NASA Technical Memorandum 80178

Single Pilot Scanning Behavior
 In Simulated Instrument Flight

Jack E. Pennington

October 1979

NASA
 National Acronautics and Space Administration

Langley Research Center

Hampton. Viryuria 23665

Single pilot scanning beluavior in simulated instrument flight
Jack E. Pennington

INTRODUCTION
General Aviation (GA) includes the largest number of aircraft, pilots, operations, miles flown, accidents, and fatalities in the air traffic system (ref. 1). It ranges from single-pilot, single-engine, private airplanes to multi-crew, multi-engine corporate airplanes to helicopters and sailplanes. A particular example is the small private airplane which is operated in the same weather conditions and under the same air traffic control (ATC) ru?es as conmercial aircraft, but which has less sophisticated avionics and a single pilot with a high workload and perhaps limited proficiency in IFR operations.

Recognizing the size and importance of the GA community, NASA has a continuing emphasis on GA, including aerodynamics, avionics, and flioht management. An objective of the research is to decrease the pilot's workload and increase the safety of and capability for IFR flight operations. A useful research tool is the Langley general aviation simulation facility, which can simulate a single-pilot IFR mission scenario from takeoff to landing.

In a recent study pilots flew a series of basic flight maneuvers in the simulator, while control inputs and state variables were recorded. In addition, an oculometer (ref. 2) was used to measure and record the pilot's lookpoint during simulated instrument flight. The objective of the study was to obtain data for refining a time/motion analysis model of single-pilot IFR flight (ref. 3), and also to provide a baseline for comparing resilts from later studies of advanced avionics.

This report explores the pilot visual scanning behavior during the simulation, and suggests areas for further study in cockpit instrumentation and visual scanning measurements.

SYMBOLS ANU ABBREVIATIONS
Symbols
1.
mean of normal distribution approximating duty cycle distribution
v
standard deviation of normal distribution approximating duty cycle distribution, dimensionless
chi-square value computed in goodness-of-fit test, dimensionless critical value of x^{2} at .05 significance level

Abbreviations

GA General Aviation
IFR Instrument flight rules
ILS Instrument landing system
VLDS Visual landing display system
VOR Very high frequency omnirange

SIMULATION FACILITY AND EQUIPMENT

The simulation facility incorporated four separate pieces of equipment: a digital computer, a simulated general aviation aircraft cockpit, a visual landing display system (VLDS), and an oculometer system.

Computer

All components of the real-time sir alation were linked by a control Data Cyber 175 computer operating at 32 iterations per second. The main progran controlled the flow of calculations and real-time sequencing. Subprograms included equations of motion, aerodynamics, power plant, landing gear and braking, navigation aids (including VOR and ILS in the Atlanta, Georgia area), VLDS drive signals, visibility and ceiling, and data recording. The simulated airplane typified a single-engine, high-wing $G A$
airplane.

Data from the simulation were recorded on magnetic tape for postprocessing. Pilot control inputs and oculometer output values were recorded 32 times per second (every iteration). Another 20 variables including aircraft position and velocities and instrument readings, were recorded twice per second.

Cockpit

The fixed-base simulator cockpit (fig. 1) was arranged so that it could be operated either as a single or twin enc, ne airplane, but for this study a single engine configuration was used. Flight controls included control wheel and column with a hydraulically-driven force-feel system, rudder pedals, throttle, and a switch for electrically operated flaps. Trim controls were provided for pitch and roll. Audio cues were provided for engine and
airstream noises. Reference 4 presents a more complete description of the simulator and its validation.

Flight instruments (fig. 2) were representative of those found in general aviation airplanes equipped for instrument flight. Dual navigation and communications radios and transponder were simulated. Fuel and engine instruments were functional.

The forward visual scene was presented on a color TV monitor that was viewed through an optical system which produced a virtual image of the scene focused at infinity. Total field of view was 36 degrees vertically by 48 degrees laterally.- No peripheral scene was provided. Between the VLDS and the TV monitor the television signal was processed by a special purpose video mixer which was controlled by the cimputer to fade out portions of the picture as a function of aircraft position and simulated visibility and ceiling. For this study 1 mile visibility and $76 \mathrm{~m}(250 \mathrm{ft})$ ceiling were simulated.

VLDS

The terrain model of the VLDS (fig. 3) was at a scale of $1: 750$, which provided a visual scene of 13.8 by 4.5 kilometers and a maximum altitude of 0.9 km . A standard 510 line color TV camera was positioned over the terrain model in response to computer commands so that the optical head system was at the scaled position of the aircraft. The optical head rotated in pitch, roll, and yaw to present the changing angular relationships that the pilot would see out the window. Reference 5 presents a detailed description of the VLOS and its capabilities.

Oculometer

There are two primary oculometer subsystems: the electro-optical and the signal processing. A filtered incandescent lamp in the electro-optical system generates a beam of red light which is directed toward the suljocit's eye. Reflections from the eye pass through a beamsplitter to an infraredsensitive TV camera. The high reflectivity of the human retina for infrared leads to a backlighting of the pupil, so that the camera sees the pupil of the eye as a bright, circular area (fig. 4). It also sees a small bright spot due to reflection at the corneal surface. The relative positions of the center of the pupil and the corneal reflection depend on the angle of rotation of the eyeball with respect to the infrared beam. The signal processing unit operates on the signal from the TV camera to compute this angle of rotation and the coordinates of the lookpoint on, for instance, an instrument parel. The output of the signal processor is a set of calibrated analog signals representing the subject's lookpoint coordinates and pupil dianleter.

These analog signals were sent to the computer where they were digitized and recorded. Reference 6 presents a more detailed lescription of the oculometer system.

TESTS

Three pilots flew nine different flight maneuvers (runs) in the GA simulator. Each pilot flew each run three times. The runs were chosen to represent those which might occur during parts of a flight, and which taken tole her, could represent a flight profile. This approach is consistent with the Timeline Analysis Program (ref. 3) which is a time-motion model of the pilot's activities during a GA IFR flight. Another reason for this approach is to permit correlation of visual scanning behavior with specific fl ght activity. The nine maneuvers (runs) flown are listed in Table 1. As shown in Table 1, most of the runs sere divided into phases, determined either by pilot callout or computer readuct. This division was useful for analyzing specific portions of a run which had unique flight conditions or pilot tasks.

Runs 1-6
Runs 1-6 involved straighi and level flight (S\&L), climbs, descents, and turns. All runs began at 914 m (3000 ft) altitude and 91 knots (105 mph) airspeed. Because of the assumed 76 m (250 ft) ceiling, the visual scene was washed out as if by fog or clouds, so all maneuvers were performed on instruments. Climbs and descents involved 305 m (1000 ft) altitude change; pilots were instructed to perform them in their usual manner. The climb and descent (runs 2 and 5) were divided into three phases: (1) beginning climb (descent); (2) stabilized climb (descent); and (3) level off. Runs 3, 4 and 6 involved standard rate turns ($3 \mathrm{deg} / \mathrm{sec}$) through 180 deg. heading change. pilots were instructed to make callouts at predesignated conditions, as shown

Run 7

The VOR navigation task was similar to the level turn task (run 4) except that a 30° heading change was made to intercept the radial of a simulated VOR beacon. The pilot made callouts when he intersected the radial and when he was tracking satisfactorily.

Run 8

Run 8 was a holding pattern near a simulated intersection as illustrated in figure 5. The intersection was defined by the Norcross VOR 254° radial and the Atlanta VOR 360° radial. The run began with the airplane outbound on the 360° radial and recording began when the airplane crossed the intersection, and ended after completing the pattern. Altitude was 914 m (3000 ft) so the pilot had to rely on instruments and stopwatch to fly the pattern.

Run 9
Run 9 began with the airplane at $853 \mathrm{~m}(2300 \mathrm{ft})$ altitude on a heading of 120°, preparing to intercept the ILS localizer for runway 8 at the Hartsfield International Ai, port in Atlanta, Georgia (fig. 5). The run was recorded from intercepting the localizer until touchdown. During phase 97 the pilot transitioned from instruments to the outside scene as the airplane deccended below the 76 m (250 ft) ceiling.

PILOTS

Three instrument rated pilots participated in the study. Their flying experience, which is summarized in Table 2, ranged from minimal to extensive. Each pilot flew each of the nine test maneuvers three times.

TABLE 2
Background of Subjects

Pilot	A	B	C
Years flying experience	3	12	36
Total no. of hours	225	1700	2300
Rating:			
private	\checkmark	\checkmark	\checkmark
commercial		\checkmark	\checkmark
instrument	\checkmark	\checkmark	\checkmark
single-engine	\checkmark	\checkmark	\checkmark
multi-engine		\checkmark	\checkmark
instructor		v^{\prime}	\checkmark
No. of IFR flight hours	18	230	280

IIATA ANALYSIS

Method of Analysis

The large amount of data recorded makes extensive analysis possible However, an important feature of this study was the cise of the oculomete: measure the pilot's scan pattern, so the analysis roncentrated on theter to The following andysis was performed on the dys concentrated on these data.

1. Computation of instrument-to-instrument probability transition matrices. The elements of these matrices provid probability transition of transitioning from one instrument to another and measure of the probability remaining on the same instrument. A more detaila the probability of reference 2 .
2. Computation of the frequency distribution of dwell time (duration of fixation), including mean and quartiles (intervals containing one-fourth of the frequency distribution) for each instrument.
3. Computation of the frequency distribution of duty cycle, as defined below. Duty cycle was included in the data analysis as part of a continued effort to develop parameters for relating and predicting visual performence.

Dwell time and duty cycle are related as follows: during a phase or run.
2. Let t_{i} represent the duration (dwell time) of the i th fixation on the
3. Let y_{i} represent the time from the start of the i th fixation to the start of the next $(i+1)$ fixation. Thus, y includes the dwell time plus the only $n-1$ values of other instruments before returning. For n fixations fewer values of y might be available, as discussed in the data loss, still

The duty cycle for the ith fixation is
$\frac{t_{i}}{y_{i}}$
and the mean duty cycle is
$n-1 \sum_{i=1}^{n}\left(t_{i} / y_{i}\right)$ and $y_{i} \cdot u_{i} \cdot o$

The wean dwell time is
$\frac{1}{n} \sum_{i=1}^{n} t_{i}$
and the percent dwell time is
$\sum_{i=1}^{\sum_{i}^{n} t_{i}}$
where T is the total length of the run or phase.

Effect Of Data Interruption

 was looking, and the flow of data would be interrupted.This could happen while the eye was closed during a 'ilink, if the pilot moved his head so his eye translated out of the pickup volume, if he looked at a point far outside the oculometer field of view (such as radios and analysis following an because of hardware or software malfunction. Data interruption.

1. 1-3 iterations - If data was interrupted for $3 / 32 \mathrm{sec}$. or less, processing continued using the last available point of regard (location of
2. 4-11 iterations $-4 / 32 \mathrm{sec}$. to $11 / 32 \mathrm{sec}$. is the time required for a "blink", so an interruption of this length was assumed to be a blink, and processing resumed using the last available point of regard.
3. 12 or more iterations - If the interruption lasted $12 / 32 \mathrm{sec}$. or longer a data error was assumed, and transition and duty cycle calculations restarted with the next successful track.

Table 3 presents the fraction of time in which the oculometer successfully tracked for each run flown. For example, the first replication of run 1 by pilot A lasted 55.0 seconds. During the run the oculometer was
tracking for 54.1 seconds.

There were two situations in which the oculometer could be tracking, but uncertain of the instrument being regarded. One occurred because the oculometer field of view was slightly larger than the instrument boundarie so it would maintain track for a short time when the pilot started to away. The second occurred becauso of time when the pilot started to look that required three or more consccutive iteration in postprocessing instrument to be counted as a "dwli": when tions (. 1 sec .) on the same occurred it was assumed to result fri" when only one or two iteratinns instruments. Table 4 presents the from sampling during a transition between a dwell on an instrument was deternined.
completed.

RLSULTS

Percent Time on Instrument
Table 5 presents the percent time on instruments found for each task. The data are averaged over all three runs for the three pilots, except for run 9 (pilot B omitted). A dash (-) in Table 5 signifies that no fixation occurred; a zero (0) indicates that the percent of time on instrument was less than .05 percent.

The pilot never looked at the tachometer in any of the runs (Table 1). The ADF, marker beacon, and DME were used little because none of the runs required the pilot to obtain information from these instruments. Run 8 required two VOR indicators to determine the itersection for initiating the holding pattern; VOR 2 was not needed in other runs. The altimeter and rate-of-climb indicator (IVSI) had moderate usage ($4-10$ percent and 1-3 percent, respectively) in all runs with no obvious trends of usage.

The out-the-window scene was presented only in phase 97 of run 9, so the percent of time shown in Table 5 may be misleading. The total accumulated time looking out the window was 21.8 seconds of the 1356 seconds in run 9 (1.6 percent). However, 20.9 seconds occurred during 36.0 seconds of phase 97.

The artificial horizon and directional gyro were located directly in front of the pilot, and he spent much of the time looking at them in all runs. The other three instruments--airspeed, turn and bank indicator, and VOR 1--had small to moderate usage, depending upon the task flown. Runs 7, 8, and 9 involved tracking a VOR radial or ILS signal, and VOR 1 was used extensively only in these runs. Runs 3, 4, 6 and 8 involved heading changes and standard rate turns, so the turn and bank indicator was used extensively in these runs and very little in others. The airspeed indicator was used in all runs, with higher usage in runs $2,3,5$, and 6 which involved controlling airspeed during a climb or descent. The instrument scan patterns used by the pilots are discussed in a later section.

ILS Approach (Run 9)

The simulated ILS approach task (run 9) was analyzed first, because this is one of the must critical areas of aviation operations. The runs were analyzed in two parts - tracking the glide slope (phases 95 and 96), and intercepting the localizer and glide slope (phases 91-93). Phase 97, approach to touchdown, was omitted because much of the phase was flown looking out the window instead of at the instruments.

Tramsition Mitrix

Table 6 presents the probability transition matrices for pilots A and C in phases 95 and 96 , and the mean dwell time in seconds. The transition matrices are based on the time on instruments, and are averaged over the three replications. Matrix element $a_{i j}$ represents the probability that the pilot will change his point of regard from the instrument in row i to the instrument in column j. For example, table 6 shows that the probahility of transitioning from the artifical horizon to the directional gyro is .013 . Table 6 shows that only a small percent of spent looking at the instrument. indicator and altimeter. The pilots spent over 90 spent on the airspeed instruments: the artificial horizon, the directional 90 pert of the time on three which displayed localizer and glide slope erroctional gyro (HSI), and VOR \#1,

The instrument panel arrangement in the simulator was consistent with the general practice of grouping major flight instruments in a "T" pattern (reference 7). However, the VOR indicator was outside this group. In more sophisticated avionics the course deviation information is often combined in the attitude indicator or horizontal situation indicator. Investigation of the effect of moving the ILS and glide slope information (VOR \#1) to a "better" location was beyond the scope of this study.

Table 7 presents the probability transition matrix and mean dwell time for pilots A and C in phases 91-93. Despite the differences in task, the transition matrix in Table 7 is very similiar to the matrix for phases $\subseteq-. .06$ in Table 6 . The artificial horizon, directional gyro and VOR indicator were still the dominant instruments.

Histograms

To try to get a better understanding of the pilots' scanning behavior, the dwell time and duty cycle data for the directional gyro, artificial horizon, and VOR/ILS indicator were examined in more detail. Initial analysis concentrated on pilot C in phases 95 and 96.

Figure 6 shows the distribution of dwell time occurrences for the directional gyro in phases 95-96. The distribution appears to be bimodal, with one mode at $3-5$ iterations (.1-.2 sec) and another mode at 15-25 ite:ations (.5-. 3 sec). It seems reasonable that at the second mode the pilot would have sufficient time to assimilate data, but the first mode with the very short dwell times is puzzling. One hypothesis is that the first mode does not involve data transfer, but is an artifact resulting from the directional gyro being at the center of the pilot's scan pattern. If true, then (1) it gives an indication of the center of the pilot's scan pattern, (2) othor instruments should not show the mode at short dwell time, and (3) the data in the first mole could be omitted in amalyzing data transfor. Omitting the short (10ss than 10 iterations) divell times the data had .25 , .50 , aidd 75 percont quartiles at:

$$
\begin{aligned}
& .75 \text { ghartile: (} 7: \mathrm{sec} \text {) }
\end{aligned}
$$

Thus, despite the data's lack of form and the occasional long dwell times, the majority of the dwell times on the directional gyro fell in a relatively emall intorval.

Figure 7 shows the distribution of dwell time for the artificial horizon and the VOR instrument. Neither distribution shows the large occurrence of short dwell times seen with the directional gyro (fig. 6). Therefore, in andlyzing these duty cycles, all of the data were used.

Figure 8 shows the duty cycle data for the directional gyro in phases 95-96. Each point represents a look at the instrument by pilot C. The only ohvious pattern is a relatively large number of occurrences at short dwell times. These correspond to the peak at short dwell times in figure 6.

Figure 9 shows the distribution of the duty cycle data with dwell times less than. 3 second (10 iterations) omitted. Figure 9 is interesting in that it resembles a normal distribution except for the lack of a tail on the left side. If the duty cycle data were distributed normally, then it might provide another basis for examining and predicting visual scan characteristics.

Figure 10 shows the same distribution plotted on probability paper. If the distribution were normal, the histogram would plot as a straight line. Figure 10 is straight over much of the histogram indicating the duty cycle distribution may be approximated by a normal population with mean μ and standard deviation 0 . The mean is estimated by the median X. 50 since the mean and median of a normal distribution are equal. In figure 10.50 $11=X_{.50}=.505$.

The stardard deviation is estimated by relating the duty cycle variable X to a standard normal variable Z, having mean zero and standard deviation of one. The values of X and Z corresponding to a cumulative probability p are denoted X_{p} and Z_{p}, respectively, and are related by

$$
z_{p}=\frac{x_{p}-\mu}{0}
$$

The cumulative probability p is the area under the standard normal curve from - $-\left(\%\right.$ to Z_{p}, and is available in statistical tables (ref. 8, 9). At any selected cumulative probability, Z_{p} can be used to compute ${ }^{1}$ by

$$
n=\frac{x_{p}-1 i}{z_{p}}
$$

For example, 40 percent of the area under the normal curve lies between 7. $50=0$ and $7.90=1.283$. From figure 10 , 40 percent of the duty cyclo population lies between $x_{.50}=\mu=.505$ and $\because .90=.710$. Therefore,

$$
Z_{.90}=1.283=\frac{x^{x} .90^{-11}}{\sigma}=\frac{(.710-.505)}{\sigma}
$$

and

$$
\sigma=\frac{.205}{1.283}=.160
$$

Figure 11 shows the duty cycle histograms for the artificial horizon and the VOR indicator, plotted on probability paper. Both curves show a straightline fit for the data over much of the histogram, but over a smaller rance than for the directional gyro in figure 10. This suggests a normal distribution, but probably a poorer fit than the directional gyro data.

The next step was to examine the duty cycle data (1) for the same pilot performing a different task, and (2) a different pilot.

Figure 12 shows the duty cycle histograms for pilot C in phases 91-93 (intercepting the localizer and glide slope). Figure 12 shows essentially the same trends as figures 10-11, indicating that the duty cycle values might be approximated over much of the range by a normal curve centered at the median.

The duty cycle data for pilot A was analyzed next. Figuies 13 and 14 show the duty cycle histograms for pilot A in phases $95-96$ and $91-93$, respectively. The curves are similar to figures $10-12$ for pilot C, each having a region of linearity with nonlinearity near the ends. The requirement that all duty cycle data must lie in the interval 0.-1.0 forces the curves to be nonlinear at both ends. This corresponds to cutting off the tail of the normal curve. Also, if the median is large or small the duty cycle distribution will be skewed, resulting in a poor approximation to a normal curve.

Duty Cycle Summary

Since figures 10-12 suggest a normal distribution for some of the duty cycle data, a chi-square goodness of fit test (reference 8) was made to tost the hypothesis that a normal curve approximates the duty cycle distribution. The value of x^{2} is computed as

$$
x^{2}=\sum_{j=1}^{k}\left(o_{j}-e_{j}\right)^{2} / e_{j}
$$

 (theorotical) froquency, N is the total frequency, and

$$
\sum_{u_{j}} \quad \sum_{a_{j}} N
$$

If the dat wetmally come from a nomal distribution, then theoretical x^{2} dismitmitur follown with ($K-3$) degrees of freedom, where K is the number of , has... (inionvils) used in computing x^{2}.

Testing at the . 05 significance level, with critical value $x^{2} .05$, the

Table 8 summarizes the duty cycle data for both pilots in both tasks (phases 91-93 and 95-96). In all cases the duty cycle data for the directional gym ampared to correlate with a normal distribution with mean μ and standard deviation σ. The hypothesis of normality was generally rejected for the other two instrunents, probably because of skewness in the distribution.

In aldition to the distribution of the duty cycle data, its consistency (or inconsistoncy) is important. Table 8 shows that for the artificial horizon and the directional gyro the duty cycle distribution (μ and σ) was essentially the same in both phases for pilot A. The duty cycle distribution was also the same in both phases for pilot C. However, the statistics were different betwoen the tin pilots, suggesting that the pilots scanned the instruments differently.

The median cycle for the VOR/ILS indicator was different between pilots and tasts (nhases). This is reasonable because the indicator was used difforently in the two tasks--for lateral (localizer) guidance in phases 91-93, and for lateral and veritical (glide slope) guidance in phases 95-96.

Duty cycle, then, shows characteristics desirable in a scanning behavior metri:--an anpreciatile change with different scan patterns, an appreciable alagn with chance in visual task, and consistency with a repeated task.

Dwol1 Ting Sumpry
Tailos 9 and 10 present the mean and quartiles of dwell (fixation) time for each nilot, hemet on the dwell times which occurred as part of a duty cycle. Tahn: 3 hivs the data for phases 91-93; Table 10 shows the data for phases 9\%-95. The thinnter, MOF, and window are onitted from the tables because mithr alit loul them at any time. Duartile data is presented for those insirnmons inving at least. 12 duty cycle occurrences. When a duty cycle was intermut ly him oculometer losing track, the postprocessing program would

lidlas "dmll 10 show that pilot a had considerably longer dwell time on tho wilicial homison han pilal. $:$, and :homerer dwell time on the directional
 vald is: mallollor dwell time divided by the time between fixations, the
 fesults dre presented in rable 11 . The time between fixations appears simitar for the whificid horizon and directional gyro, and suggests freguent sampling bo expecte every 1.3 second. The VOR indicator data are unequal, which would indicate a much longer period between fixations.

Dwell Time and Duty Cycle in Runs 1-3

Table 12 sumbarizes the dwell time and duty cycle data for all three pilots in runs $1-3$. The table generally shows consistency between runs in both dwell time and dity cycle. In most cases the median diell time and the mean dwell time are chose, with the medn dwell time being larger because of the occasional occurrence of long dwell times. In the case of the artificial horizon, the difforenco tends to be about 0.3 socond. As indicated by the quartile data, ovor als perient of all the looks at the artificial horizon lasted over one second. For ex, dillele, in rum 1, 67 of the 224 dwell occurrences fasted over one second: and of these 67 lasted over tiwn seconds. It seems reasonable that witch and roll attitude could be checked quickly, but a longer fixation period present ly mocessary to determime the rate of change of attitude. Work is pesently underway to relate scaming data to manual activities.

There is no apparent correlation in Table 12 between dwell time and duty cycie. They show difforent aspects of the visual scan process. Together they may provide insight into tho pilot's information requirements. It appears reasomable that dwell time is an indicator of the time required to extract informution from an instrument. This is consistent with the relatively short dwell tines for the miwker beacon indicator light and the IVSI, and the longer dwell time for the turn and bank indicator and the altimeter. If this is true, then duty cycle may be an indicator of how of ten th. pilot meds the information. The low duty cyclo for the dirspoed indicator and IVSI in table 12 suggests a low sambing trequency (ralatively lomg time between fixations) for these instrumbers Toyether, dwell time and duty cycle may both provide useful data for : hevelopimy mathontical models of pilot samning behavior.

Scan lintarn

The probalilily trans formalion matrix can provide insight into the pilot's visulal ecall matern. It is fromently assumed that a pilot will use a sequen-

Pattorms durimy simulated aproaches in conmercial aircraft indicated that pilats damed to "home" on one instrument and then transition directly between the "home" position and another instrument, mother than scaminy several

Table 13 prosents a form of the trmsition matrix for runs $1-8$. The matrix $i s$ in terms of total mumber of occurronces rather than transition probability, as was presented in Tables 6 and 7 . The probability transition matrix can be obtamed by dividing the matrix by the total mumber of intervals (lb,i:1 for rum 1). A value on the main diagonal represents the total number of $1 / 3$? second intervals in which the pilot viewed the particular instrument, in all nime replications (three by each pilot). The off-diagond terms are the mumber of transitions from the instrument indicated at the side of the matrix, to the instrument indicated at the top. For example, Table 20a shows 152 tramsitions from the directional quro to the artificial horizon in run 1, and 147 transitions fron the artificial horizon to the directional gyro.

Table 20 shows two important characteristics. First, a high percentage of the transitions were either to or from the artificial horizon. This was 448 of the 584 transitions in run 1 (Table 20,1). This indicates that the pilots used the artificial horizon as "home" and tha', most transitions were to one instrument and then back. Second, the transpose elcments of the matrix tend to be myal, showing no ofvious pattern for a sequence of transitions. Occasionally, two or more instruments were scamed before the pilot returned to the artificial horizon, hut there was no discernible pattorn.

This result suggests that a more efficient presentation might combine the information to be presented into fewer instruments. This could increase the divell time, hecause the pilot might need more time to assimilate the information; but fover transitions would be ropuired, so the duty cycle might actually decrase. This will be tested in future simulation studies.

conclubing remarks

A simulation of tashs associated with single pilot general aviation flight under instrument flight rules has been conducted as a baseline for future resoarch studies on advanced flight controls and avionics. During the \therefore imulation the pilot's visual san pattern including point of regard was measured and recorded. Andysis of the visual scan data indicates:

1. Except for the artificial horizon, located directly in front of the pilot, the number of occurrences of dwell ("10oks") and the dwell time (dmation) weon consistent with tasks information rofuirements, and appor related to the time required to assimilate data from an instrument.
$\therefore 1$ second parametor, duty cyche, was investigated for the first time in this study. lihe dwell time. It tended to be difforent between instruments hut constatent helweon rums. Statistical almysis indicated that shewness prevented the duty cyche distribution for an instrment from approximating a normal distribution.

2. Amlysis of the transilions botwon instrmments showed that pilots fombed lo lamsition from a pimbry instrument. (the artificial horizon) to anothor instrument and then rotarn, rather than scanning a sequence of inclrullionts.

REFERENCES

1. Annual Review of Aircraft Accident Data, Calendar Year 1978, NTSB-ARG-78-1.
2. Waller, Marvin C.: and Wise, Marion A.: The Oculometer in Flight Munagement Research. AIAA Paper 75-107, 1975.
3. Hinton, David A.; and Shaughnessy, John D.: Adaption of Time Line Analysis Program to Single Pilot Instrument. Flight Research. NASA Technical Memorandum 78478. August 1978.
4. Harris, Randall L., Sr.: Validation of a Research Simulator for Light Aircraft Approach and Landing. Presented at the 1975 SAE National Business Aircraft l户eeting, April 8-11, 1975.
5. Rollins, John D.: Description and Performance of the Langley Visual Landing Display System. NASA TM 78742, August 1973.
6. Spady, Amos A., Jr.: Airline Pilot Scan Patterns During Simulated ILS Approaches. NASA TP-1250, 1978.
7. Ontiveros, Robert J.; Spangler, Romar, M.; and Sulzer, Richard L.: General Myiation (FAR 23) Cockpit Standardization Analysis. Federal Aviation Administration FAA-RD-77-192, March 1973.
8. Snedicor, George W.; and Cockran, William G.: Statistical Methods. Sixth ed., Iowa State University Press, 1968.
9. Hoel, Paul G.: Introduction to Mathematical Statistics. Fourth ed., Jnhn Wiley and Sons, 1971.
10. Weir, David H.; and Klein, Richard H.: The Measurement and Analysis of Pilnt Scanning and Control Behavior During Simulated Instrument Approaches.
NASA CR-1535, June 1970.
TABLE 1
Simulated Flight Tasks

E,	Titie	Phase	Descriotion	Pilot caliost
	Straigrit \& Level		Straight \& level flight recorded for 1 minute	- establisred in 53-
2	0170	21	Transition from S\%L to climb	- entering climz
		22	Established in climb	. maintaining clirs
		23	Transition to S\%L	- leveling off
				. in level flignt
3	Slimbing turn		Record during time from turn entry to exit	- entering turn
				- out of turn
$\stackrel{+}{4}$	Level turn		Similar to run 3	
E	Jescending turn		Similar to run 3	
Ξ	Jescent	51	Transition from S\&L to descent	- entering descent
		52	Established in descent	- maintaining descent
		53	Transition to S\&L	- leveling off
				- in level flignt
$?$	JOR navigation	71	Record from radial intercept until tracking	- intercepting radia?
		72	Record 1 minute of radial tracking	- tracking radial
\bar{z}	Holding pattern	81	From approach to passing intersection	- approaching intersection
		82	Past intersection, on entry leg prior to turn	- past intersection
		83	Energy turn and intercept	- beginning entry turn
		84	Turn away from : 3 dial	- beginning turn away from
		85	Leg off radial	. on outbound leg

$\because E$
$\because ล ニ ン$ roach

	3	

table 5.- Perce:it time ofl iastrufait for all pilots

Run No.	Pilot A Replications			Pilot B Replications			Pilot C Replications		
1	97.6	99.2	98.0	93.8	97.2	94.1	99.3	97.7	98.1
2	96.9	98.2	97.7	96.0	93.7	95.3	97.5	96.3	95.6
3	97.3	98.1	95.0	94. 5	94.7	93.8	97.0	93.5	96.1
4	97.2	98.1	87.1	90.6	94.9	93.5	94.6	29.4	97.1
5	96.7	97.7	97.8	91.4	93.9	94.7	98.2	93.9	95.7
6	96.2	97.2	96.4	94.6	95.4	92.9	90.2	95.4	95.6
7	95.9	97.8.	90.8	91.4	90.7	94.6	92.0	83.5	74.3
8	94.4	96.8	93.3	89.6	88.4	92.9	97.6	88.3	84.8
9	92.6	96.0	96.1	--	--	--	92.0	93.7	90.3

						Probabil	Ity tran	FORMATIO	ON MATRIX						
			TACH	ADF	HINCON	HKR 日C	N ALT	ART HOR	R AIRSPO	IVSI	OR GYRO	TRN BNX	V VOR 1	DME	VOR 2
	TACH		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	O.DOL	0.000		
	$A D F$		0.000	. 061	0.000	0.000	- 000	0.000	0.000	.000	0.000	0.000	0.000	0.000	0.023
	HIJD	OH	0.000	0.000	-001	0.000	0.000	. 000	9.000	. 0.000	0.000	0.000	0.030	0.000	0.030
	HKR	ECN	0.000	0.000	0.000			- 000	9.000	0.000	0.000	0.000	0.000	0.000	D. 00.9
				0.000	0.000	.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0 .3
	AL		0.000	.000	0.000	. 000	. 029	. 002	0.000	-020	. 000	0.000	- DOC	0.000	
	AFt	HCR	0.000	0.000	.000	0.000	. 002	- 396	.000	. 000	. 013	. 000	.000 .024	0.000	0.003
	AIRS		0.000	0.033	0.000	0.000	0.000	- OC1	. 010.	0.000	. 013	. 000	- 004	-000	D. 030
	IVS		0.000	0.050	0.000	0.000	. 003	. 0.090	-010.	0.000	-000	. 000	-000	0.000	0.039
	ER GYP		0.960	0.000			. 000	- 0.0	- 000	. 011	. 000	0.000	. 000	0.000	0.003
			0.90	0.000	0.000	0.000	. 000	- 014	. 000	. 001	-312	0.000	- [54		
	TÑ	2NK	0.000	0.000	0.000	0.000	0.000	- 000	. 000	0.000	- DEO	. 0.02	0.004	. 002	0.050
	JOR		0.000	0.000	0.000	0.000	0.000	. 003	. 000	. 000	. 0 ¢̂7	. 002	0.000	0.000	0.0id
	OHE		0.000	0.000	0.000	0.000	0.030	. 000	0.000	. 0.000	. 007	. 000	-17u	. 300	0.033
	VOR		0.000	0.000		0.000	0.030	. 000	0.000	0.000	. 000	0.000	. CO 2	. 010	0.030
			0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.030
MEAN	CHELL	$\begin{aligned} & (\text { cojuis }) \\ & \text { (SEC) } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0.000 \end{array}$	$\begin{aligned} & 24.3 \\ & -750 \end{aligned}$	$\begin{array}{r} 22.0 \\ .688 \end{array}$	7.0 .226	13.8 .430	21.4	18.1	8.2	15.2	7.8			
					-688	-215	-430	-658	. 565	. 257	. 507	$.244$	$.554$	$\begin{array}{r} 5.5 \\ .173 \end{array}$	$\begin{array}{r} 0.7 \\ 0.030 \end{array}$

Table 7. Probability Trarsformation Matrix, Phases 91-93.
Table 8. - Duty Cycle Data For Run 9

Pilot	A		C	
Phase	91-93	95-96	91-93	95-96
is	. 480	. 480	. 302	309
σ	. 235	. 212	. 219	. 207
x^{2}	16.2	29.3	. 21.	. 207
2	16.2	29.3	20.5	29.5
X.95	26.3	25.0	23.7	21.0
Approximately Normal	Yes	No	Yes	No
Directional Gyro				
μ	. 372	. 374	. 509	. 505
σ	. 188	. 181	. 195	. 163
x^{2}				. 163
	20.4	8.6	18.1	12.5
$x_{.95}^{2}$	23.7			
Approximately Normal		22.4	25.0	19.7
Approximately Normal	Yes	Yes	Yes	Yes
VOR \#1 Indicator				
μ	. 100	. 135	. 208	. 228
σ	. 170	. 171	. 226	
χ^{2}		. 171	. 226	. 200
-	37.9	16.2	20.1	11.2
χ^{2}				11.2
A. 95	16.9	14.1	22.4	19.7
Approximately Normal	No	No	Yes	Yes

Table 9. - Dwe 11 Time Data For Phases 91-93

Instrument Pilot	$\begin{array}{cc} \hline \text { Marker } & \text { BCN. } \\ A & C \end{array}$	Altimeter A c		Art. Horiz. A C		Airspeed$A \quad C$		${ }^{\text {IVSI }}{ }^{\text {C }}$	
Mean (sec.) . 25 Quartile (counts) . 75 Quartile (counts) Median (counts) Median (sec.) No. of Occurrences	000		$.63$.83 13 28 19 .59 63		$.35$ 8	0	$\text { . } 24$ $\text { . } 19$	$.21$
Ins trument Pilot	$\begin{array}{cc}\text { Dir. Gyro* } \\ \text { A } & C\end{array}$	Turn A	Ban	A		${ }^{\text {a }}$			
Mean (sec.) . 25 Quartile (counts) . 75 Quartile (counts) Median (counts) Median (sec.) No. of Occurrences	.60 .82 14 17 22 26 17 22 .53 .69 118 65	.19 5			$\left\|\begin{array}{c} .62 \\ 12 \\ 22 \\ 16 \\ \\ .50 \\ 52 \end{array}\right\|$.13 5	$\begin{gathered} .15 \\ 3 \\ 4 \\ 4 \\ .13 \\ 23 \end{gathered}$	0	0

Table 10. - Dwell Time Data For Phases 95-96

Instrument Pilot.	$\begin{array}{cc} \text { Marker } & \text { BCN. } \\ \text { A } & \text { C } \end{array}$	$\begin{aligned} & \text { Altimeter } \\ & \text { A } \quad \text { C } \end{aligned}$	Art. Horiz. A C		Airspeed A C			
Mean (sec.) . 25 Quartile (counts) . 75 Quartile (counts) Median (counts) Median (sec.) No. of Occurrences	.14 2		$\begin{gathered} .86 \\ 13 \\ 39 \\ 19 \\ .59 \\ .158 \end{gathered}$.43 8 18 11 .34 185	$.45$	$.53$ 1	$.30$. 30 11
Ins trument Pilot	$\begin{array}{\|rr} \hline \text { Dir. Gyro } \\ \text { A } \end{array}$	Turn \& Bank						2 C
Mean (sec.) . 25 Quartile (counts) . 75 Quartile (counts) Median (counts) Median (sec.) No. of Occurrences	.64 .71 14 16 24 25 18 21 .56 .66 118 105		$$.56 10 23 17 .53 97		$\begin{gathered} .19 \\ 3 \\ 6 \\ 5 \\ .16 \\ 33 \end{gathered}$. 09	0

Table 11. - Time Between Fixations (sec.) Based

Pilot	A		C	
Phase	$91-93$	$.95-96$	$91-93$	$95-96$
Artificial Horizon	1.22	1.23	1.36	1.10
Directional Gyro.	1.42	1.50	1.36	1.31
VOR/ILS Indicator	4.4	3.70	2.4	2.32

Table 12. Continued.
(c) Run 3

Instrument	Mkr BCn.	Alt.	Art. Horiz.	Airspeed	IVSI	Dir. Gyro.	Turn ${ }^{\text {a }}$ Bank.	VOR 1	DME	VOP 2
Mean Dwell (Sec.)		. 42	1.05	. 27	. 35	. 70	. 56			. 11
Median Swell (Sec.)		. 38	. 72	. 19		. 62	. 50			
. 25 quartile		. 16	. 41	. 12		. 41	. 41			
1. 75 Quartile		. 53	1.23	. 34		. 91	. 66			
: Iean Cuty Cycle		. 10	. 54	. 14		. 37	. 20			
Ho. of Occurrences	0	33	249	30	9	92	99	0	0	2

(d) Run 4

Table 12. Continued.
(e) $R . a n$
(f) Run 6

| Instrument | Mkr Bcn. | Alt. | Art.
 Horiz. | Airspeed | IVSI | Dir.
 Gyro. |
 Bank | VOR 1 | DME | VOR 2 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean Dwell (Sec.) | | .34 | 1.00 | .41 | .42 | .65 | .55 | .19 | | |
| Median Dwell (Sec.) | | .34 | .66 | .34 | .38 | .53 | .50 | | | |
| .25 Quartile | | .12 | .41 | .16 | .25 | .41 | .28 | | | |
| .75 Quartile | | .50 | 1.16 | .47 | .56 | .81 | .69 | | | |
| Mean Duty Cycle | | .07 | .50 | .20 | .07 | .34 | .17 | | | |
| Mo. of Jccurrences | 0 | 26 | 240 | 43 | 20 | 64 | 76 | 1 | 0 | 0 |

SCOL二DEVCES

Table 13. Transition Hatrix.

$$
\begin{aligned}
& \begin{array}{r}
\boldsymbol{\sim} \\
\underset{\sim}{\infty} \\
\underset{\sim}{\sim}
\end{array} \\
& \begin{array}{llllllllllllllll}
n & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & & & & & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\underset{\sim}{\alpha}} 0000000 \underset{\sim}{n} 000000000 i n
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { SUMMAPY for } 9 \text { RUNSIPhaSES } \\
\text { transformation matrix in total iterations }
\end{array} \\
& \begin{array}{l}
\mathbf{z} \\
\mathbf{\infty} \\
\boldsymbol{\alpha} \\
\stackrel{2}{\mathbf{z}}
\end{array} \\
& \begin{array}{llllllllllllllll}
\frac{7}{O} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{2}{3} & & & & & & & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllllllllll}
I & O & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \text { RUNO } \\
& \begin{array}{l}
\text { TACH } \\
\text { AOF } \\
\text { WINDOW } \\
\text { MYR BCN } \\
\text { ALT } \\
\text { ART HIR } \\
\text { AIRSPO } \\
\text { IVSI } \\
\text { OR GYPO } \\
\text { TRN PNK } \\
\text { VOR } 1 \\
\text { DME } \\
\text { VCR } 2
\end{array} \\
& \text { occuprences }
\end{aligned}
$$

sumpary for 9 runs/phases tansfformation matrix in total iterations Punme														
			windou	mer ben	ALt	ARt hor	AIRSPD	Ivs 1	DR Grro	tin bnk	vor 1	DME	vor 2	
tach	0	0	0	0	0	0	0	0	0	0	0	0	0	
ADF	0	13	0	0	0	2	0	0	0	0	0	0	0	
Window	0	0	0	0	0	0	0	0	0	0	0	0		
PKR BCN	0	0	0	45	0	8	0	0	0	0				
ALt	0	1	0	3	3700	196	2	17	28	2	7	5	-	
ART HOR	0	1	0	4	220	30238	24.	44	449	12	46			
AIRSPO	0	0	0	0	1	28	690	0	3					
ivsi	0	0	0	0	11	28	1				0	0	0	
OR GYRI								626	16	0	37	0	0	
dr gyrs	0	0	0	0	25	452	4	22	8687	12	59	7	2	
tpn enk	0	0	0	0	0	12	3	0	13	351	0	0		
vor 1	0	0	0	1	6	81	1	10	48	0				
dme	0	0	0	0	2	10	0						0	
var 2	0	0	0	0						0	2	172	0	
					0	3	0	0	6	2	0	1	78	
total	0	15	0	53	3965	31058	725	920	9264	380	2389	196	89	49054
occuprences	0	2	0	8	265	820	35	94	577	27	151	24	11	

$$
\begin{aligned}
& \underset{\substack{z}}{\underset{\sim}{\alpha}} \mathbf{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllllllllllll}
\text { I } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} 0 \\
& \text { RET }
\end{aligned}
$$

$\begin{aligned} & \text { Summary for } 9 \text { RUNS/Phases } \\ & \text { TRANSFORMATION MATRIX IN TOTAL ItERATIONS }\end{aligned}$
rona

Figure 4.- Oculometer operating principle.

Figure 5.- Diagram of holding pattern flown in run 9. (not for navigational purposes; additions and deletions have been made to this chart).

Figure 6. - Dwell and duty cycle of looks at directional gyro, Pilot C in phases 95-96.

Figure 7. - Distribution of dwell times, Pilot C in phases 95-96.

Figure 8. - Number of occurrences in duty cycle intervals, Pilot C in phases 95-96.

Figure 9. - Cumulative frequency distribution of duty cycle for directional gyro, Pilot C , phases 95-96.

(a) Artificial horizon

Number of occurrences

$\begin{array}{llllllll}L & 1 & 1 & 1 & 1 & 1 & 1 & \\ 0 & .25 & .50 & .75 & 1.0 & 1.25 & 1.50 & 1.75\end{array}$
(b) VOR I

Figure 10. - Distribution of dwell times, Pilot C, phases 95-96.

Figure 11. - Cumulative frequency distribution of duty cycle, Pilot C, phases 95-96.

Figure 12. - Cumulative frequency distribution of duty cycle, Pilot C, phases 91-93.

Figure 13. - Cumulative frequency distribution of duty cycle, Pilot A, phases 95-96.

Figure 14. - Cumulative frequency distribution of duty cycle, Pilot A, phases 91-93.

