 2.2{6.0]1I | 1.6 | 0.087| 0,086|0.081 ’
B oL
J ol 4| 4.4]2.5| 22 | 3.3 0.019 0.019]0.018
] (6] lo.27 5| ows|sa] |[4.5]0.23 | 0.22 [0.20
14 24l 83 | 13 | 0.045] 0.044{0.043] -
j - (5] lo.oz I | 4.2[.J0 |8.7] 0,06} 0.086| 0.029}0,017
0.3 ' 31 6.4 5 {1,9]0.08} 0.023] 0,018]0,0I0
(8] jo.082] £ | 2.7 & 3.8 0.18] 0.040{ 0.037]{0.030
5 . '
f
) :
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TABLE 3 '
‘ 1 )
| The outflowing acoustical flux in a very massive star as a
quasar model for different radii R (in units of the Schwarzschild
radius rg). The notations are the same as in T@ble 2.
zﬂ
b
i
M R %) + — F/F,,
i —— p.) e -~ 't\. b’_
‘ M v v |4 sec ! = 0.8 Ty 20T T = 0.0I
| % 3 out™ v out ®e=| “out = L.UL
; - 1.0°10% | 4.7 | 0.06 5.8:202 L 4,770 | 3,802077
5.0:10% | 9.4 | 0.I2 3.6°I07° | 8.2:107% | 2.5+1072
IOG 855'10-3 3 I0 10
\ 2 11.9410% {2.7 [0.024 4,570 {8,710 | 2.5-10~%
‘ Io I 2 |'s =2 =2
4 19.7°10- |5.4 |0.068 4.1-107° {3,310 2.2.10
2 |6.8°10° |I.I5]I.5-107 1.2'10"§ 6,0:10™ | I.5:10™
108 8.5.70= | |4 |8.4.205 |2.8 |2.9:107 | 1.2.107% |5,7.1078 | 1.4-1070
- 12 |1.2+10° {0.47 | 0.6.10~2 | 8.7-1078 | 2.7-10~2 | 3.0°10~%
' 10 4 -3 -3 3 :
4 {6.I°I0% |0.94|I.2°I0 8.7.10™ {2,7°10™ | 3,0°I0™
£ 36
T ) - we e e UL Wb e et ) *‘d’:‘OJ’f‘& ‘,.‘.“ 2 PRIFTE IR TR ) v Ty T S 4 .»',’.r



y 2

1.

3
4
So
6

10.

1l.
12,

*13a.

13b.
14,
15.
16.

17.

18.

BIBLIOGRAPHY : by

oovn—
PR

S. Weinberg, Gravitation and Cosmolopgy (Russian translation from '

English), Mir, Moscow, 1975,
Ya. B, Zel'dovich and I. D. Novikov, Relyativistskaya Astrofizika,

("Relativistic Astrophysies'"), Nauka, Moscow, 1967,

D. Lynden-Bell, Nature 223, 690, 1969.

. E, Pringle, M. J. Rees, Astron. Astrophys., 21, 1, 1972, .
. I. Shakura, R. A. %unyaev, Astron. Astrophys., 24, 337, 1973. :1

. D. Novikov, K. S. Thorne, in: Black Holes, eds. C. DeWitt,
. DeWitt, Gordon & Breach, N. Y., 1973,
. Appenzeller, K. Fricke, Astron. Astrophys., 12, 488, 197L.
. S. Bisnovatyi-Kogan, S. I. Blinnikov, Astron. Astrophys, 59,
111, 1977.
N. I. Shakura, R. A. Sunyaev, 5, S, Zilitinkevich, Astron.
Astrophys., 62, 179, 1978,
G.S. Eisﬁgvatyi-Kann and S. I. Blinnikov, Pis'ma v Astronom=
1cheskom Zhurnale, 2, 489, 1976

[Soviet Astronomy Letters,
E. P. 7. Liang, R. H. Price, Astrophys. J., 218, 247, 1977. o
A, A, Galeev, R. Rosner, G. S. Valana, Structured coronae of '
accretion disks: Cyghus X-1, Preprint. '
V. S. Imshennik and Yu, I. Morozov, Astronomlschesiy Zhurnal 46

800, 1969

Q H o H =294

Soviet Astronomy,

Yu. I. Morozov, P.M.T.F. No, 1, 1970.

J. L, Castor, Astrophys. J., 178, 779, 1972,

L. H. Thomas, Quart. J. Math., 1, /229, 1930.

K. Khir, Statisticheskaya Mekhanika, Kineticheskaya Teoriya, i.
Stokhasticheskiye Protsessy ("Statistical Mechanics,
Kinetic Theory and Stochastic Processes") (Russian
translation), Mir, Moscow, (1976):

V. V. Sobolev, Kurs Teoretichesko¥ Astrofiziki ("A Course in

Astrophysics"), Nauka, Mo'scoy, (1967). ‘}.

Ya. B. Zel'dovich and Yu. P. Rayzer, Fizika Udarnykh Voln 1 ‘
Vysokotemperaturnykh Gidrodinamicheskikh Yavleniy ("The * .

—_

37

o gk v st e . - .
e e s BTN N N e S bl e e i e a

[



19.

20.
213.
21n,

22.

23.

24,

25.

26.

27-
28.

29.

38

Physlics of Shock Waves and of ﬁigh—Temperature Hydro- '
dynamic Phenomena"), Nauka, Moscow, 1966, s
G. Lamb, Hydrodynamics (Russian translation from English), K
G.I.T.T.L., Mezhdunarodnaya Literatura, Moscow=- :
Leningrad, 1947. 122'
L. D. Landau and E. M. Lifshits, Mekhanika §ploshnykh Sred ("The -
Mechanles of Solid Media"), Gostekhizdat, Moscow, 1954. .
D. Kahaner, C. D, Sutherland, Los :Alamos Scientific Laboratory, -
D-205, 1975,
A. Yu. Zakharov and V. I. Turchaninov, Preprint, Institute of .
Applied Mathematics, Academy of Sciences of the USSR, Moscow, 1977.
E. Boldt, 8th Texas Symp. on Relativ. Astrophys. Ann. New York :
Academy of Sciences 302, 329, 1977T.
R. A. Syunyaev, Astronomicheskly Zhurnal, 49, 1153, 1972
Soviet Astronomy
C. R. Canazsre~. ¥, Jda, Astrophys. J. 214, L119, 1977. o
M. C. Weissko,'. ', i, Sutherland, Astrophys. J., 221, 228, 1978.
V. M, Lyuty:r ar.. .., Y, Cherepashchuk, Astronomicheskiy Tsirkulyar,.
No. 831, 1974,
V. M. Lyutyy, Peremyennye Zvezd&, 20, 243, 1976.
G. S. Bisnovatyy-Kogan and S. I. Blinnikov, Pis'ma v Astronomi-
cheskom Zhurnale, (in press). , o
N. Kaneko, S. Tamazawa, Y. Ono. Astrop. Sp. Sci. 42, 441, 1976. - .

>

>
-

i S T T T gl




	1980002736.pdf
	0001A01.tif
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif




