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SUMMARY

An investigation has been conducted to determine minimum "maneuver costs"
for attitude reorientation of spacecraft of all possible inertial distribution
over a wide range of maneuver angles by use of a two-impulse coning method of
reorientation. Maneuver cost is proportional to the product of fuel consumed
(total impulse) and time expended during a maneuver. Assumptions included
external impulsive control torques, rigid-body spacecraft rest-to-rest maneu-
vers, and no disturbance torques.

Results are presented in terms of average cost and standard deviation for
various maneuver ranges. Costs of individual reorientations can be calculated
with the computer program included.

INTRODUCTION

Two-impulse attitude reorientation is a method of reorientation in which
torque impulses are used to initiate and (later) to terminate free precessional
and nutational motion of a body. Between torque impulses, the spinning body
coasts undisturbed through some desired attitude change. The method has poten-
tial application to maneuvering spacecraft capable of producing directed exter-
nal torque impulses.

Attitude reorientation by means of torque impulses has been investigated
by several authors (refs. 1 to 4). Reference 1 presents a two-impulse reorien-
tation scheme for large-angle spin-axis reorientations of spinning axisymmetric
bodies. Spin-axis or pointing-axis reorientations are defined as general
reorientations with final attitude being arbitrary about the spin or pointing
axis. Reference 2 extends the spin-axis reorientations of reference 1 to asym-
metric bodies. However, precession angle is restricted to 180° and spin-axis
inertia must be larger than inertias about transverse axes. Reference 3 intro-
duces a statistical "average cost" for general reorientations of nonspinning
bodies over a specified maneuver-angle range and compares two-impulse reorienta-
tion costs with costs of other maneuver schemes. Results are limited, however,
to elongated axisymmetric bodies. Reference 4 extends previous results to
include two-impulse general reorientation costs for nonspinning axisymmetric
foreshortened bodies. Also, two-impulse reorientation costs are obtained for
pointing-axis reorientations of asymmetric nonspinning bodies of all possible
inertial distribution. Finally, reference 4 presents three-impulse general
reorientation costs for asymmetric nonspinning bodies. These maneuvers con-
sisted of a basic precessional-nutational motion followed by an impulsive spin
maneuver. This motion combination was required to satisfy an arbitrary con-
straint that initial and final angles between the spin axis and momentum vector
be equal.

The present paper also presents general reorientation costs for nonspinning
asymmetric bodies. However, the aforementioned motion constraint was eliminated



through the use of elliptic functions and a computational scheme involving
nested Newton-Raphson iterative loops. As a result, general two-impulse solu-
tions involving precessional-nutational motion were found with significantly
reduced costs.

In the present investigation, reaction thrusters are assumed to initiate
and terminate all maneuvers with impulsive torques of negligible duration.
Other assumptions include rigid-body spacecraft, lack of disturbance torques,
and zero initial and final attitude rates.

The product of total maneuver impulse (proportional to fuel consumed) and
total maneuver time is determined for the various solution paths available for
each maneuver. This product is then nondimensionalized by spacecraft inertia
about the intermediate axis and is referred to as the cost function for that
maneuver . Since total impulse and maneuver time are inversely proportional for
impulsive maneuvers, results are independent of each of these quantities. The
desired or optimal solution is defined as the solution associated with the
smallest cost function for each maneuver.

Since it was assumed that all reorientations within a given range of maneu-
ver angle are equally probable, optimal costs for a large number of statistically
representative reorientations within a given maneuver range were averaged to
represent reorientation costs for that maneuver range. Maneuver ranges of
w/360, w/4, n/2, 3n/4, and T radians were used. These results are intended
primarily for reorientation cost comparisons of the two-impulse coning method
with other reorientation methods. However, such comparisons are not included
in the present paper.

Although costs for individual reorientations are not presented, such costs
can be determined, if necessary, through the use of the computer program pre-
sented in appendix A.

SYMBOLS
cn (u,m)
dn(u,m) Jacobian elliptic functions (see egs. (12))
sn(u,m)
F nondimensional asymmetry factor defined by equation (9b)
H total angular momentum

Hx,Hy,Hz angular momentum components along x-,y-,Z-axes, respectively

Hyy angular momentum in transverse plane, JHXZ + Hy2

IxiIy,Ig principal body inertias about x-,y-,z-axes, respectively; Iy is
intermediate moment of inertia

m parameter of Jacobian elliptic functions defined in equation (14e)



P,Q,R
PX

Q2 '
Q2,ar9Q2,T

Q2, sw

Rqy,R2,R3

R2,max

X, Y, 2

errz

motion constants (see egs. (14a) to (14c))
inertial factor (see eq. (27))
cost function (see eq. (26))

axial and transverse components of Qj, respectively (see egs. (25))

product of total impulse and total time divided by I for coning

maneuver where thrusters on spin axis can be swiveled
sequential Euler angle rotations about z-,y-,z-axes, respectively,
relating body axes before and after reorientation (see fig. 4);
Ry is also referred to as maneuver angle
<
maneuver range, rad (0 = Ry S Ry pax)
maneuver andle transformed for x-axis maneuver

ratio of standard deviation to average cost

1
= 5(90 + Ry + Of)

kinetic energy (see egs. (15))
time, sec
argument of elliptic function defined in equation (13)

inertial coordinate axis system

body principal coordinate axis system; unless otherwise specified,
z is spin axis

Xg-axis translated from mass center along zg-axis

Xo—axis translated from mass center along zg-axis

(13) and (144))

constant of linearity (see egs.

initial base angle of spherical triangle, used to start iterative
solutions, T - Ry = ¢o

rotation sequence of Euler angles about z-,y-,z-axes, respectively,
relating inertial and body coordinate axis systems

precession rate, nutation rate, and spin rate, respectively; referred
to as Euler rates

body rates about x-,y-,z-axes, respectively



Subscripts:

av average value (with respect to time) during maneuver
£ value at finish of coning maneuver
max maximum value
new value from present iteration
o value at start of coning maneuver
old value from previous iteration
start value to start iterative solution
ANALQSIS

Equations of Motion

Two reference frames used in the analysis of the impulse coning method of
attitude reorientation are illustrated in figure 1. The body principal axis
system X,y,z is related to an inertial axis system X,¥,Z by an Euler rota-
tion sequence V,0,p about body axes z,y,z, respectively. Note that | and
Z are chosen to be in the same direction as the total angular momentum H.
Angular momentum H is established for each reorientation maneuver by the ini-
tial torque impulse of the thrusters. Reaction thrusters are assumed to be
fixed along the x,v,z2 body axes to produce torques about the y-,z-,x-axes,
respectively. Without loss of generality, 60  is restricted to 0 < 8 < m/2.

The relationships between inertial rates and body rates wy, Wy s and Wy,
as determined from figure 1(a), are

. Wy sin¢ - wy cos ¢ )
b= :
sin @ >
9 = Wy cos d + wy sin ¢ | (1)
¢ =w; =Y cos 6 J

The angular momenta along the body axes (from fig. 1(b)) are

H cos 8 = I,w, , - (2a)

H sin 0 sin ¢ = Iy (2b)



-H sin 0 cos ¢ = I Wy (2¢)

Combining equations (1) and (2) yields the Euler rate equations governing
the coning motion, which are

. <sin2 b cos? ¢> )
Y = H +
I, I
. 1 1
0 = H(T- - —-> sin O sin ¢ cos ¢ (3)
I, Iy
. cos O -
= - VY cos O
IZ

A two-impulse coning maneuver is performed as follows: The body, initially
at rest in inertial space, is acted upon by an external-control-torque impulse
of negligible duration with predetermined components along the x-, y-, and
z-axes. This causes the body to spin about its z-axis and precess about the
Z-axis with nutational motion. After a given time during which the body freely
rotates to the desired inertial attitude, a second control impulse terminates
all motion.

Figure 2 illustrates the maneuver geometry and shows the axial and trans-
verse momentum components labeled H; o and Hyy o 9generated by the initial
impulse. Also, the momentum components which terminate the motion are shown
as Hy f and H - The initial body-axis system Xx5,YorZo 1S included to
illustrate the orientation of H in body coordinates.

Candidate coning solutions to equation (3) must include maneuvers with
negative precession rates (V < 0) as well as maneuvers with positive precession
rates. Also, solution paths can be classified as long or short, depending upon
whether the total change in precession angle is more or less than T radians.
Four alternative solution paths (nutational motion suppressed) are illustrated
in figure 3 for a reorientation example.

The spherical geometry of a generalized reorientation maneuver Rj, Rjp,
R3 is shown in figure 4. By definition, a Ry, R), R3 maneuver is any
specified set of sequential Euler angle rotations about the 2z,y,z body axes,
respectively, which reorient the body from its initial attitude to some final
desired attitude.

Parameter relationships for the coning motion were determined from the
geometry of figure 4. For the spherical triangle with sides 65, Ry, and O¢,
reference 5 specifies the following relationships:



Napier's analogies

sin [}(Rz - eoﬂ ,
1 2 | 1
tan {EEPE - (bf - R3):|} = 2 cot ’:5(“ - %o - R1ﬂ (4a)
’ sin [é(Rz + 60{]
1
. cos [—(Rz - 90)]
t 1@ + (9¢ - R3)] 2 t |=(m - ¢ REI (4b)
an { - - = cot |- - -
5 £ £ 3 1 o 1
cos [5(Rp + 6p)
Haif-angle formula
1 Jsin (s = 05) sin (s - Rp) sin (s - O¢)/sin (s)
tan [}(n - ¢ - R1ﬂ = (5)
2 sin (s - 6¢)
where
1
s = 5(90 + Ry + O¢)
Law of sines
sin O¢ sin 04 sin Ry
= = (6)

sin (W - ¢5 - Ry)  sin (¢¢ - R3)  sin Yg



Gauss's formula

(7)

5 ' cos (Of/Z) sin B’-Wﬁ + o - R3)]
cos ‘}(ﬂ - ¢y - R-l):l =

1
-(Ry ~ 6
cos [2( 2 o)j]

Equatlons (6) and (7) were used only to check solutions.

In add1t10n to the geometrlc relatlonshlps, certaln dynamlc constraints
were utilized. For example, the time between initial and final impulse (maneu-
ver time or precession time) can be expressed by

wf = ‘po' e ) : '
tf -t = T (8)
av

where Y, and ¢t -are set.equal to zero by choice and Yqy 1is determined by
integrating the first :of equations (3) to obtain

‘i’av - cos? ¢ + sin’ o) . H ‘j‘-q)f cos 2 ¢, sin’ ) ab

1 - v
Y fay 0 0

or . .

. H
Vg w— (B (%)

where

Iy + Iy Iy - Ix sin (2¢¢) - sin (2¢y)
P = + (9b)




Equation (9a) represents the average Y with respect to, ¢ over the coning
maneuver and, thus, is an approximation to the average { with respect to time
required in equation (8). However, the error of this approximation was found
to be small (about 1/2 percent on the average). Combining equations (8) and (9)
gives

HtgF

Vg ~ (10)

Ix

Another dynamic constraint to the motion, derived in reference 4, defines
the maximum half-cone angle Op.y in terms of the inertias and Euler angles
@ and ¢. PFor polhodes about the z-axis,

iy(Iz - Iy) + Ix(I; - Iy) tan? ¢
Omax = tan~] (11a)
Iz(Ix = Iy) + Ix(Iy - Iy)/(tan2 8 cos? ¢)

and for polhodes about the x-axis,

Iy(Ig - I) + Ip(Ix - Iy) tan2 ¢
Opax = tan™! _ (11b)
Ix(Iz - Iy) + Iz(Ix - Iy)/(tan2 8 cos? ¢)

The term "polhode" is discussed in appendix B. Equations (11) derive from the
fact that energy and momentum of the body remain constant throughout the motion.
These equations were used not only to insure that tentative 6,¢ combinations
produced real values for Op,x but also to relate dynamically the initial and
final 6,4 combinations through a constant Opx-

Returning now to equation (3), it is noted that the Euler rate equations
are nonlinear and have no known analytical solution involving only elementary
functions. However, reference 6 formulates these equations (with the V¥ and
¢ symbols interchanged) along with a solution in terms of Jacobian elliptic
functions. The required functional relationships are

sin O sin ¢

Q

sn(u,m) (12a)

sin 6 cos ¢

cn(u,m) (12b)



cos O

dn (u,m) (12c)
where u 1is the linear function of time
u = ug + At (13)
and the constants P,Q,R,A, and the parameter m can be written as
I [1 - (71,2
= (14a)
Ix - Iz
1,[1 - (2r1,/m2)]
Q = (14b)
Iy - IZ
I, [(2TI,/m2) - 1]
R = (14c)
Iy - Iz
(Iy - Ip) [(2TI4/m?) - 1]
A=H (144)

Iyxlyly

(Ix - Iy)['l - (2TIZ/H2)]
m = = (Modulus) 2 (14e)
(Iy - Ip) [(2114/H2) - 1]

The energy T and angular momentum constants of the motion are given by

]
E(I"w"z + T2 + ThW,2)

=1
]

(15)
B2 = (Log) 2 + (Igy) 2 + (I07)2

and the motion constant 2T/H2 which occurs in equations (14) can be expressed
through equations (2) and (15) as



2 t a2 s 2 s
T cos sin cos< 0 -
— = sin? L i + ' (16)
B2 Iy Iy I, :

It can be seen from equations (2) and (12): that the body rate solutions are -
directly related to these Jacobian elliptic functions as follows:

Wy = -HP cn(u,m) /Iy
wy = HQ sn(u,m)/Iy S ey
Wy = HR dn(u,m) /I,

Also from equations (12),

8 = cos~! I:R dn(u,m)] ) - o - '- (18)
and
¢ = ’t:an"'l I:Q-—sn(u’m)} 7 : (19)
P cn (u,m)

Equations (12) to (19) were not used to generate time'histories of body rates
or Euler angles, but rather served to derive Htg for equation (10).

Equation (13) was evaluated at tg and combined with equation (14d) to
yield - c ;

U = Uqy
Htg = (20)
- (Iy - Ip) [(2TT,/m2) - 1] : L

IxIyI,

Here, the quantity u, was calculated by means of the arithmetic~geometric mean
process and successive use of the descending Landen transformation (both dis-
cussed in reference 7) from sn(ug,m) which in turn was determined from the
first of equations (12) evaluated at. ty,. The value of uf .was determined sim-
ilarly from sn(ug,m) which was obtained from the first of equations (12) eval-
uated at tg. Finally, equations (10) and (20) are comblned to generate the
dynamic. expression for Ug: - : : : :

10



(ug - Ug)F/Iy
Vg = —— (21)
(Iy - Ip) [(1x2T/H2) - 1]

Solution of Equations

Equations (4a), (4b), (11a) or (11b), and (5) which govern variables Vg,
¢g, Of, and ¢y, respectively, were solved in a Newton-Raphson iterative
(inner) loop in the order specified for a given value of 6y. Starting and
stopping conditions are given subsequently. This result was then used in a
second Newton-Raphson iterative (outer) loop involving the dynamic value of
Vg (from eq. (21)) and the relationship

\Df 0.1

S (22)
Vg dynamic

eo,new = eo,old

The inner loop equations were then solved again (by iteration) for the new
value of 65 from equation (22). This process continued with inner loop con-
vergence for successive "new" values of 6, until the outer loop converged and
all equations were satisfied simultaneously. The convergence condition for the
inner loop was that input and output values of 60, be equal within *0.0001 per-
cent. For the outer loop, convergence was defined as input and output values
of 6o being equal within +0.01 percent.

The values of 05 and ¢, used to start the iterative process were deter-—
mined from

bo,start =T - Ry - & (23a)
tan (Rp/2)
0, start = tan™! | ——— (23b)
' cos ¢

Equation (23a) is an expression for the initial base angle ¢ of the spherical
triangle (see fig. 4), and equation (23b) is a geometric relationship for a
spherical triangle initially assumed to be equilateral.

Solutions were attempted for 16 separate values of ¢ (spread over the
range 0 < & < m/2) for each solution path. Possible solution paths (for
each given maneuver and inertial distribution) included all eight combinations
of long and short paths, positive and negative precession rates, and polhodes
about the x- and z- axes. All such solutions were determined if possible and

11



the one associated with minimum maneuver costs was retained for computing the

"average cost" of reorientations presented for each maneuver range. The list~
ing and documentation of computer program IMP2, used to determine these solu-

tions, is presented in appendix A.

REORIENTATION (QOSTS
General Considerations

As mentioned in the "Introduction," a cost function equal to the product
of total maneuver impulse (proportional to fuel consumed) and total maneuver
time (nondimensionalized by spacecraft inertia about the intermediate principal
axis) is determined for the various solution paths available for each maneuver.
The desired or optimum path is defined as the path associated with the smallest
cost function for each coning maneuver. Since total impulse and maneuver time
are inversely proportional for impulsive maneuvers, results are independent of
each of these quantities.

It is assumed that all reorientations within a given maneuver range R2, max
are equally probable. Therefore, reorientation costs were sampled within each
given maneuver range by systematically computing optimum costs for combinations
of Ry, Ry, and R3 at equally spaced intervals throughout the sample space
limits -T S Ry S, 0S5 Ry £ Ry paxs and =T S R3 £ T where R max = /360,
n/4, 7/2, 31/4, and T radians. These optimum-cost functions were then weighted
(according to likelihood of occurrence) and averaged as follows:

Z BOptimlIm cost) X sin Rz:[

Z (sin R3)

In addition, the standard deviation of the optimum-cost functions was deter-
mined with the relationship

(Average cost) =

z; BOptimum cost)2 x sin Ré]

(Standard deviation) = - (Average cost)2
25 (sin Rjp)

Cost Equations

The impulse (and thus momentum) required to initiate and terminate coning
maneuvers has transverse components

Hyy,o = H sin 04 Hyy,f = H sin Of

12



and axial components
Hy,o = H cos 6 Hy £ = H cos Of
as shown in figdre 2.
For reaction thrusters fixed along the x, y, and z body axes to produce

torques about the y-, z-, and x-axes, respectively, the cost function
[]Total impulse) x (Total time):]/Iy for the two-impulse coning maneuver is

0y = Q2,a + Q2,1 (24)

where the axial and transverse components are, respectively,

\
e g
Q2,a = (cos 65 + cos Of)
r Iy
> (25)
Il . . .
0,1 = - Eln 60(|s1n bo| + |cos ¢o|) + sin Gf(|51n bg| + |cos ¢f|ﬂ
Y J

By combining equations (10), (24), and (25), the cost function can also be
expressed as

lewfl
IyF

0y = [%in Go(|sin bo] + |cos ¢ol) + sin Of Osin ¢g] + |cos ¢f[)

+ cos By + cos Gf] (26)

If the thruster pair fixed on the spin axis to produce torques about the x=-axis
is allowed to swivel about the spin axis, the components of Q2,7 can be mini-
mized (reduced about 21 percent on the average) at the expense of a relatively
small thruster prepositioning term % with the result expressed as

1]t

02, v = (sin 65 + cos 65 + sin B¢ + cos 6f) + Qp

Y

13



RESULTS AND DISCUSSION

The results of this investigation are primarily the costs of attitude
reorientation by the two-impulse coning method. These are presented in the
form of average cost (over a given maneuver range) as functions of 1 -~ (Iz/Iy),
Ix/Iy, and R2,max for bodies of all possible inertial distribution which are
identified in reference 4 and presented in figure 5. Although costs for the
thousands of required individual reorientations could not be presented, such
costs can be calculated, if desired, by means of the computer program presented
in appendix A.

Each of the hundreds of two-impulse maneuver solutions used to generate
average costs for individual inertial configurations was first determined and
then independently checked by numerical integration of the motion equations to
assure that the desired maneuver was accomplished within an acceptable toler-~
ance. In this respect, maximum errors in wf, proportional to R2,max' were
found to be about #0.5 percent on the average. Corresponding errors in O¢
and ¢f were less than +0.005 percent. Two-impulse coning solutions for gen-
eral reorientations of asymmetric bodies were anticipated in reference 4 on the
basis that the three input quantities of the maneuver (coordinate-axis torques)
should allow control of three output quantities (final Euler angles) regardless
of inertial configuration. This is confirmed by the results of the present
investigation. Figure 6 shows the effect of inertia distribution on average
cost of reorientation for maneuver ranges of /360, n/4, w/2, 3m/4, and
T radians. The curve labeled I4x/I, =1 on each plot represents the family
of axisymmetric bodies. Most of these results were reported in reference 4
and are included here for comparison with the asymmetric results of the pres-
ent investigation which are the remaining curves of figure 6.

The axisymmetric results indicate an almost linear reduction in reorienta-
tion costs as bodies become more elongated. This is true for all maneuver
ranges. Reorientation costs are also seen to be proportional to maneuver range
for axisymmetric inertial configurations.

Inspection of all the results of figure 6 shows that introducing inertial
asymmetries to axisymmetric bodies causes the average cost of reorientation to
decrease significantly for relatively "thick" bodies. (See left side of
fig. 6.) Conversely, for relatively "slender" bodies, introducing inertial
asymmetry results in somewhat larger reorientation costs. 1In retrospect, this
result could have been anticipated because x-axis inertia is the only difference
between comparable asymmetric and axisymmetric bodies. Since average cost is
proportional to the effective transverse inertia of a body (a value between Iy
and IY)' the increase in I, required to change the "slender" bodies from
axisymmetric to asymmetric resulted in higher costs. Similarly, the decrease
in Iy required to change the "thick" bodies caused a reduction in average
cost.

The results of appendix C also are illustrated in figure 6. Reorientation
costs for rod-shaped bodies with axial symmetry along the z-axis as well as
costs for rod-shaped bodies with axial symmetry along the x-axis are in good
agreement with both the axisymmetric and asymmetric results previously
discussed.

14



Figure 7 was prepared to illustrate the effect of R2 max ©On average cost
for asymmetric bodies. These curves are restricted to Ix/Iy = 1.2 but should
be representative of other ratios. As would be expected, average cost is seen
to increase with maneuver range.

The average-cost results presented in figure 6 for asymmetric bodies repre-
sent minimum-cost reorientations involving a mixture of polhodes about the x-
and z-axes. Although polhode axis for minimum maneuver cost is unpredictable
for individual reorientations, the polhode axis, on the average, seems to be
the principal axis about which inertia is most unlike (greatest percentage dif-
ference) the y-axis (intermediate) inertia. More specifically, an inertial fac-
tor Py for estimating the probability of polhode about the x-axis has been
found empirically for Rj,max = T radians to be

Ry /g — 1
Py = x/Y (27)

where
Rx/y = Ix/Iy or IY/IX (Whichever is greater)
Ry/z = Iy/Iz or Iz/Iy (Whichever is greater)

It follows that the inertial factor P, for estimating the probability of
polhode about the z-axis is P, = 1 - Py. Figure 8 illustrates the correlation
of Py with measured values for all results of figure 6(e).

In reference 4, reorientation by means of impulse coning was solved under
the constraint that the initial and final angles between spin axis and the
momentum vector be equal. This resulted in solutions involving a two-impulse
coning maneuver followed by a spin-correction maneuver. As a result, costs
were considerably higher than those of the present investigation which uses two-
impulse coning maneuvers not requiring a follow-up spin maneuver.

Maneuver costs have been presented thus far in the form of average cost
for specified maneuver ranges. Also important is the measure of how costs are
dispersed about these average values which is given by their standard devia-
tion. Ratios of standard deviation to average cost are computed along with the
average-cost results. These values are presented in table I along with compan-
ion values of average cost.

Table I indicates that average costs have standard deviations of about
40 percent (of cost) for Ry pax = T radians, increasing to about 65 percent
as R max 1is reduced to T/360 radians. Thus, average-cost results do not
apply accurately to individual reorientations, but rather to a large number of
uniformly distributed reorientations.

15



CONCLUDING REMARKS

This report presents data figures which can be used to evaluate the costs
of attitude reorientation by two-impulse coning for bodies of all possible iner-
tial distribution and over the complete range of maneuver angle. Two-impulse
coning is a method of general-attitude reorientation in which torque impulses
are used to initiate and later to terminate free precessional and nutational
motion of a body.

Costs are presented for selected inertia configurations in the form of
average cost (and standard deviation) for a large number of uniformliy distri-
buted reorientations within a given maneuver range. These results, determined
for five maneuver ranges, are intended primarily for cost comparisons of the
two-impulse method with other reorientation methods (not included). Although
costs for individual reorientations are not included, such costs can be deter-
mined, if necessary, through the use of an included computer program.

Results show that the two-impulse coning method is capable of producing
general reorientations of asymmetric as well as axisymmetric bodies.

Results for axisymmetric bodies indicate that for all maneuver ranges
reorientation costs become progressively smaller as the body is elongated.
Also, reorientation costs are proportional to maneuver rande.

The introduction of inertial asymmetry to axisymmetric bodies causes
reorientation costs to decrease significantly for relatively "thick" bodies.
For relatively "slender" bodies, however, the addition of inertial asymmetry
results in somewhat larger reorientation costs. 1In all cases, however, costs
are proportional to maneuver range.

Polhode axis for minimum maneuver costs is unpredictable for individual
reorientations. However, for a maneuver range of 7 radians, polhode axis, on
the average, seems to be the principal body axis about which inertia is most
unlike the intermediate principal-axis inertia.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

October 25, 1979
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APPENDIX A

PROGRAM IMP2

Computer program IMP2, used to determine minimum costs for two-impulse
reorientation of asymmetric spacecraft, is presented in this appendix.

Symbols

Pertinent symbols used in program IMP2 and their definition or relation-
ship to symbols used throughout the report are as follows:

ACOST

AN1 ,AN2

EOCH
EPS
HOLD
HTF

LOH

P,Q,R
PATH
PI

R1,R2,R3

weighted average cost of maneuvers within given R2 max’

E{(Q2|sin Ro|)
ZE(|sin Ry[)

®, initial amplitude of AN1 used to start iterative solution

base angles of spherical triangle, opposite sides 6g and 0,
respectively

indicator for positive (B = 0) and negative (B = 1) precession rates
2T /H2

Uo

solution terminated for HOLD = 1

Htg

A/H

m

P, 0O, and R, respectively

indicator for short (PATH = 0) and long (PATH = 1) solution paths

n

Ry, Rp, and R3, respectively

R1C,R2C,R3C maneuver about x polhode axis equivalent to Ry, Rg, and Rj3

R4,R5,R6

maneuver about z polhode axis; R2C = Rpc

Ixr Iy, and I,, respectively

17



APPENDIX A

R7 o

R8 do

R10 Onax

R13 Vg

R14 bg

R15 F

R19 O¢

R20 latest iterative value for bo
R22 maneuver cost

R23 latest iterative value for ANI
R26 AN1 check value from equation (7)
R30 latest iterative value for 6
R34 Vg dynamic

R40,R41 lower and upper sample limit for RI1, respectively
R42,R43 lower and upper sample limit for R2, respectively; R43 = R2,max

R44,R45 lower and upper sample limit for R3, respectively

R54 sin Ry, weighting factor in cost calculation
S S

TCOOST weighted sum of maneuver costs

TNO weighted sum of maneuvers

-UF ug

w Ug

18
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Program Listing

PROGRAM TIMP2  (INPUT,OUTPUT,»TAPES=INPUT,TAPEL=0UTPUT)
EXTERNAL EULER

COMMON /EULER/C4,C5,C6,H

COMMON B,PI,R1,R2,R3,R44R5426,R74R8,R10,R11,R12,R13,R14,R15,
1R19,R20,R224,R23,R30,R31,R32,R33,R34,R53,AN1,AN2,FLG2,R73,S
1,R614HOLDyKOUNT,ADDsR123,R2A4RET,ANGyHTF,R0,EOH,R34R,ACC,CTAVG
EQUIVALENCE(IX.R4)4(IY,R5),4{I1Z,4R6)

REAL IX,1Y,1Z

INTEGER CSAV

INTEGER A,C,Al.CAl

DIMENSION WK{21),Y(3)

DATA A,C/1HA,1HC/

PI=2.%ASIN(1.) $ CON=1. $ 1Y=100.
NAMELIST/ICONE/IX,IY,IZ,CONsPTDEN,R40O,R4]1,R42,R43,R44,R45
PTDEN=12./PI $ CON=2. $ R40=R42=0, $ R44=-PI $ R41=R43=R45=P]
READ(5,ICONE)}

IF(FOF(5))14,15

STOP

CONTINUE

R70=REP=TNO=TCOST=TC2=TCREP=R123=FLG2=0,

ER1S=0,

C22=1.E8 $ ISAV=NUM=0

RO=.5 $ ACC=1.F-6 $ R34=100.

INITIALIZE MANEUVER

R1=PR1=551=R40+1,.,/(2.%PTNEN)
R2=PR2=R42+1./(2.%PTDEN)
R3=PR3=553=R44+CON/ (4 . %PTDEN)
WRITE(6,ICONE)
R54=ABS(SIN(R2)) $ GO TO 2

NEXT MANEUVER )
7 R3=PR3=R3+CON/PTDEN $ IF(R3.GT.R45)G0 TO 25 $ GO TN 2

5]
9

COMPUTE EULER COSINE MATRIX FOR MANFEIVER R1,R2,R3 ABOUT Z Y Z AXES

2

R1=PR1=R1+1./PTDEN $ IF(R1.GT.R41)GN TN 24 $ GO TN 2
R2=PR2=R2+1./PTDEN $ R54=ABS(SIN(R2)) $ IF(R2.GT.R43)G0 TO 26

SR1=SIN(R1) $ SR2=SIN(R2) $ SR3=SIN(R3)
CR1=COS(R1) & CR2=COS(R2) $ CR3=COS(R3)
B11=CR1%CR2%CR3-SR1*SR3 $ B12=SR1*CR2%CR3+CR1*SR3
B13=-SR2%CR3 $ B21=-CR1*CR2*SR3-SR1*CR3
B22=-SR1*CR2*SR3+CR1*CR3 $ B23=SR2%SR3
B31=SR2*CR1 $ B32=SR2%SR1 $ B33=CR2

COMPUTE EULER ROTATIONS R1C, R2C,R3C ABOUT =X Y =X AXES

3

R1C=ATAN2(B12,-B13) $ X3=-B33*SIN(R1C)-B32*COS(R1C)
Y3=B22*COS(R1C)I+B23*SIN(RIC) $ X2=B21%X3+B31%Y3 $ Y2=R11
R2C=ATAN2(X2,Y2) $ R3C=ATAN2(X3,Y3) $ ANGO=.01 $ ALT=0.
IF(REP.EQ.0.)GD TO 1 $ R1=-R1C $ R2=R2C $ R3=-R3(C

INITIALIZE FOR NEWTON RAPHSON ITERATION METHOD
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1 ANG=ANGO $ B=1, $ IF{(ISAV.GT.0 )B=0.

12 HOLD=RET=0. $ KOUNT=0 $ R31=R32=R33=-10.
RB8=R61=PI-R1-{2.%B-1.)*(1.-2.%R123)}*ANG
R7=ATAN({SQRT(R4%(R6-R5)/({ABS{R6-R5)/(R6-R5)+RE6*(R5-R4)*COS(R8)

1%COS(R8)))).$ IF(RT.LT..4%R2)GN TO 18
R31=ATAN(TAN(R2/2,)/COS(ANG))SIF(ALT.EQ.1.)IR31=(R7+R31)/2.$R7=R31
CALL THETA $ IF(HOLD.GT..5)GN TO 18
R51=R30 $ R7=R32=(R7+R30)/2.

CALL THETA $ IF(HOLD.GT..5)GN TO 18 $ R52=R30

5 R90=(R52-R51)/(R32-R31) $ R7=(R51-R90*R31}/(1.-R90}
R33=R7=ABS{ASIN(SIN(R7)))
CONS=1.

21 CALL THETA ¢ IF(HOLD.GT..5)G0 TO 18 $ R53=R30
R34A=ABS(R34R) ¢ IF(R34A.GT.PI)IR34A=2,*%PI-R34A
IF(ABS(({R34A-ABS(R13})/R34A).LLF.100.*%ACCIGO TN 6
IF(ABS(R32-R52).GT.ABS(R33-R53))G0 TN 22 $ IF(CONS.GT.10.)GN TO 22
R33=R7=R0O%R33+(1.-R0O)*%*R32 $ CONS=CONS+1l. $ GO TO 21

22 R31=R32 $ R32=R33 $ R51=R52 $.R52=R53 $ GO TO 5

6 R8=R20 $ R12=(R13+R14=-R3)/2. $ RT7=R30

SOLUTION GEOMETRY CHECK (GAUSS FORMULA)
R26=COS(R19/2.)*SIN(R12)/COS(5%(R2-R7))$ IF(ARS(R26).GT.1.)R26=1,
R26=ACOS(COS(2.*ACOS(R26)))*ABS(R13)/R13
IF{ABS({R23-R26)/R23).LE..001)GO TO 51 $ WRITE(644)R23,R26

COMPUTE MANEUVER COST

51 R21=2,*%R4%*R5%R34/(R4+R5+(R5-R4)*(SIN(2.%R14)~=SIN(2.%R20))/(2.%(R14

1-R20)))
R22=ABS(R21)*(SIN(R7)*(ABS{SIN(R20))+ABS({COS(R20)))I+SIN(R19)x*{

1ABS({SIN(R14))+ABS(COS(R14)))+CNS{RTI+CNS(R19)} /RS

POLHODE CONDITION DETERMINED
Al=A $ IF((REP-.5).LT.0.)Al=C
AN2=R14-R3 $ AN1=PI-R1-R8

19 IF(ABS(AN2).LT.PI)GD TO 20 $ AN2=AN2-2.%*PI*ABS(AN2)/AN2 & GO T0O 19

SOLUTION GEOMETRY CHECK (SIN RULE)

20 F40=SIN(R13)/SIN(R2) $ F41=SIN(AN1)/SIN(R19) $F42=SIN(AN2)/SIN(RT)
IF(ABS({(2.*F40~F41-F42)/F40).LF..007)GN TN 52
WRITE(6,4)F40,F41,F42

LOWEST COST SOLUTION IS SAVED

52 IF{R22.GE.C22)G0 TO 18
CAl=Al1 $ CAN1=AN1 $ CAN2=AN2 $ CRFP=RFP $ CCR1=R1 $ CCR2=R2
CCR3=R3 $ CSAV=ISAV & C7=R7 & C8=R8B $& C1l4=R14 $ C15=R15 $ CHTF=HTF
C34R=R34R $ C19=R19 $ C22=R22 $ C34=R34 $ CB=B $ C23=R23 $ C26=R26
Cl1=R11 $ C12=R12 $ C13=R13 $ KOUNTC=KOUNT $ C123=R123 $AN=ANG
C4=R4 $ CS5=R5% C6=R6
STAVG=CTAVG

CHANGE STARTING POINT AND COMPUTE ALTERNATE SOLUTINN

18 ANG=ANG+.2 $ IF(ANG.LE.PI/2.)G0 TO 12 $ NUM=NUM+1
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IF(R123.G6T..5)G0 7O 10 $ R123=1. $ GO 70 1
10 R123=0. $ ISAV=ISAV+]l $ IF(ISAV.LT.2)GO TN 1 $& ISAV=0
SETTING CONDITIONS FOR POLHODE ABOUT(A) AXIS OR RESETTING FOR
POLHODE ABOUT (C) AXIS
SR4=R4 $ R4=R6 $ R6=SR4
IF(REP.GT..5)G0 TN 11 $ REP=1. $ GO TO 3
11 REP=0. $ R1=PR1 $ R2=PR2 $ R3=PR3
IF(ALT.EQ.1.)GND TO 28
IF(ANGO.EQ..11)G0T023% IF(ANGO.ER,.01)ANGO=,11% IF(ALT.F0.0.)GOTO1
23 TF(ABS{C34).LE.2.%PI)GO TO 17 $ ANGO=.02 $ ALT=l. $ GO TO 1
28 IF(ABS(C34).LE.2.%PI1)GO TO 17
IF(ANGO0.EQ..17)G0 TN 16 $ IF(ANGO.FQ..07)ANGO=,17
IF(ANGO.EQ..12)ANGO=.07 $ IF(ANGO.EQ..02)ANGO=,12 $ GN TN 1
17 1IF(C22.EQ.1.E8)GO TN 7
COMPUTE STATISTICALLY AVERAGE MANEUVER COST
13 TNO=TNO+R54 $ TCOST=TCOST+C22%R54 $ ACOST=TCOST/TND
TC2=TC2+C22%R54%C22
TCREP=TCREP+CREP $ R70=R70+1.
MATRIX TRANSFORMATION CHECK FOR EACH MANEUVER
S20=SIN(C7) $ C20=COS(C7) $ S30=SIN(C8) $ C30=CNS(CA)
S1F=SIN(C13) $ C1F=CGCS{C13) $ S2F=SIN(C19) $ C2F=CNS(C19)
S3F=SIN(C14) $ C3F=C0S(Cl4) $ S1=SIN(CCR1) & C1=CNS(CCR1)
S2=SIN(CCR2) $ C2=COS(CCR2) $ S3=SIN(CCR3) $ C3=CNS(CCR3)

MD11=C20*C30 $ MN31=-S20%*C30
M11=-S1*S3+C1*C2%C3 $ M31=-S2%C3
MF11=-S1F*S3F+C1F*C2F*C3F $ MF31=-S2F*C3F
M012=-C20%*S30 $ M0O32=S20%*S30
M12=-S1*C3-C1%*C2#%S3 $ M32=S5S2%S3
MF12=-S1F*C3F-C1F*C2F*S3F $ MF32=S2F*S3F
M013=S20 $ M033=C20
M13=C1%S2 $ M33=C2
MF13=C1F*S2F $ MF33=C2F
M021=S30

M21=C1%S3+S1*C2%C3
MF21=C1F*S3F+S1F*C2F%C3F

M022=C30

M22=C1%C3-S1%C2%S3
MF22=C1F*C3F-S1F*C2F*S3F

M23=S1%S2

MF23=S1F*S2F
D11=MD11%M11+M012%M21+MO13%M31~MF11
D12=MO11%M12+MO12%M22+M013%M32-MF12
D13=M0O11%M13+M012%M23+MD13%M33-MF13
D21=MO21%M11+M022%M21-MF21
D22=M021%M12+M022%M22-MF22
D23=M021%M13+M022%M23~MF23

21
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031=M0D31%*M]11+M032%M21+M033%M3]1~MF31]
D32=MD31%*M12+M032%M22+M0D33%M32-MF32
D33=M031%M]13+M032%M23+M033%M33-MF33
IF(ABS(D11)+ABS(D12)+ABS(D13)+ABS(D21)+ABS(D22)+ABS(N23)+ABS(D31)
1+ABS(D32)+ABS(D33).GT..006)
1WRITE(6,53)D11,D12,D13,D21,D22,D23,D31,D32,DN33
53 FORMAT(1X9E11l.3)
16 CONTINUE
WRITE(6,29)CCR1,CCR2,CCR3,4C13,CHTF,C34R,C7,C19,C8B,C14,CAN1,CAN2,
1CA1,C34,C22,PRY14yPR3,INT(C123),INT(CB)sINT(R70),KQUNTC,AN
29 FORMAT(1IXFB8e44FTua4sFBebsFTe39FTalysFTe3+2FTet93FB.b4sFT43,1XA1,F7.3,
1F6.24F6.3,F7.3,212,15,13,F5.2)
SOLUTION CHECK VIA NUMERICAL INTEGRATION

N=3 $ T=0. $ H=25.%ABS(CHTF)/CHTF $ TEND=CHTF/H

Y(1)=0. $ Y(2)=C7 $ Y(3)=C8 $ TOL=1.F-5 $§ MTH=?2
GMIN=ABS(CHTF)/5.E11 $ GMAX=20. $ G=ABS{CHTF)/500,

00 35 1=1,900

CALL RKF4(NsToTEND,YsTOL+EULERyPDyMTHyGMIN,GMAX,G WK IFRR)
IF(IERR.LT.0)STOP 1234 $ IF(T.GE.TEND-1.F-6)GN TN 36

35 CONTINUE '

36 ER1=100.*ABS{{Y{(1)-C34)/Y(1)) $ IF(ABS(C34).GT.2.*%PI)FR1=0,
ER2=100.,*ABS((Y(2)-C19)/Y(2)) $ ER3=100,%ABS{(Y(3)=-Cl4)/Y(3))
ER1S=ER1S+ER1 $ AFR1=FR1S/R70
WRITE(6,4) Y(1),Y(2),Y(3),FR1,ER2,ER3,AFR]Y,STAVG,C15

27 C22=1.E8 $ GO TO0 7

25 R3=PR3=S53 $§ GO TO 8

24 R1=PR1=S51 $ SD=SQRT(TC2/TNO-ACOST*ACOST) $ SNDA=SN/ACOST
PR=TCREP/RTO
WRITE(644)R2,TNO, TCREP,ACOST+SD,SDA,PR,AFER]

GO 70 9

26 SD=SQRT(TC2/TNO-ACOST*ACOST) $ SDA=ACNST/SD
WRITE(6,4)R70,TNO,TCREP,ACOST,SDySDA

4 FORMAT(6X9E14.4)

GO TO 1000 $ END

SUBROUTINE THETA
NEWTON-RAPHSON OUTER LOOP
COMMON B,PI4R1,R24R3,R4,R5,R6,R7,R8,R10,R11,R12,R13,R14,R15,
1R19,R20,R22,R23,R30,R31,R32,R33,R34,R53,AN1,AN2,FLG2,R73,5S
1,R614HOLDyKOUNT4ADD+sR123,R264RET4ANGyHTF4RO,ENH,R34R,ACC,CTAVG
REAL LA(10),LB(10),4LC(10)4LOHsM4NyNUM,NO,NF
KOUNT=KOUNT+1 $ IF(KOUNT.GT.15)HOLD=1. $ ADD=0.
IF(HOLD.EQ.1.)RETURN
CALL PHI $ IF(FLG2.FQ.1.)G0O TN 20 $ IF(HOLD.FQ.1.)RETURN
R71=R20 $ R62=R8=(RB+R20)/2.
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CALL PHT $ IF(FLG2.EQ.1.)G0 TO 20 $ IF{HOLD.FO.1.)RETURN
RT72=R20 )
15 R100=(R72-R71)/(R62-R61) $ R63=R8=(R71-R100%R61)/(1.-R100)
CONS=1. o
26 CALL PHI & IF{FLG2.EQ.1.)GD TO 20 $ TF(HOLD.ED.1.)RETURN $ R73=R20
IF(ABS(R62-R72).GT.ABS(R63-R73))GO TO 31 $ IF(CONS.GT.10.)GN TN 31
R63=R8=RO*R63+(1.-ROI*R62 $ CONS=CONS+1l. § GO TO 26
31 R61=R62 $ R62=R63 $ R71=R72 $ R72=R73 ¢ GN TO 15
20 R15=(R4+R5)/(2.%R5)+(R5-R4)}/{2.%R5)%{SIN(2,%R14)-SIN(2.%R8B}}/(2.%
1{R14-R8)) $ FLG2=0.
EOH=SIN(R19)*SIN{R19)*(COS(R14)*C0OS(R14)/R4+SIN(R14)*SIN(R14)/R5)
1+COS(R19)*COS(R19)/R6
R=SQRT(R6*(R4*EQOH-1,)/(R4-R6)) $ O=SORT(R5*{1,-R6*ENH)/(R5-R6))
P=SQRT(R4*(1.-R6*EOH}/(R4-RK))
LOH=SOQRT( (R5-R6)*(R4*EQH-1,)/{R&*R5%*R6))
M=(R4=R5)*(1.-R6%EQH) /(R5-R6)/(R4*ENH-1.) $ SWITCH=O0.
LA(1)=1. $ LB(1)=SQRT(1.,-M) $ LC(1)=SQRT(M) $ N=1. $ I=
25 LA(I)={LA(TI=-1)+LB(I-1))/2. $ LB(I)=SORT(LA(I-1)*LB(I-1)
LCITI)=(LA{I-1)-LB(I~-1))/2. § N=N+1,
IF(LC(T).LT.1.E~-6)G0O TO 30 ¢ I=I+1 $ GO TO 25
30 NO=SIN(R8)/Q $ DO=COS(R8}/P & NF=SIN{(R14)/0 $ DF=COS(R14)/P
RBI=AINT(2.%R8/PI) $ R14I=AINT(2.%*R14/P1)
UO=ATAN2(NO,DO) $ UOI=AINT(2.*JO/PI)
IF(R8TI.EQ.UOI)GO TO 52 $ UO=UO+PI/2.*(R8I-U0I)
IF(AMOD(R8I,44.).NE.,AMOD(UOTI y4.))UO=UO+ABS(RB~UO0)/(RB~YOD)*PI/2.
52 NUM=1. $ I=1 $ PBN=U0
35 QN=AINT(2.%PBN/PI)+ABS(PBN)/PBN
QUAD=QN-ABS(PBN)/PBN ¢ IF(QN/2..EQ.AINT(OM/2.))QUAD=0ON
PB=ATAN(LB(I)*TAN(PBN)/LA(I))+PBN+QUAD*PI/2. $ NUM=NUM+1,
I=I+1 & IF(NUM.EQ.N)GO TO 40 $ PBN=PB $ GO TO 35
40 TF(SWITCH.EQ.1.)GD TO 45 $ SWITCH=1. $ EPS=PB/{2.%%x(N-1.)*LA(1))
I=1 $ UF=ATAN2(NF,DF) $ UFI=AINT(2.%UF/PI)
IF{R141.EQ.UFIIGO TO 53 $ UF=UF+P1/2.%(R141-UFT1)
IF(AMOD{R141,44,) .NE.AMOD(UFT +4.) JUF=UF+ABS(R14-UF)/(R14-UF)*PI/2.
53 NUM=1. $ PBN=UF $ GO TO 35
45 HTF=(PB/(2.**%(N=1.)%LA(1))-EPS)/LOH*ABS{R4~-R6)/(R4-R6)
CTAVG=ABS(R*x(UF-UO)/(LOH*HTF) )
R34=HTF#*R15/R4 $ R34R=R34-2,*PI*INT(R34/(2.%P1))

5 R53=R30=R7*ABS(R13/R34R)*%,1
IF{ABS{R34R).GT.PIIRS53=R30=RT7T*ABS(R13/(2.*PI-ABS{R34R)))**_1
IF(R30.LE.R2/6,0)HOLD=1.

RETURN $ END

2
)

SUBROUTINE PHI
NEWTON-RAPHSON INNER LQOP
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COMMON B,PI,R1,R2,R3,R4,R5,26,R7,R84,R10,R11,R12,R134R14,R15,
1R19,R20,R224,R23,R30,R31,R32,4,R33,R34,R53,AN1,AN2,FLG2,R73,S
1,R61,HOLDyKOUNT4ADDsR123,R264,RET4ANGyHTF4R0O,EOH,R34R,ACC,CTAVG
ADD=ADD+1. $ IF(ADD.LT.20.)GO TO 10
HOLD=1. $ RETURN
10 R9=(R5%(R6=R&)*COS(RB)*COS(RB)+R4*[RE6E-R5)*SIN(RB)I*XSIN(RR))I*SIN(RT)
1%SIN(R7) ‘
R10=R9/(R6#*(R4=R5)%*SIN(RT)I*SIN(R7)*COS(RB)I*COS(RB)+R4* (R6E-RE)*
1COS(R7)*COS(RT7)) $ IF(R10.GE.0.)GD TO 20
R4T7=ATAN{SQRT(R&4*(R6-R5)/({ABS(R6-R5)/(R6=R5)+R6*X(R5-R4)*COS(RB)
1%COS(R8)))) & RAN=ABS(RT%*R8)/200.
15 IF(RAN.LE..05)G0O TO 16
RAN=RAN/2. $ GO TO 15
16 R4T7T=R&47T*(1.-RAN)
IF(R7.EQ.R31)IR31=R47 & IF(RT7.EQ.R32)R32=R47
IF(R7.EQ.R33)R33=R4T & R7=R47 $ GO TN 10
20 R10=ATAN(SQRT{(R10))
AN1=PI-R1-R8
R11=ATAN(SIN(.5%(R2=R7))/(SIN{.5%(R2+R7))*TAN(,5%AN1)))
R12=ATAN(COS( .5%(R2=R7))/{COS{ 5% (R24+RT7))I*TAN( .5%AN1)))
R13=R11+R12 $ PATH=1.-2.%R123
IF(0..GT.RL13%PATH*({2,.%B-1,))R13=R13-PI*ABS(R13)/R13
R14=R13-2,%R11+R3
5 IF(0..LT.R13%*PATH*(R14-R8)%(R4-R6})IGD TO 9
R14=R14+2 ,%PI%PATH
IF((R14-R8)*PATH.GT.2.%PI)R14=R14~4 . %PI%PATH & GO TO 5
9 R18=R5%(R6~R&4)*COS(R14)%COS({R14)}+R4*(R6-RS)*SIN(R14)*SIN{R14)-R6
1%(R4-R5)*COS{R14)*COS(R14)*TAN({R10)}*TAN(R10)
R19=ATAN(SQRT{(R4*(R6-R5)*TAN{R10)*TAN(R10)/R18))
S=,5%(R7+R19+R2)
IF((S-R2)%*(S-RT7)*(S-R19).6T.0.)G0 TO 8 $ HNLD=1. $ RETURN
8 R46=SIN(S-RT7)I*SIN(S-R2)%*SIN(S-R19)/SIN(S)
R23=ABS(2.*ATAN({SQRT(R46)/SIN(S=R19)))*ABS(R13)/R13
R20=PI~R1-R23
FLG2=0. $ IF(ABS((R8-R20)/R8).LE.ACC)FIG2=1.
4 FORMAT(6XB8EL14.4)
RETURN & END

SUBROUTINE EULER(N,T,Y,DYDT)

COMMON /EULER/C4,4C5,C64H

DIMENSION Y(3),DYDT(3)
DYDT(1)=H%{SIN(Y(3))%*SIN(Y(3))/C5+COS(Y(3))*COS(Y(3))/C4)
DYDT(2)=H*(1,/C5-1./C4)%SIN(Y(2))%SIN(Y(3))%CNS(Y(3)})
DYDT(3)=COS(Y{2))*(H/C6-DYDT(1))

RETURN $.- END S
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POLHODE AXES

Poinsot's geometric solution, described in reference 8, equates the free
rotational motion of a rigid body to the motion of the "ellipsoid of inertia"
for that body as it rolls on the "invariable plane." The point of intersection
between these two surfaces traces out a "polhode" curve on the ellipsoid of
inertia. The axis surrounded by the polhode curve, or "polhode axis," is the
principal body axis which precesses about the momentum vector during a coning
maneuver. The polhode axis, which can be an axis of minimum moment of inertia
or an axis of maximum moment of inertia but not an axis of intermediate moment
of inertia, is related to the initial motion and the inertial distribution of
the body as follows:

Polhode is about the x-axis if

\
Ix(Iy - Ip)

tan? § cos? ¢ > ——M———

Polhode is about the z-axis if g » (B1)
IX(Iy - I,)
tan2 6 cos2 ¢ ¢ ——

Ip(Ix - Iy) |

where 0 and ¢ are evaluated simultaneously at any time during the maneuver.
Conditions (B1) can be determined directly from equations (11) and the require-
ment that Op,x be real-valued.

It should be mentioned that the derivation of equation (1la) was based upon
0 being measured from the polhode axis. This condition is met in the present
paper for motions with polhodes about the z-axis, but not for polhodes about the
X-axis. Rather than rederive the motion equations with © measured from the
x-axis, the two-step alternative used in reference 4 was used. That is, for
polhode about the x-axis, the values of Iy and I, were interchanged and the
original Euler rotations about the z-, y-, and z-axes were replaced with a newly
generated set of Euler rotations about the -x-, y-, and -x-axes designed to pro-
duce the identical body reorientation. The new Euler set was determined by the
method of reference 9 and implemented in program IMP2 of appendix A. With these
changes, the coning geometry is transferred, in effect, from polhode about the
z-axis to polhode about the x-axis.
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APPENDIX C

AVERAGE REORIENTATION COSTS FOR ROD-SHAPED BODIES

The derivation of average reorientation costs for rod-shaped bodies is pre-
sented in appendix C of reference 4. Costs for rod-shaped bodies with axial
symmetry along the x-axis (I, > 0; Iy = I,) as well as rod-shaped bodies with
axial symmetry along the z-axis (I > 0; Iy-= Iy) are specified by the equation

+

(Average cost) = - R2 mean (ch

However, in application of this equation reference 4 uses incorrect values for
R2,mean: Correct values of Ry mpeans derived for rod-shaped bodies with axial
symmetry along the z-axis, are expressed as a function of maneuver range by

Sin R max — R2,max cos R2,max

R2,mean =
! 1 - co
cos R2,max

For rod-shaped bodies with axial symmetry along the x-axis, all coning maneuvers
are "polhode about the x-axis" and R2,mean is determined by averaging Ry,
the second angle of the transformed Euler angle set. The average value of Roc
was determined numerically to be equal to /2 radians for all values of

R2,max-

Values of Rg pmean and average cost are listed as follows for pertinent
values of Ry pax and for both inertial configurations:

Selected values of R2,maxr radians

0.00873 m/4 /2 3n/4 m

Rod-shaped with axial symmetry about x-axis

R2,mean - + - - /2 /2 /2 /2 /2
Average cost . . 4 4 4 4 4

Rod-shaped with axial symmetry about z-axis

R2,mean =+ + + - 0.00582 0.5181 1.00 1.390 /2
Average cost . . 0.01481 1.319 2.547 3.540 4

These values of average cost are presented in figure 6.
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TABLE I.- COST STATISTICS FOR

Iy

= 100

Cost at selected values of R2,max' radians, of -
w/360 T/4 /2 3n/4 Ll
Iy I,
Av. lsoa |2V lspa |2V |spa [AV- lgpa |AY- |gpa
cost cost cost cost cost
199 99 4.79 10.60 | 5.57 |1 0.47 | 5.91 | 0.39 ]| 6.05 | 0.37
195 95 5.01 1 0.74
180 80 3.72 .71 .87 .51 ]15.88 .51 [ 5.93 .45 6.02 .43
160 99 5.16 .64 | 5.73 .48 1 6.14 .40 | 6.28 .37
160 95 4.60 .75
160 80 3.54 .68 1 4.83 .51 | 5.85 .50 | 6.00 .45 6.08 .42
160 60 3.10 .65 ] 4.28 .48 | 5.59 .48 1 6.13 .47 1 6.16 .46
140 40 1.68 .57 3.16 .38 1 4.65 .39 ] 5.82 .45 ] 5.86 .45
120 99 4.20 .86 | 5.50 .72 1 6.26 .54 ]16.68 .45 ] 6.80 .42
120 95 4.36 .7
120 80 3.12 .60 4.60 .50 | 5.72 .46 | 6.34 .44 | 6.48 .43
120 60 3.04 .67 | 4.42 .54 | 5.53 .46 | 6.27 .43 ] 6.34 .42
120 40 1.71 .58 3.12 .39 | 4.58 .38 15.73 .42 | 5.87 .42
120 20 .83 .61 2.14 .34 ] 3.53 .36 |1 4.59 .39 ] 4.98 .42
110 10 .43 .65 1.73 .34 ] 3.05 .36 | 4.07 .39 4.50 .42
100+ 95 4.00 .76
100+ 80 2.84 .55 4.69 .56 | 5.67 .41 1 6.53 .37 16.79 .36
100+ 60 2.81 .68 | 4.36 .48 | 5.54 .43 16.25 .36 | 6.48 .34
100+ 40 1.8 .60 | 3.32 .42 | 4.67 .38 | 5.68 .37 | 5.97 .36
100+ 20 .84 .62 1 2.09 .34 ] 3.33 .33 1 4.32 .36 | 4.79 .39
100+ 10 .41 .64 1.65 .32 ] 2.90 .35 ] 3.88 .38 1 4.33 .41
100- § 200-] 2.73 .58 | 4.46 .50 | 5.61 .42 1 6.26 .35 | 6.53 .34
100- {180 2.73 .57 1] 4.43 .50 | 5.64 .43 1 6.42 .37 ] 6.65 .35
100- | 160 2.88 .69 | 4.52 .51 ] 5.70 .43 |1 6.46 .37 16.76 .36
100- | 140 2.74 .55 1 4.64 .54 15.70 .43 | 6.54 .37 1 6.78 .36
100- | 120 2.94 .57 | 4.87 .60 | 6.09 .47 1 7.35 .43 1 7.50 .41
80 180 2.48 .63 13.78 .51 | 4.94 .41 | 5.95 .42 1 6.20 .43
80 160 2.62 .72 | 3.94 .58 | 5.05 .44 1 6.01 .43 1 6.25 .43
80 | 140 2.51 .62 3.88 .52 15.12 .44 1 6.04 .43 1 6.26 .42
80 120 2.58 .61 | 4.18 .59 | 5.41 .49 1 6.14 .43 1 6.30 .41
80 110 2.91 .77 | 4.47 .69 | 5.72 .52 1 6.23 .43 | 6.40 .41
80 101 5.12 .69 | 5.93 .51 { 6.40 .42 | 6.55 .39
60 160 2.23 .74 | 3.45 .57 15.21 .55 15.86 .47 | 5.98 .44
40 140 1.97 .89 | 3.39 .64} 5.32 .55 ] 5.58 .47 | 5.66 .45
40 120 4.04 .68 | 5.44 .53 ] 5.62 .46 | 5.68 .44
40 101 4.94 .59 | 5.46 .48 | 5.54 .42 1 5.61 .41
20 120 4.38 .63 14.90 .48 | 4.96 .44 | 5.01 .43
10 110 4.55 .52 1 4.55 .43 | 4.54 .41 | 4.55 .42




(b) Angular momentum components.

Figure 1.- Orientation of body and inertial coordinate axes systems
for Euler rotation sequence 1,0, about body axes z,Y.Z,
respectively.
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Typical path of z-axis
on maneuver sphere

Body spin-axis
initial location

_) v Coning circle

(constant latitude line

on maneuver sphere)

xy,f
Zf
0 ~ w,

Body spin-axis
» final location
Hz,f

Figure 2.- Coning geometry showing momentum components.
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Figure 3.~ Basic coning-path options (short and long paths
for both positive and negative coning rates). Nutational
motions are suppressed for clarity.
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Maneuver
~ - path

Figure 4.- Geometry of generalized maneuver Ry, Ry, and R3 illustrating
the spherical-triangle and spin-angle relationships. Positive angles are
measured clockwise about axis of rotation.
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-1 0 1
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Figure 5.~ Inertia constraints. All real bodies are in shaded areas.
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(a) Maneuver range, T17/360 radians.

Figure 6.- Effect of inertia distribution on average cost of reorientation.
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Figure 6.- Continued.
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(d) Maneuver range, 37/4 radians.

Figure 6.- Continued.
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Figure 6.- Concluded.
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Inertial factor,
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Figure 8.- Correlation of inertial factor Py with measured probability
of polhode about x-axis. Rj pax = T radians.
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