

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

https://ntrs.nasa.gov/search.jsp?R=19800003556 2020-03-21T20:48:11+00:00Z

w

JPL PUBLICATION 79-56

j

(NASA-CR-162431) PRF;PARkTION GUIDE FOR 	 NBO-11805
CLASS B SOFTWARE SPECIFICATION DOCUMENTS
(Jet Propulsion Lab.) 85 p HC A05/MP A01

tiI ^;i:'L 09B	 Unclas

133/61 46121

Preparation Guide for Class B
Software Specification Documents
Robert C. Tausworthe

6
s
k

6

I

l

h	 October 1, 1979

National Aeronautics and
Space Administration 	3 {^' 4;,	 ^.

-
Jet Propulsion Laboratory	 F	 ^^ ^^L `^^
California Institute of Technology
Pasadena, California'„ pSP ; c

F

I

JPL PUBLICATION 79-56

Preparation Guide for Class B
Software Specification Documents
Robert C. Tausworthe

October 1, 1979

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

1

^	 tl

The research desc,.^'%ad in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under NASA Contract No. NAS7-100,

Contents
1 .0 Introduction ... 	 1

1.1 Purpose ... 	 1
1.2 Scope of Application ...	 1
1.3 Applicable Documents 	 1
1.4 Description .. 	 1
1.6 Acknowledgments ... 	 2

2.0 SSD Basic Usage Requirements 2

3.0 Content Requirements and Guidelines 3

3.1 Content Guidelines .. 	 3
3.2 Definition of Class B Detail Requirements 3

4.0 Class B SSD Guidelines and Standards 4

4.1 General SSD Preparation Guidelines 4
4.2 Environment Specification Standards 5
4.3 Functional Specification Standards 6
4.4 Programming Specification Standards 7
4.5 Code Documentation Standards 	 8

5.0 Documentation Procedures and Protocols 10

Appendices

A. Documentation Examples 12
B. Equivalent Documentation Forms 72
C. Decision Table Standards 77
D. Typical Quality Assurance Audit Criteria 79

References 81

I

Y

Abstract

TWs Guide provides general conceptual requirements and specific application rules and
procedw:es for the production of Software Specification Documents in conformance with
Deep Space Network software standards and "Class B" standards. Class B documentation
is identified as the appropriate level applicable to implementation and sustaining engineer-
ing and operational uses by qualified personnel, engineer or equivalent. Specific charac-
teristics of Class B documents are defined in this Guide.

iv

Preparation Guidelines for Class B
Software Specification Documents

1.0 Introduction	 mentation of Computer Software, JPL Publication
78-53, Chapter 1, edited by A. P. Irvine, Jet Propulsion

1.1 Purpose	 Laboratory, Pasadena, CA, Sept. 1, 1978.

This Guide provides general conceptual requirements and
specific application rules and procedures for the production of
Software Specification Documents (SSDs) in conformance
with Deep Space Network (DSN) software standards (Refs.
1-3) and "Class B" standards, as introduced in Ref. 4. Class B
documentation is herein identified as the appropriate level
applicable to implementation and sustaining engineering and
operational uses by qualified personnel, engineer or equivalent.
Specific characteristics of Class B documents are defined in
this Guide.

1.2 Scope of Application

This Guide applies to SSDs produced for DSN subsystem
software formally transferred to operations. This Guide bases
document contents on the presumption that SSD users in the
DSN are qualified programmers with skills equivalent to at
least three years experience, one year of which has been spent
in DSN subsystem software implementation, sustaining, or as a
Deep Space Station (DSS) software specialist.

1.3 Applicable Documents

1 Software Implementation Guidelines and Practices, DSN
Standard Practice 810-13, Aug. 1977 (JPL internal docu-
ment); also available in Standard Practices for the Imple-

.2 Preparation of Software Specification Documents, DSN
Standard Practice 810-19, Mar. 1977 (JPL internal docu-
ment); also available in Standard Practices for the Imple-
mentation of Computer Software, JPL Publication
78-53, Chapter 4, edited by A. P. Irvine, Jet Propulsion
Laboratory, Pasadena, CA, Sept. 1, 1978.

,3 DSN Engineering Documentation Management Plan,
DSN Standard Practice 810-26, Nov. 1977 (JPL internal
document).

1.4 Description

The word "documentation," as used in this Guide, refers
specifically to information recorded about a computer pro-
gram to explain the pertinent aspects of that program to
sustaining and operational personnel.

This Guide does not counter the top-down, concurrent
documentation and implementation principles put forth in the
existing DSN Standards; rather, the guidelines herein address
the appearance of an SSD strictly as a delivered, "as-built"
specification of the program. Minimum redundancy among
SSD entries is sought, and the code listing is viewed as the
bottom-level realization of the top-down program documenta-
tion hierarchy.

1

161

The rules in DSN Software Standard Practices 810 . 13 and
810 . 19 remain in effect, The "correctness assessment" level of
documentation necessary for Class B sustaining and operations
purposes is construed in this Guide to be that which enables
the user to understand the contents of the SSD as required for
its effective usage. Descriptions of SSD items to the level of
detail required for coding without functional ambiguity are
not required, because the code listings are part and parcel of
the as-built SSD. Alternate forms of design documentation
equivalent to flowcharts and narratives are defined, but not
authorized, by this Guide. Specification of the specific corn of
program design documentation remains a Softie;are ReaR.lre-
ments Document (SRD) prerogative.

This Guide identifies the intended users and usages of the
SSD, and defines the experience level that the preparer(s) of
the SSD may be assumed to have. This Guide emphasizes a
balanced exposure of function, interface, algorithm, data
structure and flow, and code descriptions, with threadability
from requirements, through design, into the code. The guide-
lines are based on an actual survey of user needs.

The Guide further addresses the role of quality assurance
(QA) as it relates to SSD preparation. The QA criteria and
procedures contained herein, however, are illustrative only,
inserted as a typical, advisory baseline to aid the preparers) of
an SSD. Standard procedures and practices for QA involve-
ment in SSD preparation are not governed by this Guide.

1.5 Acknowledgments

The contents of this Guide were formed through the
cooperative efforts of many individuals who have proposed,
evaluated, and provided material. The team established to
determine DSN users and their SSD needs included R. B.
Hartley, R. R. Miner, M. J. Poisley, and C. L. Gee. Every DSN
Development Section supervisor and Cognizant Development
Engineer (CDE), as well as all DSS software personnel, several
elements of the DSN Program Office, DSN Software Quality
Assurance, and DSN Operations, have had the opportunity to
review and comment. This Guide is believed to be a least-
squares-fit response to all of the inputs received. The participa-
tion of all who contributed is gratefully acknowledged.

2.0 SSD Basic Usage Requirements
The principal users of the SSD during the production phase

are the CDE and other programmers who use the SSD as a
medium to record design information needed for developing
the program. This Guide does not specifically address the
needs of these users. Rather, its orientation is toward the use
of the SSD in the post-production period. However, the SSD is
meant to be something that is needed continually and natu-

rally by the developers during implementation so as to avoid a
lengthy documentation effort later. The rules in this Guide,
therefore, recognize the need for concurrency in the produc-
tion of code and documentation.

The several uses to which these as-built SSDs are put
indicate what the basic requirements of the document are,

Sustaining engineering and DSN Standard Practices require
functional threadability from the top down, stepwise from
design into the code, and also sufficient description and ratio-
nale so that errors, located by a combination of analysis and
to t, can be repaired (both in code and documentation).

Test preparation, training, and acceptance testing activities
require that adequate functional behavior and environmental
descriptions of the subsystem be provided (or referenced) in
the SSD. (Software Operator's Manuals (SOMs) for use in the
Deep Space Stations should contain only operational proce-
dures so as to keep the SOM small, handy, and most useful to
DSS personnel.) Threadability from requirements into the
operational features of the software is needed to demonstrate
acceptability.

Effective hardware and system diagnostics and trouble
shooting require that the SSD provide the means for an analyst
to locate an appropriate section of code given a particular
subsystem operational phenomenon (e.g., occurrence of an
anomaly). The SSD thus contains function-to-code thread-
ability indicators together with sufficient functional, proce-
dural, and interface information so that the reader can com-
prehend the software/hardware/subsystem interactions.

Quality assurance, while not a user of the program, is
nevertheless a transfer signatory and, therefore, a user of the
SSD. QA thus requires that documentation be supplied in a
form that is readily auditable. The conformance between
design information and code must be evident, and descriptions
must adhere to DSN and project standards. Only the execut-
able code itself is a naturally true, as-built representation of
the program. Comments within and specifications concerning
this code are mere descriptions meant to increase understand;
ing. To be effective, all descriptions must be accurate. It is,
therefore, the task of QA to certify that such descriptions
reflect the as-built character of the program to that degree
sufficient for its intended operational and sustaining usages.

Developers of other programs also may be users of a given
SSD, as a source of subroutines, handlers, interface informa-
tion, etc.

Therefore, the objective of this Guide is to specify the level
and kind of detail necessary to

(a) Understand the program from the top down, especially
in control and data flow.

(b) Thread frown an observed performance phenomenon
through the function, interface, and design descriptions
into the code.

(c) Locate, diagnose, and correct errors.

(d) Understand the program function sufficiently well to
generate and evaluate acceptance tests.

(e) Audit the documentation (including comments) and
code for conformity.

3.0 Content Requirements and Guidelines
Users of a program have a right to expect that the docu-

mentation they see will measure up to the same professional
quality standards as the program itself. Documentation quality
is characterized by four attributes: completeness, accuracy,
clarity, and economy.

Good documentation is also characterized by order and
form, which displays a clear plan or design to whatever the
writer wishes to communicate. Clear documentation does not
fall into order by mere chance. Order results from careful
arrangement of suitable materials to fit a definite purpose.

3.1 Content Guidelines
The SSD content guidelines contained herein were deter-

mined through surveys. interviews, and reviews involving im-
plementors, operations, Deep Space Station software person-
nel, QA, and the DSN program office. The list of topics in this
section is a compendium of information deemed necessary by
these functionaries in performance of their assigned tasks. The
order of these elements in the list does not indicate expressed
priority nor is it the SSD table of contents (the SSD table of
contents is found in Ref. 2):

(a) Text and code table(s) of contents

(b) Hardware and software subsystem interfaces

(c) Subsystem capacities (e.g., timing and loading factors)

(d) Data base organization, and characteristics

(e) End-to-end functional descriptions and modes of opera-
tion

(f) Program and data design overview and organization

(g) Module interface definitions and data flow descriptions

(h) Top-down, function-oriented procedural descriptions
(flowcharts and text, or equivalent)

(i) Glossary of all acronyms, mnemonics, variables, data
structures, etc.

(j) Annotated code listings

(k) Code concordance listing

(1) Memory map/overlay map and descriptive overview

(m) Complete information ► to repair or rebuild the program
(e.g., SYSGEN, link-edit code, disk-catalog code, com-
piler options, special procedures, etc.)

The approach this Guide pursues toward fulfilling SSD
documentation goals is one which encourages a balance among
descriptions of the items above. The preparer of the SSD may
assume that the readers being addressed have a certain level of
experience: three years programming experience, with one of
these being in familiar contact with DSN subsystem software.
Information normaily retained by such individuals or readily
accessible to them may be abbreviated in the SSD (some
material may need only a reference to applicable source docu-
ments). None of the topics above, however, should be omitted
altogether.

The criteria governing the amount of information required
in the SSD are contained in the next section.

3.2 Definition of Class B Detail Requirements

Class B specifications oriented for sustaining and operations
shall define every factor of the software item being described
to the extent that qualified personnel not part of the imple-
mentation team can satisfactorily perform their assigned func-
tions using only information supplied. The level of detail
required is that amount needed (1) to locate and correct errors
or to implement changes, perhaps after some reasonable reflec-
tion, analysis, and testing to discover how a specific part of the
program works; (2) to define program functions sufficient for
test generation and verification purposes; and (3) to identify
subsystem performance phenomena with portions of the soft-
ware which apply to these phenomena.

Documentation must exist to a sufficient degree that the
program is understandable by the intended readers on an
individual module basis when read from the top downward
through the documentation hierarchy. Control logic must be
decidable without delving into lower documentation levels,
and the role of each of the steps of a module algorithm must
be clear.

Class B documentation criteria recognize the listings as an
integral part of the SSD, essential to a complete and final
understanding of the program design.

4.0 Class B SSD Guidelines and Standards

4.1 General SSD Preparation Guidelines

The SSD combines text, figures, charts, tables, examples,
and listings together in such a way as to describe the program
in an effective way. Textual descriptions alone usually cannot
adequately convey understanding to readers, nor can flow-
charts alone, tables alone, nor listings. Rather, the SSD must
reach a balance among the narrative, graphics, tables, and
code.

This Guide also stresses a balance among descriptions of the

(a) Functional specification

(b) Data structures

(c) Data flow

(d) Program logic

(e) Source code

The overall volume of the SSD may vary considerably, but
completeness with economy and without redundancy should
be the criterion for the inclusion of material. However, as a
rule of thumb, the figures in Table 4-1 indicate the typical
numbers of pages per 1000 executable statements usually
deemed adequate. (An executable statement does not include
data declarations, parameter definitions, equivalences, nor
compiler directives.) Table 4-2 gives a typical volume example
based on these figures.

The following general guidelines and later detailed stan-
dards promote an effective balance of material in the SSD.
Examples of the application of these guidelines appear in
Appendix A.

Table 4-1. Estimated documentation needed per 1000 lines of
pure source code

SSD topic Number
of pages

Functional Descriptions
Overview 1
External data flow 1
Database 1
Detailed functional specifications 6

9

Program Design
Overview	 3
Internal data flow	 2
Interface	 1
Data structure description 	 5
Logic (flowchart, or equivalent, and narrative) 	 12

23

Miscellaneous

Table of contents 1
Standards and conventions i
System, environment, external interfaces 1
Test specifications 1
I/O format, memory maps, tables, etc. 2
Glossary 8

14

Code Listings
Code table of contents (entry points)	 1
Executable code (40 lines/page)	 25
Nonexecutable code 	 1
Comments (320 comments)	 8
Concordance listing
Job control, SYSGEN, link edit, disk catalog, etc. 	 1

41

SSD section Number
of pages

Title page 1
Table of contents 30
Introduction 3
Standards and conventions 30
System, `lvironment, and interfaces 30
Functional specifications 270
Program specifications 690
Test specifications 30
Appendices 300
Listing 1230

Total SSD volume 2614

Reference, rather than repeat, information appear-
ing elsewhere in the the SSD (including the code),
system/subsystem documents, or other main-
tained, transferred documents.

Do not refer to material in unmaintained docu-
ments, such as the SRD or Software Definition
Document (SDD). References to the SOM, Soft-
ware Test and Transfer (STT) document, text-

1. Keep the material produced to the minimum necessary
to satisfy Class B level of detail, subject to DSN Standard
Practices (Refs. 1 and 2) and as specialized by the other
rules in this Guide.

2. Use references generously to reduce the size of the SSD.

Table 4-2. Typical Class B SSD: 30,000 lines of code

4

4. Use descriptive aids, such as diagrams, tables, examples,
etc., throughout the SSD to promote understanding; pick the
best description method suited to the ideas to be communi-
cated.

books, and other such material are encouraged
when applicable.

3. Provide function-to-code threadability.

Organize the SSD to display the data flow and
program structure in a way the reader can grasp
and use as a road map toward finding the detail to
be extracted.

Direct function-to-code correspondence is not re-
quired. Rather, ore should be able to follow the
functions, flow of data, and control through the
existing documentation as threads or pointers
from the topmost functional descriptions, into the
design, down through the hierarchic layers, and,
finally, into the particular code segments which
apply. The module Dewey-decimal scheme of
numbering and organizing the documentation
should be carried all the way into the code as an
aid in identifying the correspondences between
design and code.

Narrative should not ordinarily be required for a 2-
or 3-box flowchart (or equivalent) when suffi-
ciently annotated.

Limit annotations in the code to code-level issues
and special supporting information needed to
understand how program specifications have been
implemented into code. If design information is
necessary for understanding the coding, give a
reference in the code to the proper point in the
design. This practice makes the code an extension
of the program specification and avoids duplica-
tion of documentation.

It is not necessary to provide narrative for every
number. Narrative descriptions may cover func-
tional groupings, or may be absent altogether if
the algorithm or graphic is sufficiently annotated.

7. Avoid redundancy between program design information
(Section 5 of the SSD) and comments in the code,

8. Number all algorithm steps and parts of graphic displays
for use in narrative references.

9. Provide a glossary defining each program mnemonic
constant, parameter, variable, and data structure. Also, define
all acronyms used in the SSD.

It is possible for programs to be described entirely
without graphical or other aids. However, the
judicious use of figures and tables can drastically
shorten the time it takes a reader to comprehend
textual (or code) descriptions of program behav-
ior.

For each give the mnemonic derivation and defin-
ing characteristics, such as units, type, substruc-
ture, usage, etc. Correspond names appearing in
the design and code portions of the SSD, if differ-
ent. This glossary may be in the code or in a
separate SSD appendix.

5. Do not use graphics, tables, or other aids when textual
descriptions alone suffice (are clear), and the aids do not
promote a better understanding.

For example, flowcharts (or equivalents) are not
necessary to describe a few-step algorithm that is
adequately described by text alone.

6. Limit the narrative accompanying a flowchart, table, or
other descriptive aid to explanations and information not
contained in the aid but needed for understanding.

Supply explanations, such as rationale for steps,
instructions on how to interpret a graphic (when
nonstandard), and significance of operations, as
needed for understanding the SSD when read from
the top down.

10. Write descriptions as "as-built" specifications.

Do not describe functions or actions using the
words "shall" or "will" (these imply intent or
requirement of something yet to be built), Rather,
describe the program function, design, interfaces,
etc., as accomplished facts.

4.2 Environment Specification Standards
Much of the system environment specifications (Section 3

of the SSD) will be standard among DSN applications. In such
cases, references to standard documents, other SSDs, subsys-
tem/system documents, etc., describing the particular system
details are encouraged. The remaining descriptions in the SSD
are for top-level descriptions of

(a) Subsystem interfaces

(b) Block diagrams

(c) Special hardware device interface characteristics

(d) Special configurations of the operating system

(e) Special interfaces with other system software databases

(f) Special program job control and),Ink-edit code particu-
lars

If "boilerplate" material (common to many SSDs) is deemed
necessary for inclusion, the Software Production Management
and Control (SPMC) facility can provide such duplicate sec-
tions of the SSD as needed automatically,

Section 5.4 of the SSD addresses external subroutine
(library and common software) interfaces. If these details are
inserted in Section 3 of the SSD, then omit them (except by
reference) in Section 5.4.

1. Provide a one-page block diagram and accompanying
overview narrative which shows the program properly em-
bedded in its hardware and software environment mid idea-
tifies the major system and external data int 5-f oss.

Tlus overview occupies the area between Sections
3 and 3.1 of the SSD (see Figure 2-1 of Ref, 2).
See Appendix A for a typical "siting diagram."
Discuss hardware and software constraints or
restrictions, use of privileged instructions, inter-
rupts, and other environmental topics.

2. Give a high-level overview description of the operating
system, specialized for the program being described, as applic-
able.

Describe only the modifications or additions made
to a standard reference version of the operating
system.

3, Document or reference system/subsystem and all other
pertinent interfaces,

4.3 Functional Specification Standards

The software functional specification principally occupies
Section 4 of the standard SSD (see Figure 2-1 of Ref. 2). It is
purely technical in nature; it pertains wholly to the external
characteristics of the program. It responds to, extends, refines,
and documents the technical concepts laid down in the SRD
and SDD. It is not a mere restatement of the SRD or the SDD
or the SOM — it defines the way the program responds, as
built. This definition is maintained throughout the entire life
of the software.

Program functional descriptions should describe what thk .
ex!r.,rad characteristics of a program are and should leve
descrlpdon;^ c4mcerning /tow these functions are implemented
to t1w prograni speci€ication section (SSD Section 5). Func-
tional descriptions may be structured into hierarchic layers of
increasing detail to foster readability (this follows the normal
DSN standard 1 ;eakdown of information), Appendix A illus-
trates several suggested hierarchy methods and a typical
optional function description graphic format.

1. Stain and display processing specifications primarily as
functional "black box" transformations of input data and
input conditions into output data and output conditions.
Include timing and response considerations as appropriate.

2. Identify and describe tine distinct program modes of
operation in the program functional overview (Section 4.1 of
the SSD). State the logical conditions or events which invoke
and terminate each such mode.

A mode is defined as a way of operating a program
to perform a certain subset of the processing
requirements that normally are associated together
In the program function.

A graphic illustration is often useful and, perhaps,
sufficient here. Typical mode diagrams and
descriptions are illustrated in Appendix A. Intri-
cate mode selection and tranvtion logic may, per-
haps, be better described using decision tables
(also in Section 4.2 of the SSD). See Appendix C
for decision table standards.

3. Use references to functional descriptions in the SOM in
lieu of duplicating that information in the SSD whenever the
SOM contains extensive definitive functional information.

Normally, functional material properly belongs in
the SSD, with only operational procedures con-
tained in the SOM. However, if it is deemed neces-
sary to have this information in the SOM, then
avoid duplicating it in the SSD.

4. If internal program descriptions are required to clarify a
program function, then describe only the pertinent assumed
high-level characteristics of the internal design. Refer the
reader to the full programming description (in SSD Section 5
or an appendix) for other details.

For example, describe intermediate data sets in
terms of their information content, the substruc-
ture imposed by functional relationships between
items, correlations among data items, and data

L.

flow among modules and tasks. Leave the other
details of data structuring and for,*,,.0 (e.g., to
accommodate accessibility and storage) to SSD
Section 5.

4.4 Programming Specification Standards

The design process culminates in a body of information
contained in the Program Specification of the SSD (Section 5,
as shown in Figure 4-2 of Ref. 2, annotated as in Figure 4. 1 to
identify the Dewey-decimal numbering of subsections). In the
guidelines which follow, the term "module" refers to a flow-
chart (or equivalent) and its accompanying narrative. The
flowchart displays the control logic and operations constitut-
ing the algorithm, and the narrative extends, explains, and
expands upon the procedural material. Sections 5.2, 5.3, and
5.4 utilize Dewey-decimal module identifiers to distinguish the
SSD entries. For example, module 1.2.3 would be found in
Section 5.2(1.2.3). Descriptions of material to be entered in
each section are rather explicitly defined in 810-19. The strict
use of the outline in Ref. 2 is not mandatory. However, it
should be used to the extent feasible to keep commonality
among SSDs. Required topics must be addressed.

Other forms of documentation, such as SDDL (Ref. 5),
Caine-Farber-Gordon PDL (Ref. 6), CRISP-PDL (Ref. 7), and
decision tables (Ref. 8) of program descriptions, are deemed
"equivalent" to DSN standard flowcharts when they adhere to
the standards contained in Appendices B and C of this Guide.
Authorization of alternate methods for use is not the province
of this Guide; such decisions are properly addressed in the
SRD or SDD.

It is usually just as important to describe the structure,
significance, flow, and use of internal data as it is to describe
the algorithms processing these. Program data structures,
external subroutine interfaces, and input/output (I/O) and

5. PROGRAM SPECIFICATIONS

5.1 Overview

5.2 (Chart number) Main Program Detailed Design

5.3 (Alpha Chart Number) Subroutine Detailed
Designs

5.4 External Interfaces (common software, operating
system, data, and hardware interfaces, as
appropriate)

5.5 Data Structure Definitions (internal data)

5.6 1/0 and Resource Design

Fig. 41. The Program Specification Section of the SSD

resource design specifications thus also appear in SSD Sections
5.4, 5.5, and 5.6 (external subroutine interfaces may appear
only as references, if detailed previously in Section 3 of the
SSD).

The following rules guide the content of the programming
specification:

1, Begin the Programming Specification with a comprehen-
sive overview (SSD Section 5.1).

A well-written overview will make it possible to
shorten the descriptions of individual modules.
Briefly describe the design philosophy, approach,
and rationale. Identify key factors which had a
major influence on the design if important to
understanding the program, such as (1) schemes
for	 resource	 allocation	 and	 protection;
(2) methods for process synchronization and com-
munication; (3) task breakdown, timing, priorities,
and task interfaces; and (4) overlay structures and
resource management, etc. Discuss the major algo-
rithms and data structures, and describe the break-
down of the program functions into individual
program components. Levels of access and data
flow between program processing modules should
be addressed for top-level function-to-design
th ea dabili ty.

Program structural information that describes the
breakdown of functions into subfunctions and
shows interfaces and data flow (especially with the
immediate environment) is particularly useful.
Such information need not be extremely de-
tailed — for example, data flow information con-
cerning type of data, source, and destination is
sufficient, generally speaking, in this overview.

2. For each module, provide the following information (in
Sections 5.2 and 5.3 of the SSD):

(a) The module "chart" number, name, and effective
date. The effective date is advisory only, a means for
the programmer to keep track of module revisions.

Identification information should be placed at the
upper right of each page for ease in module loca-
tion. The formats in Ref. 2 apply to flc„harts
and narrative. See appendices for standards on
equivalent forms.

(b) A short description of the module function, as
needed for understanding the algorithm which fol-
lows.

This description should, only as appropriate, dis-
cuss data structures, data flow, interfaces, inputs,
actions, and a:tputs, and should identify con,
straints which affect the design or operation, such
as (1) conditions under which modules is executed,
(2) critical maximum time of execution, (3) data
ordering, (4) machine timing characteristics,
(5) task communications and interactions, (6) spe-
cial hardware interactions, (7) accuracy require-
merits as related to computer word size and the
need for single- or multiple-precision computation,
or (8) unique or unusual coding required.

(c) A description of the algorithm steps in terms of a
control flowchart (or equivalent) and narrative.

(d) Name (or initials) of "Designer," "Checker," and
"Prof . Engr."

In cases where the programmer performs all of
these functions, a single name or set of initials is
sufficient. (It should appear on the "Proj. Engr."
line on flowcharts; see appendices for equivalent
forms.)

3. Strive to limit module designs to 10 or fewer algorithmic
steps. Describe each step in a clear, functionally definite way.

4. Number each algorithmic step (flowchart box) and use
this number for making references in the narrative to the step
and for cross-referencing this step into the code.

In cases where later alterations add a step, mini-
mize the rework by labeling this step by an inter-
mediate identifier, such as "SA" (between steps 5
and 6). Steps may also be numbered in multiples
of 10 to further aid in later entry (or deletion) of
numbers. Standards for narrative step reforences
are shown in Ref. 2. Appendix A illustrates code-
step reference annotation.

5. Do not refine an algorithmic step (e.g., do not "stripe"
its flowchart box) if that step is clearly perceived as a single
entity, its inputs and outputs are well understood at this point
in the SSD, and the corresponding code is a straightforward
realization of that entity (or follows a well-known or referenc-
ible algorithm).

As a general guide, strive to make each "unstriped
box," or equivalent, in the SSD average about
10. 15 lines of code. This number is expected to
vary widely, fewer lines in logical instances and,
perhaps, more in computational cases. Appendix A

gives an example of Class B detail for assembly
language programs, corresponding to the Class A
example shown in Figures B4 and B-5 of Ref. 2.

6. Include statements which provide rationale, assump-
tions, or other clarifying explanations of the algorithm as
needed to lend meaning and understanding.

Explaining the intended significance of an action
(such as, for example, setting or testing a flag) can
save a reader much time in understanding how and
why an algorithm works. It is particularly impor-
tant to provide information for most loops, stating
what assumptons are valid during each iteration
(i.e., stating the loop invariant). Every abnormal
exit of a module should be fully explained in the
design documentation.

7. Keep design documentation of data entities at the data
structure level; leave storage structure descriptions to the code.

Fnr example, for operations that operate on
record data structures, identify fields by name
rather than by substructure position. Describe the
substructure positional parameters in the code list-
ings. In this way, the SSD tends to be insensitive
to substructuring of the data. Enter all field names
into the glossary.

g . If overlays and memory swapping are used, provide
usage maps and explanatory material that together correspond
memory areas with program execution information, as neces-
sary, for understanding which segmentation or configuration is
in effect with the several program parts.

9. Provide other auxiliary documentation as may be re-
quired to bridge the design to the code, such as (1) timing
diagrams, (2) features of the code which link performance to
design, or (3) examples o r inputs and outputs.

4.5 Code Documentation Standards
Just as the programming specification (SSD Section 5)

contains information to bridge functions to data structures
and algorithms, so the code descriptions may need information
to bridge: data structures and algorithms into programmed
instructions. Such descriptions are supplied chiefly in the form
of comments, although some may also appear in the form of
timing diagrams, coding standards, etc., elsewhere in the SSD
(as per rule 4.4.9 above).

The orientation of the code commentary is toward describ-
ing the code design, rather than the program design. Such an

orientation tends to insulate the design portion or" the SSD
from code-design anomalies and remove redundancy within
the SSD. The line between pmgram design and code design is
not a clear one, however, in ;il cases. There is little adverse
effect if the program design leaks Into the commentary, or if
code design leaks into the program specification, so long as
top-down readability is maintained. Redundancy is prone to
error or extra expense when changes are made and, therefore,
should be limited as much as is consistent with understandabil-
ity and costs.

The following guidelines promote the use of code listings as
an integral part of the SSD, not as a separate stand-alone item.
The criteria for correspondence between the programming
specifications and the code listings are the following:

(a) Ine executable code must be a faithful representation
of the design as documented in the program specifica-
tions. Specifically, this means that the two must be
logically equivalent, with steps in one readily identifi-
able with steps in the other. Code must remain one-
entry, cne-exit at the module level, and equivalent
steps in separate flow paths on a flowchart (or equiva-
lent) must translate into separate blocks of code. The
programmer is otherwise free to translate the specifica-
tions into the most efficient logically equivalent form.

(b) The storage structures in the code must be a faithful
representation of the design as documented in the
program specifications. Specifically, this means that the
data declarations and usages must conform under a
suitable and documented translation. Conformance in
structure name, numbers of fields, field names, field
types, and ranges of values is required. Commentary
should be present which defines pertinent aspects of
this correspondence.

Specific rules to effect these criteria are the following:

1. Enter into a special, easily located part of the program
documentation (such as Section 2 of the SSD) all general,
program-wide coding conventions and standards which relate
how flowchart (or equivalent) specifications are coded.

Make the set of conventions complete enough so
that, except for special cases, they are sufficient for
a reader to understand how the code corresponds
to the program specifications when not com-
mented.

2. Document interfaces between major program segments
(overlays and tasks) and between the program and iiie operat-
ing system (as applicable to the code design). Define priorities,

task save areas, working areas, global common, executive ser-
vices, I/O interfaces, error recovery, etc.

3. Provide a cross-index table or table of contents of the
code module entry points.

This index should ideally list each module by
name in Dewey-decimal or alphabetic order, name
the file tb.e source is in, and give a locator into the
listing. However, a table of contents for each of
the separate compilations is acceptable.

4. Use the same symbolic, names for code entry points,
variable names, etc., as appear in the program procedural
design, insofar as permitted in the implementation language.

Clearly annotate listings when ;alternate names or
labels have had to be used, and insert such corre-
spondences in the glossary.

5. Provide a comment banner at the entry of each flow-
charted segment of code, subroutine, etc.

This block should contain (1) module name,
(2) module type (subprogram, subroutine, macro,
main program, task, etc.), (3) Dewey-decimal iden-
tifier and revision number (if applicable), (4) pro-
grammer name, and (5) effective date. The effec-
tive date is advisory only, a mechanism for dis-
tinguishing module versions.

6. State pertinent code-level assumptions upon entry or
exit from a module before the beginning of its compiled (or
assembled) statements.

7. Annotate the algorithmic steps within coded modules
using the same identifying numbers as appear in the flowchart
(or equivalent).

If a cross-reference number also appears on a flow-
chart box, then supply this number as well as the
box-reference code. Appendix A illustrates such
annotation of an assembly language program
coded from a flowchart.

8. Insofar as feasible, put all configuration-dependent
parameters or ompile-parameter options together in one
clearly identified place in the code.

Give a prescription for changing them should the
parameters require alteration. Include device ad-
dresses, dedicated interrupt locations, etc.

9. Name constants and compiler parameters to indicate
purpose, rather than value. Define the mnemonic derivation in
comments.

Use separate constants (parameter names) for dif-
ferent purposes, even if some of these have the
same values. Avoid the use of "magic numbers," or
numbers whose meanings are not implied by their
value.

10. Avoid using literal constants in the code except when
these are true recognizable constants of the problem.

Literal3 should not be used to address data struc-
tures by making use of assumed structural formats,
especially if this practice will limit the extendabil-
ity, modifiability, or flexibility of the code being
written.

11. If the data structures as defined in the design have
required further detailing at the code level, then insert such
information as annotations located with the storage structure
declaration, properly referenced. Record further detailings of
other resource access requirements in a similar manner.

12. Provide all information necessary to rebuild or repair
the program (such as disk catalog code, job control code,
compiler options, build procedures, etc.) properly described in
text or annotated on listings. Locate all SYSGEN, link-edit,
and program source and object files, if not governed by stan-
dards.

Include listings of special SYSGEN code or other
code modifying the standard operating systems, if
applicable. Annotate the modifications so as to be
readily discernable and understandable.

Include listings of the link-edit job control code,
annotated as necessary for understanding.

13. Provide a complete, definitive glossary of variables
appearing in the code.

14. Provide a concordance listing of program variables,
labels, and constants.

5.0 Documentation Procedures
and Protocols

The secretariat function referred to in Refs. 1 and 2 is per-
formed for DSN Data Systems by the Software Production
Management and Control (SPMC) facility. This facility sup-

ports the production of software in a aiumber of ways, such as
by providing data preparation or date entry services; by gener-
ating, updating, and editing textual and graphics materials; and
so forth. Some of the specific document production activities
are:

(a) Computer processing of text and structured flowcharts.

(b) Modcomp processing of Caine-Farber-Gordon Program
Design Language (CFG-PDL),

(c) Automatic production of certain document matter such
as the title page, table of contents, etc. ("canned"
output of these items is available as a guide).

(d) Manual production of unstructured flowcharts, figures,
illustrations, and other graphics.

(e) Reproduction of document material.

(f) Page numbering, application of running head informa-
tion, etc., for source listings.

(g) Updating and maintaining the current SSD and source
code master copies in the SPMC library.

(li) Proofreading documentation produced against CDE in-
put.

(i) Overall checking of documentation for pre,_ 	 °,ry or
final issue.

A specific SPMC operator is assigned to each CDE. All
materials, including flowcharts, text, and other program
descriptions utilized in SSD production, are input to, and
received from, this operator.

An element of documentation cannot be said to exist until
it has been given to SPMC for processing; it is not complete
until subsequently signed by the CDE and others; :̂ nd it is not
certified until all QA discrepancies have been removed.

Before starting an SSD, the CDE should familiarize himself
with DSN standards, Refs. 1 and 2, as well as DSN Data Sys-
tems guidelines and SPMC procedures and services listed above.

The aim of the SPMC is to raise software implementation
productivity by relieving the CDE of many clerical and routine
documentation tasks, using specially trained personnel. The
following rules promote further productivity by increasing the
efficienc y of SPMC resources:

1. Submit legible input in reasonable quantities. Avoid
extremes, such as one page at a time, or a full binder of
handwritten material all at once.

10

	

2. Affirm that the red-lined printout submi4ed to the 	 5, Each CDE should confer with the assigned SPMC opera-

	

SPMC for updating is the current copy in the SPMC database, 	 for to clarify the following items:

Updating from an obsolete copy of an SSD will
increase the turnaround time, and there is a risk in
processing some information in error. Check with
the assigned operator for the proper current copy
for red-lining.

3. Flowcharts may be submitted to SPMC (a) hand-drawn,
with or without template, on a 21.6 X 27.9-cm (8-1/2 X
11-inch) or 27.9 X 32.2-cm (11 X 17-inch) paper, (b) as
CRISPFLOW written on keypunch coding sheets, (c) as
CRISPFLOW written on regular paper, printed or in longhand,
or (d) as redlined corrections of previous submissions.

CRISPFLOW manuals are available in the SPMC
library. Lowercase characters will be converted to
capitals before the plots are made. It is the pro-
grammer's responsibility to ensure that the charts
are readable.*

4. When approved in the SRD/SDD, equivalent forms of
documentation may be submitted to SPMC (a) printed on
keypunch coding sheets, (b) hand-written (printed or long-
hand) on regular 21.6 X 27.9-cm (8-1/2 X 11-inch) paper, or
(c) redlined corrections to previous submissions. Alterna-
tively, the programmer may build and edit liis own program
design files.

SPMC will provide entry and editing of user
CFG-PDL files, and will maintain CFG-PDL source
for each CDE. It is the CDE's responsibility to see
that the SPMC master is kept current.

*Structured flowcharts processed by the SPMC currently cost about
$2 to $4 each; structured charts submitted in CRISPFLOW form
by the CDE cost even less. Unstructured flowcharts run about $35 to
$40.

(a) The schedule required for SSD production.

(b) The general structure of the final document. In
particular, the expected use of flowchart-equivalent
documentation, in which sections of the SSD, and
how this should be integrated with word-processor
text.

(c) The transfer of existing material from the SPMC
database into the SSD, such as standard "boiler-
plate," excerpts from other SSDs, SOMs, etc.

(d) The way the SSD will be submitted to QA and
published in final form.

(e) The segmentation of the documentation database
necessitated by word-processor limitations.

It is very important that the CDE be made to
understand how the word-processor limitations
affect the documentation to be produced, so that
he may take part in organizing the segmentation to
fit with the way the SSD is to be split into several
volumes, when applicable. It is also important that
the SPMC operator be apprised of the content of
each volume, of multiple volumes are necessary.

(f) The way published SSDs can most easily be up-
graded by the use of document amendments in the
form of change pages (rather than complete reissue).

(g) The techniques used to thread the program specifica-
tions (Section 5 of the SSD) into code.

The SPMC can, perhaps, aid in preparation or
generation of indexes or a code table of contents,
if instructed property.

11

k

Appendix A
Documentation Examples

This appendix contains sample pages of documentation
prepared according to the standards of this Guide. These SSD
excerpts are meant primarily to exhibit documentation style
and level of detail rather than to describe correctly the DSN
subsystems from whose documentation these samples were
taken. In some instances, where precise data was unavailable or
inadequate, fictitious information was inserted to show the
type and style of information that is required at those points,

In these samples, text in italics is not part of the SSD, but
contains comments about the material at that point.

Examples A.1 through A.7 are representative of material
from each of the various sections of the outline suggested in

the applicable DSN Standard. The next, A.8, presents a narra-
tive-flowchart-code example of documentation and code in the
detail desired, and illustrates the conventions for documenting
threadability from design into code. Example A.9 gives typical
Class B single-item design descriptions that need not be further
refined in the programming specifications (SSD Section 5).

Example A.10 shows CFG-PDL, HIPO (hierarchic input-
processing-output), and decision-table equivalents to documen-
tation items. The examples shown in A.11 are miscellaneous
items, such as state diagrams, data structure diagrams, glossary
items, program structure chart style samples, and the like.

12

A.1 Example of INTRODUCTION Material

1.0 INTRODUCTION

1.1 Purpose and Scope of SSD

This document describes the Deep Space Station Communication Termi-
nal Program, also known as the Communications Monitor and Formatter (CMF)
program, since it resides in and operates the CMF assembly.

This specification applies to that software produced in exact and
complete fulfillment of requirements set forth in Reference 1.3.1, DSN
Ground Communications Requirements. Previous versions of the CMF pro-
gram were only partially compliant with these requirements. The soft-
ware requirements for this program are covered by Reference 1.3.2, as
amended by the ECOs listed with the reference.

1.2 General Program Description

The Deep Space Station Communication Terminal Program, hereinafter
merely referred to as the Comm Terminal program, or CMF program, resides
in the CMF assembly, which is the Deep Space Station (DSS) terminus of
the High-Speed Data Lines (HSDLs). The CMF program, in conjunction with
the CMF hardware, multiplexes and processes all high-speed data trans-
mitted to and from a particular DSS.

The CMF assembly is composed of two Modcomp II-25 computers (one
prime and one backup), plus special peripheral hardware devices for
.interfacing with the HSDL and with DSS equipment. The CMF assembly, in
turn, is part of the Station High-Speed Data Subsystem (SHS), with
assembly identification number 91.6. The SHS is then part of the Ground
Communications Facility (GCF) High-Speed Data Subsystem, or GHS. The
GHS, depicted in Figure 1.2-1, also includes the Central Communications
Terminal (CCT), which is the JPL terminus of the HSDL. The CCT includes
the Error Detection and Correction (EDC) assembly, the High-speed Switch
(HSW) assembly, the Central Communications Monitor (CCM) assembly, and
their interconnections. The GHS is one component of the Mark-III Data
System (MDS). The CMF program is a real-time operational program,
interactive with other GHS computers and with other MDS computers at a
deep space station.

The primary function of the CMF program is to provide the station
with the ability to communicate with the outside world. The data from
the MDS computers is made ready for transmission by calculating the
error polynomial (encoding), so that when the data and polynomial are
received, a test of the polynomial (decoding) can determine whether any
errors were introduced in the transmission process. Similarly, data
received at the station is decoded to detect any received errors. If
errors are detected, the data block error status bits are set to indicate
that condition. All data blocks, good and bad, are delivered with the
error status bits set to indicate the data quality.

13

^q'

Station
Assemblies

NASCOM
Circuits)	 GCF 20+t----Deep Space Station WPQ

I^
ODR

1I
CMF

Communications EDC I
Monitor & Assembly
Formatter Program

I
I

MODCOMP 11-25
(Prime)

1

I

MODCOMP HSW11-25 Assembly
(Backup)

Q
IStation Comm Terminal I

CMF Assembly
Central Comm Terminal I

I Station High-Speed Data Assy Central High-Speed Data Assy
GCF Highspeed Data Subsystem (GHS)

Fig.. 1.2-1. GCF High-Speed Data Subsystem overview

Central
Comm
Monitor
Mission Control
and Computing
Center

Network Operations
Control Center

14

A second function of the CMF program is to build an Original Data
Record (ODR) by logging all outbound data received from the station
assemblies. The station assemblies may indicate whether the data is to
be logged, transmitted or both. Normally, all data are both logged and
transmitted; log-only and transmit-only are special cases. The CMF
recovers temporary ODRs held by the other MDS assemblies, if necessary
to perform this function.

The third function of the CMF program is the monitoring of the
health of the CMF assembly and the entire GHS. Monitoring of the GHS
assembly itself is done within the program; a periodic station summary
is reported to the Digital Instrumentation Subsystem (DIS) Monitor and
the Data stem Terminal (DST). Additional backup displays at the DSS
are available on operator request. Monitor information is also period-
ically formatted into a data block and sent over the HSDL to the CCM
computer at JPL. The CCM provides global monitoring of the GHS in a
single location.

The fourth function of the CMF program is to provide line printer
service to the DIS Monitor Subsystem. A request for service is queued
if the line printer (printer/plotter) is busy (such as may often be the
case at a conjoint station). When the printer is no longer busy, the
request in the queue is honored.

1.3 Applicable Documents

.1 DSN Ground Communications Requirements: GCF Functional
Requirements (1975 through 1978), DSN Document 823-1,
SS91.0-95.0, Dec. 1, 1975 (JPL internal document).

.2 Software Requirements Document: High-Speed. Data Subsystem
Station Communications Terminal Program, DSN Document
SRD-DMH-5115-OP-D, Sept. 20, 1978 (JPL internal document).

Requirements are augmented by the following ECR/ECOs:

(ECR/ECO list appears here.)

.3 Software Specification Document: High-Speed Data Subsystem
Error Detection and Correction Program, DSN Document
SSD-DMH-5110-0P, Oct. 20, 1978 (JPL internal document).

.4 Software Specification Document: High-Speed Data Subsystem
High-Speed Switch Program, DSN Document SSD-DMH-5111-OP,
Oct. 15, 1978 (JPL internal document).

.5 Ground Communications Facility High-Speed Data Subsystem Test
Plan and Test Procedures, DSN Document SD512008, Rev. A,
Aug. 8, 1978 (JPL internal document).

.6 Software Test and Transfer Document: High-Speed Data Sub-
system Communications Terminal Program, DSN Document
STT-DMH-5115-OP-D, Sept. 1, 1978 (JPL internal document).

1s

.7 Software Implementation Guidelines and Practices, DSN Standard
Practice 810-3.3, Aug. 1977 (JPL internal document).

.8 Preparation of Software Requirements Documents, DSN Standard
Practice 810-16, Dec. 1975 (JPL internal document).

.9 Preparation of Software Definition Documents, DSN Standard
Practice 810-17, July 1976 (JPL internal document).

.10 Preparation of Software Specification Documents, DSN Standard
Practice 810-19, Mar. 1977 (JPL internal document).

.11 Preparation of Software Operator's Manuals, DSN Standard
Practice 810-20, Feb. 1977 (JAI, internal document).

.12 Preparation of Software Test, and Transfer Documents, DSN
Standard Practice 810-21, Nov. 197E (JPL internal document).

.13 "MDS Test Software Plan," IOM 3380-76-195, Data Systems
Section, Apr. 16, 1976 (JPL internal document).

. . . and so on.

16

I

A.2 Example of STANDARDS AND CONVENTIONS Material

2.0 STANDARDS AND CONVENTIONS

2.1 Specification Standards and Conventions

2.1.1 Applicable Documentation Standards

This document was composed in accordance with the guidelines set
forth in D,SN Standard Practice 810-19, Preparation of Software Speci-
fication Documents, dated March 1, 1977 (see 1.3.10).

2.1.2 Exceptions to Specified Documentation Standards

The creation of these detailed specifications involved more than
ten people over a three-year span, during which time the DSN guidelines
for programming and documentation were in a state of flux. Although the
information is now complete, documentation for single tasks may reflect
both the individual style of programmers as well as individual interpre-
tations of evolving standards.

Specifically, these differences are the following:

(A list of exceptions appears here.)

2.1.3 Special Documentation Standards

2.1.3.1 Register/bit nomenclature

Register usage is often specified as either R or REG (e.g., R1 or
REG1). Bits are specified as B or BIT (e.g., B15 or BIT 15). When a
bit is indicated as "SET," this means it possesses, or is changed, to a
value of one (=1). The bit is changed to zero (=0), or has the value
zero, when the word "RESET" is used.

2.1.3.2 Decimal/hex notation

A number is hexadecimal if it is preceded by a pound (#) sign;
otherwise it is decimal.

2.1.3.3 REX service notation

The Request for EXecutive (REX) services are referenced in two ways.
Either REXZZ or REX,#ZZ is used as the striped box identifier, where ZZ
is the REX number. Both forms indicate the same REX subroutine.

2.1.3.4 Register save areas

Most subroutines save the registers they utilize in dedicated save
areas. The labels of these save areas are not listed on the documentation.
Consult the code listings for further information.

17

2.1.3.5 Message codes

When specific message codes are referenced by the program, the docu-
mentation presents within quotation marks the ASCII message corresponding
to the code instead of the code itself.

. . . and so on.

2.2 Programming Conventions

2.2.1 Applicable Policy and Procedure Documents

For the most part, the CMF program was coded in accordance with DSN
Standard Practices 810-13, Software Implementation Guidelines and Prac-
tices, dated August 1, 1977, and 810-19, Preparation of Software Speci-
fication Documents, dated March 1, 1977, which require the program to be
coded in accordance with the principles of structured programming (see
1. 3. 7 and 1.3.10).

2.2.2 Exceptions to Established Policies and Procedures

There are several exceptions to the established policies scattered
throughout most of the tasks. One task in particular, TRS, is wholly
unstructured.

Waivers for these exceptions are listed below; the actual waivers
appear as Appendix 7.10.3.

(A list of waivers appears here. J

2.2.3 Special Policies and Procedures

(A list of special policies and procedures applied to this program appears here, only as needed to record the
as-built character of the program.)

2.2.4 Applicable Programming Standards

2.2.4.1 Operating system

The CMF program utilizes the MDS Standard MAX-III _Operating System
(SOS) generated by the standard DSN Data Systems Job Control Code (see
Appendix 7.11).

2.2.4.2 Existing programming standards

The MDS project did not levy project-wide programming standards
other than the following:

a. Header cards are required on all subroutines, subprograms,
and tasks.

. . . and so on.

is

i

2.2.5 Exceptions to Specified Programming Standards

None.

2.2.6 Special Programming Standards

2.2.6.1 Argument transfer

Arguments are transferred to and from subroutines by way of registers.

2.2.6.2 Register storage

All registers used by a subroutine are saved immediately upon entry
and restored immediately before exit.

2.2.6.3 Subprogram and subroutine naming

The name of a coded module is also the name under which it is
documented.

. . . and so on.

2.2.7 Programming Language

All modules are coded in Modcomp Assembly language to expedite the
real-time functions of the program.

2.3 Test and Verification Standards

2.3.1 Applicable Test and Verification Standards

No standard tests or verifications were available for this program.
However, DSN Standard Practices 810-13 and 810-21 (see 1.3.7 and 1.3.12)
state the standard test and verification policies. MDS Test Software
was covered by the Test Software Plan (see 1.3.12).

2.3.2 Exceptions to Specified Test and Verification Standards

2.3.2.1 No peer review

DSN Standard Practices require peer review of all design items.
However, resources for peer review were not allocated for this program.
A waiver was issued (see Appendix 7.10.2.3).

2.3.3 Special Test and Verification Standards

Test standards for the CMF program are implicit in the GCF High-
Speed Data Subsystem Test Plan and Test Procedures (see 1.3.13).

19

2.4 Quality Assurance Standards

2.4.1 Applicable QA Standards

QA involvement is covered by DSN Standard Practices 810-13, DSN
Software Implementation Guidelines and Practices; 8 y0-19, Preparation
of Software Specification Documents; and 810-21, Preparation of Software
Test and Transfer Documents (see 1.3.7, 1.3.10, and 1.3.12).

2.4.2 Exceptions to Specified QA Standards

None.

2.4.3 Special QA Standards

None.

20

s

A.3 Example of ENVIRONMENT AND INTERFACES

3.0 ENVIRONMENT AND INTFRX' ACES

The DSS Command Subsystem is part of the DSN Mark III Data System
(MDS) implementation. The MDS is fully described in References 7.2.3
and 7.2.21. The Command'Subsystem at 26-meter and 64-meter stations
consists of two equipment strings, designated Alpha and Beta. At con-
joint stations a third string, termed Gamma, is shared by the 26-meter
and 64-meter wings. Figure 3.0-1 illustrates the MDS Command Subsystem
interfaces. Reference 7.2.21 contains illustrations of the detailed
MDS configurations, including the DSS Command Subsystem, for each DSS.

A command string comprises the CPA, the Command Modulator Assembly
(CMA), and the Command Switch Assembly (CSA) (not shown in Figure 3.0-1).
The CSA is only located at 64-meter and conjoint stations and is used
for switching between the dual exciter assemblies at those stations.
The CPA maintains interfaces with:

(a) The Command Modulator Assembly.

(b) The Frequency and Timing Subsystem (FTS) via the Time
Format Assembly (TFA).

(c) The Digital Instrumentation Subsystem (DIS), Communications
Monitor and Format Assembly (CMF), and possibly the host
computer via the Star Switch Controller (SSC).

(d) The Data System Terminal (DST) of the Station Monitor and
Control (SMC) Subsystem, via the host.

3.1 Hardware Configuration and Interface

The CPA is a Modcomp II-25 minicomputer, to which is connected a
group of DSN standard peripheral devices. These devices include a moving
head disk, a local subsystem keyboard/characte.r printer (local subsystem
terminal), and an operator control console cod i.sting of two CRT terminals
and a keyboard/character printer (DST).

3.1.1 Computer

The CPA minicomputer, Modcomp II-25, is a general-purpose 16-bit
digital computer with an 800-nanosecond cycle time. The computer pos-
sesses the timing, interrupt, and I/O interface features necessary to
support DSN standard and JPL-supplied peripheral devices.

The,specifications for the CPA computer are presented in the
technical manual for the Modcomp II Computer, References 7.2.11 and 7.2.12.

3.1.2 Standard Peripherals

The CPA has associated with it a moving-head disk with a capacity
of 2.5 megabytes. The disk interfaces with the Central Processing Unit

21

9

Fig. 3.0-1. Command Subsystem internal and external interfaces

t

22

(CPU) through a party-line I/O bus and performs direct-memory I/O
operations under the control of an internal Direct Memory Processor (DMP).
The moving-head disk provides storage for the CPA Operating System, the
command application programs, disk-resident command files, and a temporary
ODR. The specifications for the moving-head disk interfaces are presented
in the reference manual for the Modcomp II computer, Reference 7.2.18.

The CPA is connected to a local subsystem character printer/keyboard
device. The character printer is a serially asynchronous, impact printer
with a printing speed of up to 120 characters per second. The keyboard
is capable of generating the full set of 128 ASCII characters. The local
subsystem tr°;minal uses the standard RS-232C interface. The terminal
provides operator communication facilities locally at the CPA. The
specifications for the local subsystem terminal interfaces are presented
in the Functional Specifications for Tenninet 1200 Data Communication
Printer, Reference 7.2.14.

(Other standard peripherals are described here.)

3.1.3 Special Peripheral Devices

The CPA also contains or interfaces with JPL-designed equipment.
The special equipment interfacing with the CPA includes the CMA, the
XDS-920 PIN/POT Emulator, the external DMP, the SIA/SSC, and the TPA.

3.1.3.1 The Command Modulator Assembly

The CMA interfaces are described fully in the Command Modulator
Assembly Technical Manual, Reference 7.2.9.

3.1.3.2 XDS-920 PIN/POT Emulator

The CMA was originally designed to operate with an XDS-920 computer
through a 24-line, parallel input/output interface. With the replace-
ment of the XDS-920 computer by the CPA (a 16-bit machine), a special
XDS-920 PIN/POT Emulator operates with the CPA so as to emulate 'the I/O
signal characteristics of the EOM, PIN, POT, and SKS computer instruc-
tions of the XDS-920, respectively.

The specifications for the XDS-920 PIN/POT Emulator are contained
in Reference 7.2.19.

(All other interfaces are similarly specified using references or detailed descriptive material.)

3.2 Software Environment and Interfaces

The Command Subsystem software interfaces defined in this document
are differentiated as either external or internal with respect to the
CPA. Interfaces that are with facilities existing outside the CPA will
be referred to as external, and interfaces with modules within the CPA
will be considered internal.

23

3.2.1 Operatic System Interfaces

The CPA Operating System is a resident portion of the CPA software.
The Operating System (OS) provides input/output control, task management,
data management, and executive services in support of the CPA applications
software. The CPA OS is generated from a standardized operating system
package, based on the Modcomp MAX III Operating System, Extended Version
Revision F (see Reference 7.2.17), and includes:

(a) Features to load from disk dynamically and to execute
nonresident, transient tasks.

(b) The _Basic I/O System (BIOS) that supports standard peripherals,
such as a moving head disk, character printer/keyboard device,
and CRT/keyboard terminal.

(c) Supervisor calls (REXs), which allow application tasks to
request resource use, I/O services, task scheduling, task
execution, delay, and utility services.

(d) Features for multiplexing non-interrupt CPA time to support
a true priority structure for application tasks.

The standard OS package also provides a special SSC handler for
intersubsystem communications and a host symbiont task which will enable
the CPA to communicate with the DST when the CPA and DST are not directly
connected to each other.

The CPA SYStem GENeration (SYSGEN) process performs the following:

(a) Defines the external interrupt structure.

(b) Selects the real-time clock frequency.

(c) Sizes global common for CPA applications.

(d) Supplies resident operator communications task.

(e) Supplies task-embedded interrupt processors.

(f) includes specialized instructions and executive services.

Specific details on system generation are contained in Appendix 7.11;
usage of the MAX-III features is described in Reference 7.2.17; SSC
handler and host symbiont interfaces are detailed in References 7.2.20
and 7.2.21.

3.2.2 Interfaces With Other Subsystems

The data interfaces of the Command S ,.ibsystem are with the Exciter/
Transmitter Subsystems, the Frequency and Timing Subsystem, the Ground
Communication Subsystem, the Station Monitor and Control Subsystem, the
Mission Operations Center (MOC), and the Network Operations Control
Center (NOCC).

24

3.2.2.1 Exciter Transmitter Subsystem interface

The CPA interfaces with the Exciter/Transmitter Subsystems through
the CMA. The CPA initially configures the CMA for the proper command
modulation method, and then proceeds to transfer to the CMA the idle
sequences and command data for radiation. (The CMA modulates the
selected subcarrier with the command data, forming a composite signal,
which is then sent to the Exciter/Transmitter Subsystems for transmission
to the spacecraft.) The CPA, utilizing the CMA as a communications link,
monitors the Exciter/Transmitter status and confirms that the proper
command signal has been transmitted to the spacecraft. Specific bit-
level interface values for all parameters are contained in the CMA
Technical Manual (Reference 7.2.9).

(Inter faces with other DSS, NOCC, and NIOC Subsystems are described or referenced here.)

3.3 Operator Interfaces

(Operator interfaces are described here, or the SON is referenced.)

25

A.4 Example of FUNCTIONAL SPECIFICATIONS

4.0 FUNCTIONAL SPECIFICATIONS

4.1 Functional Overview

The CMD program controls the Command Processor Assembly (CPA) to
perform the following functions:

(a) Receive and store flight project control and command data.

(b) Receive and store configuration and standards and limits.

(c) Generate command composite signal and initiate its transmission
to the spacecraft

(d) Perform system validation

(e) Generate a temporary Original Data Record (ODR).

(f) Format and transmit data to MOC and NOCC.

(g) Display command data and subsystem performance to DSS opera-
tions personnel.

(h) Accept manual control from SMC for configuration and commands.

4.2 Software Configuration and Modes of Operation

The Command Mission Support Program (Phase I), or CMSP-I Program,
is governed by control mode, program state, and operational mode.

The two control modes are

automatic (or REMOTE)
MANUAL (or local to DSS)

The CPA subsystem states are

BEGIN
INITIALIZATION
REAL-TIME COMMAND
END

The six operational modes are

CALIBRATE-I
CALIBRATE-II
IDLE-I
IDLE-II
ACTIVE
ABORT

26

4.2.1 Control Mode

The REMOTE mode is characterized by operation in which the Command
Subsystem is directed by the remote control center. Command control and
data input messages are transmitted over HSD lines to the CPA, and the
CPA acknowledges this input and reports the operational status of the
subsystem to the remote control center. The DSS remains passive, simply
monitoring subsystem operation. The REMOTE mode is the primary method
of operation of the Command Subsystem.

The MANUAL mode is an emergency method of operation. In the MANUAL
mode, command, control, and data input functions are assumed by the DSS
operator (but responsibility is still retained by the remote control.
center). Control and data input directives are entered via the DSS
centralized or local subsystem terminals. Program responses are directed
to both the DSS display consoles and the remote control center. During
manual commanding, voice communication between the DSS and control center
is maintained, but otherwise the control center is passive.

4.2.2 Program State

The CPA is defined to be in the BEGIN state while being loaded for
operations. It then transits immediately to the INITIALIZATION state as
execution begins, and thence to the REAL-TIME COMMAND state when directed
by manual mode control. REAL-TIME COMMAND may transit either to the END
state or back to INITIALIZATION, as directed. Figure 4.2.2-1 shows the
state-transition diagram. INITIALIZATION and REAL-TIME COMMAND are
referred to herein as the CMSP-I program states.

The INITIALIZATION state prepares the DSS Command Subsystem for
command operations. The DSS Command Subsystem assumes the MANUAL command
mode during INITIALIZATION and rejects all HSD blocks that are received
from remote control centers. INITIALIZATION consists of (1) subsystem
identification, (2) CPA function selection, (3) project specification,
(4) subsystem calibration, and (5) subsystem validation. When initiali-
zation is complete and upon input of the "RUN" directive by the DSS oper-
ator, the program exits the INITIALIZATION state and enters the REAL-
TIME COMMAND state.

Spacecraft command operations are then supported while in the REAL-
TIME COMMAND state. After entering the REAL-TIME COMMAND state, the DSS
operator normally places the subsystem in the REMOTE command mode. In
case of a command system emergency, the subsystem may be returned to the
MANUAL mode. When the DSS operator has placed the CMSP-I program in
REMOTE mode, then, at first, all HSD input from the NOCC is accepted,
but all HSD input from the MOC is rejected. The NOCC configures and
validates the Command Subsystem and, upon completion of these functions,
relinquishes control to the MOC to direct further command operations.
During MOC operations, the CPA receives spacecraft command data, initiates
and maintains radiation of the spacecraft commands, and monitors subsystem
operation to ensure the correct and timely transmission of commands. The
command program exits the REAL-TIME COMMAND state to the INITIALIZATION
state if the DSS operator inputs a "REIN" directive; the program terminates

27

Operation Mode
	

Mode Function

BEGIN

LOAD

INITIALIZATION

RUN'

REAL-TIME
COMMAND	

REIN'

'END'

END	
RESTART

Fig. 4.2.2-1. CMSP-I program state diagram

Allows DSS operations personnel to
perform INITIALIZATION tasks

F—
Z
p	 Safe mode - cannot command;
CL	 provision for idle/acquisition
C	 sequence; allows configuration and

H	 standards and limits to be changed
w
cc
F—
cr
O
m
Q	 Allows entry into the ACTIVE mode;uj

provides idle/acquisition sequence
Q	 during periods of commanding

U
w
J
w

Allows command data transmission

Provides ABORT configuration

Standard mode for updating con-
figuration and standards and limits prior
to spacecraft acquisition

Fig. 4.2.3-1. CMSP-I program operational modes

28

F,*

on the input of the "END" directive. After program termination, the
program may be restarted only by reloading the command program.

4.2.3 Operational Modes

The DSS Command Subsystem, at any one time, is in one of the six
operational modes; these govern the orderly progression of the subsystem
through the initialization, configuration, acquisition, and command radi-
ation sequences that are required to transmit commands to the spacecraft
successfully. Figure 4.2.3-1 shows the mode —transition diagram.

The CALIBRATE-1 mode provides the opportunity for the DSS operator
to initialize the command software for the support of command operations.
The Command Subsystem enters the CALIBRATE-1 mode immediately after the
program load. While in this mode, no remote control source may gain access
to the Command Subsystem. The command program may exit the CALIBRATE-1
after all initialization has been completed. Then one of two control
sources may cause the command program to proceed. The DSS operator may
move the Command Subsystem to the CALIB'RATE-2, IDLE-1, or IDLE-2 mode
prior to selecting the REMOTE operational mode. However, if the REMOTE
mode has been selected while in the CALIBRATE-1 mode, NOCC may move the
Command Subsystem to the CALIBRATE-2 mode by updating the subsystem con-
figuration. The Command Subsystem cannot radiate commands from the
CALIBRATE-1 mode.

(A sitnilar discussion of all operutiunal modes ensues, to end the overvie ► v.)

29

4.3 Detailed Functional Specifications

4.3(1) Detailed Functional Specifications

The program functions are displayed in the input-processing-output
diagram 4.3(1), separated into groups of functions by program state.
The superposition of command mode and operational modes on these states
appears as the heirarchic definition of the functions unfolds. Inputs
and outputs are refined by function; composite I/O specifications and
format appear in Appendix 7.7.

30

G.:

Input — Processing — Output Table

Description: Command Mission Support Program (Phase 1) 	 Function 1

Identifier: CMSP-I

Prepared by: Frank Hlavaty 	 Phone: 6533	 Date: 5/4/76

Input

1. Operator directives
HSDL via CMF 2. HSDL blocks
CPA 1/0 terminal 3.	 File directory
DST 4. TFA data and events
CPA disk 5. CMA data and events
TFA
CMA

1

CMSP-I

Processing	 Req't Ref

1. INITIALIZATION	 7.2.3(4.1.1.2)
2. REAL-TIME COMMAND	 7.2.3(4.1.1.3)

Output

1. Commands to spacecraft
2. Temporary ODR
3. HSDL blocks to MOC, NOCC
4. Operator status and alarms
5. File directory
6. CMA configuration and

command data

HSDL via CMF
CPA 1/0 terminal
DST
CPA disk
DMA
CMA

31

4.3(l.1) Initialization Functions

The CMSP-I program receives initialization, calibration, and vali-
dation directives entered by the DSS operator and acknowledges this input
with an operator response message. The program outputs subsystem status
messages to the DSS operator reflecting the calibration and validation
functions being performed. All access to the subsystem via the I-ISD com-
munication link is rejected until the program exits the INITIALIZATION
state, upon receipt of a directive from the DSS operator to proceed to
REAL-TIME commanding.

32

.a

Input — Processing — Output Table

Description: Initialization Function 	 Function	 1.1

Identifier: INITIALIZATION

Prepared by.	 Phone:	 Date: 5/7/76

Input

1.	 Initialization directives
2.	 Calibration directives

CPA 1/0 terminal 3. Validation directives

DST 4. TFA data and events

TFA 5. CMA data and events

CPA

1.1 NIZ
INITIALIZATION

Processing	 Req't Ref

1. Subsystem initialization	 7.2.3(4.1.1,2)
2, Subsystem calibration	 7.2.3(4.1.1.2)
3, Subsystem validation	 7.2,3(4,1.1,2)

Output

1. Directive responses
2. Subsystem status
3. CMA configuration

CPA 1/0 Terminal
DST
CMA

33

4.3(1.2) Real-Time Command Functions

In the REAL-TIME COMMAND state, the CMSP-I program is capable of
accepting, acknowledging, and processing either remote (HSD) or manual
(DSS) input directives, depending on the operational mode. The CMA is
configured to support a particular deep-space mission in accordance with
parameters supplied during initialization. The program is then capable
of receiving, validating, and storing command data files at the DSS. The
program initiates and controls the command radiation while monitoring the
subsystem status for abortive and alarm conditions that may affect space-
craft command operations. Subsystem status and alarm conditions, command
events, and command radiation status are reported to the remote control
centers via HSD lines and are displayed locally for the benefit of DSS
operators. A temporary ODR is maintained by the program for all incoming
and outgoing HSD blocks in order to provide a data record of all command
operations, should communications with the GCF Subsystem at the DSS fail.

The program receives CMA configuration, file maintenance, radiation
control, and status request inputs either locally or via the HSD lines.
Responses are provided to all input directives. The program also provides
subsystem status and alarm, command event, command radiation, and file
directory information upon operator request (see SOM) or as a result of
processing conditions.

The DSS Command Subsystem ma; be in either the REMOTE (nominal) or
the MANUAL (emergency) mode of operation during the REAL-TIME COMMAND
state.

The program exits the REAL-TIME COMMAND state on program termination
or reinitialization.

(Hierarchic input, processing, and output descrivtions of the program continue. The next level of function
1.2.¢ is outlined below.)

34

Input — Processing — Output Table

Description: Real•Time Command Function 	 Function: 1.2

Identifier: REAL-TIME
COMMAND

Prepared by: Frank Hlavaty	 Phone: 6533	 Date: 5/7/76

Input

1. CMA configuration data
2. Command file maintenance data
3. Command radiation control data
4. Subsystem, directory, and

command status requests
5. TFA data and events
0. CMA status and events

1.2

REAL-TIME COMMAND

Processing Req't Ref

1. Acceptlacknowledge HSD directives 7.2.3(4.1.1.3)
2. Accept/acknowledge DSS directives 7.2.3(4.1.1.3)
3. Configure CMA 7.2.3(4.1.1.3)
4. Maintain command files and directory 7.2.3(4.1.1.3)
5. Initiate/control/monitor command 7.2.3(4.1.1,3)

radiation
6. Monitor/report subsystem alarm 7.2.3(4.1.1.3)

conditions
7. Generate temporary ODR 7.2.3(4.1.1.3)

Output

1. Input responses
2. Subsystem status and alarms
3. Command events to CMA
4. Command files and directory
5. Command radiation status
6. Command data files
7. Temporary ODR

(See
Function 1)

35

s.

4.3(1.2.4) Maintenance of Command File Directory

Command file directory maintenance refers to the receiving, validat-
ing, and storing of command data files at the DSS and also maintaining an
up-to-date directory (refer to 7.7.4.1) of all command files currently
stored. Directive inputs may be received either via HSD lines and the
CMF or through DSS operator terminals, depending on the mode of operation.
Command data and file directory information are always available on the
CPA disk.

File directory processing includes the functions of initializing th
command file directory, validating and storing command data files, erasi,,,-
of selected command data files listed in the directory, and providing fil-
directory information to an operator upon request. Directive responses
are sent back to the input source. Event messages resulting from file
maintenance activities are displayed for the DSS operator. Command file
directory information are reported to a requesting source. Command data
files and directory contents are always maintained on the CPA disk.

Command file directory maintenance via HSD lines is possible only
when the DSS Command Subsystem is in the REMOTE operational mode.

HSD data is received and transmitted by the program in the form of
SSB standard data blocks (Reference 7.2.31), input via the CMF at the
DSS. The format and contents of the HSD command file directives and data
inputs are described in Reference 7.2.1, Section COM 4-4. Other input
and output formats are specified in this document (see Appendix 7.7).

Data flow in the CMSP-I program is shown for MANUAL and REMOTE modes
functionally in Figures 4.3(1.2.4)-1 and 4.3(1.2.4)-2.

(Hierarchic detailing of function continues to the detail level.)

4.4 Data Base Specifications

(Here, perhaps, would be a description of the Command File Directo ►)), Connand Data Files, and ODR
File.)

1

36

F

Input — Processing — Output Table

Description: Maintenance functions associated with stored
command files and the directory of these
files

Prepared by; Frank Hlavaty	 Phone; 6533

Function; 1.2.4

Identifier; MAINTAIN COMMAND
FILES

Date; 6/27/76

Input

1. Directory initialization request
2. Command data file
3. Directory recall request

CMF	 4, Command file erase request
CPA 1/0 terminal
DSI
CPA disk

MAINTAIN COMMAND FILES

Processing Req't Ref

1.	 Initialize command file directory 7.2.3(4.2.1.4)
2. Validate and store command data 7.2.3(4.2.1.4)

files
3. Erase command files from directory 7.2.3(4.2.1.4)
4.	 Report/display file directory 7.2.3(4.2.1.4)
5. Accept/validate/log HSD input 7.2.3(4.2.1.4)
6. Log HSD response ODR and TODR 7.2.3(4.2.1.4)

Output

1. HSD input and response
2. HSD input event message
3. DSS input and response
4. DSS input event messages
5. Command file directory
6. Command data files

CMF
CPA 1/0 terminal
DST
CPA disk

37

7— ._-,-

DSS Operator
Directives

CPA 1/0 Terminal

Local
Input
Directive
Processing

Terminal
Output
Processing

DSS Input and Response,
Command File Directory,
Command Element

CPA 1/0 Terminal

Command
File Directory,
Command
Data Files

CPA Disk

DSS Operator
Directives

Data System Terminal

SSB	 SSB
Input	 Output
Processing	 Processing

Command Processing

Text
Message
Processing

Command
File Directory,
Command
Data Files

CPA Disk

DSS Input
and Response,
Command File

Directory,
Command
Element

Data System Terminal

4

Command File
Directory

Command Queue
Command

Element

Real-Time Command

Fig. 4.3(1.2.4)-1. Command file directory maintenance processing data flow, MANUAL mode

c
38

MSD SSB
Input from
CMF

Command
File Directory,
Command
Data Files

q

f

SSB	 SSB	 HSD Blocks

Input	 Output	 Encapsulated

Processing	 Processing	 in GSE's for
CMF

HSD Input
Event Message,
Command File

HSD	
Directory

Message
Processing	 Data System Terminal

ys

CPA Disk

Terminal
Output
Processing

Command Processing

TODR File,
Command
File Directory,
Command
Data Files

CPA Disk

----H—SD Input
Event Message,
Command File
Directory

Command Fi	
CPA 1/0 Terminal

le
Directory

Command Queue

Real-Time Command

Fig. 4.3(1.2.4)-2. Command file directory maintenance processing data flow, REMOTE mode

39

A.5 Example of PROGRAM SPECIFICATIONS

5.0 PROGRAM SPECIFICATIONS

5.1 Program Overview

The SCHEDULER program consists of four subprograms that execute in
sequence:

BUILD NETWORK
	

(BUILD)
TOPOLOGICAL SORT
	

(TOPOSORT)
CALCULATE DATES
	

(DATES)
DISPLAY SCHEDULE
	

(DISPLAY)

The representation of the schedule network is the chief item
required for understanding the procedures in the remainder of this sec-
tion. There is a certain set of information that is input or calculated
for each task, represented by a NODE, in the network:

information identifier type

TASK CODE CODE string
TASK TITLE TITLE string
TASK DURATION DUR integer
EARLIEST START EST integer
EARLIEST FINISH EFIN integer
LATEST START LST integer
LATEST FINISH LFIN integer
FLOAT TIME FLOAT integer
NUMBER OF PROCESSORS COUNT integer
POINTER TO LIST OF

SUCCESSORS TOP pointer

The first three items are input directly, the next five are calcu-
lated after sorting, and the final two are supplied as a result of build-
ing the network.

The connectivity of the schedule network is achieved by way of the
successor list attached to each node's TOP. Each such list element is
represented by a CONNECTION data structure having two fields:

information	 identifier	 type

SUCCESSOR NODE	 SUC	 node
NEXT LIST ITEM	 NEXT	 pointer

The "pointer" data type in the two tables, above, is an index into the
SUC:NEXT CONNECTIONS; the "node" data type is an index into the CODE:
TITLE:DUR: ... :TOP NODES. In this way, information about a node (task)
is locatable via the node pointer, and its successor nodes can be found

40

following the node TOP pointer to SUC, for the first, and thence via
NEXT pointers to the remainder. This representation is discussed fur-
ther in Knuth (Reference 7.2.9). The apparent node representation is
shown in Figure 5.1-1.

5.1.1 Building and Sorting the Network

The process of building the network consists of reading the Work
Breakdown Structure (WBS) task file, and storing task information in the
node arrays. As tasks are read, each task node location is recorded in
a topological-sort list, TSORT. Locators of nodes having a zero prede-
cessor COUNT are queued into TSORT from the front; these are already in
sorted order. The others are queued at the rear of TSORT. Such a list
permits the processing of tasks independently of the way the nodes have
been entered into memory. Thereafter, the topological sort procedure
considers, in turn, each node in the front segment of TSORT, "removing
its edges" in the network by reducing the COUNT of nodes identified as
SUCcessors. When a COUNT field of a node hits zero, its node locator
is inserted at the rear of the front segment of TSORT. If some nodes
still have non-zero COUNTS after all of the front segment of TSORT has
been processed, a loop in the network exists (identified as an error).

5.1.2 Calculating Schedule Times

Early start and finish times are calculated by scanning the nodes
listed in TSORT in forward order, then late start, late finish, and
float values, by scanning TSORT in reverse order (see 4.3 for formulas).

Dates are assigned to the project times by way of the CALenDaR
array, filled from the calendar file. The CALDR array is an ordered set
of strings indexed by work day. More precisely, when filled, the value
of CALDR(0) is the starting date (month/day/year) corresponding to START,
read in from the project start milestone. START is an integer that
defines the day of year for beginning the calendar file read-in. The
size of the CALDR array permits entries indexed 0 through MAXDATE. If
the project goes beyond MAXDATE days, only the first MAXDATE days appear
in the array. If the calendar file does not extend far enough into the
future to provide dates for the project times, then "DAY 11," where n is
the project work day, is entered into the CALDR array.

Further details are contained in the programming specifications in
the remainder of this section.

5.1.3 Program Tier Chart

The list shown in Figure 5.1.3-1 presents the modular nesting of
program elements. Identification in this list denotes nesting of the
modules named in call-order. Numbers are Dewey-decimal module codes
(e.g., TERMINATOR is found as module 1.2.8).

41

32index	 I

CODE

TITLE

OUR

EST

EFIN

LST

LFIN

FLOAT

COUNT

TOP

4

2

NIL

4

3

SUC

NEXT

SUC

NEXT

I

f

Fig. 5.1-1. A simple precedence graph and its structural representation

42

8

REGISTER
.1/S1	 SEARCH
.6 CONNECT

.3/S1 SEARCH

.7/El ERROR
TERMINATOR
.1/S1 SEARCH
.3 CHECK SUCCESSORS

.3/Eli ERROR
.6 LINK_TO_FINISH

.4.E1 ERROR

1
	

SCHEDULER
.2	 BUILD

.6

.5	 TOPOSORT
.4	 ERASE EDGES

.7	 DATES
.1	 EARLY DATES

.4	 SUCCESSOR_ DATES
.3	 LATE _AND _FLOAT

.4	 TASK LATE DATE
.8	 DISPLAY

.1	 CALENDAR
.1/El ERROR
.2/E1 ERROR
.6/Fl	 STR
.10/El ERROR

.9	 DIAGNOSE
.l/E1	 ERROR

E1
	

ERROR
Fl
	

STR(STRING FUNCTION)
Sl
	

SEARCH
.10/El ERROR

Fig. 5.1.3-1. The SCHEDULER program tier chart

43

CHART 1
SCHEDULER
4/1/77
Page 1 of 2

5.2 Main Program Detailed Design

5.2(1) Critical Path SCHEDULER Program

On entry, the program data structures are all uninitialized.

This program is the top-level control procedure that causes all
specified program functions to be performed.

On exit, the schedule has been printed and the COUNT field of each
node has been destroyed. If no error has occurred, TSORT and the node-
connection network are otherwise intact.

	

.1	 All structures and variables are considered global at this
point. Prepare HEADER data for the report in step 8.

	

.2	 In building the network, if either the task node arrays or the
successor linkage arrays become filled prematurely, print an error
message. Add a project termination milestone to the schedule net-
work. Return a flag OVFLOW with false value if the WBS input did
not exhaust the network arrays; true, otherwise. NTASKS records
the number of tasks entered.

	

.3	 A true value of OVFLOW terminates the scheduler,

.4 printing a message before the program terminates.

	

.5	 If the network was input without overflow, then the TSORT list
contains the topological sort. T records the number of sorted
items entered into TSORT.

	

.6	 If all tasks are in the list, the WBS is of proper form.

	

.7	 Scan the list forward for early times (see definitions in
Section 4.1), and in reverse for late times (Section 4.1). Calcu-
late float times during the second scan as well.

	

.8	 See Sections 4.3 and 7.6 for details of output format and con-
tent.

	

.9	 Here a WBS loop has been detected. Print "WBS is circular
among items:" and then print the task codes forming one such loop.

	

.10	 Perform any cleanup necessary in the coding language (e.g.,
closing files) before program termination.

44

SCHEDULER	 SCHEDULER
4APR77

PAGE 2 OF 2

INITIALIZE:
DECLARE NODE AND
CONNECTION DATA
TYPES. ZERO OR
NULL OUT ALL
VARIABLES.

2

BUILD

INPUT THE WBS.
SET

OVFLOW=TRUE IF
TOO BIG

^ \ 3

OVFLOW

TOPOSORT

PRINT
'SCHEDULER	 MAKE THE TSORTTERMINATED'	 LIST

6

T	 T=NTASKS	 F

7

DATES _
	

DIAGNOSE

CALCULATE
EARLY, LATE,	 PRINT A CYCLE

START, FINISH,	 OF TASKS
AND FLOAT

8

DISPLAY

PRINT THE
SCHEDULE

10

D:

C:

A:	 19MAY 7

45

A

i

i

(The module hierarchy continues to the level that each flowchart represents about 100 executable lines of
source code. Section 5.3 contains similarly documented internal subroutine designs,)

5.4 External Subroutine Interfaces

5.4 (F1) STRing Function (STR)

The STR(I) function converts its integer argument, 1, to a string
value. The returned string is the character representation of the inte-
ger, lr;ft and right justified (i.e., no spaces). No decimals or commas
appear in the format. If the input value is positive, the output string
is unsigned; if negative, the output is preceded by a minus sign.

(Other external subroutine interfaces, if any, are similarly described, as needed.)

5.5 Data Structure Definitions

NODE and CONNECTION data structures are described in the program
overview (Section 5.1); other variables and values are described in the
Glossary (Appendix 7.1).

Data structures defined in this program specification are consid-
ered by design to be globally accessible, so as to promote codability.
Localized scoping and limited accessibility to data is part of the code
design, and may be found in the code listings (Section 8 of this SSD).

5.6 Resource Allocation, Scheduling, and Access

Not applicable.

46

u..

1

A.6 Example of VERIFICATION AND TEST SPECIFICATION

6.0 VERIFICATION AND TEST SPECIFICA11014S

6.1 Correctness Test Criteria

During the code checkout activity, input data are used to drive the
program through every "flow line" of the procedures at least once. WBS
networks are input to (singly) violate each of the network boundary
conditions. Such data items include:

(a) Empty WBS.

(b) WBS consisting only of "END" record.

(c) WBS not ending with "END" record.

(d) Sufficient tasks (nodes) to cause overflow.

(e) Sufficient connections to cause overflow.

(f) Tasks with no predecessors.

(g) Tasks with no successors.

(h) Tasks without predecessors or successors.

(i) FINISH task with successors.

(j) WBS with a circular set of tasks.

(k) WBS of moderate size (more than one output page) formatted
correctly and within boundary constraints.

The program herein described is deemed ready for acceptance testing
provided that these tests demonstrate:

(1) Proper response to tests (a) - (k), above, as determined from
functional specifications in 4 and format in 7.2.1-1.

(m) Error-free performance on all of 10 correct user-supplied
WBSs ranging in size over the required limits.

(n) The detection of all of nine calibration errors of a random
nature inserted into a special test version of the program
built for assessing test adequacy. The data in (a) 	 (m),
above, is used, together with other data as required to
detect the errors.

47

Test data (a) - (n), above, are retained in test data files to
serve as a regression baseline for maintenance and acceptance test pur-
poses. Each time that step (n), above, is used to qualify a new update
of the program, that data, too, is added to the baseline.

48

A.7 Example of APPENDIX Material

7.0 APPENDICES

7.1 Glossary

This appendix contains the names of program modules, variables,
constants, textual acronyms, and special terms used in this document.

AVAIL: AVAILable list pointer. A "pointer" into SUC:NEXT linkages.
It contains the address of the next available CONNECTION to be attached
to the network.

B: Bottom of unsorted list. An integer index into the TSORT array. In
REGISTER/1.2.6, the tasks from B to NTASKS are unsorted.

BUILD/l/2: Procedure name of the module which builds the schedule
network.

CALDR: CALenDaR array. Array O..MAXDATE of date, where date is a string
of the form 150477, which prints as a date in the form 15APR77 in
1.8.8.

CALENDAR/1.8.1: Procedure name of module that reads calendar file
into CALDR array.

CHECK SUCCESSORS/1.2.8.3: Procedure name of module which prints a list
of task codes that have FINISH as a successor.

. . . and so on.

7.2 Formats

7.2.1 Scheduler Output Format

Output of the SCHEDULER program is shown by example in Fig-
ure 7.2.1-1.

7.3 Memory Map

The memory map of the SCHEDULER program as implemented on the 60K
Intel 8085/C2M with memory-mapped VIO is shown in Figure 7.3-1.

7.4 Decision Log

1.(2/12/77) Network and topological sorting will use the method in
Knuth, Vol. I, pp. 260-263, including his diagnostic procedure (page 543).
Reason: proven and efficient algorithm.

2.(2/13/77) Separate sorted list TSORT will be used in lieu of the
depleted COUNT fields, as done in Knuth. Reasons: readability of the
design; independence of search/insert method.

49

W
F+d

.11
F+
d
a

¢
I x W1 U]
I H • ..
I
I ^; w1 w	 E-.
1	 ¢
t	 U
I ^

1	 x
I d

i	 >+
I	 d
I	 W

i
FW VI I
a , t I ulnrac,c>c e ca^icnu3u,oc^0
4?b¢ 1 m.-
w	 1

C^ n t-L
-I

'« R • n nn nnnn nt^nnr-r-nnnr^nRanC--C•-t-•n
cC ;:>+r ^t a..4aC^E9 C4 C^ t.^C7 L7
6^J In

 (r ^x'7 .7"1 ¢6¢ Q ¢ 4Q

V
4)0
a`

d
rnv

m

OI
C
C

	

C., G U3 U , lh U, C) Q O U1 U* U, U,	 41
.^ ('4 M,7 st, .0 r._

O . 001 t7J Q, a• O+ O'•	
4)
I-
CL

I

w I t•..nnrr-nnnnnnR•nR•nF IRR•C-I. n -j nnn r-R-nnn

1 6 f+' ¢X, e: "7 '7 '7 '76¢¢¢6X,
W	 I .- ^ Ifa .- f1"^.7 7 .:J Q̀ 	-? ^ .2 tr Uti
H I^mN^N.r .^.-<U	 ^^NN
.X	 Ia	 1

i+ 1 p mC. C7 rUU • 'o uLP L' UlG OU`C7 a'a
I m	 .^ c n•xirnaa

E-+ V4 I
K	 I

F+	 I
C^ w I nR hh•h r•r- h°nnnnnnRH 1 r-r°r-[••nnn nhnnR•nnr-Q I U. x lT: ik: ?+':: a .»]a aa C.C7 C.w C3

W 10.0.ww ¢.'J U:JJUO:^J U:^
a	 m.

•
7

•̂ - •
(Tl R)R1TR ^U

lx:	 1 .- .- •- r- ty - •a-• N N N r N fV
-ze!	 I
RI	 I

?a I C` Cam) G C= ra - U l if tT. LY I[,G U U'. U'.M¢ 1	 .;.Y' +L^ u1 R n n C;i 010101
C] I

t
c7	 I	 IN	 I C'.: C, C:a Q to 0 C-I C: Ul U) U, Ih W. C- 1 0 I
d	 1	 1
^	 1	 I
^	 I	 I
I^	 I	 1

..	 1	 	 I

W
S
N

Ct	 >	 >	 1

	

Q ¢ }+ a	 F	 1	 L

	

s wa w	 H	 1

a 0 w2' W	 H V]	 I
X, U W 0 ILI C/)	 U Cn l-,	 I
H	 ft U) In	 - V.
to

	 U w	 1
x	 0 Ul ¢	 w C/) W	 I	 E
W x (E,	 W F+	 1
F UC F,C5 w 	C4H	 I	 ..^.
6 X, t>~ C^ E-+ 2 ts:i x W W	 I	 ..

a w I-IH
U U	

WF-W	 I	 d
C7E. w a.-] C7 V)z ¢	 t
H H W H A ...1 A 2 H= H M	 I	 O
C7 Cn Ca C/)2IS.2NUCa W	 I
d5W Sd Z: CaOW¢U	 I	 ^-
S; W	 02 C/) F+E,WU
UW WW Ud1>_Qx¢
¢ H F I-	 W W	 I	 N

U4¢ WddHW
U U

w94J	 I
CGx UU t7JaxxT. I £

E•+x H5 H C7

d

M f--iw d00tH	 I W	 IT
U

UC W6>~U M W to U k-1W V) Cs. w H 	 I E-+	 W
E- W C V. H O U m w z w04 w 2. 1 H
V) 0D' C1; X,^ CX xCn Z W W H I
v)owwu.Hwwt-+dl-+www 1^

IF
I Q

is
I d
I U

(l) I H
W I F
H 1 H
ti I u

^O NM-H LU

IM	 !k Ik IK Ik Ik Ik	 Ik Y,: Ik	 I

n

ILI

	 x
.]
	

x

u,
N

w
F+

a

x

r
N

C.,

H 1 U;
w 1
'o I

x I
w 1 :^

1

H I C?
w I
rg 1 i^
;^ I

d
tt]
G.

17:

x
x
r1

C:7 U, ;,;. C,? U'+ U .1 U-1 U7 O U' 0 0 U, U1 Uti-1 m. m at va .) C- O 00 cr'^ 4 tT Cr Cr

nc-nnc-nnR•t-nnr•R-nnh Rr• nt^ 3 r-nnnR-nnnnn
xx Y> L aa-j0V)C^ C'100C)
¢ ¢ è .'• m.- u'l CT tY «J : J 7 ,X) IX) ? .7 ^ U : U. It,

w
aH
H

w
Q
O
U

50	
grPP,ODUCIBII,ITY OF THE

ORIGINAL P^i.Gn IS POOR

Bytes

00-02 Jump to bootstrap

05-07 Jump to BIOS

08-513 System parameters

5C-7F Temporary file control block

80-FF Temporary 1/0 buffer

100-23FC SCHEDULER program

23FD-24BB	 Static data

Task node structures

Available storage

Task connection
structures

E900-FlFF	 Console command
processor

F200-F7FF	 Disk operating
system

F800-FFFF	 ROM monitor

Fig. 7.3-1. SCHEDULER program memory map

• kr^,

1/0 function
entry

SCHEDULER
program entry

Free
Avail

51

3.(2/15/77) DIAGNOSE and ERROR will be stubs, printing only short
messages until the maim program functions are correct.

4.(2/16/77) SEARCH will be a linear search through task nodes,
comparing task codes. This may be a prime subroutine for replacement
if it proves too slow. Thus, be careful to structure program so that
grabbing a new node for the network (done by SEARCH) is not assumed to
be linear.

. and so om

52

A.8 Example of Class B Narrative, Flowchart, and Clode

The narrative in Figure A,8-1, below, the corresponding flowchart in Figure A.8 .2, and
the code they describe (shown in Figure A.3-3) are Class B equivalents to the Class A
module descriptions given in Figures B4 and B-5 of Ref. 2. The reader may note that the
flowchart boxes are uncommented in the narrative (due to simplicity of the algorithm)
but are commented in the code when that code is not straightforward,

SSD-DOI-5466-SP	 Chart 4.4.1z^j	 FINDNO
8/7/75
Page 1 of 2

5.2(4.4.1) FINDNO Procedure

On entry, and input line has been received into an input buffer
bia EMSGIN U14). The LiNe PoinTeR, LNPTR, is positioned so as to
extract the characters of the line via calls to GET/U17 (characters
are returned in CCHR).

This procedure discards leading blanks, if any, and looks for
an MBASICTM statement number. If a statement number is present, the
digits are converted to an integer and placed in the Value variable
V; the Class variable C is set to 11 to indicate that the first
symbol on the line is an integer. If a statement number is not pres-
ent, C is set to 0, indicating the input line does not have a
statement number; V thus retains its entry value. See Table 7.2.2.5
for further symbol class and value definitions. The scan terminates
at the first nondigit or when V > 16777215.

On exit, C and V contain the symbol Class and Value values above;
the Current CHaRacter variable, CCHR, holds the character which stop-
ped the number scan; and LNPTR points to the next input character
to be fetched. A value of V > 999,999 indicates that the statement
number is too large.

Fig. A.8-1. Class B narrative for Module 4.4.1 of the MBASIC --processor which accompanies the
flowchart in Figure A.8-2

A trademark of the California Listitute of Technology

53

SSD-DOI-5466-SP

4.4.1
FINDNO
8/7/75

D:

C:

A:	 $nW
U/ NUV /M

Fig. A.8-2. Flowchart of the FINDNO/4.4.1 module drawn to Class 8 standards

54

0

r
M
U,
N

r

^i	 ^i	 ^1	 i1	 s d

^f 1F
# if f•-	 CV
* 11 ^

* oL	
a

1F M ^G	 ^
* C

10

* * W

LD LL.
d i4 \	 ^f C	 C
CL * CO J	 a,i► m r =	 a
\ * -	 ^ O OC) u	 toN !Y N u)	 K) u	 C
\ if V.' Li iF •	 • •	 • C	 V
c Ll G is

Ac ^! L , C
• > U N A
• * r rn t
• * # a r U

Z 41	 J n
L iF if	 Q r K)
F * *	 2 (L r tCL ^► oao a
G * * <<..G	 a Y $

* M G r G	 .J G W pl
W Z x 2 H r o	 i-	 2	 d	 O	 Ln Z	 ^D c
> it ak 6--1 W" W W a	 U-1	 u	 J	 a	 r •-+	 1-
W * W \ LL L9Ct uu>0\= - M C^	 u	 CL	 N	 CL 0	 L'	 a C
L # M	 U, O
1 4(*	 J O'
C * d:	 a d
u if .-r	 ,1F V
u cc * .	 ^► 	 0 uo

W o 1► 7	 *	 2 OD	 r	 r	 ► h	 \.D ar N ^ \	 *	 •a CD	 CC m a
d 1 ai O	 IF	 rrr r!- r	 F-uuu =f:	 E	 X	 m. V-	 a.7-	 O	 CL

E

G.-1 (D Li	 xxxxxLLwLLCr -j	 G	 (r	 =, x	 rrr	 cc	 =
o o	 * aG M W W W WL,000Dk1m	 J	 u	 !/	 H u	 N VS	 m	 N

o

►+ vH = * H	 *	 U. O O
* m ar W	 W Y c U

^	 G w	 cr_:
X 2 U 4 z H	 N !n	 K) M
- is * 1., Cc. J P. r	 i- r	 r CR

# *	 * *	 * z N 5 LL a.	 a C-	 a *	 e(

Cf: ON 1= C- K) 	 GNK) a C rIG K, r- G CL CO f- cK,C O\ \G lL
S GMNOOD C , r cr 0C011. CD c- c•-11- r- r c0 Of. z
W c 000r OM)Or CQ Oc rf O%D Or 000 u%D Or CU
o C n N o W G W 0 c- O O C L., O r C u O c O %D W C W C tD
V)
c 4ddoc	 X	 x	 ixD:m	 a =	 cr-a a	 x	 a
O G1.4N	 K) tkr.1.DrQC-QtDU0 W.LC r4NK) ^ tC,\fir0
M r/ c O C)	 Cl G G Cl O CJ O C C O C O CD •+ r n r+ •-(r' e-i ^l 1-1
U • C C O	 O G G G Co O Cl C C L- G o O C C, C C O C . C C G
G :f GC U	 O COCO CCJCC UU CZ) CJ C: C:, OU Cl GC CO
a	 •
3

a •
c

02,

uL NK)f Y, WrCC ON CD •i n K) d 9, W r W C,	 O	 K) _r	 U', %D	 r	 mC,
G ;Z .r •-i rl " rl rt " C4 " rl	 N	 N	 N	 N m	 CV N	 N	 N N
O "
S LL

F

55

Q^

0
0) W
0+ t_

O LL
I r

Z
V) W
O'
c
z O

u
Li
Z
►^ O
J LL

1r m
O •4
LL I c^.

r+ r
c ^ r
e ^-+ r
w q ^c
a +u I n
2 u a0 ao 0N H + H 3 J
V u q co	 C LL
►+ u + J D_
u Q u }	 LL IAJ

W W + u m	 G>U ua Iwo
c a u * u	 " >
a aG uuu	 LD0LL

J co	 11 Q G	 O Y\ a.r- u u I	 ua
•- ^.-1 uu J q O	 O W S
N C u Q Z) L' G	 O S=	 S
\ q \ Q C Q	 Q u
C
C cc
• M

a
I
W M^ I
a a z
o a:
J ix	 u	 W	 u u	 4	 O
W I m	 p	 M	 Z	 M M	 PC)	 I

L., u	 C	 I	 1-4 I H	 I	 H	 LLB
w C u	 N	 a	 z	 a a	 a	 r+	 u	 c
c

4
u
u cc G

r ^D rK)at	 CO Z .
wo co m	 m 1nco^^oa ^7	 r	 r
IN m	 m . .	 .[t
a L r-	 E	 Ix	 Y	 ow Ix G w Of C. cr a w	 o	 1	 ► 	 f..	 o	 G
0 ..I J O	 T	 m	 0:	 w w m C 4 Q w a m w	 a	 LL	 O	 I	 cy-

O m J	 V)	 I	 u	 m I I J O O N O x I	 m	 (n	 J	 V)	 m	 W
N T
* 9

X M M M	 ^D

c a* a	 a
r
p, C, r4 fGroK'• oGn PI- ciKJw I- K; 	 CAm!D7 MC O , oLC,C,CLG: MG N
g CC. c+mOp1 oOP MQ , 0NNOM4 0k.0%D0M \0 ,t - K)C^ -I%OGr01- 000
W r a o O.a ODD Or 00 or G q G WNNu N00 Gr 00co 0Clw Oro
V^ W CDwCGwOr0uGOOWo \.t GW OGOt,..C)w(D WO
V.•
a x x	 (r.	 Q^	 w D- cc	 D! cc	 W-	 x	 a	 x	 x
0 maccu0WLL c	 .-4NPO1, 0 ,D t- WON <MU0WLA-C)-4NMZtW,0r- W MClM
G ri ir4r-4 e-1 r1 e-{ -	 4 CQNNNNNNN NN NN NNNNMIeiK)KiKiMMMMMMK)
(}	 • OG C GO OCCG C]OOCJ GG 00 C 0000000Ocl 0000 C.OGC
Q? G G O O O G O O C. O G O G OG Q G O00(D C.O O to C.> 	 L)	 Q CO

f
C.

C
u U O .. N	 K)	 zr	 ICl	 \D r co Q^ C .+ N M d- H7 %L	 N	 m	 O\	 O	 .4	 N
G c K'i H) M	 K'i	 M	 Pei	 M PC; M M -t -' j' 3 3' -t -t	 3	 .7	 z	 L[J	 Lr.	 Ln
p rr

S' LL

.O^
rC
O
V

co

ao

Q
m
X

56

A.9 Typical Class B Program Operation Descriptions

The following descriptions of operations are considered
Class B, Information witlun each description may be given
simply in narrative form or it may appear on a flowchart (or
equivalent), or divided meaningfully between these.

1 Known Algorithms

Let it be assumed in the examples to follow that F(x)
is a mathematical function defined adequately elsewhere in the
SSD. Then the following are appropriate forms for describing
the integration of .F(x):

(a) INTEGRATE F(X) FROM 1 to 10 WITH DX = 0.1
USING TRAPEZOIDAL PULE
Note: Narrative or text can be used to contain such
qualifying information as:
Flowchart: INTEGRATE F(x)
Narrative: Use the trapezoidal rule; x = 1(0.1)10

(b) INTEGRATE F(X) FROM I TO 10 WITH DX = 0.1
USING MODIFIED TRAPEZOIDAL RULE (REF.
1.3.3)
where reference 1.3.3 is:
handbook of Mathematical Functions, U.S. Dept. of
Commerce, National Bureau of Standards, Applied
Math Series 55, U,S, Govt. Printing Office, Washington
D,C., June 1964, formula 25.4.4, page 885.

(c) INTEGRATE F(X) FROM 1 to 10 WITH DX = 0.1
USING METHOD IN SECTION 7.5.3

where Appendix 7.5 has a subsection 7.5.3 discussing
the special method.

2 Custom Algorithms

In cases where the module algorithm is not well known or
easily referenceable, then a more explanatory description may
be required in order for one to understand the code. The
following illustrates Class B descriptions of this sort:

(a) .PRINT WBS REPORT IN FORMAT 7,2.5 USING
HEADER—DATA, DATE, START—DATE, AND
ARRAYS TASK—CODE, TASK—TITLE, DURATION,
EARLY—START, EARLY—FINISH, LATE—START,
LATE_FINISH, AND FLOAT
where format section 7.2, subsection 5, specifies the
desired format.

(b) IF THIS WORK TASK IS ON CRITICAL PATH (PER
SEC. 4.3.8)
where the detailed functional specification section 4.3
has a subsection 8 containing the definition of a
critical-path work task. This description corresponds
to an unstriped decision box (decisions may not be
striped).

(c) GET NEXT CHARACTER FROM NAMED SOURCE
FILE BUFFER (SKIP MULTIPLE BLANKS, RETURN
HEX IC IF EMPTY)

(d) WAIT UNTIL OPERATOR ENTERS `GO'

57

A.1O Equivalent Documentation Forms

The CFG-PDL listings (Figures A.10-1 and A,10 .2), HIPO chart, and decision table that
follow depict standard formats and typical contents of equivalents of the program specifi-
cation module documentation shown in example A.8 of this appendix. The CFG-PDL
contains both narrative and flow descriptions. However, the HIPO chart describes only
functional information and, in this case, requires an accompanying flowchart (Figure
A,8 .2), a PDL flow segment, or the decision table in Figure A.10-4. Similarly, the deci-
sion table requires narrative (Figure A.8-1), a PDL text segment, or HIPO chart (Figure
A,10-3).

58

N

W
CD
Qo..

Wn
N

1
r

ch

tm
O

CIO
S

i^
00f^

IO
N

I
O
^K
V

O
n
ZH
LL

O

ZOH
N
L1'
W
7

W
NZ

CL O
N L--I
N dN U
H

Ln W
H U
C) LLJ

CL
I V)O

(n
V) Q

Co
CD

 O
z aa
U O
O •
LM Ln

it it it * i< * * * * i< * * is * # * * ;k iL iL iL i< i

	

Joe	 i

	

i*c	 i

U W

	

Lai	 Z
J ^ 2 F-

	

CO	 UN Q Z H ^--J H H S Q

	

d Q O 3 H	 a CD	 crU1-1 W a	 W Z

	

2 U W N	 IM H

	

d W V) Q F- w	 m I--

	

H a N J U 1--	 = V)	 .-.

	

•? a d Cl. d Q	 W	 Cl
W W U U V) Q I- 4	 >-co Z — H = n	 Z LL	 O LOM:H W	 UZ	 Q O	 O]
Z 2 F-= O W	 N W

	

F- U J Z 0) h H V)	 a
F- =U ^QO F- CT r	 Q	 W O
Z Q-O	 3WZ = Z ~ L/) a^ \ C:) W
W	 O 2 W H Gl	 W O	 Z L.t-

	

F-U W LL F- NQG'I	 =

	

N F- Nn Ln= j a : LLJ Li
 L`)	 ZF- 	 WLN d U H G H O 2 O Z	 W m

	

co d Q U LL. U — SC	 X: mC) X:Q:	 U O U	 U	 W =	H Q W	 Ll'	 LO W	 F- Z

	

NW co20 ^SW Z r CO	 d<= U g W =U = H N	 F- F03F- =HZUJ	 1\ n	 N zE WILL= dWa f^ W	 W

	

^Z HOO?CDW n N	 M:z [Y F- F- F- Li. z a F- 1.0 = O a WQO ZZ dddU r-	 F- W F-Ll- V) W W N	 _I Q A N Z CD QZ x O H a H H W F-
O O LY W ry F- Z O Q	 F- v)LL-LLJ	 W dO2 a10 N ZZF- Qa W LnUF- U C)rM F- H O
]G d V) co WV)LN Y N F- fl CD W Z
OF-	 W =a C:C HZ •H 1\ H F- W
Om CC F- Zd W Q • CDr 	 Q F-JOU Z	 CC CC J H10	 U

HLLHF- .E W CO Or W W H U
W W S "—= = co L H L F^- F- n Haa3	 W=z M--= = • >-Q z == Q	 rM: Z = O H O '1 ca _j r-} Z
O	 rW¢W ZZM = _'1 = ...i H
Uar =C) UF- (-F-QJ0) LL= r vOW= WF-F-	 ZN HC)1 WU r O

F- \ F- N F- C] W Lr. N F- m J U	 II	 IICL-.U F- U F- HLLJ M: HH z n — QOU U
QW dW OXd WLL =	 L7

	

ul¢ CD ¢NZW C.I. 	 Z W W
22C^ZV) Li- ZF- F- r+Uo	 LLLI V) NLL-F- UF- U	 tN V) GU	 W H

	

F-	 N in
. CO W	 J	 Z

	

. O H	 W	 W

r N Md' LO 10 r^ M M Or N M Ct LO 101` • . co O1O
r r r r r r r r r r N

K - I it is it it * K it it it K * * * iL is is it it * *
W

W CDJ	 W d
a	 as
•7

59

O G p p d G 0G p
N ncm im

G npG pG pCM GW ° D
Q ^ cm LMO
^ 4d Op

° OCY; O n
G G1N ° OnI n Or- cm n

°C) °C n°
°G

p ° v
G°

0
n

a
n OGp n Zp n
O

D
2p

O	 ►^ p° IL

G
Nn

°G	 W cm
CD

° dn
°	 O

d p 10

G	 J
J °G
U dO	 (P) °d

C)	 Q	 N
im
d 0O H \ p Cn	 N pd	 \

cz	 n`
dp

d
D t
d N_W O V

O LO co O 3

Z d	 WNF- G C
O p	 Z

LUN d Epd^° J	 W
CY 0	 .N.. n N
LU n	 n W p° Ao	 a J n a
O o	 Z ca crn n

^	
+ Q F-- G -i

d U~ mW p d
CC (^ G H WG N W N O C7

CL O °	 Q t n M G CN H d	 m `..^ p
Q

NQ n	 Lw1Y G
in

N U din	 C) "" p d(LO t~ G	 0 L L in "
I H n L H Hn p dU

Md
H d	 t X Z Z O I_Q

V) Q W WW
F- n O

n
p	 U.

I N W
U

C:)	 u H H n
N G	 A L LL-N QQY [Y n Q O O p
O O W d

°	 UCnW p
Z d' Z O	 Q J pcmLL H p

OD
m = U O

O
O

0 U UO dp
°WJ °O °

p Cl	 r N M p

O n
cn^ d n n d O O p

J
Cl.

60

1. r, ..1

Decision Table

Description: Algorithm for FINDing the statement number (NO)	 Module 4,4.1

Identifier: FINDNO

Prepared by: R. B. Hartley	 Phone. 2459	 Date: 8/7/75

Rule 1 2 3— 4 5 6 7 8 9 10 11 12 13 14 ELSE
Conditions CO5T

Prob

1,	 Entry? Y N N
2, Is CCHR a digit? — Y N

(CCH R=Current
CHaFacter)

Actions Rule 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ELSE

1/U17.	 get nonblank
CCHR 1 — —

2.	 test CCHR 2 —
3/U17.	 accumulate

digits in V — 1 —
4.	 set C=11 — 2 —
5.	 set C=0 — — 1
6.	 exit — 3 2

Sequential Test Procedure

Signature	
RBH Date 8/7/75

Signature Date

Fig. A.10-3. HIPO chart form of Figure A.8-1; requires accompanying flowchart, PDL flow segment, or decision table

61

Input — Processing — Output Table

Description: Procedure to FIND the statement number (NO)
	

Mode: 4.4.1

Identifier: FINDNO

Prepared by: R. Booth Hartley 	 Phone: 2459
	

Date: 8/7/75

Input
Input buffer just read in; the
LINe PoinTeR, LNPTR, is positioned
to extract the first character in
the buffer.

Software	 System/Subsystem
Interfaces	 Interfaces

Processing	 Req't Ref
Discard leadingg blanks, if any, and extract
an MBASICTM statement number. If a state-
ment number is present, the digits are
converted to an integer, The scan terminates
at the first non-digit or when the accumu-
lated line number exceeds 16777215.

Current Character
CCHF (via GET/U17)

Output
Class and Value variables are
15=1, V=line number, or else, when
not present, C=O, V=entry value.
CCHR holds character which stopped
the scan. LNPTR points to next
input character to be fetched, A
value of V > 999,999 indicates the
statement number is too large,
See Table 7.2.2.5 for further
class and value definitions.

Signature	 Date

RBH	 8/7/75

Fig. A.10-4. Decision table form of the FINDNO algorithm; requires narrative, PDL text segment, or HIPO

{
62

A.11 Other Useful Documentation Forms

r

This section contains examples of figures, charts, and formats (Figures A.11-1 through
A.11 .9), which are often extremely useful in promoting understandability of an SSD.
Almost all of these will require some narrative to tell the reader how to interpret the sym-
bols or format. The net effect, however, should be a reduction in the textual material
which would otherwise result, had the graphic not been provided, to reach the same level
of understanding.

SCHEDULER

Build WBS net-
work and print
schedule

INITIALIZE	 BUILD	 TOPOSORT	 DATES	 DISPLAY

Declare and	 Construct the	 Sort the tasks	 Compute early &	 Print the
initialize data	 WBS network	 topologically	 late start &	 schedule report
structures	 finish dates

READ	 REGISTER	 TERMINATOR

Read in a task	 Insert task	
Add a FINISH
milestone to

description	 into network	 network

SE ARCH	 CONNECT	 CHECK SUCCESSORS	 LINK TO FINISH

Look up a task	 Connect this	 Affirm FINISH	 Connect tasks
code; insert task	 task to its	 has no	 with no successors
code if not found	 predecessors	 successors	 to FINISH

Fig. A.11-1. A partial structure chart, showing modular breakdown of a program irte functions
(useful for overview description of processing)

63

k

Input — Processing — Output Table
Descriptic:^.	 Mode:	 Program Mode

Identifier: Mode number

Prepared by:	 Phone:	 Date	 Date

Striped if
detailed INPUT DATA SET NAME
further at

next level Inputs:

Inputs, data bases, media,
files, etc.

System/Subsystem
Software Interfaces
Interfaces:

'nterfaceI
Can also state

with other
priority

o programs
Program Mode

Other
Processing	 Req't Ref

Program 1. function 1	 SRD s, n Subsystem
Mode 2. function 2	 XYZ. P, q Interface
Interfacing Data
Data

n. function n

\/	 interface

OUTPUT DATA SET NAME

Output
Outputs, data bases, media 	 Signature	 Date

files, etc.

Fig. A.11-2. A useful function description graphic format, showing interfaces to other program
modes or other subsystems (use of such graphics is optional; note the use of traceability
mechanism employed here to show origin of function requirements)

64

Funrt;;,m 1
I-P•0

Function 2
I-P-O

• •

Function 1.1

Input
Detai I

Processing Output
Detail Detail

•

Function 1.1 I 	 I Cross-
Overview	 References

I nput-
Processing-
Output

Overview	 Mode/other
of this	 Cross-
level	 References

Function 1 7
Refrnce,Overview

Applicable	 Formats	 I	 Files/TapesData Base	 J

Fig. A.11-3. Suggested input-processing-output description methods for function documenta-
tion (two methods of detailing are shown, and others may also be used; cross-references may be
useful to connect "cousin" sections of the document)

65

A, . r *ice► „e., ^s

^3.

TM

MBASIC

1

Entry
illegal password	 Grab Core;

check pass-

word

normal

2 RUN, GO T0, et al.
Command Direct state-

ments with
Accept, edit, and parse expressions
input statements. Gen-
erate interpretive code.
Store interpretive code
and indirect symbolic END, PAUSE, or
statements. Execute last program
commands and direct statement
statements not needing
interpreter

3

Execution

Execute interpretive
code in workspace,
either for stored
program (indirect) or
for direct statement
passed from command
mode

EXIT	 EXIT

a
Exit

Close all files, clear
workspace, rewind any
tapes, transfer control
back to executive

Fig. A.11-4. A simplified mode diagram for the MBASIC 11 interactive language processor (boxes
show required modes of operation and reasons for transitions between modes as stated in the
language specification; this diagram does not show the design of the program Into modules)

66

4	 Mode 1.2
Command

Listing of	 page 1 of 1
Symbolic
File Data

5

Program
Symbolic
Workspace

3	 6

	

1	 Command
Program

	

r

User Commands	 (See Figure	 Binary
and Statements	 11_g)	 Workspace

7

Program
Data

2	 Workspace

Symbolic	 8
Program

Diagnostics,
Listings, and Data	 Symbolic

Program and
Date

.1 Primary entry of commands and source program statements in normal mode
shall be from user interactive terminal.

.2 Upon commands LOAD and MERGE, symbolic programs shall be taken from standard-
format MBASIC or system files. (See also requirement for COPY in language
specification [11].)

.3 The command-mode functions are listed in Figure 11-9.

•4 Symbolic files shall be printed on line printer by use of COPY ... TO HSP.

.5 The current symbolic program shall be held in a form suitable for EDIT,
MODIFY, etc.

.6 The current binary (interpretive) code shall be held in a form suitable
for execution upon RUN, GO TO, etc.

.7 Data workspace shall hold all current values of variables, or mark
that variables have not been initialized.

.8 Symbolic workspace shall be written on a file upon SAVE; symbolic
workspace or other files written upon COPY command.

.9 Primary user display medium shall be interactive terminal.

Fig. A.11-5. A brief multi-mode information flow diagram and narrative that lists a few of the top-
level requirements for the command mode of an interactive MBASIC language processor (later
levels refine the separate operational mode requirements within the command mode)

I

67

Lq
Cl)

c0
U
C
7
m
Ĉy

0O
a

0
m
m

0
c
0
U

c
O

E
0
`c00
rn
.E-

0

^a
c
d
S
v
C
m

0
N
Nd
V
OC
CL
J
a
IL
Na
U
m0
O
NwCd0
O
CL
E
Ov
.2.

E
rn
E3

LN
E
R
0+
A
'o
3
0

2m
m
'O

Q

r

Q

Cf

LL

68

^ P

• tN `t

SEGNO	 SEGment number (NO), flag variable (range: 3-9) first
assigned in SYSUP (module 2). Value specifies the
configuration currently active, or next to be acti-
vated after configuration by USWAP (module U1), as
detailed in the table below. SEGNO is active through-
out the entire program except for the subprogram
EXIT (module 9),

SEGNO = 7	 Configure for

3 SYSIZL
4 PARSE
5 RUNIZL
6 RUN
7 BATCHC
8 BA.TCHR
9 EXIT

Fig. A.11-7. Typical glossary entry of data item

69

LIST

to HASHTABLE entry

Occurrence	 of module containing this

I	 sublist reference	 I
HASHTABLE entry	 entry

name string	 I module hash	 I
head line #	 to packet where
usage next usage	 later reference

index occurred

to final packet	 I
r-

f

(latest occurrence)

module page # Module subtree
header	 acketder p	 I

kind and status
I

TIERHND
treeointerp to node of tier I

subtree where
module hierarchy begins

'	 son

brother	 to tail of unclaimed list

to HASHTABLE
entry with module (here, program)	 I

	module hash	 name

son	 First-level
I

	

	 module
brother

module hash	

157nodeI	 son	 hird-level
 modules

brother

I procedure

o unclaimed list
f uninvoked

	

 trees	 F
module hash	 to other packets	 I

	son 	 for modules named
by first-level parent

brother	 module

to packets for
other first-level
submodules named

— _	 by program

Fig. A.11-8. Example of a data structure layout diagram, showing HASH table and usage cross-
reference LIST data structures, including method for representing tier-tree and occurrence-data
lists for indexing a main program and its invoked procedures; its subroutines, macros, and func-
tions will have similar tier trees

Start	 gm	
N	 header	 S	 S	 <• d C

s
• > dState

'

C

F Fend of input -+{	 F) d of inputen	 F

S Cender S' default	 C
N

Sdefault S
N	 N

# #d	 T	 T	 ###d T T'

F Finpfinish	 F	 end of	 ut F

F T
end of input	 F	 default T

Legend

default	
T	

0	 header S
^

Label Mode

^.J N Neutral

T
S Statement

#d T
T Text

C Comment Block
F F Final

finish F 0 Open Text

F
end of input F

T
default 0

Fig. A.11-9. A finite-state-machine state-transition diagram (transition labels indicate assignments to
MODE flag according to legend; entries in ovals are alternative input conditions for state transition

71

s. 9
w

Appendix B
Equivalent Documentation Forms

Besides flowcharts and accompanying narratives, there are
other valid techniques to design and display procedures in a
two-dimensional structured form and explain what is going on.
The Caine-Farber-Gordon PDL (Ref. 6), the JPL SDDL
(Ref. 5), CRISPFLOW (Ref. 7), and CRISP-PDL (Ref, 9) are
also effective procedure design languages. This appendix pro-
vides rules for using these tools as an alternate to flowcharts
and narrative in order to qualify as being "equivalent" as
required by DSN software standards. The authorized use of
alternate forms to flowcharts itnd narratives is addressed in the
SRD/SDD.

Two forms of documentation may be classed as equivalent
if a mechanical procedure could conceptually be devised to
translate one to the other. For such an equivalence to occur,
there must be a one-to-one correspondence among the infor-
mation .items in each, a topological isomorphism among the
program structures (routines and data), and the same level of
detail (here, Class B) available in each one.

DSN standards require (1) a top-down control-logic struc-
ture of routines and Dewey-decimal numbering of routines and
steps within routines; (2) a method to describe or rationalize
procedural steps apart from the procedural description itself;
(3) signature concurrence of design, checking, and approval
functionaries; and (4) a configuration control mechanism (e.g.,
revision number, effective data, or other unique identification
of configuration items).

Equivalents to flowcharts and explanatory narratives must,
therefore, also display similar traits. The mere use of. a tool
such as CFG-FDL, SDDL, CRISPFLOW, or CRISP-PDL alone
is not sufficient to guarantee equivalence.

Table B-1 is a standard CFG-PDL "deck" that also may be
used as a guide for CRISP-PDL and SDDL specifications. This
deck contains the entire typical SSD outline of Ref. 2, which
can be used (subject to rule 6, below) to produce an entire
SSD. In this outline italicized items and lines containing the
elipsis (...) require entry of information concerning the pro-
gram being described. Other items, not italicized, are to appear
as written in the table. Appendix A contains an illustrative
example CFG-PDL equivalent to flowchart and narrative.

1. Structure the specification or program algorithms into a
hierarchic, top-down syntax using the control language of
CFG-PDL, SDDL, or CRISP-PDL superimposed on simple
English language constructions.

2. Limit each such specification to one page by inventing
named subspecifications for expansion at the next hierarchic
level. These named subspecifications are equivalent to "striped
modules" on flowcharts.

3. Observe all rules for content level, narrative description,
and annotation given in Refs. 1, 2, and this Guide, just as
if the descriptions were actually flowcharts and narratives.

4. Use in-line comments to explain steps, if these would
normally appear on the flowchart. Use a text segment where
flowchart supplementary narrative would normally be sup-
plied. A preamble comment block within a module may be
used to document module input, processing, output, con-
straints, entry assumptions, etc.

5. Use the imperative mood to specify actions taken.

To promote functioi;al cohesion in the module,
strive to use single-verb, single-direct-object state-
ments with modifiers as appropriate to specify
input, action, and result, and to indicate source
and destination of data. Modifiers should clarify
the type and significance of the data and action.
Comments or text should be used to clarify the
reason or significance of the step.

For example, rather than merely writing a state-
ment such as "DISPLAY MESSAGE," use the
more descriptive form, "QUEUE MESSAGE `IN-
VALID ENTRY' FOR DISPLAY AT OPERATOR
TERMINAL .. INPUT HAS SYNTAX ERROR."

For relational expressions used in decision state-
ments, state the condition being tested and the
data upon which the test is based. Make the out-
come branching be clear from the context of the
test. Use comments or text to explain the signifi-
cance of the test.

For example, rather than the statement, "IF
TIIERE IS A MATCH...," use the more descrip-
tive form, "IF CURRENT INPUT CHARACTER
hIATCIIES CURRENT NODE OF LEXICAL
G RAPII (INCI-IAR=LEXCHR(NODPTR)) .. IN-
PUT IS 'PROPER FOR STATE TRANSITION IN
LEXICAL ANALYZER."

•rte

6. Use the standard CFG-PDL format given in Table B-1
(or CRISP-PDL or SDDL equivalent).

In cases where SSD material appears divided

between this and the SPMC word processor data-
base (a segmented SSD), annotate each segment to
show that omitted information resides in the other
segment.

I

73

Table B-1. Standard M-1301. SSD source format

%NOSOURCE

%DINDEX

%SINDEX

%TREE

MOUSCORE

%DATACH

%TITLE DOC. NO. ssd number REV Zetter VERSION version number

%TITLE CODE ID NO. 23835

%TITLE SOFTWARE SPECIFICATION DOCUMENT

%TITLE program name

%TITLE subsystem

%TITLE PREPARED BY programmer(s)_

%TITLE COD DEV ENG cde name

%TITLE JET PROPULSION LABORATORY, CALIF. INST. OF TECHNOLOGY, PASADENA, CA

%DATE effective date

%G 1.	 INTRODUCTION

%T 1.1 Purpose and Scope of SSD

%T 1.2 General Program Description

%T 1.3 Applicable Documents

%G 2.0 STANDARDS AND CONVENTIONS

%G 3.0 ENVIRONMENT AND SYSTEM INTERFACES

%T 3.1 Hardware Configuration and Interfaces

%T 3.2 Software Environment and Interfaces

%E 3.2.1 Common Software Routines

%E 3.2.2 Special Operating System Services

%E 3.	 System Integration Specifications

74

Table B-1 (contd)

I %G 4.0 FUNCTIONAL SPECIFICATIONS

%T 4.1 Functional overview

%T 4.2 Software Configuration and Modes of Operation

%T 4.3 Detailed Functional Specifications (Inputs, Processing, Output)

%T 4.4 Data Base Specifications

%G 5.0 PROGRAM SPECIFICATIONS

%T 5.1 Design Philosophy, Rationale, Approach, and Organization

%T 5.2 Main Program Detailed Design

%S moduZe name ,.<* design date *> programmer MOD# Dewey decimaZ

.. comment section containing

.. functionaZ description, inputs, outputs, assumptions,

.. references to functionaZ or aZgorithmic

descriptions, etc.,

proceduraZ description	 .. step number

%T Text titZe

(narrative description of aZgorithmic steps, rationaZe, etc.,
keyed to step number)

%D Data description

.. MODULE DATA INTERFACES

.. LOCAL DATA

%T 5.3 Subroutine Detailed Designs

75

^+1

Table B-1 (contd)

3E 5.4 External Subroutine Interfaces

%D 5.5 Data Structure Definitions

.. COMMON DATA

.. TASK-GLOBAL DATA

%T 5.6 Resource Allocation and Access

%G 6.0 VERIFICATION AND TEST INFORMATION

%T 6.1 Correctness Test Criteria

%T 6.2 Test Specifications

%G APPENDICES

%T A. Glossary

%T B. Formats

%T C. Memory Maps and Overlays

%T D. Decision Log

%T E. Other Tables and Figures

%T F. Source Code Listings

76

Appendix C
Decision Table Standards

Decision tables are another means by which the logical
response of a program or subprogram nlay be described when-
ever there are multiple factors that determine the response.
The following rules set forth a few standards for displaying
decision tables.

1. Conform decision tables into the normal format shown
in Figure C-1, which also summarizes the remaining rules in
this section. The information and arrangement shown in the
form is standard; however, the use of the form itself is op-
tional.

2. Limit the size of tables to one page, using hierarchic
subtables if necessary.

3. Assign a mnemonic name and Dewey-decimal number to
each table.

4. Strive to limit each table to no more than 6 conditions,
12 decision rules, and 15 actions by hierarchic nesting of table
entries.

5. Use dashes to indicate immaterial condition entries and
ignored actions in a rule. Do not leave blank entries.

6. Use a consistent set of indicators in LEDT condition
entries ("Y" or "N"; "T" or "F").

Use "X" in action entires to indicate single actions
or multiple actions where sequence is immaterial,
If action-item sequence is materi-1, number such
items in the action entry in their -, %ler of logical
precedence, Assign equal numbers to processes
having equal precedence.

7. Number each action item and indicate whether there is
further hierarchic development.

For example, if there is no further detail, merely
use the action number n; if there is more, but the
action is not one common to other charts, then
use nl; if the action is one common to other
charts, described by the cross reference x, then
write n/x.

8. Enter only rules which correspond to true alternatives
into the table.

If the order of rule testing is necessary or pertinent
to specify this entry, then state the Sequential
Testing Procedure (STP) or give a reference to the
procedure elsewhere in the documentation.

9. Unless otherwise stated, control flow of each table will
be assumed to merge into a single (proper) exit at the end of
the table.

77

Sr'N1,

Fig. C-1. Summary of decision table documentation rules

78

Appendix D
Typical Ouality Assurance Audit Criteria

Quality assurance is supposed to be a function that is both
effective and economical, in the sense that the expenditure of
effort and costs to certify the software represents a justifiable
cost savings in the software package life cycle. The general
purpose of QA measures is, therefore, to minimize any foresee-
able post-transfer operational and sustaining problems by exer-
cising better and tighter controls during implementation than
would likely take place if QA measures were not in effect. The
QA function is performed by an organization separate from
the implementation and operations organizations, so as to
obtain an unbiased, dispassionate confirmation that the prod-
uct has nr►et certain mutually agreed-to requirements for trans-
fer to operations.

A software audit consists of an inspection of the SSD to
determine if its parts conform to standards and requirements.
The audit is not meant to review the conceptual approach of
the design or the efficiency of the code. Rather, it is meant to
provide a definite assurance that the SSD is self-consistent, and
is in accordance with DSN co;rteni and format standards.
When inconformities are found, the QA report will explicitly
detail the location and type of inconsistency.

This Guide sets forth typical criteria and standards for the
audit of Class B DSN software prior to transfer to operations.

1 Definition of OA Audit Discrepancy

In the strict sense, a QA audit reportable item is (1) any
inconsistency between parts -of the SSD and the operational
code, (2) any instance of unwaived nonconformance with stan-
dards, (3) any deviation between the SSD and requirements
placed cn it in the SRD, (4) any omission of information
needed to thread functions from the design into the code, and
(5) any lack of information needed to understand how the
code or design accomplishes its functions.

The technical accuracy and content and the adherence to
the standards contained in Refs. I and 2 and this Guide are
the responsibility of CDE and not Q.A.

The following items are considered discrepant:

(1) Incomplete SSD

(a) The SSD has not addressed all topics of the stan-
dard outline (` snot applicable," if appropriate, is
considered a response).

(b) Module descriptions and/or code are missing.

(c) Required functions do not appear in the functional
specification.

(d) System generation, linkage edit, or disk cataloging
code is absent or insufficiently described.

(e) Functional specifications and program design have
no connecting threads.

(f) Information needed to thread design module into
the code is missing or insufficient.

(g) References are missing where needed.

(2) Inconsistent items

(a) Design or coding errors are apparent.

(b) Control flow logical differences exist between
design and code.

(c) Data description or processing differences exist
between design and code.

(d) Identifiers and names in the program specification
do not match those in the code, and no cross-
reference table has been provided.

(e) The code does not agree with the modular struc-
ture of the design.

(f) References to figures or to other information
within the SSD are inconsistent.

(g) References are incorrect.

(h) Procedural step numbering between design and
code is inconsistent.

(3) Inadequate Items

(a) The step number and module numbering are inade-
quate to locate corresponding design and code.

(b) Module code banners are not provided or are mis-
placed.:

(c) Names are not affixed to each flowchart (or equiva-
lent) and to each code module.

(d) The design and code are not hierarchical, top-down
nor structured.

(e) Violation of standards has no accompanying
waiver.

79

(f) Type, units, and scaling of variables and parame-
ters have not been specified.

(g) Incorrect, ambiguous, or unclear functional specifi-
cations or program specifications appear.

(h) Programming standards are inadequate to describe
conventions used.

(i) Design or code is not understandable from the top
down on a module basis.

2 CIA Inspection Level

The QA audit of a Class B as-built SSD is oriented primarily
toward certifying accuracy, clarity, completeness, relevance,
consistency, design/code threadability, and adherence to DSN
and special task standards. Such a certification is deemed
necessary for the following reasons. Acceptance tests, if based
on the functional specification, attest to the end-to-end consis-
tency between the functional specifications and the code, and
to the correctness of the code itself (barring undiscovered
errors). That correctness is then checked inwardly into the
program specification by the QA audit.

QA audit procedures will require that certain comparisons
and verifications be made. In each of these, QA personnel are
asked to note all errors, exceptions, and discrepancies. The
level of QA inspection is typified by the following procedures:

1. Compare the SSD table of contents with written mate-
rial given in the SSD.

2. Compare the SSD contents with the standard outline
given in 810-19. Verify that all of the required SSD topics are
addressed.

3. Verify the inclusion of all codes required to build the
program, such as system-generation code, linkage-edit code,
disk-catalog code, and program source code.

4. Verify the design hierarchy of main program, subpro-
grams, subroutines, macros, etc., from the top down into the
code modules for traceability and completeness on a modular
scale. Note missing parts, excess parts, incorrect hierarchy, and
violations of module numbering and cross-referencing stan-
dards.

5. Verify that flowchart boxes (or equivalent) are num-
bered and that these numbers appear in the code.

6. Compare the logical structure of the flowcharted
design with the code logic for each module. (The code will
probably be more intricate; however, there should be a corres-
pondence in evidence, in which entry and exit flowlines are
identical between design and code.) All decisions in a module
design specification must have outcomes determinable without
looking deeper into the program hierarchy.

7. Verify that textual descriptions are keyed to the floev-
chart (or equivalent) by step numbers. Verify that the text
given is relevant to the step(s) cited.

8. Verify that comments in the code are relevant to the
code to which they are attached.

9. Compare the processing stated in a flowchart box and
its narrative accompaniment (or equivalent) with the code for
that box; a correspondence should be evident in data oper-
ands, operations, etc. The processing should be clearly de-
scribed. In cases where the code is stated to follow a refer-
enced algorithm, verify that the algorithm function, inputs,
and outputs correspond to those provided.

10. Compare data structural descriptions with the data
declarations and annotations in the code. Verify a correspon-
dence between descriptions.

11. Compare module names and variable identifiers
between design and code. These should match or else corres-
pondences should be defined in a design/code index or glos-
sary.

12. Verify that all references to figures, tables, and other
information within the SSD are consistent; verify that refer-
ences to external documents are valid (document exists, has
the correct title, and contains the subject referred to).

13. Verify that each flowchart (or equivalent) and code
module have appropriate module names, Dewey decimals, pro-
grammer names, and revision number. Each code module
should have a correct banner containing this information,
properly placed at the module entry point.

14. Verify that units, data type, and scaling appear in the
glossary for every variable and parameter.

15. Verify that flowcharts and narrative (or equivalents)
conform to style standards in Refs. 1 and 2 and this Guide.

16. Verify that SPMC and special standards and program-
ming conventions have been adhered to.

8o

References

1. Software Implementation Guidelines and Practices, DSN Standard Practice 810.13,
Aug, 1977 (JPL internal document); also available in Standard Practices for the
Implementation of Computer Software, JPL Publication 78. 53, Chapter 1, edited. by
A. P. Irvine, Jet Propulsion Laboratory, Pasadena, CA, Sept. 1, 1978.

2. Preparation of Software Specification Documents, DSN Standard Practice 810-19,
Mar. 1977 (JPL internal document); also available in Standard Practices for the Imple-
mentation of Computer Software, JPL Publication 78-53, Chapter 4, edited by A. P.
Irvine, Jet Propulsion Laboratory, Pasadena, CA, Sept. 1, 1978.

3. DSN Engineering Documentation Management Plan, DSN Standard Practice 810-26,
Nov. 1976 (JPL internal document).

4. Standard Classifications of Software Documentation, Technical Memorandum 33-756,
Jet Propulsion Laboratory, Pasadena, CA, Jan. 1976.

5. SDDL: A Software Design and Documentation Language, Special Publication (JPL
internal publication).

6. PDL• A Programming Design Language, Caine, Farber, and Gordon, Inc., Pasadena,
CA.

7. CRISPFLOW User Manual, St MC Special Document SOM-DSNSSP-001-B, DSN Data
Systems, July 18, 1977 (JPL internal document).

8. "Decision Tables as Programming Aids," in Standardized Development of Computer
Software, Special Publication 43-29, Part I, Chapter 8, Jet Propulsion Laboratory,
Pasadena, CA, July 1976.

9. "CRISP Syntax and Structures," in Standardized Development of Computer Software,
Special Publication 43 .29, Part II, Appendix G, Jet Propulsion Laborak .y, Pasadena,
CA, Aug. 1978.

NASA—JPL—Coml., LA„ Calif.	 81

	1980003556.pdf
	0001A02.tif
	0001A03.tif
	0001A04.tif
	0001A05.tif
	0001A06.tif
	0001A07.tif
	0001A08.tif
	0001A09.tif
	0001A10.tif
	0001A11.tif
	0001A12.tif
	0001A13.tif
	0001A14.tif
	0001B01.tif
	0001B02.tif
	0001B03.tif
	0001B04.tif
	0001B05.tif
	0001B06.tif
	0001B07.tif
	0001B08.tif
	0001B09.tif
	0001B10.tif
	0001B11.tif
	0001B12.tif
	0001B13.tif
	0001B14.tif
	0001C01.tif
	0001C02.tif
	0001C03.tif
	0001C04.tif
	0001C05.tif
	0001C06.tif
	0001C07.tif
	0001C08.tif
	0001C09.tif
	0001C10.tif
	0001C11.tif
	0001C12.tif
	0001C13.tif
	0001C14.tif
	0001D01.tif
	0001D02.tif
	0001D03.tif
	0001D04.tif
	0001D05.tif
	0001D06.tif
	0001D07.tif
	0001D08.tif
	0001D09.tif
	0001D10.tif
	0001D11.tif
	0001D12.tif
	0001D13.tif
	0001D14.tif
	0001E01.tif
	0001E02.tif
	0001E03.tif
	0001E04.tif
	0001E05.tif
	0001E06.tif
	0001E07.tif
	0001E08.tif
	0001E09.tif
	0001E10.tif
	0001E11.tif
	0001E12.tif
	0001E13.tif
	0001E14.tif
	0001F01.tif
	0001F02.tif
	0001F03.tif
	0001F04.tif
	0001F05.tif
	0001F06.tif
	0001F07.tif
	0001F08.tif
	0001F09.tif
	0001F10.tif
	0001F11.tif
	0001F12.tif
	0001F13.tif
	0001F14.tif
	0001G01.tif
	0001G02.tif
	0001G03.tif

