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AUTHOR'S NOTE

The present work is a revised version of my previous

Technical Memorandum (TM), "Information Theory and the

Earth's Density Distribution," NASA TP.1-73088, dated

February 1978. There are three reasons for publishing

this revision.

First, I included a discussion of Rietsch (1977).

I was unaware of his important pioneering paper until I

was kindly advised of it by the editor and referees of

the Geophysical Journal.

Second, I expanded the discussion of certain points

(such as the nature of probability) which were only briefly

mentioned in the original TM.

Third and last, I presented the new material on

Shannon's information measure for continuous probability

distributions.

These reasons, I feel, are more than sufficient for

producing a revision of the earlier work.
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INFORMATION THEORY AND THE EARTH'S
DENSITY DISTRIBUTION

David Parry Rubincam
NAS-NRC Resident Research Associate

ABSTRACT

The "most likely" density distribution inside the

earth is derived from Jaynes's (1957) information theory

approach. The earth is assumed to be spherical and the

density distribution spherically symmetric. The known

mass and moment of inertia are used as constraints on the

density distribution. The partitioning of particles among

cubical boxes and use of the grand canonical ensemble from

statistical mechanics result in a density distribution of

the form p(r) = 12.30 exp(-1.46r 2 /a2 )g/cm3 where aE is

the radius of the earth. This differs from the density

distribution derived by Rietsch (1977), who also used

the information theory approach. The difference results

from Rietsch allowing the density to vary continuously

inside the volume elements rather than in discrete steps

as done here. Some criticisms of information theory

inference are discussed. In particular, Shannon's (1948)

generalization of the information measure to continuous

probability distributions is defended as the more useful

measure in the continuous case over the Kullback measure.

Future directions for information theory inference in solid

earth geophysics are indicated.

vii
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INFORMATION THEORY AND THE EARTH'S
DENSITY DISTRIBUTION

1. INTRODUCTION

In a recent paper, Rietsch (1977) introduced Jaynes's (1957)

information theory approach to inverse problems in solid earth

geophysics. The information theory approach is a method of scien-•

tific inference which has had great success in statistical me-

chanics (see e.g., Jaynes 1957, 1963; Tribus 1961; I:atz 1. 0.67; and

Baierlein 1971) and in spectral analysis (e.g., Burg 1967, 1968,

1972; Smylie et al. 1973; and Graber 1976). Rietsch (1977)

applied the approach to two problems. The first. problem dealt with

spectral analysis; I will not discuss it at all here. The second

dealt with inferring the density distribution for the earth from

knowledge of its mass and moment of inertia; the earth is assumed

to be spherical and the density distribution spherically symmetric.

I have also applied information theory inference to the very

same problem of the earth's density distribution. My approach,

however, is somewhat different from Rietsch's (1977), and conse-

quently so is the density distribution. In this paper I present

these results together with a discussion of the differences be-

tween the two approaches, and some general comments on information

theory not discussed by Rietsch (1977).

2. THE INFERENCE PROBLEM

This is the nature of the problem: we desire to know what

the density distribution p(r) is as a function of radial distancE

r from the center of the earth, but the only information we have

1
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about the earth is its mass ME and moment of inertia CE, both of

which depend upon p(r). Clearly we do not have enough informa-

tion to say what p(r) actually is. Any proposed distribution

which satisfies the mass and moment of inertia is nonunique;

there are infinitely many other distributions which also satisfy

the given data. Bence we raniic . ,; i nvert the data; we must infer

an answer from incom.p lete data.

There are several methods for dealing with this problem.

(For a general discussion see Bullen 1975, pp. 60-64.) The ap-

proach of Backus and Gilbert (1967, 1968) is to study all solu-

tions consistent with the given data; this is called the geophys-

ical inverse problem. The Backus-Gilbert approach has been used

extensively. See, for example, Gilbert et al. (1973); Parker

(1977a, 1977b); Jordan and Franklin (1971); and references cited

by Parker (1977a, 1977b), Richards (1975), Anderson (1975), and

Engdahl et al. (1975). A quite different method is that of Press

(1968a, 1968b), who adopted a Monte Carlo technique of testing a

wide range of models against the data and retaining only those

which agreed with it. However, the commonest method by far is

that of modeling: By introducing certain assumptions in addition

to the data, the answer becomes unique. The assumptions of the

Adams-Williamson equation and uniform chemical composition, for

instance, plus the known mass, seismic velocities, and surface

density determine a unique density distribution (Alterman et al.

1959, pp. 80-81). Of course a difficulty with modeling is that

the assumed conditions may not hold.

Information theory inference approaches the problem from the

followir- viewpoint: We cannot reject any possible answer. (in
6
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our case, density distribution) which agrees with the known data.

We do feel, however, that some answers are more likely than others.

So we do the following: Assign each possible answer a probability

that it is the correct answer, then apportion the magnitudes of the

probabilities in accordance with the data we have on hand. For

this purpose we need to define the word "probability".

3. PROBABILITY

There are two major schools of thought on the nature of

probability (Howard 1968, pp. 211-212). Presently, the majority

of probability theory users hold that a probability is an objec-

tive quantity. A coin, for example, has a certain probability

of falling hea-'- just as it has mass and angular velocity. The

way to measure he probability is to flip the coin a large number

of times and note the frequency of occurrence of heads.

While this is the traditional view of probability, it has

the requirement of repeatability. If, for example, we discuss the

probability of a successful launching of the next space station,

then the objective view is of no use. The next launching is a

one-of-a-kind affair, unlike the flip of a coin. The same is true

of our topic: There is only one earth with one density distribu-

tion. There is no "ensemble of earths"!

This difficulty leads to the second, more powerful view of

probability: Subjective probability, used in information theory

inference and decision theory. The subjective view holds that a

probability reflects our state of knowledge about phenomena,

rather than about the phenomena themselves (Howard 1368, p. 211).

!	 i
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v;e would assign equal probabilities for a coin falling heads or

tails, for instance, if we have no information which would cause

us to prefer one outcome over the other. Hence a probability

represents our "degree of rational belief" (Baierl.ein 1971, p. 13)

that a particular outcome will occur. It need not be repeatable.

The probabilities are subjective in the sense: that they depend

on a state of knowledge, and one person's data. may differ from

another's.

The subjective view of probability has been around for quite

some time. It was held by Bayes and Laplace, and quantitative

treatments have been given by John Maynard Keynes, Harold Jeffreys,

John G. Kemeny, and Rudolf Carnap (Cox 1961), It was not until

recently, however, that this view has gained many adherents. One

reason for this situation is that it ran counter to the prevailing

dogma of the objective view, as discussed by Jaynes (1.967).

Another reason was the lack of a cogent set of axioms from the

subjective probability theorists from which to derive the probabil-

ity calculus. This defect was remedied by Cox (1946, 1961), whose

axioms are so simple yet compelling that they lead to the usual

laws of probability without the introduction of ensembles or fre-

quencies. This, plus the introduction of information theory by

Shannon (1948), has caused the numbers of subjectivists to wax

and objectivists to wane (Howard 1968, p. 212).

The probability calculus alone does not tell us how to as-

sign probabilities; it only gives us rules for operating with

them. What we need is a way of computing magnitudes of probabil-

ities consistent with given data. This is where Jaynes's (1957)

4



information theory approach comes in. (Baierlein 1971 has an

excellent general discussion of the information theory approach.)

4. JAYNES'S PRINCIPLE OF MINIMUM PREJUDICE

4.1 SHANNON'S INFORMATION MEASURE

At the heart of the approach is Shannon's (1948) information

measure

N
Nfli (Pi ,P2 .... PN)	 -KZ PilnPi	 (4.1)i=1

Here P i is the probability that the ith of N possible answers is

the correct answer and K is a positive constant. This function

was originally termed the entropy function (Tribus and McIrvine

1970, p. 180), due to its similarity to thermodynamic entropy.

For this reason the information theory approach is often called

the Maximum Entropy Method, or MEM for short. The relationship

between the information measure and thermodynamic entropy is deep,

but the two are not identical (Baierlein 1971, pp. 473-478). To

avoid confusion I will follow Baierlein (1971, p. 64) and call

Shannon's information measure MI (P l , P2,---,PN), where MI stands

for Missing Information, or the amount of information needed to

determine which answer is correct. A 'utter term for the approach

would be ITI, or Information Theory Inference, rather than MEM.

MI is not dimensionless (Edmundson, private communication,

1976), a fact that does not appear to be explicitly noted by Katz

(1967) or Baierlein (1971). It carries units of information. For

example, if we change the base of the logarithm in (4.1) from e

r
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to 2, which changes K to a new constant V. <4nd set K' = 1, then

MI = -EP i log2P i and MI is measured in bits. In the following

development I will retain the natural logarithm base and set K = 1,

so that ASI is measured in nats (from natural digits; McEliece

1977, p. 15). I will also suppress the units but it should be

remembered that MI is not a dimensionless quantity.

The importance of the MI function is its uniqueness; that is,

given certain very reasonable assumptions of how the MI function

should behave, one is inevitably led to (4.1). In this respect it

is like Cox's (1946, 1961) derivation of the probability calculus.

I will not state the assumptions or prove that they lead to

MI. The assumptions are givers by Rietsch (1977, p. 491), and

proofs are supplied by Shannon (19 .18, pp. 419-420) and Baierlein

(1971, pp. 64-74). Rather, I will merely indicate its plausibility

with an example. But first we note from (4.1) that MI> 0; the

amount of information needed to single out the correct answer is

never negative, This is certainly an intuitively desirable

property. Now let us suppose that all of the probabilities are

equal. In this case it can be shown that AZI attains its maximum

value. This accords with intuition: we are surely in a state of

maximum ignorance (i.e., need the most information) if we can

favor no answer above another in terms of probability. Suppose

now we have discovered that the jth po,ssibilii,y is the correct

answer. Then P  = 1 and P i = 0 for i^,j. How much information is

missing now? In this caso P j In P j = 1 In 1 = 0, and P i ln P i = 0

for i ;d j (by vir--` e of lim xln x = 0) . Thus MI = 0; no informa-
x- 0

tion is missing; we have the answer. This also accords with

6
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intuition. Normully our ignorance lies between these two extremes,

and MI takes on .alues accordingly between its maximum and 0.

Hence MI is a plausible measure of missing information.

4.2 JAYNES'S PRINCIPLE OF MINIMUM PREJUDICE

The essence of the information theory approach is this:

choose the probabilities P1,P2,...,PN of the possible outcomes

to make MI as large Rs possible, subject to the constraints of

the known data. This is Jaynes's principle of minimum prejudice

('17ribus and Rossi 1973). The information theory approach is there-

fore rational method for assigning probabilities. In statistical

mechanics, this procedure is equivalent to maximizing the entropy

(Morse 1969).

To illustrat-e the technique with an example, suppose that

we do not know the mass of the earth exactly, but do know that it

must be chosen from the values M 1 , M2) ... ,MN. Aside from Z" P i = 1,

this is all we know. We must find Pj , the probability that Mj is

the correct mass, by maximizing MI. This is done by taking the

partial derivative of

N	 N
-E PilnPi + 

a0 F Piii=1	 =1

with respect to each P i and setting it equal to zero. The a 0 is

a Lagrange multiplier which ensures that all of the probabilities

add up to 1. Carrying out the process yields

-InP.3 - 1 + a0 = 0

or

Pi = ea0-1 = constant

7



unknown ao may be found from the constraint

N
E P. = 1

i=1 1

givirig

Pi = 1/N

All of the; probabilities are equal. We knot, nothing about the

various Mi and therefore cannot favor one particular value over

another.

Now suppose wo obtain furthor information: e.g., we learn

that the expectation value of the mass is

N
E P i 'M i = Al 

i=1

We than reassign probabili ties in accordance with .Jaynes's

principle:

c[-EP ilnP i + a0 EP i + a 1 F.P iM i l = 0	 i = 1,2,...N
-5-Pi

giving an exponential function in Ali:

P	
eao-ie(VIIIii

where ao and a  are Lagrange multipliers to be found from the eoa-

straints

1, EP i M = Mr

Note that our method is completely analogous to that of the can-

onical ensemble in statistical mechanics (Morse 1969, pp. 268-269).

8
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Indeed, the mathematics is identical. The only difference is in

the philosophical basis, which indicates that the method has broad

applicability and is not confined to statistical mechanics

(Jaynes 1963, P. 192).

Maximizing the MI function is obviously the key point in the

information theory approach; it provides us with the magnitudes

of the probabilities. Hence justification for this approach is

necessary.

The justification Does 'like this: MI is the unique measure

for determining the amount of information needed to single out

the correct answer. Any method for assigning probabilities which

does not maximize MI under known constraints (knowledge) tacitly

assumes information it hasn't got! In other words, if someone

assigns probabilities not in accordance with Jaynes's principle,

that person is prejudicing the probabilities without foundation

in the known data. Thus is derived the name, "principle of

minimum prejudice".

This poLa t is particularly clear in our last example, where

we knew one of the M i was the correct answer for the mass of the

earth, but had no other information (other than T P i = 1). In this

case, Jaynes's principle assigned equal probabilities to all out-

comes. We were completely ignorant as to which answer was cor-

rect. If someone used some other principle, and assigned, for

example, a larger probability to M 1 than to the other M i , we can

legitimately ask, "You favored M1 as being the most likely mass

over all of the others. What basis (i.e., information) do you

have for doing that?"

9



The user of some other principle or function also runs the

risk of being inconsistent (Jaynes 1957, p. 623; Rietsch 1977,

p. 493). Hence minimum prejudice, plus consistency, give the

function MI a powerful claim to being the proper choice.

5. INFORMATION THEORY DENSITY DISTRIBUTION

I now present my own development of the information theory

density distribution, and afterwards compare it to Rietsch's

(1977). I will make heavy use of the methods of statistical

mechanics; particularly that of the grand canonical ensemble

(Morse 1969, pp. 316-327).

Imagine a three-dimensional Cartesian coordinate system with

its origin at the center of the earth. The grid system will

divide up the earth into many cubes of identical volumes

V = dx•dy • dz, just as ordinary graph paper divides up a plane into

squares of equal area. We can approximate the spherical surface

of the earth as closely as we like by making the cubes as small

as we like, Let r j be the vector from the center of the earth to

the jth cube and set Irj l = rj . Let the mass of the earth be the

sum of the masses of a large number of indistinguishable particles,

each with mass m. The particles are distributed amongst the cubes,

with nj particles occupying the jth cube. The mass ME and moment

of inertia CE of the earth are then

ME = Enjm	 (5.1)
j

CE ` (2J3)Jnjmrj2

10
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where the subscript j runs over all of the cubes comprising the

earth. The factor (2/3) appearing in the second equation makes

use of the assumption that the density distribution is spherically

symmetric, and takes care of rj being the distance from the center

of the earth to a cube and not the distance to some axis of ro-

tation. This factor may be verified by taking the cubes to be so

small that we can switch from summations to integrals without

serious error, and then integrate over latitude and longitude.

Let me remark here that we have chosen cubes of equal volume

so as to treat all regions of the earth identically. We have also

chosen indistinguishable particles because the interchanging of

particles leaves the density distribution unaffected. In other

words, the only information needed to characterize the density

distribution is to know the number of particles in each cube, and

not to know which particular particle is in which cube. We make

no commitment as to the values of m and V. As we shall see, they

drop out of the final equation for the density distribution. These

assumptions will be further discussed later on.

Our problem is the following. A possible model for the earth

is one which has n 1 particles in cube 1, n 2 particles in cube 2,

and so on. Each possible model will be given the subscript i, so

that Mi and Ci are the mass and moment of inertia, respectively,

for the ith model. 'Ne place no restrictions on the number of

particles allowed to occupy each cube, so there are an infinite

number of models. Our task is to assign each possible model a

probability P i that it is the correct model. Our information will

^ P
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be that the expectation values of the mass E P iMi and moment of

inertia EPiC i are known to be ME and CE , respectively. In prac-

tice, ME and CE are the experimentally determined values. Ulti-

mately we will average over all of the models and find n j , the

expectation value for the number of particles in the jth cube.

From this we can determine the "most likely" density distribution.

The probabilities are computed according to Jaynes's prin-

ciple of minimum prejudice:

0[-EP i 1npi  
+ a0 EP i + a1 EP iMi + a2 EP i_C i ) = 0

8Pi

giving:

ea1Mi + a'2Ci
P =
1	 Z

where

Z = el-'O = Eea1Mi + a2Ci (5.2)
i

From (5.1) we can write

Mi = Enji

m	 ^

(5.3)

3C i = En..r•2
m	 j J

1 J

where nji is the number of particles in the jtb cube according to

the ith model. The problem now looks exactly like that of the

grand canonical ensemble in statistical mechanics, with n ji playing

the role of occupation numbers, r j 2 the energy levels, and (5.2)

12



the grand partition function, the equations analogous to (5.3)

being

N = Enj

E = Enjej

The treatment of this problem may be found in any standard sta-

tistical mechanics text. I will follow Morse (1969, p. 326).

Using (5.3) in (5.2) we have

a En.. + a En..r 2
Z = Ee 1 ^i	 2 ji	 (5.4)

i

where we have redefined « lm as a l and (2/3)a2m as a2 . Note that

81nZ = E(Enji ) ealinji + a2injirj
2

8a 1 	i	
Z

E En
	ea 

j n]1 + 
a2in..r.	

= En ..P.	 = En.	
(.5.5)

i ji	
^l 1	 ^

Z	 i

a result that we will make use of shortly.

Let us now rewrite (5.4) as a summation over the possible

values of nj instead of over i. Since there are no limits on the

possible number of particles occupying each cube, we obviously

have

Z =o (al 
+ a2r12) 

nl . Ee («1 + a2r22) 
n2.. .

n1=0	 n2=0
(5.6)

= Z1dZ2...

13



where

1

Z,	 1 - eal + a 22r

by virtue of

1
= E xn

1 - x n=0

so that Z separates into factors for each cube.

From (5.5) and (5.6) we have

alnZ =	
1	

=nEn.aa1	
^ -a -a r2	 >

e 1	 2	 - 1

where evidently

_	 1
nj -

	

	 (5.7)
-a1 -a 2r^ - 1

e

Equation (5.7) is identical to the equation for the average number

of particles in an energy state, assuming the particles follow

Bose-Einstein statistics (Morse 1969, p. 326). This is hardly

surprising, since the assumptions regarding the particles are the

same: indistinguishability, plus no limits on the number of

particles occupying a given state.

Let us now make an assumption regarding (5.7) which is well-

founded in classical physics (Morse 1969, p. 325): we assume

that the cubes with volume V may be taken so small that the cubes

14



are sparsely occupied by the particles, thus making the average

number of particles in any given cube a small number compared to

1. This is equivalent to assuming the particles follow Maxwell-

Boltzmann statistics (Morse 1969, p. 324), and (5.7) becomes

nj =	 1	 « 1

e-al -a 2r 3 - 1

so that

-al	
2

-a r2
j	 >> 1

e

and

2
nj	 ealea2rj

The density distribution is obviously

P( r j) = V el l ea2 r j 2

By the assumption of spherical symmetry for the density

distribution we can drop the subscript j and write

P (r) = P (0) ea2r
2	 (5.8)

which we take as the desired information theory density distribu-

tion. The two constants p(0) = V ea t and a 2 may be found from our

15
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I
knowledge of the expectation value for the mass and moment of

inertia:

aE

ME = 47 f0 T(r)r
2
 dr  = 5.976 x 1027 g

CE = 3	 p (r) r 4dr	 8.068 x 10 44 g • cm 
fo

where a E is the radius of the earth and our numerical values have

come from Stacey (1969, p. 279). W( , have assumed in (5.9) that

the cubes are so small that w(^ may switch from summations to in-

tegrals without serious orror. By numerical integration of (5.9),

or from standard mathematical tables (Craber, private communica-

tion 1978), we find that

2 2
T(r) = 12.30e-1.46r /aE g/cm3	 (5.10)

is our "best guess" for the density distribution based on the

given data.

A plot of (5.10) appears in rig. 1 (refer to page 37), along

with the "optimum" density distribution given by Bullen (1975, p.

361), which presumbably gives the most plausible distribution on

the basis of all the known data. (Rietsch 1977 also compares his

curve to Bul.len's.) The two curves agree remarkably well, in view

of the fact that -the information theory density distribution makes

use of only two basic pieces of data: mass and moment of inertia.

No seismic or free oscillation data have been included in our

information.

16
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6. DISCUSSION

6.1 COMPARISON WITH RIETSCH (1977)

My analysis differs from that of Rietsch (1977) at several

points. Rietsch (1977) begins with Jaynes's (1968) proposed

generalization of Shannon's (1948) information measure (4.1) for

continuous distributions

MI = -f P(P) log [ p (P) /W( p )] dv	
(6.1)

where p(p) is the probability distribution, pis the density dis-

tribution, and dv is the volume element for the parameter space.

The w(p) appearing in (6.1) is the prior probability distribution

which obtains when no information is known. Equation (6.1) differs

from Shannon's (1948) own proposed measure for continuous distri-

butions in that w(p) does not appear. I will argue in the follow-

ing paragraphs that Shannon's equation is a more useful measure

than Jaynes's for continuous distributions, However, the distinc-

tion is academic in this case since Rietsch (1977) chooses a con-

stant prior distribution w(p), which for all practical purposes

makes the two measures the same.

Rietsch (1977) then takes advantage of the spherical symmetry

of the problem and divides up the earth with spherical shells,

with the shell radii chosen so that all of the volumes between the

shells are equal. Later he lets the number of shells approach

infinity to obtain a continuous density distribution. I chose

cubes instead of shells to lay the groundwork for the general case

where there is no spherical symmetry; in particular, for finding
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the density distribution which uses the known spherical harmonic

coefficients of the geopotential as constraints (as explained

in Section 6.5). So far the differences between approaches

are minor.

The last difference of note between Rietsch's (1977) trcat-

ment and my own is the one which produces the differing equations

for the density distribution. Rietsch (1977) chooses to fill the

earth's volume elements with continually varying masses, rather

than discrete particles. It is as though his volume elements

may be filled with a continuous liquid of any amount, rather than

with discrete mass-points as in my own. This leads him to a den-

sity distribution of the form (Rietsch 1977, p. 503)

_	 1
A ( r ) _

^l + X 2 r 2

and from doing integrals instead of summations. His distribution

has the same qualitative behavior as my own (5.10) and looks very

much the same when plotted, but obviously the functional form is

different. I chose to use discrete particles, since this is more

in keeping with what we know about atoms, and because it more

closely follows the traditional statistical mechanical development.

I should also mention that Rietsch (1977) investigated a more

general distribution by putting limits on the highest and lowest

density allowed in each volume element, instead of letting it

vary between zero and infinity.

d
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6.2 FURTHER DISCUSSION OF ASSUMPTIONS

A natural question to ask at this point is: how well do our

assumptions reelect the real earth? For instance, what about

using particles of equal mass? Where do atoms and molecules fit

in? The answer to the last question is: they don't, at this

stag;. We chose this simplified model to obtain a tractable

problem and illustrate the method; these are merely the first

steps. If pressed upon this point, we can take our "particle" to

be a proton+neutron+electron. The reason for choosing this com-

bination is that the earth is made up predominately of elements

with low atomic number. The nuclei of such elements very nearly

have equal numbers of protons and neutrons. (In the heavy elements,

neutrons significantly outnumber protons.) Also, electrical

neutrality prevails, so that for every proton there is an electron.

Hence we may think of the proton+neutron-i•electron as a naturally

occurring unit from which the earth is made. We can then pretend

that these "particles" are spread throughout the earth, and claim

to know nothing of atoms, molecules, chemical bonding, etc., which

would constitute further information. This line of argument also

takes care of any further objection to choosing indistinguishable

particles, since the previously mentioned elementary particles are

indistinguishable in the fundamental sense. However, this is going

to extremes.

The assumption that the cubes are sparsely occupied, thus

giving Maxwell-Boltzmann statistics, may also be objectionable

from an operational standpoint. After all, volumes actually
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measured contain hugh numbers of particles. Relaxing this condi-

tion means that we are back to Bose-Einstein statisitcs and (5.7)

gives the average number of particles in a given cube. The den-

sity is then

M

P ( r ) _
(6.2)

e
al -a2r^ - 1 

With this approach we have a problem, because there are more un-

knowns than constraints. If we knew how to choose m/V, then we

could find a l and ap from the constraints of mass and moment of

inertia, as we did before. Unfortunate!-y, we have no clear guid-

ance in this matter.. Even if we choose m to be the mass of our

"particle", we would still have to find V.

There is a way, however, to neatly sidestep the problem. We

introduce a third piece of information: we assume we know p(aE),

the value of the density at the earth's surface. Using this in-

formation zc t6.2) yields

2

_  a
(e e

la2aE -1)P(aE)	
(6.3)

A Fr) =	
2-alea2r

e e	 -1

and we use our knowledge of a, and a2 to find the two multipliers.

I will not carry through the calculation, since according to

Stacey (1969, p. 104) the surface density of rocks is 2.84 g/cm3.

Our Maxwell-Boltzmann equation (5.10) already gives a surface
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density of 2.86 g/cm3 , so that (5.8) and (6.3) differ only triv-

ially.

We can therefore use Bose-Einstein statistics in the informa-

tion theory approach to the density distribution; but while more

general than Maxwell-Boltzmann statistics, it is more complicated

mathematically, as a comparison of (5.8) and (6.3) shows. The

Maxwell-Boltzmann case should probably be investigated first in

future developments, being simpler.

6.3 INFORMATION MEASURE FOR CONTINUOUS DISTRIBUTIONS

Shannon (1948, p. 628) proposed as the appropriate general-

izat.. , -, of (4.1) for continuous distributions the function

MI = -IK !°° p(x)1np,(x)dx	 (6.4)

where p(x) is the probability distribution and x is a continuous

parameter. I will confine the discussion to the one dimensional

case without loss of generality.

There are three basic objections to (6.4) being the appro-

priate measure (Jaynes 1963, 1968; Hobson and Cheng 1973) which

are, in order of increasing seriousness,: (a) It is dimensionally

incorrect; (b) an infinity is thrown away in deriving it; and (c)

the form of the prior probability distribution is not invariant

under a change of variables. To corm , t these difficulties,

Hobson and Cheng (1973) and Jaynes (1963, 1968) propose using the

Kullback measure in its place, of which Jaynes's equation (6.1)

is but a special case. However, Tribus and Rossi (1973) and Batty
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(1974) argue that Shannon's original equation (6.4) is the appro-

priate measure.

While Rietsch (1977) follows Jaynes (1963, 1968) and Hobson

and Cheng (1973), I follow Tribus and Rossi (1973) and Batty

(1974), and will outline my reasons for doing so.

The problem of point (a) is the following. Suppose p(x) dx

represents the probability of finding a particle in an interval

dx near speed x. Then dx has dimensions cm/s and p(x) has dimen-

sions s/cm, so that the product of the two p(x) dx is dimension-

less. But the logarithm of p(x) is taken in (6.4), and this is

not allowed for dimensional quantities. So (6.4) cannot be di-

mensionally correct.

The problem is easily remedied. As we shall see below when

point (b) is discussed, the difficulty develops when p(x) is sep-

arated from dx. 11' we introduce a constant of value 1 and dimen-

sions of x, then we can write

P (x) dx = [ Dp (x) ] LN
where D is the constant. Each expression in brackets on the right

side of the equation above is now dimensionless, and we can now

separate p(x) from dx without falling into error with the loga-

rithm. Since D has value= 1, we can suppress it, its presence

being understood. We will ticsiume this has been done in our dis-

cussion in the following; parng i aphs .
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As for point (b), in the continuous case P i goes over to

p(x) dx and (4.1) becomes:

lim S - F p(xi )dx log Ip(xi)dxl`dx— 0 l	 i	 JJ ))

_ - fp (x) log [ p (x)] dx - f p (x) log (dx) dx

where K has been set equal to 1. Obviously as dx-0, log(dx)--w

and the right side approaches infinity. At this point the log(dx)

term is subtracted off, leaving a well-behaved function which is

just (6.4). However, subtracting infinity from ?.nfinity and

obtaining a finite number is usually unsound mathematically.

This can be taken care of by going back to (4.1) and writing

it in exponential form

e-MI - II PPi
i i

Then in the continuous case it goes over to

e-MI1= i LP (x i ) dx] P (xi ) dx

which can be written

e MI1= II P(xi) p(xi )dx	 (xi)dx] 	 P(Xi)P(xl)dxJ[dxp 	 [dx]C1C
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by noting that

n dxp (xi ) dx = dxEp (xi ) dx = dx1
i

When more information becomes available the probability distribu-

tion p(x) goes over to some new one q(x), whose associated measure

is

e-M12 = IIq (x ) dx
i q (xi )	 i	 [dxl

Dividing one by the ether and letting dx approach 0 gives

MI2

	 lim	 f^I P (xi) P (xi ) dxl dxe	 J
dx 0

eM2 1	 q(x.)q(xi)dx	
dxa.	

i

The dx's cancel, giving

I.1I 2
log e	 = MI  - MI  = -( q (x) log q (x) dx +f p(x)log  p (x) dx

eM21	 1

which is well behaved. So we may as well write (6.4) as the MI

for continuous distributions, since we know now that the infinity

associated with the old distribution is the same as for the new

distribution, and subtraction of the two leads to no difficulties.

We are therefore concerned with chaiiges in the amount of infor-

mation, and not in the amount itself.

r'-

i

r
	

24



The force of (c) may be seen from the following example.

Suppose once again that p(x)dx represents the probability of

finding a particle in the neighborhood dx near speed x, and further,

that the speed is definitely known to lie between values xl and x2.

We have no further information. If we apply Ja.ynes's principle

of minimum prejudice, we find

a - f p (x) log p (x) dx + a f p ( x) dx ] _ 0
a 

so that

-log p (x) - 1+ a= 0; p (x) = e
-1+ a

= 	 1

X2 - xl

so that p(x) is a constant for xl < x <x2 and zero outside the in-

terval. But the kinetic energy mx2 /2 (where m is the mass of the

particle) is a perfectly respectable physical quantity. Why not

take it as the continuous parameter? If we do so by setting

y = mx2/2 and apply Jaynes's principle once again we find:

d [- fs  (y) log s (y) dy + a f s (y) dy] - 0
8s

which implies

s (Y) =	
1	

for yl <- y :5 y2
Y2 - Y1

The two distributions are inconsistent: a constant distribution
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for speed implies a nonconstant distribution for energy and vice

versa, as may be seen from

s (y) dy = mx dx	 =	 2x dx	 p (x) dx

2 ( x2 •- xi)	 ( x2 - xi)
Hence there is no one prior probability distribution. We can

make it what we please for any given parameter by a suitable

change of variables. To escape this difficulty, Jaynes (1968)

proposes to find the prior distribution w(p) in (6.1) via the

theory of groups. This matter is also discussed by Rietsch (1977,

pp. 494--495) and by Rowlinson (1970).

I must agree with Tri'bzs and Rossi (1973) that there really

is no problem; for to change variables is to ask a different

q uestion. However, I am not entirely certain that their reasons

nor believing so are the same as mine, due to the terseness of

their discussion. Therefore I will give my reasons below.

Let us start by recalling the meaning of (4.1). It is the

amount of information needed to single out the correct answer

from N possible answers. Now as P i goes over to p(x) dx in the

continuous case, the interpretation of (6.4) must be that it

determines the amount of information needed to trap the correct

answer in any one of the small intervals dx. Likewise, if we had

chosen some other variable y = f(x) as the continuous parameter,

then MI answers the question of how much information is needed

to trap the answer in any one of the intervals dy. So when we

pick x or y as the parameter, we are asking different questions

li;
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about the problem. There is no one prior distribution. The

amount of information needed to answer a question is a function

of the question asked.

Let us clarify the situation with our example in which x is

speed and y is kinetic energy. Suppose that the mass of the

particle is 2 g and the speed is definitely known to lie between

0 and 100 cm/s. Take dx to be 1 cm. The energy obviously lies

between 0 and 104 ergs. Take dy to be 1 erg when y is the prior

variable.

Now to use x or to use y as the parameter is to ask two dif-

ferent questions. Trapping the particle speed to within 1 cm/s

is not the same as trapping it to within 1 erg. If x is near 50

cm/s for example, then dy 2x dx and trapping the speed to within

1 cm/s means we know the energy to within -2-50-1 = 100 ergs, and

not 1 erg. So it is a question of resolution. Equal resolution

along the speed axis implies unequal resolution along the energy

axis and vice versa. Hence it is meaningless to ask, what is the

prior probability distribution? That depends on the question

you are asking.

This argument is bolstered by noting an unsatisfactory as-

pect of (6.1) pointed out by Tribus and Rossi (1973): the infor-

mation needed to single out the correct answer depends on the

order in which the information is given. That it not depend on

the order given is an essential part of deriving (4.1) (Baierlein

1971, pp. 64-74), and Shannon's (1948) equation is true to this

condition (Tribus and Rossi 1973) when generalized to continuous

distributions.
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Theories are neither right nor wrong; they have only varying

degrees of usefulness (Tribus 1966, p. 207). What I am suggesting

here is that Shannon's (1948) original equation (6.4) is more use-

ful than Jaynes's (1968, 1968) alternative equation when talking

about information and continuous distributions.

6.4 CRITICISMS OI'' INFORMATION THEORY INFERENCE

Some criticisms of information theory inference which have

been raised will be briefly discussed here, starting with the

coin flip problem.

Rowlinson (1970) argues that information theory is unable to

deal with certain kinds of information. Suppose, for example,

that we flip a coin 100 times and it comes up heads 75 times.

Clearly we have some relevant information on whether the next

flip will be heads or a tails. Rowlinson (1970) claims that

information theory cannot handle this problem.

Tribus (1969), an ardent proponent of information theory

inference, would probably answer this challenge according to

the algorithm given on page 120 of his book: assign probabilities

according to Jaynes's principle, and then modify the probabilities

using Bayes's theorem when new information becomes available. In

the coin flip problem the original information would be that two

outcomes are possible, giving probability 1/2 to heads and tails.

The new information would be the 75 heads out of 100 flips. This

would be used in Bayes's theorem to give the new probabilities.

I will not pursue this problem further here.
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Another apparent drawback is that information theory infer-

ence at times gives "unphysical" answers. For instance, if we

omitted our knowledge of the moment of inertia in solving for

the density distribution, then we would obtain a constant density

all throughout the earth, as may be easily verified. This does

not seem reasonable; we feel that the density should certainly

increase towards the center of the planet. The value of infor-

mation theory inference appears questionable in this instance.

The problem is easily resolved, as may be seen in the fol-

lowing example. Suppose that instead of guessing the earth's

density distribution we were confronted with a small object of

exotic shape and unknown composition and asked to guess its den-

sity distribution on the basis of known mass and volume. In this

case a constant density distribution does not appear at all un-

reasonable; this is because we are in a state of extreme ignorance

about the object. With the earth, however, this is not the case:

we have some ideas about how the earth ought to behave. In this

instance it is that gravity should pull the heavier material

towards the center of the earth, and high interior pressures will

compress it, making the density increase towards the center.

Hence we are dealing with tacit information. We can hardly with-

hold information from the method and then criticize it for not

reproducing what we did not tell it! So if an answer appears

"unphysical", then we have not been fair to the method; we did

not tell it everything we knew.
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6.5 FUTURE DIRECTIONS FOR THE THEORY

The results obtained above may be easily generalized to in-

elude any known volume integrals of the density distribution.

Supposing that there are L such integrals having the form

	

fp(r) fi (r) dv = F i	(i = 1, ... L)
volume
of earth

the resulting average density distribution is

p(rj= const • exp(a lfl(r) +a2 f 2 (r) +...+aLfL(r) )	 (6.5)

The Lagrange multipliers a i are to be found from the known values

Fi . Note that the above result is not restricted to the spheri-

cally symmetric case. Besides the mass and moment of inertia,

the spherical harmonic coefficients Cp m and Sp m of the earth's

gravitational field immediately come to mind as integrals having

this form. I intend to publish the resulting p(r) based on the

gravity field coefficients in the near future.

The next obvious extension of the theory is to assume that

the earth is an elastic body so as to include the elastic param-

eters µ(r) and x(r) in addition to the density distribution p(r)

as unknown quantities to estimate. This will allow seismic travel

times, free oscillation periods, and body tide observations to be

	

used, all of which depend upon µ(r), 	 r) and p(r). Graber (1977)

has already made a start in this direction using mass, moment of

inertia, and three zero-node torsional normal modes of degree

= 2, 8, and 26 of the earth. More realistic treatment of atoms

and molecules has already been mentioned. Information theory
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inference should be compared to other inverse techniques, such

as the Backus-Gilbert method. Gull and Daniell (1978) briefly

discuss the two methods. The goal of information theory inference

is .-o put in all of the physics and data we know about the earth

and maximize the remaining missing information.

Since there will never come a day when we have all of the

information, solid earth geophysics will always have a need for

sound methods of inference. Information theory is such a method.

Its philosophical basis is satisfying: no unwarranted weighting

of possible answers. It is rational and objective: Everyone

using it will obtain the same answers, given the same data (once

the formulation of the problem is agreed upon!); it gives the

"bast" answer on the basis of very little data; it provides an

alternative to extensive modeling; and its mathematics is

standard—that of statistical mechanics. Information theory

inference should find extensive use in solid earth geophysics.
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Figure 1. The information theory density distribution using
Maxwell-Boltzmann statistics (curve A) and the optimum density
distribution of Bullen (1975) (curve B) are shown as a function

of radial distance r.
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