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PREFACE

This book is intended for those students, ‘engineers, scientists, and applied
mathematicians who find it necessary to formulate models of diverse phenomena.
To facilitate the formulation of such models, some aspects of the tensor calculus will
be introduced. However, no knowledge of tensors is assumed. The chief aim of this
calculus is the investigation of relations that rémain valid in going from one
coordinate system to another. The invariance of tensor quantities with respect to
coordinate transformations can be used to advantage in formulating mathematical
models. As a consequence of the geometrical simplification inherent in the tensor
method, the formulation of problems in curvilinear coordinate systems can be
reduced to series of routine operations involving only summation and differentia-
tion. When conventional methods are used, the form which the equations of
mathematical physics assumes depends on the coordinate system used to describe
the problem being studied. This dependence, which is due to the practice of
expressing vectors in terms of their physical components, can be removed by the
simple expedient.of expressing all vectors in terms of their tensor components.

For the benefit of those who have access to digital computers equipped with
formula manipulation compilers, the convenience of computerized formulations will
be demonstrated. No programming experience is necessary, and the few program-
ming steps required will be explained as they occur.

The first chapter is concerned with those aspects of the tensor calculus that are
considered necessary for an understanding of later chapters. It is assumed that the
reader has a knowledge of elementary vector analysis and matrix operations. In
writing this part, I was influenced by the work of 1. S. Sokolnikoff (ref. 1) and A. P.
Wills (ref. 2). The definition of a tensor of rank r associated with a point of an N
dimensional space, as an r linear form in the base vectors associated with the point,
is due to Wills. I feel that this approach to tensor calculus will have a greater appeal
to applied mathematicians than the conventional method of defining tensors in
terms of their transformation laws.
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The reader may encounter unfamiliar entities such as covariant and contravariant
vectors and tensors, and unfamiliar operations such as covariant differentiation. It
will be seen, however, that the only operations involved in applying these concepts
to practical problems are summation, in accordance with the summation convention,
and differentiation. In using tensor methods to formulate mathematical models,
considerable insight is obtained and the striking similarity of all formulations of
physical systems becomes apparent. This is due to the fact that all such formulations
evolve from a fundamental metric which is simply an expression for the square of
the distance between two adjacent points on a surface. Hence, in addition to its
utility, the method advocated has a definite educational value. As I. S. Sokolnikoff
has noted, the best evidence of the remarkable effectiveness of the tensor apparatus
. in the study of nature is the fact that it is possible to include, between the covers of
a small volume, a large amount of material that is of interest to mathematicians,
physicists, and engineers. ’

The major part of the book is devoted to applications using the theory given in
the first chapter. The applications are chosen to demonstrate the feasibility of
combining tensor methods and computer capability to formulate problems of
interest to students, éngineers, and theoretical physicists. Chapter 2 is devoted to
aeronautical applications that culminate in the formulation of a mathematical model
of an aeronautical system. In using chapter 2, only first- and second-order transfor-
mations are required; the necessary theory is contained in the first 11 sections of
chapter 1. In chapter 3, the equations of motion of a particle are formulated in
tensor form. These formulations require an understanding of the Christoffel sym-
bols (ref. 3) of the first and second kinds and the concept of covariant differentia-
tion. The corresponding theory is contained in sections 1.11 and 1.12 of chapter 1.
The methods described in chapter 4 can be used to formulate mathematical models
involving fluid dynamics. An understanding of this chapter also requires a knowledge
of the Christoffel symbols and covariant differentiation as described in sections 1.11
and 1.12 of chapter 1. The tensor theory contained in sections 1.13 through 1.18 of
chapter 1, is required to formulate the cosmological models described in chapter 5.
The final chapter describes how. the symbol manipulation language MACSYMA
(ref. 4) may be used to assist in the formulation of mathematical models.

The techniques described in this book represent an attempt to simplify the
formulation of mathematical models by reducing the modeling process to a series of
routine operations, which can be performed either manually or by computer. This
attempt is part of a continuing effort in support of simulation experimentation in
the Simulation Sciences Division.

iv
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11

1.1 SUMMATION CONVENTION

Many of the advantages inherent in the tensor method derive from the simplifying
nature of the tensor notation, in general, and the summation convention in particu-
lar. This convention, which lends itself to the design of computational algorithms, is
well suited to computer applications. For example, consider the following set of
equations: ' '

yl =a,,x! +a,,x* +a,,x3
y2 =ay,x! +ay,x? +a,;3x3
3 =ay3,x! +az,x? +a;33x3

These equations can be written very compactly as follows:

j=3

¥ = Za,-,x =123 (1L

=1

A further simplification is possible by adopting the summation convention (ref 5).
This convention permits the removal of the summation sign on condition that the
occurrence of two like indices in a given expression denotes summation on the
appropriate indices. Hence, since j occurs twice in the expression on the right-hand
side of equation (1.1.1), this equation can be written simply as

yizaijxj ~(1.1.2)
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The advantages of the summation convention are more evident if one considers
matrix multiplication. For example, the product of two matrices A and B, requires
that the elements of the A matrix be combined with the elements of the B matrix
according to well-established rules. Because these rules have to be memorized and
may be forgotten if not frequently employed, utilization of the summation conven-
tion acts as a spur to the memory and suggests the order of multiplication if this has
been forgotten. A simple example will illustrate this point. Consider the product of
two matrices 4 and B, where each is a three by three matrix. In this case

ay; 412 3
A=paz, a2 az;
d3; 43z dszs
and
AY
byy bia bis
B=) b1 baa bys
b3l b32 b33
Therefore
Ay, - ay, 4d;3 by, bi2
AB =\ ay, ay, az; byy ba2
a3y, d3, 3433 by b3,
where
ay1byy +a,2by +a;3b5, a1 byt a;,by, Yay30;,
E= ay1byy Yaz.b,, +ay;3b;, a31by2 Y ay,b5, +a33b3,
a31byy Yas,b2, +as;3b;, a3 by, tas.by2 tazsbs,

(1.1.3)

(1.1.4)

ay1b13 ta b3, ta 3b;y,
ay1b13 +az2by3 +ay3b;,

a31by3 +a3,b,3 +a33b5,




MATHEMATICAL MODELING OF DIVERSE PHENOMENON 11

If the summation convention is employed, there is no need to write out the
matrices in this manner in order to obtain the product. In terms of this convention,
the elements of the product matrix E are given by

Since the index k occurs twice in the expression on the right-hand side of equa-
tion (1.1.5), this expression must be summed on k, for all admissible values of k.
Hence, for the three by three matrices being considered

el-]-=al-1b1]-+al-2b2]-+al-3b3]- (116)

and by permitting / and j to assume the values

i=1,23
i=123

the fully expanded form of AB is obtained. Likewise, if any element of the product
is required, it can be obtained by assigning specific values to i and j. A more
complicated example involving the product of three matrices will show that the
summation convention is a convenient sharthand, a compact and well-adapted code
for expressing complicated relationships. Again, let the matrices A and B be as given
in equations (1.1.3) and (1.1.4), respectively, and let

C11 Ci12 €13
C=1 cn Ca2 €23 (L.1.7)
€31 €32 €33
then the product
Ay y " 412 a3 by1 bi2 bis €11 €12 Ci13
ABC=| ay; a,, ay; byy byy bas €21 €27 €23 =D
A3y 4z, Qaszs b3y b3, b33 €31 Caz2 C33
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can be replaced by the more compact equation

where the appearance of the repeated subscripts # and k implies that the summation
convention is to be observed. For example, the ijth element of the matrix D can be

obtained by summing first on k and then on 4 or vice versa, that is
i

djj = ajpbp €1+ 4pbpyCaj + apbpscy;

If the expression is now summed on A, the jjth element of the required product
matrix assumes the following form

d:: = aq; b11 1]+a b +aq; b

ij 2161j 31615

+a;b +

12€2j azzb +a b

2262 32€2j

+a; b +

13€3f alzb +a; b

ajy 23635 3335

Although the cases considered so far have demonstrated the convenience of the
summation convention, later applications will be dictated by necessity.

1.2 TENSORS

Physical entities that can be adequately characterized by the specification of their
magnitudes are referred to as scalar quantities. Examples of scalar quantities are:
temperature, volume, mass, and energy. Other quantities, however, such as forces
and velocities, need for their complete specification not only magnitude but also a
direction in space. Such quantities are termed vectors (ref. 6). Although a single
quantity is not sufficient to completely specify them, vectors should be considered
as single entities. Treating vectors in this manner greatly facilitates the processing of
vector algebra and the derivation of formulas.

Although a scalar quantity has magnitude only, and a vector or tensor of rank one
has both magnitude and direction, tensors of rank greater than one belong to a class
of entities that depends on more than one vector. The chief aim of tensor calculus is
the investigation of relations that remain valid in all coordinate systems. The
condition of invariance with respect to coordinate transformations leads to the
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transformation laws that the tensor components must obey. Most books on tensor
calculus define tensors in terms of these transformation laws. However, for present
purposes, it is more satisfactory to define a tensor in terms of a linear form in the
base vectors. When this is done, a vector or a tensor of rank one is defined as

A =47 = A3, (1.2.1)
where A; and Al are the covariant’ and contravariant tensor components, respec-
tively, and @ and g; are the corresponding base vectors which are, in general,
functions of the coordinates. The meaning of these components will be explained
presently. It should be remembered that the covariant and contravariant forms of
the vector A in equation (1.2.1) must be expanded in accordance with the summa-
tion convention, since the indices “i> and *”” occur twice, that is,

A= Alal +A2&2 +A3(_13 =Alal +A252 +A353

A point to be observed here and in all subsequent equations, is that each step is so
formulated that it is amenable to mechanization.

Since the concepts of covariance and contravariance are not encountered in the
study of elementary vector analysis, the meaning of these terms and the need for
them in the present context will be explained. At the outset, it should be empha-
sized that the covariance or contravariance of vector or tensor components is not an
intrinsic property of the entity under consideration. The distinction is due to the
way in which the entity is related to its environment, the coordinate system to
which it is referred (ref. 1). The two sets of quantities A; and Al represent the same
vector A referred to two different base systems. The vectors @ anda a; that constitute
the systems of base vectors, to which the covariant and contravariant components
are referred, are said to be reciprocal systems of vectors. When reciprocal bases are
subsequently defined, it will be seen that the system of unit base vectors specifying
an orthogonal Cartesian reference frame is its own reciprocal. Hence, the distinction
between covariant and contravariant vector components vanishes in this case. This
explains why there is no preoccupation with these representations in the study of
elementary vector analysis. However, when problems are formulated in curvilinear
systems of coordinates, it is frequently useful in specifying vector and tensor
- components to employ a given base system and its reciprocal.
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As one might expect, the base vectors @', a2, @> are called the reciprocal system
toa,,d,,a; when the following relations are satisfied:
(—11 'al =E2 '52 =53 '53 =1

These relations will be satisfied if the reciprocal system to @, ,d,,a; is defined as
follows:

.51 _ 62 X E3
[4,a,a;]

-2 _ 53 X 51
[a,a,a;5]

=3 _ a, xa,
(a,a,25]

It will be remembered that [@,@,a;] is the familiar scalar triple product of
elementary vector analysis (ref. 2). It is simply the scalar product of two vectors,
one of which is itself the vector product of two vectors, that is,

[a,a,a;]) =a, - @, xa;)
The scalar triple product has the important cyclical property
a, * (@, xd3) =a, *(@; xa,)=a; * (@ xa,)
The proof of this relation follows from the fact that each of these expressions

represents the volume of the parallelepiped whose edges are @, ,a,,a;.
In terms of these relations and definitions, it is seen that

The symmetry of these relations shows that if @', @, @° is the reciprocal system
toa,,a,,a, thena,,a,,ay is the reciprocal system to @', @, a>, that is,
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- a? xal

ay = ——7=5=35
' @'a2a’]

3 a3 xat

2 7@ xa® x @)
G = a' xa?

3 [ata%ad)

and

As previously indicated, the conventional system of unit vectors i s f, k that is used
to specify an orthogonal Cartesian system of coordinates is seen to be its own
reciprocal. )

Let i1, j' k' be the reciprocal system to i,7, k; then, because the scalar triple
product [i ; ];] of three orthogonal unit vectors is clearly equal to unity

Il
Il
~

It should be evident now that there is nothing mysterious or obscure about the
concepts of covariance and contravariance. These are simply convenient terms for
describing vector and tensor components which are referred to a given base system,
on the one hand, and to the reciprocal of the given system on the other.

The vector 4 may also be expressed in terms of its physical components as
follows:

Z=a¢“ﬁa (1.2.2)

where @ js the physical component and d,, is a set of unit base vectors.
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Since the index « occurs twice in the expression on the right-hand side of
equation (1.2.2), the summation convention must be observed, that is

Z =d1.al +dza2 +d3a3

The transformation from physical to tensor components, and vice versa will be
considered in a later section.

Before proceeding to more general tensor forms, it should be remarked that the
term ‘‘tensor” was used by Einstein in connection with the sets of quantities
transforming in accordance with the covariant and contravariant laws. The formula-
tion of covariant and contravariant laws, as well as an outline of the essential
features of the algebra and calculus of covariant and contravariant tensors, is due to
G. Ricci (ref. 1). Because of the usefulness of covariant and contravariant laws of
transformation in applications to geometry and physics, the term tensor is generally
used in the sense contemplated by Einstein. In the present context, however, a
tensor of rank “r” associated with a point P of an “n” dimensional space is defined
as an r-linear form in the base vectors associated with the point whose coefficients

are, in general, functions of the coordinates of the point, and which is invariant with.

respect to coordinate transformations. When the condition of invariance with
respect to coordinate transformations is imposed on an r-linear form, the transfor-
mation law for the tensor components is obtained. These components will be seen to
transform in accordance with the covariant and contravariant laws and to satisfy the
definition of a tensor in the sense in which it was used by Einstein. .

In terms of this definition, a tensor of rank two may assume the following
alternative forms: \

- Allag; (1.2.3)
A g (1.2.4)
A; 3T (1.2.5)

Form (1.2.3) represents a doubly contravariant tensor or dyadic. Form (1.2.4) is a
mixed tensor or dyadic, having one index of covariance and one index of contra-
variance. Form (1.2.5) is a doubly covariant tensor or dyadic.

More generally, a tensor of rank r associated with a point in N dimensional space
is an r-linear form in the base vectors associated with the point, and is invariant with

10
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respect to the choice of coordinate system. In terms of this definition, a trilinear
form having a y-coordinate representation

and an x-coordinate representation

BV G.d.
A aaaﬁa,y

will represent a tensor of rank three if
ks 7 5. — - - B}
BY bbby —AQ‘B'Yaaaﬁa,y
1.3 PHYSICAL EXAMPLES

1.3.1 The Stress Tensor _

Because the name tensor originated in the study of tensions or stresses, it is
appropriate to use the stress tensor (ref. 7) to illustrate the physical meaning of a
tensor of rank two.

In the study of elasticity, certain quantities are introduced that are more complex
than vectors. The stresses or tensions in the interior of a deformed body are defined
by a collection of six numbers which behave like the six components of a new
quantity. It was W. Voigt, the crystal physicist, who first named these new quanti-
ties, tensors. The word clearly recalls their origin, since the first one identified was
the system of tensions of a deformed solid. In this connection it should be remarked
that an elastic stress is defined as the intensity of force acting at any point in a
deformed body, that is, the force per unit area.

Consider, for example, a uniform bar having the dimensions shown in sketch (a),
and acted on by an axial force of *“‘F’’ pounds. -

11
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b—» c

L~

re |

Sketch (a)

et © ]

The stress across any cross section-normal to the force vector is the force per unit
area, that is;

ab
When an elastic body is subjected to a stressing agent, it is deformed. The extent
of the deformation determines what is called the strain. In the case of the uniform
bar subjected to an axial force, the strain is defined as the relative elongation, or the
change in length per unit length.

Hooke’s law states that strain is proportional to stress within the elastic limit (see
sketch (b)).

STRESS

STRAIN

. Sketch(b)

12
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According to Hooke’s law (ref. 8)

stress
—=F
strain

where F is Young’s modulus of elasticity for the material. Knowing the stress and
Young’s modulus for a material, it is easy to compute the strain, which is simply

stress
E

The elongation or the extension of the bar is given by the product of the strain
and the length of the bar, that is

- elongation = strain (length of the bar)
= (stress/E)c

Similarly, volumetric strain is defined as the change in volume per unit volume.
For example, consider a volume of elastic material bounded by the closed surface
shown in sketch (c).

H
p—

Sketch (c)

When this volume is subjected to a normal stress, it will assume the form shown
by the dotted line. If the distance between the stressed and unstressed surfaces be
denoted by the vector §, the change in volume due to the stress will be given by the

following integral
2 —
change of volume = ff 5 -dZ

13
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where d3 is an element of area of the closed surface. For reasons that will become
apparent as we proceed, it is expedient to convert this surface integral to a volume
integral. This can be achieved by the use of Gauss’ divergence theorem (ref.9),
which states that for any vector point function A, which together with its derivative
in any direction, is uniform, finite, and continuous

[[7x e[ se

where d7 is an element of volume, and div 4 is the divergence function.
If the vector 4 be expressed in component form as follows:

A=Xi+Yj+ Zk

where X, Y, Z are the Cartesian components of 4, and i , f , k are a triad of mutually
orthogonal unit vectors, div A assumes the form

avi= X, Y 0z
ox oy oz

X, ¥, z being the Cartesian coordinates of an arbitrary point in the material.
Applying this theorem to the expression for the change of volume gives

[ ffore

change of volume =ff divs d7t

Therefore,

If we consider an infinitesimal volume d7 of the material, then the change in this |
element of volume is

div s dr
and the volumetric strain, which is the change in volume per unit volume, is given by

the ratio

div s dr
dr

=divs

14
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Assume that § has Cartesian components u, v, w, that is
T=ui + vf + wk

then the volumetric strain (volume dilation) is

ou , ov , ow :
€, =—+—+-—=e_+e +te
V. ax 3y oz x Yoz

The quantities e, €y e, denote relative changes in length (elongations) of an
elementary volume in three coordinate directions caused by the normal stresses.

In discussing the stress across a given surface, we are obviously dealing with a
situation that depends on two vectors as indicated in sketch (d); that is, the effect of
a force on-a surface depends not only on the force, but also on the size and
orientation of the surface (ref. 10).

o

Sketch (d)

One vector F represents the force vector acting on the surface; the other vector n,
“being the normal to the surface, uniquely characterizes the surface. Hence, the stress
acting on the surface depends on the two vectors F and 7. In accordance with our
definition of a tensor of rank #” as an ‘r” linear form in the base vectors, the stress
may be tentatively classified as a tensor of rank two. It should be remarked,
however, that to qualify as a tensor the components must also transform in
accordance with the covariant and contravariant laws to be defined.

After this brief discussion of the physical meaning of stress, the stress tensor will
be derived. ,

15
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Consider the element of volume enclosed by the infinitesimal tetrahedron shown
in figure 1.3.1

- N
i

>

Y

X

Figure 1.3.1.— Force and surface vectors in a Cartesian reference frame.

where 7 is a unit vector whose direction is normal to the element of area ds of a
surface S passing through the point P of an elastic medium, and F is the resultant
force. If the elastic medium is in a state of equilibrium, the resultant of all the forces
acting on the element must vanish, and the resultant moment of these forces about
any point must vanish also.

An examination of figure 1.3.1 again suggests that the tensor character of stress
derives from the fact that it depends on the two vectors 7 and F rather than on a
single vector. For the sake of clarity and simplicity, the stress tensor will be derived
relative to a Cartesian system of axes. Relative to this system, F may be expressed in
terms of its components as follows:

F=Fyi+Fyj+Fzk (1.3.1)

The quantities Fy, Fy, F7 can be resolved into componerrts perpendicular to each
face and components parallel to each face. The components perpendicular to each
face produce normal or direct stresses, and the components paraliel to each face
produce shearing stresses. Likewise, the area can be resolved into components
relative to the three Cartesian axes (see sketch (e)).

16
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Sketch (e)

If OL perpendicular to ABC in the direction of the unit vector # is the vector that
represents the size and orientation of the area ABC =d5, than the x component of
OL, that is, i+ds, represents in magnitude and direction the projection of d§ on the
yz plane. Similarly, the y and z components of ds§ are the projections of ds on OAC
and OAB, respectively. These components are j +ds and k - ds. Hence, the compo-
nents of F may be rewritten in the following form:

Fy = fix dsy + fyy dsy, + fy; ds, (1.3.2)
Fy =fyx dsy %1, ds, + [, ds, (1.33)
\ Fgz =fyx dsy + 1y, ds, +f,, ds, (1.3.4)
and
ds,.=i-ds- ' (1.3.5)
ds, =j - ds . (1.3.6)
ds, =k ds - ' (1.3.7)

The double subscript notation should be noted. The first subscript in fxx’ fxy’ and
fxz refers to the fact that these stresses all emanate from the component Fy,
whereas the second subscript designates the projected area on which the stress acts.
Thus, fxy means the stress is due to Fy acting on the element of area dsy.

17
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When the components of area, equations (1.3.5) through (1 .3.7), are substituted
in equations (1.3.2) through (1.3.4), the components of the elastic force assume the
following form:

Fy= (fxx;+fxyf+fxz]2) - ds
Fy = (fyi + £, + £,,k) - &5

Fz = (fyl + fy] +1y5k) -d5

Substitution of these values in equation (1.3.1) yields the reqtiired form
F=(Fyli + S + fgik + Fyuii + Fyyii + £,k + Fpki + Foyki + £y kk) - ds
But d§ = #i ds and the resultant stress across ds at the point P is defined by f, where

F=f-q.n ‘ (1.3.8)

&y

and ® is the stress tensor which is defined as fo_llows:

P = fy i + fxyll + Fgk + Fyxdi + £y )il + £y 0k + £ ki + £ k) + £, Kk
; (1.3.9)
By using the condition that the resultant of the moments about any point of all the

forces acting on the infinitesimal tetrahedron vanish, it can be shown that the stress
tensor must be symmetric, that is

Sy =fyx
Sz =1zx
fyz =12y

Although it is beyond the scope of the present illustration, it can be shown that
the stress tensor, equation (1.3.9), is a tensor of rank two. That is, in addition to
being a two linear form in the base vectors, it transforms in accordance with its

18
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variance. As indicated elsewhere, the distinction between covariance and contra-
variance vanishes in orthogonal Cartesian coordinate systems, and in these coordi-
nate systems it may be treated either as a covariant or a contravariant tensor. It will
be shown that if a contravariant formulation is adopted, the components of the
stress tensor in the “y” coordinate system will be related to its components in the
“x” coordinate system as follows:

. i 9
) === 22 o)
ax® axP
L 2
Similarly, if the stresses are treated as components of a covariant tensor, the
components of stress in the “y” coordinate system will be shown to be related to
the components in the “x” coordinate system by the following covariant
transformation:
o 3xB
fii0) = F= S g 4x)
ay ay

In these equations the indices i, j, &, § are used, for convenience, instead of x, y, z
Each index can assume the values 1, 2, 3. The choice of variance will depend on
whether “y” is known as a function of “x,” or is known as a function of “y.” If
y =y(x) is the form available, then the contravariant transformation would be the
obvious choice, but if x =x(y) is known, the covariant transformation would be
simpler. If both y = y(x) and x = x(y) are known, it is immaterial which transforma-
tion is used. .

Consider, for example, the contravariant transformation. The transformation
equations are obtained by summing on the dummy indices a and g as follows:

“ 2

ij ay ay 11 ayi ay 12 By ay 13
f(y)a T fix)+ axlaxzf()a [2:x)

f 2 ' oy
$ LW 1 4 B W a4 O s

. ay y]; f31( )+ay ay f32( ) ay ay f33( )
ax ox ax3

19
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“ :9

By 3331gn1ng all possible values to the superscripts and ‘4,” the nine transforma-
tion equations are obtained. If the shear stress component f 2 3(y) is required, then

f23(y) ay ay fll( ) gy ay flz( ) aﬁ ay f13( )

3
W+ 2 Wy

a}’ ay3 21
+
S ax? ax3

ax axTt ax2 Bx?

a2 a3 a.2 a3 82'-‘ 3

Likewise, the covariant form would appear as follows:

1 1 3
fzs(y)—% e+ X o+ )

oy ay? 8 a3 ay ay? ay3
ox? ox! 0x? 0x? ax? ax3
+é‘;‘ 5)3 fzn(x)'*‘ay—2 F fzz(x)‘*‘é—y—2 ay—3 f23(x)
ax ox! ox3 9x? ox3 ax3
ay P f3l(x)+'a‘;2_ Py fsz(x)'*'g;; a°® f33(x)

where

[ii(x) =Fy s flz(x)=fxy ; f13(x)=fxz
le(x)=fyx ; fzz(x)=fyy ; fzs(x)zfyz
[51(x) =1, 5 f32(X)=fzy ; f33(x)=1,,

Although these operations can be performed by human operators, it will be seen
in subsequent sections that they can be executed with speed and efficiency by using
a computational algorithm and a digital computer that exploits the advantages of the
summation convention.

It is seen that a tensor of rank two as exemplified by the stress tensor, equa-
tion (1.3.9), has nine components in three-dimensional space, and that the covariant
and contravariant transformations give rise to nine terms on the right-hand side. In
two-dimensional space, the stress tensor would have four components and four
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transformation equations would be required, each having four terms on the right-
hand side. In general, a tensor of rank two has n? components in “n” dimensional
space, and a tensor of rank “r” hasn” components in “n” dimensional space.

1.3.2 Inertia Tensor
Another example of a tensor of rank two is the inertia tensor. Let “m” be the

_mass of a particle of a_body at the point P, and let “‘7” be the position vector of the
particle relative to the fixed point O (see fig. 1.3.2).

Figure 1.3.2.— Mass distribution relative to a.

The moment of inertia of the body about an axis through the point 0 parallel to
the unit vector a is given by the following sum:

My =X md?
where “d” is the perpendicular distance of the point P from the axis & and
d? =(Fxa)> =(Fxa)- (Fxa)
Therefore
) Mp=Z m(xa): (Fxa)

The expression on the right-hand side of this equation may be treated as a triple
scalar product and expanded accordingly,

21
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My=% m{f . [&x(?xé)]}
My=2m{F - [F- @-Pal} .
Mp=Z mlr? - (a-7)?]

This equation may be rewritten in the following form:
Myp=d-[Zm(r?l-)]-a

where T is the idemfactor or the identical dyadic. The idemfactor has the property
that the scalar product of I and any vector 7 is always equal to 7; that is, if

[ F=F-T=F
for all values of 7, then I is an idemfactor. In particular
I=0i+jj +kk
is an idemfactor, since
Fel=(f+yf+zk) @i +jf+kk)=(i+y] +zk)=7
and
Toi=@ +j+kky (i +yf+zk)=(x +jy +kz) =7
In terms of this notation the moment of inertia aséumes the form
My=a-F-a
where & is the inertia tensor or, as it is sometimes called, the i}lertia dyadic, that is,
S =m@2l- )

As in the case of the stress tensor, it is seen that the inertia tensor assumes the form
of a dyadic, or a two linear form in the vector 7. This justifies its classification as a

22
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tensor of rank two since, in addition, it transforms in accordance with the covariant
and contravariant laws to be defined in a subsequent section.

The inertia tensor occurs in the study of rotational motion. For example, consider
the case of a rigid body rotating about the fixed point 0, and let & be the angular
velocity of the body at-any instant. If the angular momentum of the body be
denoted by H

H=%ixmV
but
V=GxF
Therefore
H=3 mix (& xF)
or

H=Im[r*a- (r - @)F]
This equation may be rewritten as follows:
H=3 - [Z m(r?]-7P)]
or
H=G-%=3 -

where & is the inertia dyadic. .
Similarly, if the kinetic energy of rotation of the body be denoted by T

. 2T=X mV? =% m(@ x 7)?
or

2T=Z m(wx¥) (G xF)

23
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Again, the expression on the right-hand side of this equation can be treated asa
triple scalar product. Hence

2= m{@ - [Fx @ x P}

or
2T =2 m{s - [r*@- (- BFl}

which may be rewritten as follows:

2= [Em@2-P] @
or

2=w'%-©

where & is the inertia tensor again.

The components of the inertia tensor may be 6btained by expanding & as
follows:

D= ml(x? +y? +22)Gi + ]+ kk) - (e + yj + zk)ed + yf + zk)]
or
B =[S my? +22)ii+ T mx? +22)] + Z mx? + y?)kk

- T mxyij- T mxzik- Z myxf;— z myszlz'- S mzxki- S mzyl?}]

The following definitions are required:

L, =Zmy?+z%) ; Iyy=2m(x2+z2) ; I,, = Z m? +y?)
Ixy=1yx==2mxy ; Ixz =sz=2mxz ; IyZ=IZy§Emyz
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In terms of these definitions, the inertia tensor assumes the more familiar form:
D = (I, - Ixyij -1 ik - Iyxji + Iyyjj - Iyzjk -1, ki~ Izykj + I, ,kk)

It is interesting to note that

i~®-i=I., ; j-<1>-'=1yy ; k+®-k=1I,
i-(D'j:—Ixy; i+ ®k=-1, S .j~<I>- =—Iyz

The inertia tensor, like the stress tensor, is seen to have nine components. As
previously indicated, this is characteristic of a tensor of rank two in three-
dimensional space. Hence, the same law that was used to transform the components
of the stress tensor can be used in this case also. The transformation of the inertia
tensor will be considered in more detail in a later section.

1.4 TRANSFORMATION LAWS
1.4.1 Vector Components

To facilitate the computer processing of vectors and dyadics, all such entities
should be expressed in terms of their tensor components and a corresponding set of
base vectors, rather than in terms of their physical components and a set of unit base
vectors. When referred to a general curvilinear coordinate system, a vector 4 may be
expressed in the following alternative forms:

A =4g; = ag (1.4.1)
As previously . indicated, when a certain index occurs twice it means that the

expression is to be summed with respect to that index for all admissible values of the
index, that is \

" .
, , (1.4.2)
i=1
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n .
A]-E] =]'Zl AiE] (1.4.3)

where Ai, A]- are the tensor components of the vector 4, and aj, @ are the
corresponding systems of base vectors. In accordance with established convention,
contravariant components will be denoted by superscripts and covariant components
by subscripts. It is necessary to keep in mind the distinction between contravariance
and covariance because if general coordinate transformations are contemplated, the
transformation law for the components of a contravariant vector denoted by
superscripts differs from that for a covariant vector denoted by subscripts. It must
be emphasized, however, that the covariance or contravariance of tensor compo-
nents is not an intrinsic property of the entity under consideration. The distinction
is due to the way in which the entity is related to its environment, or the coordinate
system, to which it is referred. For a transformation from a coordinate system x to a
coordinate system y given by :

Y =pixt x2,x3) . (1.4.4)

the transformation law for the components of a contravariant vector Al will be
derived in the following section and will be shown to have the following form:

. i . -
B(y)= a_y_. AY(x) ' (1.4.5)
ox! :

where Ai(x) are the contravariant components in the x coordinate system and Bf(y)
are the components when referred to the y coordinate system. For the same
transformation of coordinates, other vectors, such as the gradient of a scalar point
function, obey a different transformation law. These are the covariant vectors
denoted by subscripts. Assuming that the coordinate transformation is reversible and
one-to-one, the appropriate transformation law for these vector components is

i |
Bi») = O 44000 (1.4.6)
ay/

where A;(x) are the covariant components in the x coordinate frame and B]-(y) are
the covariant components when referred to the y coordinate frame. As the following
argument shows, the distinction between these two transformation laws vanishes
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when the transformation is orthogonal Cartesian. Let x! be the components of a
position vector 7 when referred to the x coordinate system which is orthogonal
Cartesian. Likewise, let 3/ be components of the same vector when referred to
another orthogonal Cartesian system. In this case, the transformation of coordinates
is given by

Y= oz]-ixj (1.4.7)

where the o;’ are constants. The position vector 7 is invariant with respect to
coordinate transformations. Hence, the square of the vector is also invafiant.
Therefore, '

k k

i i ik i
xIx] = yly —a]-akx]x =8, x/x

and

O‘ji“ki = 5ki ' (1.4.8)

where & kj is the Kronecker delta, that is

1 for j=k
J =
0 for j#k

S

Equation (1.4.8) is the orthogonality condition which may be used to solve equa-
tion (1.4.7) for x/. If both sides of equation (1.4.7) are multiplied by ozk’

ojlog el = oy
and
6ijj =xk = ak'iyi
Therefore

xi = ozjiyi (1.4.9)
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~

From equation (1.4.7) it is seen that

gy_jza].i (1.4.10)
x
and from equation (1.4.9)

al _ i

3y % (1.4.11)

It follows from equations (1.4.10) and (1.4.11) that

i
aL. = QZC—] (1.4.12)
ox/ oyt
At this point, it is instructive to give an example of a covariant vector or a
covariant tensor of rank one. Consider the components of a gradient vector and let ¢
be a uniform, continuous scalar point function. Let the gradient of this function
with respect to the x/ coordinate in the X-reference frame be denoted by

0
ax/

Likewise, let the gradient of this function with respect to the y¢ coordinate in the
Y-coordinate reference frame be denoted by

3¢
ayi
These gradients are related as follows:
3 _ 3
ayi ox/ ayi
Moreover, let
2 _ By

oyt
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and let
2 400
ox’
then
J
Bi) =2 4,0
{
oy

This is seen to satisfy the mathematical definition of a covariant vector given in
equation (1.4.6).

1.5 BASE VECTORS

The transformation laws and, hence, the covariant and contravariant character of
the base vectors and their reciprocals may be obtained as follows: Let the differen-
tial of a position vector be denoted by dr. Then if dl-(x) are the base vectors in the x
coordinate system, and b;()) are the base vectors in the y coordinate system, the
differential d7 may be expressed in the following alternative forms:

o

o o i
dF =30’ = B»ay! = bi») 2 ax (1.5.)
ox!
Therefore
-
a0 =2 5.) .52
ax!
Likewise ‘
. P .
3,00) %= dyl = 5,()dy!
oy!
and 7
- i _ v
B = 2 a,x) (1.5.3)
oy!
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It is seen from equations (1 5.2) and (1.5.3) that the base vectorsa a; and b obey the
covariant transformation law; consequently, the use of subscripts is Justlﬁed

1.5.1 Reciprocal Base Vectors

To each system of base vectors g; there exists a reciprocal system of vectors al
with the following property

where 6,j is the Kronecker delta; that is

1 for j=i

5if;
- 0 for j#i

Scalar multiplication of each side of equation (1.5.2) by Ej(y) gives, on using (1.5.4)
s _ J
Biyy - d,00) = 2 (1.5.5)
ax?
Similarly, from equations (1.5.3) and (1.5.4) it is seen that
oz axl
a(x) - b;(v) = == (5.6
ay/ ‘

Equation (1.5.1), referred to the reciprocal system of base vectors, assumes the form

dF =a'(x)dx; = Bl(y)dy; (157
Therefore ,
dy; = b;») - &’(x)dxi.
(1.5.8)
ay]
and

dx; =a(x) * Bl)dy;
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Therefore
_ayl
dﬁ‘;;@j (1.5.9)
From equations (1.5.7) and (1.5.8)
. _ i
@ (x)dx; = Biy) 2 ax,
oy’
Therefore
= axl —; |
ai(x) = 2 pl(y) (1.5.10)
ay/ :
Likewise, from equations (1.5.7) and (1.5.9)
e
bl(y) =L aix) (1.5.11)

ax!t

From equations (1.5.10) and (1.5.11), it is seen that the reciprocal base vectors obey
the contravariant law of . transformation; therefore, the superscript notation is
justified.

1.6 VECTOR TRANSFORMATIONS

Equations (1.5.10) and (1.5.11) may be used to obfain the transformation law for
a vector A, where
Z=A%=%ﬂ ' (1.6.1)
IfA4 = Ai(x)éi(x) when the vector 4 is referred to the x coordinate system, and if
A= B’(y)l'fl-(y) when referred to the y coordinate system, the invariance of A
requires that :

BI»)b; () = A(x)a; () (1.6.2)
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From equations (1.5.2) and (1.6.2), the appropriate transformation law is obtained
as follows:

W i
o] A'(x) (1.6.3)

Bf(y) =

Equation (1.6.3) is the contravariant transformation law for the components of the
vector A. When 4 is referred to the x coordinate system with base vectors 5l-(x),
which obey the covariant transformation law, the components A/(x) obey the
contravariant transformation law; hence, the use of superscripts is justified.\ If 4 is
referred to the reciprocal base system @', then from equation (1.6.1):

A=A44

On a transformation of coordinates from the x coordinate system to the y coordi-
nate system, invariance of 4 requires that

A(0@(x) = Bj0HEI () (1.6.4)

From equations (1.5.10) and (1.6.4), the appropriate transformation law is obtained
as follows:

ox?
B;») w: i) (1.6.5)

It is seen that when a vector A4 is referred to a coordinate system with reciprocal
base vectors, which obey the contravariant law, the corresponding components of A
obey the covariant law, and the use of subscripts is therefore justified.

e
1.7 RAISING AND LOWERING OF INDICES

1.7.1 Lowering Indices

The vector 4 may be expressed in the alternative forms given in equation (1.6.1).
Scalar multiplication of each side of equation (1.6.1) by a; gives

@ - d)a" =A@ - a) | (1.7.1)
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By substitution from equation (1.5.4) in equation (1.7.1) the following result is
obtained:

giin =A]- (1.7.2)
where

a;~a; =g
Again by substitution for A]- from equation (1.7.2) in equation (1.6.1)
| a; =gl (1.7.3)
Equation (1.7.2) gives the transformation from the contravariant components to the
covariant components of a vector. The corresponding transformation of base vectors
is given by equation (1.7.3). These operations are usually referred to as lowering the
index (ref. 1).
1.7.2 Raising Indices

Scalar multiplication of each side of equation (1.6.1) by di gives
Al@ - = A]-(éf - ) R RED

Substitution from equation (1.5.4) in equation (1.7.4) gives

Al =gjjA]- (1.7.5)
where

Gl =g

When this expression for Al is substituted in the left-hand side of equation (1.6.1)
the following result is obtained

A5, = 7
g Ad; = Ad
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Therefore
al =gla, (1.7.6)

Equation (1.7.5) enables the contravariant components of a vector to be expressed
in terms of its covariant components. Equation (1.7.6) gives the corresponding
transformation of base vectors. These operations are usually referred to as raising the
index. '

1.8 BIVECTOR TRANSFORMATIONS

A second-order tensor is characterized by having two indices. Both indices can be
superscripts, in which case the tensor is doubly contravariant. Tensors of this kind
are sometimes referred to as the contravariant components of a bivector. When both
indices are subscripts, the tensors are doubly covariant, or the components of a
covariant bivector. It sometimes happens that one of the indices is a superscript and
the other one a subscript. Entities of this kind are called mixed tensors or the
components of a mixed bivector.

1.8 1 Contravariant Bivectors

As in the case of vectors or first-order tensors, bivectors are entities whose
- properties are independent of the reference frames used to describe them. Equa-
tions (1.6.2) and (1.6.4) are mathematical expressions of this statement, insofar as it
applies to vectors. As might be expected, the invariance of a bivector, in going from
a coordinate system x with base vectors a;(x) to a coordinate system y with base
vectors"'l;l-(y), involves the equality of two dyadics. The coefficients of the individual
dyads in these dyadics are the components of the bivectors. If in the x coordinate
system with base vectors E]- the bivector is given by )

A% (x)agx)
and if in the y coordinate system with base vectors Ei this bivector assumes the form
BI5)5 )5,

invariance requires that

34
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BU()b0)b;(v) = A%B(xi (x)agx) (1.8.1)

By substitution from equation (1.5.2) in equation (1.8.1),

BI)5,0)B;(») = A“ﬁ()a}’ b(y)a 750 (1.82)
X

Therefore, by equating coefficients of like dyads.in equatlon (1.8.2), the required
transformation law is obtained as follows:

B S
Bl(y) = @’_ oy’ A%(x) A . (1.83)
ax® axP . g

This is-the transformation law for the components of a contravariant bivector.
1.8.2 -Covariant Bivectors

Since covariant bivectors are characterized by two subscripts, it follows that-the
formulation of the dyadics will be in terms of the reciprocal base vectors. That is, if
A ﬁ(x) are the components of the covariant bivector in the x coordinate system, and
B; (v) are the corresponding components in the y coordinate system, invariance of
the bivectors requires that

Binb' b (v) = A yg(x)a%(xaP(x) - (184

Substitution from equatioh- (1.5.10) in equation«1.8.4) gives

i 7, ﬁ ¥}

B BH0)BI() = At ) b(y) - biy) (185)

ay!

Therefore
B(y)—aLﬁAaﬁ(x) (1.8.6)
l] ay ay] 0.

Equation (1.8.6) is the transformation law for the components of a covariant
bivector.

35



19 JAMES C. HOWARD

1.8.3 Mixed Bivectors

A mixed bivector has one index of covariance and one index of contravariance. In
this case, the bivectors consist of base vectors and reciprocal base vectors. The
invariance requirements may be stated as follows:

B 0)b,0bI(r) = Ag%(x)apx)aP(x) (1.8.7)

Substitution from equations (1.5.2) and (1.5.10) in equation (1.8.7) gives

.o . i_ B _.
Bi0)B,0)BI) = 45%x) 2 5,01 2 3iy)
] B o

ox ayj
Therefore
. i B
By =2 EAB%x) (1.8.8)
x% a3y’

The components\of mixed bivectors transform according to equation (1.8.8).
1.9 PHYSICAL COMPONENTS

The transformation from covariant to contravariant components and vice versa
was discussed in preceding sections. This section is concerned with the transforma-
tion from covariant and contravariant components to physical components and vice
versa.

It frequently happens that an analysis can be performed and the results obtained,
without reference to physical components. However, sometimes a quantity, such as
a force, is known only in terms of its physical components. In this case, the
transformation from physical components to tensor components must be deter-
mined. The appropriate transformations may be obtained as follows:

" Therefore
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Let
a; = o,
where q; is a scalar magnitude and g; is a unit vector. With this notation.
a; * ;= ()" =g
Therefore
% =31
that is

a; =/8(ii a; (1.9.1)

where the parentheses imply suspension of the summation convention. Hence, if 4;
are the contravariant tensor components of a vector 4, and if A are the correspond-
ing physical components, then

A'a; = /BpyANE; =A'd,;

- Therefore
A = \/BA ' (1.9.2)
Likewise, let

and let
a = pa
- where § is a scalar magnitude and &’ is a unit reciprocal base vector. Therefore

gl = g(ii) — (ﬁi)2

B =/g® (1.9.3)

A
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Hence, if A; are the covariant components of a vector A, and if "dz are the
corresponding physical components

Therefore
oAy = /gl 4;
Moreover, if the coordinate system is orthogonal, the physical componénts can be
expressed in the following alternative forms:
oA = fg) g = L 4, C(1.9.9)
i i
Ve

Equation (1.7.2) may be .used to show .that -di = & in orthogonal coordinate
systems. From equations (1.9.4).and (1.7.2):

_ 1, _ 1 18 P i
= V(i) 4= Ve [g("")Al] = Ve A=
that is
oAy =

That.«; #.4 i in nonorthogonal coordinate systems may be seen as follows:

oAy = /g(ii)Ai =, /g(ii)giin
Therefore, in this case
[ 4l
di * \/EEI-_)A’ = o -

The fact that & # «; in nonorthogonal coordinate systems is a consequence of the
relation
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1.10 TENSOR COMPONENTS

It should be noted that a vector, or a tensor of rank one, has three components in
three dimensional space. For the case i = 1,2,3 andj = 1,2,3, equation (1.6.3) repre-
sents three equations in which the right-hand members each have three terms:

- oy! ay’
v R

_ oy? ay? ay?
B = ag A tga At A

B3=Q_3A1+§J_}3A2+_ay_3A3
ox! ox? ox3 : -

Although a vector, or a tensor of rank one, has # components in #» dimensional
space, with each transformation equation having n terms on the right-hand side, a
tensor of rank two has n? components, with each transformation equation contain-
ing n? terms on the right-hand member. For example, for the case i=1, j =2,
equation (1.8.3) assumes the following form:

_ oyl oyl ay' oy? ay! ay?
B A Tt 4 T e 4

ay! Ay iy L ' dy? La. Oy WY a3
+ Y g1 LYW 422 VOV Yy
ox2 ox!? ax? ox? -ox? ox3

ay' dy? 3y 4 oyl Ay? 3., 0¥ AP a3
+ O W 431 O Y g3 Wy
ox3 ox! - 9x3 ox? Ox3 ox3

It will be noted that o and B have each taken on their three possible values which
resulted in nine terms on the right, whereas i =1 and j =2 have been retained
throughout. Now since i and j may each have the three values 1, 2, 3, there will be
nine such equations, each containing nine terms on the right. In relativistic mechan-
ics there are four dimensions to be considered. In this case, equation (1.8.3) will
represent 16 equations, each containing 16 terms on the right-hand side. Likewise, a
contravariant tensor of rank three is defined by the following equation

39



111 ) JAMES C. HOWARD

} i 5, gk .
Biik(yy = L W T oy, (1.10.1)
x® axP axY

The number of equations represented by (1.10.1) and the number of terms on the
right-hand side of each transformation equation depends on the dimensionality of
the space. In n dimensional space, (1.10.1) will have n® components, with each
transformation equation consisting of n® terms on the right-hand side. More specifi-
cally, there will be 8 components in two-dimensional space, 27 components in
three-dimensional space, and 64 components in four-dimensional space. And, in
general, if the components of a mixed tensor in the X-coordinate system are denoted
by

JLL SR

alaz,...,as

(x)

its components in the Y-coordinate system will be

jlj2’ ... ’j"
B. . - ()
Lilyg,..., lS
where
lejZ’ ... ,jr(y) _ ayil ayj2 ayjr axaz axa2 axas ABI ﬁz, ey ﬁr
ili23"',is axBl axﬁZ ...axﬁr ayil ayiz ...ayis alaZ"")aS

1.11 ALGEBRA OF TENSORS

The following results are stated without proof. For a rigorous derivation of these
results, the reader is referred to standard texts on the subject.

THEOREM 1. The sum or difference of two tensors which have the same number
of covariant indices and the same number of contravariant indices is a tensor of the
same type and rank as the given tensors. _

For example, take a vector having components A’(x) when referred to the
X-coordinate system and let B'(x) be another such vector referred to the same
reference frame. Since A’(x) and B’(x) are contravariant tensors of rank one, they
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obey the corresponding transformation law. The components of these vectors when
referred to the Y-coordinate system are '

'Ai(y)=§y—; Al(x) (1.1L1)
x
Biy) = ?-y—; Bl(x) (1.11.2)
ax
Therefore
Ay + Bi(y) = Z—y-; [47(x) + B;(x)] (1.113)
x
or-
Ciy) = ::-:-y—; Cl(x) (1.11.4)
X
where
)= Ay + B'y)
and

Clx) = Al(x) + B/(x) (1.11.5)

It is to be noted that (1.11.3) may be obtained by adding (1.11.1) and (1.11.2) as if
each of these represented a single equation containing only a single term on the
right, rather than a set of equations each containing several terms on the right. Thus
the notation takes care that the corresponding components shall be added correctly.

THEROEM I1. The set of quantities consisting of the product of each component
of a tensor having p indices of contravariance and q indices of covariance, by each
component of a tensor having r components of contravariance and s componentsof
covariance, defines a tensor called the outer product. The product tensor is contra-
variant of rank p + rand covariant rank q + .
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Again, as in the case of addition and subtraction of tensor components, the tensor
notation automatically assures that the outer product of

Ay =20 o0 | (1.11.6)
ax<
and
. i ’
Biy) =2 Bix) (1.11.7)
axB
can be written immediately as
iy = 2L W cagy (1.11.8).
ax® axP
where ”
Cliy) = A0)B/(») (1.11.9)
and -
C%B(x) = A%x)BB(x) (1.11.10)

By writing out the equations in full for the two-dimensional case, the reader can
easily verify that this is a valid procedure. In the two-dimensional case

1.11.11
A'(y)—ay A'(x)+ L a2 ( )

B’(y)—ay B‘()+ay B2(x) (1.11.12)

Therefore

Alp)BI(y) = Cliy)

2
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where

Cliy) = [ Al (x )+ay A (x )][ay B! (x )+g—i—1;32(x)] (1.11.13)
Hence

Clity) = [ay gyl A1 (0)B (x )+§y, g” AL (0B (x )+gy2 gy, A2(0)B (x)

Loty g ma | (1.11.14)
ax2 3 A*(x)B (x)]

Summing equation (1.11.8) on a and g gives -

if ayi ay ay ay
CHyy =2 11 + & 12
) ax‘ax‘C() azc()
ay ay ayi ayi v
) 2! 22 1.11.15
ox? (x) + ox? 3x? S ( )

which, in view of equation (1.11.14), does represent completely the product of the
‘two given equations.

Moreover, it is possible to multiply a covariant tensor by a contravariant one, thus
obtaining a mixed tensor as follows. The outer product of

Aiy) = 2 400

s (1.11.16)
and -
B
B,-(y)=% Ag(x) (1.11.17)
y
is
; ayt axﬁ
Clly) == Cr%(x) (1.11.18)
4 ax® ayl B
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Thus, the outer product of a contravariant tensor of rank one with a covariant
tensor of rank one is a mixed tensor of rank two. The product tensor has one index
of contravariance and one index of covariance. More generally, the outer product of

(y) —yi al ax? A“ﬁ() (1.11.19)
X% axB gpk
and
_ !l af 5
B loy=22 X _48x) . (1.11.20)
" axd ay™m

is

P Ioapl oxY ay! ax€
Gl oy = ay! oy y %P5 (x) (1.11.21)
km axa axﬁ ayk ax6 aym ’Ye

Hence, if any two tensors of ranks p and g are multiplied together to form their
outer product, the result is a tensor of rank p + q. Moreover, if the tensor of rank p
is a mixed tensor with p; indices of contravariance and p, indices of covariance, and
if the tensor of rank g has ¢, indices of contravariance and ¢, indices of covariance,
then their outer product will be a mixed tensor having p, + g, indices of contra-
variance and p, + ¢, indices of covariance.

Although the tensor calculus makes it easy to perform these operations, it should
be emphasized that the operations represent complicated processes. Equa-
tion (1.11.19) is the transformation law for a mixed tensor of rank three and
represents a whole set of equations. As previously indicated, the number of equa-
tions depends on the dimensionality of the space being considered. There will be
8 equations for two-dimensional space, 27 equations for three-dimensional space,
and 64 equations for four-dimensional space. Each of these equations will have a
corresponding number of terms on the right-hand side. And equation (1.11.20) is
- the transformation law for a mixed tensor of rank two. It also represents a set of
equations that depends on the dimensionality of the space being considered, namely,
4 for two-dimensional space, 9 for three-dimensional space, and 16 for four-
dimensional space — all with a corresponding number of terms on the right-hand side
of each equation. The outer product of these two equations gives rise to the set of
equations (1.11.21). This equation is the mathematical definition of a tensor of rank
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five, having three indices of contravariance and two indices of covariance. The set
resulting from this outer product contains 32 equations for two-dimensional space;
243 for three-dimensional space, 1024 for four-dimensional space, and so on. And;
of course, each equation will have a correspondingly large number of terms on the
right-hand side (ref. 11). |

In addition to the outer product of two tensors, which gives rise to a tensor of
rank higher than the rank of the individual tensors, another kind of tensor product
which gives rise to a tensor of lower rank than the individual tensors is defined by
the following theorem (ref. 12):

THEOREM 111. If in a mixed tensor, contravariant rank p and covariant rank q, a
-contravariant index and a covariant index are equated, and the resulting tensor
summed with respect to that index, the resulting set of p+ q - 2 sums is a mixed
tensor, contravariant of rank (p - 1), and covariant of rank (q - 1).

Consider the mixed tensor

.. i j T
By =2 2 0 4aB(y) (1.11.22)
ax axB ayk '

If the indices i and k are made equal, this tensor becomes

Bl (y) = 2L 2 X 49fy) (1.11.23)
ax® axB ay!
but
T i
W™y g7 (1.11.24)
oyl oax®

where 60(7 is the Kronecker delta, that is

1 for 1=«
. 5 T —
0 for 7#«
Therefore

B/ () = g—y—ﬁ 8,TA%B(x) (1.11.25)
X .
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By =2 498x) (1.11.26)
) axh

By the summation convention, the left-hand side is to be summed on i, and the
right-hand side summed on a. To clarify this operation assume that the space
involved is two-dimensional. When equation (1.11.26) is written out explicitly, the
following result is obtained: '

Bll +B2l ___Qy_l‘ i.All ; +A21 +E Alz +Av22 ]
1 0) 37 0) 3l L1 (x) 3 (x) 3x? 17(x) 3°(x)

B0y + 83200 = 2 [at @ + a1 w)] + 2 [arrw +a3e]

‘This equation may be rewritten as follows:

Gy = ABxy | (1.11.27)
axﬁ :
where
\ C'(») =BI' () + B3 (»)
C*(y) =Bl%(y) + B3%(»)
and ’

Al(x) = A1 (x) + A3 (x)
A*(x) =A1%(x) + A3%(x)

Hence, by making one upper and one lower index equal, a tensor of rank three has
been reduced to a tensor of rank one. The operation of equating one contravariant
index to one covariant index is known as contraction. If it is possible to apply the
operation of contraction to the outer product of two tensors, the result is a tensor
called the inner product. It should be noted that when, as a result of contraction of
one or more pairs of indices, there remain no free indices, the resulting quantity is a
scalar,
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Ay

At this point some readers may wish to skip the remaining tensor theory and
proceed directly to section 2.1 of aeronautical applications, which only requires a
knowledge of rank two tensor transformations. Having seen the utility of the more
elementary tensor operations and the ease with which the summation convention
can be utilized with a simple computational algorithm, the reader will wish to return
to a study of the remaining theory which deals with the Christoffel symbols and
their role in obtaining derivatives. Once the Christoffel symbols are understood and
expressions for vector derivatives obtained, the way .is clear to proceed with the
formulation of models of diverse phenomena. It will be seen, however, that all
formulations, from the simplest to the most complex, require operations involving
only summation and differentiation. The simplicity of these operations is adequately
demonstrated in sections 2.1 through 2.9 of the chapter on aeronautical
applications. :

1.12 VECTOR DERIVATIVES AND THE CHRISTOFFEL SYMBOLS

The scalar product of any two base vectors g; and d]- may be defined as follows:

Likewise, the scalar product of the reciprocal base vectors @ anda/ may be defined
as

gd-a=a-a=g (1.12.2)
The symmetry of 8jj and gij follows from the nature of the scalar product. Certain
combinations of the partial derivatives of these scalar products with respect to the
system coordinates are useful in obtaining the derivatives of a vector or formulating
the equations of mathematical physics in a general curvilinear coordinate system.
The definitions that follow are ascribed to Christoffel and are called Christoffel
symbols. There are two of these symbols, the first of which is defined as

dgy gy g |
Lij,k] =% (-i‘ + ik (1.12.3)
axl  axt axk _

The Christoffel symbol of the second kind is

i
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l{;,:gkl[i]-’” (1.12.4)
1.12.1 Derivatives of a Contravariant Vector

The utility of the Christoffel symbols is immediately apparent when an attempt is
made to find the partial derivatives of a base vector, orits reciprocal, with respect to
any system coordinate. Any vector A may be expressed in the forms given in
equation (1.2.1). Furthermore, since the base vectors are, in general, functions of
the coordinates, it follows that the derivative of 4 with respect to any coordinate
can involve the Christoffel symbols. From equation (1.2.1), the partial derivative of
the contravariant form of the vector A with respect to the coordinate xk is gi\}en by

= i . 0a;
E/ikz?%a. + 41 L (1.12.5)
ax® ax ox -
Since a;*a; =g
ag; da; 3a; )
i i -, = j
] e S § (1.12.6)
axk  axk e axk
Likewise,
dgix 0 _ _ aak
I _IT'akJ”’f'_i (1.12.7)
axt ax ax
and
0g; 0a; oa
Ttk _T1 .G v - K (1.12.8)
; k i
ax/ o/ ox/
Since
Ei:'ai,- (1.12.9)
ox :

it follows that
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a‘i=i(i>=i(i> -5 -
ax] ax/ \ax! ax? \ox/ ax! (1.12.10)
From equations (1.12.6) through (1.12.10) .

aa;

— @y = [ijk] (1.12.11)

ox/ '

Therefore, if equation (1.5.4) is used, the rate of change of the base vector a; with

respect to X; assumes the form

oz, )
ﬁ= lij.kla (1.12.12)
X

Equation (1.12.12) gives the required rate of change of the base vector a; with
respect to a system coordinate, in terms of the Christoffel symbol of the first kind
and the reciprocal base vectors. A more convenient form is obtained if both sides of
equation (1.12.12) are multiplied scalarly by the reciprocal base vector @ to yield

3a; ,
L@l =jkak - & (1.12.13)
ox/

From equation (1.12.2), it is seen that
k. q = gkl
Therefore

oa;
g =ik gM (1.12.14)

ox/

N

In terms of the defining formula (1.12.4), equation (1.12.14) may be rewritten as
follows: '

i@_ = {1} , (1:12.15)
ox/ )
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Therefore
65,- ) _
— = a
P ij 1 (1.12.16)

By substitution of equation (1.12.16) in equation (1.12.5) the partial derivative of a
vector A with respect to the system coordinate x* is

i i .
a_ftc =§ik L {2} 3 : (1.12.17)
ox*  ox !

The indices i and / in the second term on the right side of equation (1.12.17) are
dummy indices, and may therefore be replaced by any other convenient indices,
except k. To have a common base vector a;, equation (1.12.17) may be rewritten as

follows
i i i . .
a_fif A4, { ’A/ i =4l (1.12.18)
ox axk ik ’
Furthermore, since
oA ax* _ dA
axk dt dat
and
04! dx* _ da?
axk dt dt

the intrinsic derivative, or the total derivative with respect to the parameter, ¢, of the
contravariant form of the vector 4, may be obtained from equation (1.12.18) in the
following fqrm:

dA _ (a4 +1°! Aiﬂf g.=Al gx_ka, (1.12.19)
dt dt jk dt i K g G
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where Al % is the covariant derivative of the contravariant vector A’ with respect to
xk.

The notation A’ suggests that the covariant derivative of a contravariant vector is
not a simple covanant or corntravariant vector. As the notation implies, A’] is a
mixed tensor, with one index of contravariance and one index of covariance. If a
single-valued, reversible functional transformation of the form given in equa-
tion (1.4.4) is assumed, the transformation law for this type of entity is

ay axfI
ox% ay

B () = Aﬁo‘( x) (1.12.20)
where A Bo‘(x) are the components in the x coordinate system and Bki(y) are the

corresponding components in the y coordinate system.
™~ In an orthogonal Cartesian reference frame

’_”ij=d',-'6,-=aji=afoa-f=g{'f ©(1.12.21)

Therefore, since all these scalar products are constants, it follows that the Christoffel
symbols vanish. In this case, the covariant derivative of a contravariant vector
reduces to the sum of the partial derivatives of its physical components along a set
of fixed axes

gji__a_A_a l=1,2,3

axk  axk

Likewise, the in_tn’nsic derivative of a vector reduces to the ordinary time rates of
change of the physical components along a set of fixed axes.
For a general space of three dimensions, equation (1.12.19) assumes the form

dAd _ (dA' | = S da® | ) 7
ar (dt +f‘)a1+(dt +f)a2+(dt +f) a3 (1.12.22)
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dx

fl _Al 1 !
11) dt

1] ax?
+ A2 dx_
({21} dt

+43 {1 dx’
31 ar

2 _ 1 'Z}dx'
f 4 ({ll dt +

+ar(]? 1!
21 dt
dxl

+As({2

31| ar
NE

fr=a ({11]

1
ar({3 el
21} dr

(s

+ 1| ax?
12 dt
2
+{‘d’f
22} dt

1
n dx
32 dr

dx2
dr

{2
12

2 2
n { dx
(22 dr
+ {2 dx?
32 dt

1 2
ax! | 131dx? |
dt 12) dt

o)
fafs

JAMES C. HOWARD

i)
' ‘213l izxf)
%)
2)e)
{a)%)
1) 35)

(1.12.23)

(1.12.24)

134)

' {233] (fzxr)

(1.12.25)

i)2)

The intrinsic derivative of a contravariant vector in a space of three dimensions
contains 27 Christoffel symbols. However, because of the symmetry of the Christof-

fel symbols

=0

(1.12.26)

and the number of independent Christoffel symbols reduces to 18.
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1.12,2 Derivatives of a Covariant Vector

The second alternative from equation (1.4.1) may be used to express the vector 4
in terms of its covariant tensor components and reciprocal base vectors, that is

A=4,3 (1.12.27)
In this case, the partial derivative of the vector A with respect to xK is given by
= 0A4; . =i
94 g% (1.12.28)
ox ox axk ’
From equation (1.5.4)
=i . 0a
9a” a; + al-—1L =9
axk axk
Therefore
=i . 0a;
o cgy=-at - L (1.12.29)
axk ox
Substituting equation (1.12.16) in equation (1.12.29) gives
aal - ~i ! _ i
. a. = —a . a = -
kI ik bk
Therefore
aa! ‘ i)
— =71, (4 (1.12.30)
ox™ ik

Substituting equation (1.12.30) in equation (1.12.28) gives the partial derivative of
the vector A with respect to x" in the following form:

a4 . (i)
24 =—lai- {];} A7 (1.12.31)
0x ox"™
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The indices i énd jin the-second term on the right side of equation (1.12.31) are
dummy indices, and may therefore be replaced by any other indices, except k. In
terms of the base vectors a*, equation (1.12.31) may be rewritten as follows

< {04, {} ) ) .

oA i ) = =i -
P4 _[Z5 M 4 )ai=a. a (1.12.32)
axk (E)xk ik) 7 Lk .

where A ik defines the covariant derivative of the covariant vector A; with respect to
x*.

It may be noted that the covariant derivative of a covariant vector is not a vector.
As the notation implies, Ai,' is a doubly covariant tensor, that is, a tensor with two
indices of covariance. If a single-valued, reversible functional transformation of the
form given in equation (1.4.4) is agaln assumed, the transformation law for entities
of this kind is

ax% axhB
B;i(») = - % 4 5(x)

By oy’

where Aaﬁ(x) are the components in the x coordinate system, and B,-j(y) are the
corresponding components in the y coordinate system. It may be mentioned in
passing that moment of inertia, which is a second-order tensor, has a transformatlon
law of this form.

It appears, therefore, that the operation of covariant differentiation of a vector or
tensor increases the covariance by one index; that is, the x/ covariant derivative of
the contravariant vector A’ is A’ , Which is a mlxegi tensor, with one index of
contravariance and one index of covariance. The x/ covariant derivative of the '
covariant vector A; is A; ij This is a doubly covariant tensor or a tensor with two
indices of covarlance The intrinsic derivative of the covariant form of the vector A
is obtained from equation (1.12.32) in the following form:

d. =4 dxk ai .
dt zk , dt ik g - (1.12.33)
For a general space of three dimensions, equation (1.12.33) assumes the form
dA _ (dA, _ —1 dA, dA; _
:17_(d_tl fl) a +<§t— fz>a +(— f3 (1.12.34)
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1
H =4, ({“}d;t

where

fa

f3

2
+4, dx!
11 dt
, 31 dx!
+ A,
({11} dr

=4, 1 dx

21) ar

+4, 2 lax! +
: 21 dt

14, 3}dx
21) dt

(R
eaf2)e
eaf3)e

ll
+
1

+t;3}i;>

d 3
—xt~> (1.12.35)

A ‘23;@9
el

3 tdx ‘
23} dt) (1.12.36)

2
dx? |1 ]ax?
33| ar
+‘2;dx3
33) dr
dx? |3 1ax® (1.12.37)
33) ar

As in the case of the intrinsic derivative of the contravariant vector, the intrinsic
derivative of the covariant form of the vector 4 is seen to contain 27 Christoffel
symbols. However, because of the symmetry implied by equation (1.12.26), the
number of independent Christoffel symbols is again reduced to 18.
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1.13 SPECIAL COORDINATE SYSTEMS

The large number of terms appearing in equations (1.12.19) and (1.12.33) is due
to the generality of these equations which are applicable to any space of three
dimensions. Fortunately, for the three-dimensional spaces most commonly used,
both of these equations reduce to a more manageable form. )

For example, if base vectors of unit length are denoted by &i or &', then in a
cylindrical polar coordinate system (fig. 1.13.1):

a, ‘—’&1 g1 =1
a, =x'a, g, =W")? ¢ (1.13.1)
@, =a; 833 =1 )
and
a =2 gt=1 )
I 1
2 — 1 ~2 22 —
@ =5d 2= (1.13.2)
a® = a3 g*=1
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As a consequence of equations (1.13.1) and (1.13.2) there are only two indepen-
dent, nonzero Christoffel symbols in a cylindrical polar coordinate system. These are

2}
AR .

Hence, a contravariant vector referred to this coordinate system has a time rate of
change as follows:

A 1 1 2 2 2 2 1

dd _ (a4 | 42 dL[il+ das A1 X g2 dx )| +‘_14_353

dt dt 22) dt dt 12 dt dt dt
S (1.13.4)

Likewise, the time rate of change of a covariant vector referred to this coordinate
system is given by

dA _ dAl 2 dx? dAz ~ dAs -
aa _ - 4, al a2 a3
dt dr 12| ar 22 21

(1.13.5)
In spherical polar coordinates (fig. 1.13.2):

2N
=

Figure 1.13.2.— Polar coordinates.
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113
al =a gll =1
_ A 1.13.6
@, =x'a, 822 =(x")? ( )
a, =x'sinx%a; g35 = (x! sin x2)?

and
al =a! gl =1 )
=2 _ 1 22 _ 1 :
am =14 & T g [ (1.13.7)
= 1 - 1
a3 z__,_.__a3 33

x! sin x2 & (! sinx?)?

In this case there are six independent, nonzero Christoffel symbols. These are

{2121 = 1_ {323’ = -sin x2 cos x? W
B-bs Bl
{313] =t sin® <t {2331 = {332} = cot x2 J

When the Christoffel symbols are substituted in equation (1.12.19), the time rate of
change of a contravariant vector referred to a spherical coordinate system assumes

the following form (ref. 13):

Aol e )
dt dt 22 133 ar )
1 2
LG (A‘ AANLY:: i BNER Sl £:58 S
ar |12 dar dt 33) ar

dA3 3 , dx3 3 dx! 3 , dx3 3 dx?\| =
a2+ ARy L B A2 3 2
+[dt ‘13‘ (A ar ar] " |23 dt ar )| (1113.9)

(1.13.8)

-
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The corresponding rate of change of a covariant vector is obtained by substitution
from equation (1.13.8) in equation (1.12.33). In this case,

dA4 _ dAlA dx3
2
dar  \ar 13
dA; 1 {dx? 2 | axt 3lax3\ -
+(Z22- 4 &7 _ 4 X _ 4 ax” ) z2
(dt ‘{22 dr 2[2l]dt *N\e3far )

dA; I ]dx3 2 dx3‘ 3| dx? 3 lax2\i~

+| 223 4 ax’ _ 4 x> _ 4 dx’ Lo 1dx" )z

[dt ! {33} a7 l33, dr 3({31} r 32 ar /)°
(1.13.10)

1.13.1 Alternative Derivation of the Christoffel Symbols

In equations (1,12.3) and (1.12.4), the Christoffel symbols have been defined in
terms of the scalar product of two of the base vectors. These symbols can also be
derived from the equations of coordinate transformation by the following method,
which is suitable for some applications.

In a rectangular Cartesian coordinate reference frame, with coordinates denoted
by %, an element of arc of length d§ may be expressed in the following form:

- A a — ~
ds =a,dy® = ag dy[3
Therefore
ds* =a,- &ﬁ dy®dyB = 5ﬁa dy® dyP = gy dy®

Consider a curvilinear coordinate system with coordinates denoted by x! , and
assume that the x and y coordinates are related by a set of transformation equations
as follows

P =it x2,x3) (1.13.11)
The element of arc d§ in the x coordinate system assumes the form

d§ =d;dx' =a; dx
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Therefore
ds? = (@ dx') - @; dx)) = g;; dx’ dx] = dy* dy®
ay®ay®=2" V% i gl = g il gl
axt axi
and
o o W% B
iy axl 3l (1.13.12)

If the transformation equation (1.13.11) is reversible and one-to-one, then

X=Xyt y?y3) ' (1.13.13)

By substitution from equation (1.13.12) in equation (1.12.3), the Christoffel
symbol of the first kind assumes the following form:

%

(ij,k) = —— A
oxtox! ax

(1.13.14)

Likewise, substituting equation (1.13.12) in equation (1.12.4) gives for the Christof-
fel symbol of the second kind -

‘ { l 2% ! 1.13.15
ik} axiaxk ayo _ (1.13.15)

1.14 THE DIFFERENTIAL OPERATOR _V

As they stand, equations (1.12.18) and (1.12.32) do not appear to satisfy the
definition of a tensor given by equations (1.8.2) and (1.8.4), since they are not
bilinear in the base vectors. In order to remove this inconsistency, it is necessary to
define covarient differentiation in terms of the differential operator V. This operator
is defined as follows
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v=5 -2 | (1.14.1)
ay!

The proof that this operator is a differential invariant is straightforward.
The transformation law for a contravariant base vector is

s j . _
Bityy = XL Fix) (1.14.2)
ox! ,
Moreover i
B
9 T 3 (1.14.3)
ayl oyl axB
Therefore

52 _givl P 8
ay/ axi oyl axP

(1.14.4)
= gig.8_9_
i
axﬁ
where Siﬁ is the Kronecker delta. Hence -
59 i 9 (1.14.5)
oy/ ox!

As has been noted previously, the operation of covariant differentiation increases
the covariance by one index. This can be seen more clearly if covariant differentia-
tion is defined in terms of the differential operator V. Consider a scalar point
function ¢, which is a tensor of rank zero. When this function is operated upon with
the differential operator V, a covariant vector of rank one is obtained as follows:

vp=al 20 =4z : (1.14.6)
ax!
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where

ax!

(1.14.7)

This is a covariant tensor of rank one. Hence, operation upon the scalar point
function ¢ with the differential operator V has resulted in a covariant tensor of rank

one.

Next consider the result of operating upon the vector A, which is a tensor of rank
one, with the operator V. In this case the vector 4 can assume the following

alternative forms:
- _ l _ -7

The result of operating upon the contravariant form gives

vi=a -2 (4iz)
ox/

(a4 a7,
i VA =3 éi.&,-+A’—i.)
. \ox/ ox/

Substitution from equation (1.12.16) in equation (1.14.10) gives
_ . i Mo
va=a (%4 g+ 4 Haa
ax] )
and since o and i are dummy indices, this equation can be rewritten as

Aagi (i
VA = 'J(Qi + [ '_’ A“)ii
ol o
i .
VA = %4-—{ "l A%)alz,
ax] «f

Hence .
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(1.14.10)

(1.14.11)

(1.14.12)
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This form shows that VA in a mixed tensor of rank two, which justifies the
following notation

VA = Al alg, (1.14.13)
where

Al = ___+{ }Aa (1.14.14)
ax]

defines the covariant derivative of A’ with respect to xJ. Likewise, the result of
operating upon the covariant form of the vector A gives

’ vd=a % (AE’)
ax/ | (1.14.15)

aA, 3
VA“a 'l+A (1.14.16)
ax‘] ax]

Substitution from equation (1.12.30) in equation (1.14.16) gives

_ 34, -
vA=a | gi- A{’,aa
ox/ oj

Again, interchanging the dummy indices to obtain a common vector coefficient
(oA, y
VA=<——f-“f>Aa> . (1.14.17)
ax/ ).

VA =4 ;dd (1.14.18)

Therefore
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where

A =L %y \
P . (1.14.19)

defines the covariant derivative of 4; with respect to x/.
Hence, operation upon

with V has again increased the covariance by one index.
1.15 THE RIEMANN-CHRISTOFFEL TENSOR AND THE RICCI TENSOR

The tensor known as the Riemann-Christoffel tensor, plays a basic role in many
investigations of differential geometry, dynamics of rigid and deformable bodies,
electrodynamics, and relativity. Those who are not interested in such applications
may omit this section. )

Since the covariant derivative of a tensor is a tensor, it can be differentiated
covariantly again. However, in all cases, covariant differentiation of a tensor gives
rise to a tensor having one more unit of covariant character than the given tensor.

If _Z = Alﬁ’ is a covariant tensor of rank one, its covariant derivative with respect
to x/ can be obtained from equation (1.14.17) where it is shown that

- 04; (« .
VA = —l—[ Ay ) dat

ax’! y
or

- _ _'_i

VA = Al-,]-a]a

where
) 04; { al 4
i,] ax] l] (03

defines the covariant derivative of the covariant tensor component A; with respect

to xi.
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Consider next the tensor of rank two

g =
A’]aa

The result of operating upon this tensor with the differential operator V is a new
tensor of rank three as follows:

04; = .. . a=f
V(A a]al) “k a (A E]a’l) — ( ’I —] [ + A ] a —l +Al ﬁ] _aﬂ_)
. axk axk 3xk T axk

(1.15.1)

Moreover, it has been shown that

aa'l
ak
—l 5
o __ { ! l a%
axk ok
Substitution of these values in equation (1.15.1) yields the following:
aAl P ] P i i
VAl =a (axk] ala' - Ay {ak, a%at - 4 [ak, "]“a> (1.152)

By interchanging the dummy indices to obtain a common factor, the following
result is obtained:

04; : |« o L
v, ) = (a i {jk} Aj ‘ik} AaJ)“k“]“l (1.153)
X
=A. ,akalat (1.15.4)
i,jk .10,
whére
M (a« o R
A: o = Ll _ A - A . (1.15.5)
R MRS T |
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is the covariant derivative of the tensor component 4 ij and is seen to be a covariant
9.

tensor of rank three.

By substitution of

in equation (1.15.5), Ai ik is obtained in the following form:
A4, \ A [ 24
o (25 2 ) -2
> axk ox/ ij jk e i ik ax/ of :
Therefore |
A _ azAl _ o aAa—A J o _ [e% aAl
ox*ox!/ \¥)ax oxc Y Ik) ax“

a) [A a4, (a) (B
ff af - (fk}ﬁ Aa ol ause

It is interesting to examine the result of performing the operation of covariant
differentiation of A;, first with respect to k, and then with respect to j. This
operation gives '

L R R GRS [CR R

Therefore

4y [«)od, 5 (o) [a) 94
4 kj=— el 173 bt -A,— ol Vil
ax/ax ox/ ax/ 1e) ax®

« )\ e _ « aAa [ ﬂ -
N T T
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A sufficient condition for the equality of the mixed partial derivatives

Pfxy) g ) (1.15.8)
oxay oy ox -

is that the function f(x,y) and its first two partial derivatives be continuous.
However, this condition alone is not sufficient to ensure the equality of mixed
covariant derivatives. This can be seen by subtracting equation (1.15.7) from equa-
tion (1.15.6) to obtain

[V [BY o 8 fel [} ]8 N b
Ai,jk'Ai,k]'—‘,-k} [a]'}AB A“axk‘ij] lij}‘ak}A5+A°‘ ax/ {ik‘
(1.15.9)

-~ The dummy indices in this equation may be interchanged to permit factorization
as follows n

e [{zk}‘m} HIME aifl:;cl 5?76’7”“‘“ (11510

As previously indicated, covariant differentiation of a tensor produces a tensor, and
the sum or difference of two tensors is also a tensor. Hence

A jk = Ai kj

is a tensor. Moreover, this tensor is a covariant tensor of rank three. And since 4 ols
an arbitrary covariant tensor of rank one, its coefficient, namely, the quantity in
square brackets, must also be a tensor. Indeed, this quantity must be a mixed tensor
of rank four, since on inner multiplication by Aoz a covariant tensor of rank three is
obtained as follows:

R A= Ry : (1.15.11)

re, = [BUel I8 fel 8 fel o 8 Jel (5.9
gk =i 18] Vi \8r] * and ik ok i
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This is the Riemann Christoffel tensor. It may be expressed in determinant form

as follows (ref. 14):
o) [« ] 9 3
Bi) \Bk axl axk

RY = + '
i 6 (s A (o (1.15.13)
il ik {ij} ‘ik}

Hence, if the order of covariant differentiation is to be immaterial this tensor must
vanish. Therefore, a necessary and sufficient condition for the validity of inversion
of the order of covariant differentiation is that (ref. 1)

R =0 (1.15.14)

The number of components in this tensor of rank four depends on the dimension-
ality of the space. In a space of two dimensions the number of components will be
16; similarly, in a space of three dimensions it would have 81 components. In
relativistic studies where a four-dimensional space time continuum is required, the
number of components would be 256, and so on. '

The definition of the Christoffel symbol of the second kind is

k
[l = gk o]
ij

li,a = l(a‘—gi".‘ + S %>
2\ax]  axt axY

where

If the Christoffel symbols appearing in the Riemann-Christoffel tensor are replaced
by these quantities, the result is an expression containing first and second partial
derivatives of the 8jj- Moreover, the gjj are themselves the coefficients in the
fundamental quadratic form

ds? =g.dxidx/ (1.15.15)
)

where ds is the distance between two neighboring points with coordinates x’ and
x! + dx*, and the gjj are functions of x*. '
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1.16 THE RICCI TENSOR

The Ricci tensor, which will be required in a subsequent application, can be
obtained by contracting the Riemann-Christoffel tensor. And since the process of
contraction reduces the rank of the contracted tensor by two, the result will be a
tensor of rank two. In other words, by replacing k£ by « in the Riemann-Christoffel
tensor, the Ricci tensor is obtained as follows:

Rji =R, (1.16.1)

Since o appears twice in the terms on the right, it must be summed in accordance
with the summation convention. In a four-dimensional space, equation (1.16.1)
represents only 16 equations. Thus
— pl 2 3 4
R Rm + Rz]2 R1]3 R1]4

Slibstitution of k = ain equation (1.15.12) gives

_po 18|l Bl 3 fel_ 8 Ja|
Rij = Rija {ia, {Bi} ‘i]’,lﬁa}+ax1‘ {ia, axoz!ij’ (1.16.2)

o {a i —a_‘
[Bj} ﬁa] ax/ - ox® :
Ro=| + | (1.16.3)

B e
22}

It can be shown that
ax!

Therefore

Therefore, Rij can be rewritten in the following form:

Bl| B ‘oz
R;; = Y L S + I 9 '
y lia} [57} {’]}axﬁ %8 VE axlaxt %8 Ve [’7} (1.164)
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which, in view of the definition of the Christoffel symbols, represents an expression
containing first and second partial derivatives of the g;;. From inspection of this
resu‘lt it can be seen that Ri' is symmetric. Hence, the number of distinct compo-
nents of Rii is(1/2n(n+1).Ina )four-dimensional manifold n =4, and in this case
Rij has 10 components. It may be noted that in space devoid of matter, the equation

is the relativistic analog of Laplace’s equation

V=0

where ¢ is a gravitational potential function in the Newtonian theory of gravitation.
This will be discussed in more detail in subsequent sections.

1.17 CURVATURE TENSOR

The curvature tensor R ijkl is defined by

A Rijxi = ioR %1 (1.17.1)

Therefore ’
I 3 |a Bl |« Bl
R.. = g. - - + -
ikl gm[i)xk {ﬂ, ax! {jk} {ﬂl {Bkl _‘ik} [31}] (1.17.2)

This may be rewritten as follows:

: d a)l %iq fa] 3 al | 9%y [« B} .
R..;;=— g - — -~ 9. 4+ = + k,
ikl axk Sic {ﬂ} axk {ﬂ} axl Fio {jk] axl {jkl {ﬂ [6' l.]

_{6] (GLi] ~ (1.17.3)
jk
It is easy to show that
i/ Lik,j] + [jk,i] (1.17.4)
axk
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The Christoffel symbols of the first kind satisfy the following equations:

[ik. ] =1(—” v Tk
2\axk  ax? ax/

og;; 0gr; 0g;
ki) =2 (22 4 2K —’k)
2_ axk  ax/  ox!
Therefore

Lik,j1 + [jk,i] = —’,’c
ox

as re;Cluired. Substitution of thiswresult in equation (1.17.3) yields the following:

R —‘——[ﬂ ]——[]kl]+‘ ,[lla]—' )[zka]
i7 51 ’ , > N ’ ]
l]kl k J; ]k ]l (11-5)

“This tensor can be written in determinantal form as follows:

2o
axk  ax! jk jl

Rij = + (1.17.6)
‘ k,i1 (/L] lik,a]  lil,a]

In order to determine the properties of the set of Riemann-Christoffel tensors
Rijkl the defined values of the Christoffel symbols are substituted in equa-
tion (1.17.5). When this is done, the following result is obtained:

1/ 9%g; 3% a%g; gy
Rijkr =5 < - TRy Bk ) - 1716 k)
ax/ox axiaxk  axTax!  axiox .
(1.17.7)
From this formula it follows that
Rifkl - _Riflk (l d 78)
Rijn =~ Rjig (1.17.9)
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Rijki = Rygij (1.17.10)
and
Rijgy + Ry + Rypjg = 0 (1.17.11)

Moreover, from the defining formula for R]l:kl’ it is seen that this mixed tensor is
skew-sy/mmetric with respect to the indices k and /. Therefore

Rig1=-Rip (1.17.12)
1.18 EINSTEIN TENSOR
The following identity is due to Bianchi (ref. 15):

R + Rijm i + Rismi.1 =0 (1.18.1)

ifkli,m ijl ij

If (1.18.1) is multiplied by gilgik and the skew-symmetric properties of the
curvature tensor are used, one obtains

i jk _
8" Ryjrs m *+ Rijim k * Rijmie,) =0
or

gij]'lkl,m - gijilml,k B gilR{'cmk,l =0 g (1.18.2)

It has been shown that the contracted form of the Riemann-Christoffel tensor
defines the Ricci tensor, that is

R%a =,Rl-]» (1.18.3)
Hence

ik jk 1} —
g/ Rip m - g Rim & - g Rip1=0

and therefore
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R - RE L -RL =0 (1.18.4)

where
R =gi1ijk (1.18.5)

Since k and !/ are dummy indices, equation (1.18.4) may be rewritten in the
following form:

koL
R,m_sz,k_O (1.18.6)
or in the alternative form
k_1 <k _ '
(Rm— > 6mR> =0 (1.18.7)
Kk
where
k — ik
The tensor v
i lsin_ i
1_{]- 26]R—G]- (1.18.9)

is the Einstein tensor, which plays an important role in the theory of relativity, and
will be required in chapter 5.
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2.1

¢

2.1 TRANSFORMATIONS AND TRANSFORMATION LAWS

Many problems in .engineering and physics involve the formulation of complex
models of physical systems or processes, and the manipulation of sets of differential
equations. In this and later chapters it will be seen that the formulation of
mathematical models can be reduced to a series of routine operations, which can be
performed without reference to the physics of the problem. Moreover, it will be
demonstrated that the operations are purely mechanical and consist only of differen-
tiation and summation. '

The feasibility of applying this technique to the problem of deriving the equations
of motion of a particle in any curvilinear coordinate system is demonstrated in
chapter 3. In chapter 4 it is shown that the same method may be used to derive the
Navier-Stokes equatibns of fluid motion and the corresponding continuity equation.

In order to reduce the equations of mathematical physics to a form which is
amenable to routine operations of this type, it is desirable that the form chosen be
invariant with respect to coordinate transformations. It has already been noted that
a tensor formulation meets this requirement. When conventional methods are
employed, the form which the equations assume depends on the coordinate system
used to describe the problem. This dependence, which is due to the practice of
expressing vectors in terms of their physical components, can be removed by the
simple expedient of expressing all vectors in terms of their tensor components.
These are related to the physical components by a simple transformation.

This chapter describes how the technique may be used to assist in the formulation
of mathematical models of aeronautical systems. These models, which are frequently
required for simulation and other purposes involve at least 12 equations: 3 force
equations; 3 moment equations; 3 Euler angle equations to determine the spatial
orientation of the body, and .3 equations to determine the location of the body in
inertial space. An important aspect of the formulation of mathematical models of
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aeronautical systems is the specification of the system of forces and moments. In
aeronautical situations the thrust and gravity forces can be formulated without diffi-
culty, but the aerodynamic forces and moments require more detailed consideration.
These are represented by the static forces and moments and the aerodynamic stabil-
ity derivatives. For reasons which will become apparent as we proceed, these forces,
moments, and derivatives have to be transformed from wind or wind-tunnel stability
axes to aircraft body axes before the formulation can proceed.

For the benefit of those who have access to a digital computer equipped with a
formula manipulation compiler, simple programs will be described which will facili-
tate the mechanization of these operations. This kind of computer operation is
usually referred to as symbolic mathematical computation or symbolic and algebraic
manipulation. The advantages of symbolic mathematical computation are most
evident in the formulation of models analogous to those described in chapter 5; that
is, the use of the method to derive cosmological models and associated trajectories.
The field equations that govern the trajectories of bodies in cosmological space
consist of 10 nonlinear partial differential equations for the 10 unknown potential
functions. Each of these equations has a large number of terms, with each term a
complicated mathematical expression. The formulation of these terms, and the
derivation of the equations of the geodesics that describe the trajectories of bodies
in the space defined by the postulated metric, require a substantial amount of
algebraic manipulation and symbolic differentiation. Because of the compact nature
of the tensor expressions, and the facility with which symbolic differentiation can
be exploited by a simple computational algorithm, computation time is reduced and
the errors to which human operators are prone can be avoided. Moreover, the
computerized method enables the researcher to examine a greater number of
possibilities and to explore cosmological situations that might otherwise be avoided
if the time and labor involved were excessive. This is not to say that noncosmologi-
cal models.cannot be formulated with equal facility by a human operator. Bearing in
mind that the only operations involved are differentiation and summation, it may, in
fact, be more economical to formulate the majority of models manually.

2.2 AERONAUTICAL REFERENCE SYSTEMS

There are many coordinate systems in use in aeronautical research (ref. 1).
Aerodynamic data obtained from wind-tunnel experiments may be referred to wind
axes or to wind-tunnel stability axes. When the wind axes are used, the x-axis is
aligned with the relative wind at all times. The wind-tunnel stability axes are the
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system about which most wind-tunnel data are obtained. For this system, the x-axis
is in the same horizontal plane as the relative wind at all times. In addition to the
wind axes and the wind-tunnel stability axes, there are other systems of axes fixed in
the body and moving with the body. These are referred to as body axes. In
aerospace applications, a body axis system has the x-axis fixed along the longitudinal
center line of the body, the y-axis normal to the plane of symmetry, and the z-axis
in the plane of symmetry. It should also be noted that when an aircraft is in
horizontal flight, the z-axis points downward in the direction of the gravity vector,
the x-axis points forward, and the y-axis points to the right (fig. 2.2.1).

X

VELOCITY RELATIVEWIND
HORIZON

z
GRAVITY

Figure 2.2.1.— Aeronautical reference systems.

The equations of motion of aerospace vehicles are formulated with respect to
body axes. The main advantage of these axes in motion calculations is that vehicle
moments and products of inertia about the axes are constants. When the body axes
are chosen so that the products of inertia vanish, they are known as principal axes. A
system of axes which is frequently used to study the stability of aircraft in the
presence of disturbing forces that 'produce small perturbations is the flight stability
axes. This is an orthogonal system fixed to the vehicle, the x-axis of which is aligned
with the relative wind vector, when the vehicle is in a steady-state condition, but
then rotates with the vehicle after a disturbance as the vehicle changes angle of
attack and sideslip. _ -

Although the equations of motion of aerospace vehicles are referred to body axes,
the aerodynamic forces, moments, and stability derivatives are usually referred to
wind axes or to wind-tunnel stability axes. Hence, before the equations of motion
can be formulated with respect to body axes, the aerodynamic forces, moments, and
derivatives must be transformed from the wind or wind-tunnel stability axes to the
appropriate body axes (ref. 2).
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/

2.3 TRANSFORMATION LAW FOR STATIC FORCES AND MOMENTS

The static aerodynamic forces and moments transform like the components of a
contravariant vector; that is, if X; denotes the aerodynamic force in the x frame of
reference and Y! denotes the correspondmg transformed force in the y system of
coordinates, then

. ayi
Y= Xx" (2.3.1)
ax"
where
y =y(x)

In this equation, X i may denote either a force or a moment. For example
X! may be either X or/
X? may be either Y orm (2.3.2)

X3 may be either Zorn

where X, Y, Z and [, m, n are aerodynamic forces and moments, respectively; that
is, each of these pairs obeys the same transformation law in going from the
x-coordinate frame to the y-coordinate frame.

In aeronautical language, the aerodynamic forces acting on a body that is moving
through the atmosphere are defined in terms of the force coefficients as follows:

X =gSC,, in the x direction
Y= 6SCy in the y direction
Z=gSC, in the z direction

where § =1/2(pV?) is the dynamic pressure, when p and v are the density and
velocity, respectively; and S is a reference area.
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Likewise, the aerodynamic moments about the axes are defined in terms of the
moment coefficients as follows:

/I =gSbC;  about the x axis
m = qScC,, about the y axis

n =gSbC, about the z axis

where b denotes wing span and ¢ denotes wing chord length.

The body axes are related to the wind-tunnel axes as shown in figure 2.3.1. To -
bring a reference frame from the wind axes into coincidence with the body axes
involves a negative rotation (B) about the z axis followed by a positive rotation (A4)

about the y axis.

RELATIVE
WIND

RELATIVE
WIND

Figure 2.3.1.— Angle of attack 4 and angle of sideslip B.
Instead of using (xyz), let (y'y?y3) denote the body axes, and (x'x%x3) the
wind-tunnel axes. With this notation, the coordinate transformation is given by

! cosA 0 -sinA cosB -sinB 0 !

y X
y? = 0 1 0 sinB cosB 0 x2
y3 sindA O cosA 0 0 1 x3

y!' =x' cos A cos B-x2 cos A sin B-x3 sin A4
y? =x'sinB +x2 cos B (2.3.3)

y3=x'sinAcosB-x?sinAsinB+x3cosA4
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Since this transformation is orthogonal, the inverse transformation is simply the

transpose of the preceding matrix, and can be written by inspection
x! =y cos A cos B+ y?sinB + y? sin 4 cos B
x? =-y! cos A sinB + y? cos B- y3sin 4 sin B
x3 =-yplsind4 +y3cos A4

Given the transformation (2.3.3), equation (2.3.1) may be expa

Y! = X' cosAcosB- X2 cosAsinB- X3sinA4 1

Y? = X' sin B + X? cos B

\

}

as follows:

| (2.3.4)

nded as follows:

b (2.3.5)

Y3 = X! sin A4 cos B- X2 sin A sin B + X? cos A J

where
Y't=Xx X=X
Y2 =Y Xt=Y
y3=27 xXx3=2Z
+ Therefore,

X =XcosAcosB-Y cos AsinB-Zsin A
Y =XsinB+ YcosB

Z =XsinAcosB-YsinAsinB+ Zcos A

(2.3.6)

In view of the relationships indicated in equation (2.3.2), the static moment

coefficients obey the same transformation law. Hence

! =lcosAcosB-mcosAsinB-nsinA
m' =1IlsinB+mcosB

n' =1lsinAcosB-msinAsinB+ncosA

- 84
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In these transformations the primed quantities refer to body axes components,
and unprimed quantities to the wind-tunnel axes components.

2.4 TRANSFORMATION LAW FOR THE STATIC-STABILITY DERIVATIVES

The static stability derivatives obey the same transformation law as the force and
moment coefficients. From equation (2.3.1)

Therefore,
YAz_a}’ X+ xn a [ay
ax" 0A \ gx"
However, in a static situation <
i
Qy_ = constant
ax"
Therefore,
oyl (2.4.1)
YA‘ = XA”
ox
Likewise
. ayi
Y. 1 _ Y X n
B B 4.
! (24.2)
where
Yl =XgLl o Xy =Xyl
Yt=Yeomg s Xgt =Yy my
Y2 =24 n4 Xy> =2Zy,n
A A4°"4 > A ‘A>"A
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Therefore,
Xy =Xy cos4 cosé— Y ycosAsinB-Z,sinA4
Y, =X, sinB + Y, cosB (2.4.3)
Zy) =X sinAcosB-Y, sinAsinB+Z, cosA
and
ly' =14cosAcosB-my cosAsinB—nA‘sin}l .
my' =1 sin B+ my cos B | ’ (2.4.4)
ng' =1,sin A cosB-my sin4 sin\B +nycos A
Similarly ‘
Ip' =lgcosA cosB-mpcosAsinB-npsinA
mpg' =lpsin B+ mp cos B S (2.4.5)
ng' =lpsin A cos B-mpgsinAsinB +ng cos A J
Likewise

XB' =XpcosAcosB-YpcosAsinB-Zp sinAW

YB' = XpsinB + Ypcos B > (2.4.6)

ZB' =XpsinA cosB- YpsinAsinB+ZpcosA |

2.5 INVERSE TRANSFORMATION LAW FOR STATIC FORCES AND
MOMENTS

The equations in the preceding section transform the forces and moments and the
static stability derivatives from wind-tunnel axes to body axes. As already indicated,
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it is frequently necessary to convert these measured quantities from body axes to
wind-tunnel axes. In this case the inverse transformation is required.

A useful pfoperty of tensor transformations may be stated as follows: Let the
components of a mixed tensor in the x-coordinate system be denoted by

le,'-'9js

AU

and its components in the y system by

lea'~-ajs
iy, s iy

Then from the law of transformation of mixed tensors

.le,...,js—‘ay]l ay]S axal axar Bl:"')ﬁsr
. o= — .. — X (2.5.1)
Iy, ooy axﬁ‘ axﬂs ayll ayl’ Ay, ...,0
On the other hand, the components
BB
al 9 ¢ o sy ar
of the same tensor in the x frame of reference are given by the formula
Xﬁl,---,ﬁs_ 't ay'r axB‘ axPs Jis- o sls
X, o= — ... — Y X (2.5.2)
R e A VL ax%r ayh ay’s Iyy oo ly

It should be noted that (2.5.2) is obtained from (2.5.1) by treating the partial
derivatives in (2.5.1) as though they were fractions and products appearing in simple
algebraic expressions. Hence, by using this very useful property of tensor equations,
the inverse transformation can be obtained from equation (2.3.1) as follows:

X = §3<f yi (2.5.3)
oyt
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On using the equations (2.3.4), the transformation (2.5.3) assumes the following
form for the forces

X'=X=X cosAcosB+ Y sinB+ Z sinA cosB
X2=Y=-XcosAsinB+Y cosB-2Z'sinAsinB 2.5.4)
X3=Z=-X'sind+Z cosA

Similarly, by using the relationships given in (2.3.2), the inverse transformation
for the moment coefficients is

X' =1 =1V cosAcosB+m'sinB+n'sinAcosB
X*=m=-I'cos Asin B+ m' co§B~n' sin A sin B (2.5.5)
X3>=n =-I'sind +n' cos 4
Likewise, the static stability derivatives are
X' =Xg=X4 cosAcosB+7Y, sinB+Z,'sin4 cos B
X2 =Y g=-X4 cosAsinB+ Y, cosB-Z,'sinAsinB | (2.5.6)
X3=Zg=-X,'sinA+Z, cosA

and
Xt =ly =IA'c'osA cosB+mA'sinB+nA'sinA cos B

X =my =-l4' cos 4 sinB+mA'cosB—nA'sinA sin B (2.5.7)
X3=ny =-l4 sin4 +nA’c()sA

The static stability derivatives with respect to the angle B have exactly the same
form. These are

Xt :XB:XB' cos A cos B+ YB'sinB+ZB' sin 4 cos B
- X = YB=_XB' cosAsinB+ YB' cosB—ZB' sin A sin B (2.5.8)

X3 =Zp=-Xp'sind+Zp cosA
B B B
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and
Xt =lB =IB' cos Acos B + mB' sin B +nB' sin A cos B

X? =mp=-lg' cos Asin B+ mp' cos B-npg'sin A sin B (2.5.9)
X3 =ng =-lp'sinA +np cos 4

~ Although a computer would not be necessary' to formulate the simple relation-
ships described so far, a computer program will be described in the next section to
prepare potential computer users for more complicated formulations.

2.6 TRANSFORMATION BY COMPUTER

For the benefit of those who are not familiar with computers or computer
programming, it should be emphasized that a computer program is simply a list of
instructions that a computer can accept and execute. There are a variety of
computer languages that can be used to express the user’s wishes in a form that is
acceptable to a given computer. When it is required to use a computer to solve a
particular problem, a program must be written in one of the languages that the
computer will accept, instructing the computer what to do. When the instructions
are written in the prescribed form, they are transferred to punched cards, before
being presented to the computer, or typed at a terminal which is connected to the
computer. If the instructions are coded correctly, the problem solution will be
printed out on paper tape, or presented in some other form specified by the user.

A simple program that can be used to transform the static force and moment
coefficients and the corresponding derivatives from wind-tunnel axes to body axes
will be described. The program uses the coordinate transformation equations (2.3.3)
as input to permit expansion of equation (2.3.1)_._ .

If a coefficient or derivative in wind-tunnel axes be denoted by C(J), and the
corresponding transformed coefficients be denoted by TC(I), where I = 1,2,3, then a
suitable program will consist of only a few instructions.

Just as a human operator cannot expand equation (2.3.1) unless he knows the
special form y = y(x) given by equation (2.3.3), the computer must likewise be told
what this relationship is. Therefore, the first statement in the program gives the
computer this information. However,‘the information cannot be given in the form in
which it is written in equation (2.3.3); it must be presented in a modified form that
the computer will accept. If the information is not in the precise language that is
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acceptable to the computer, it will be rejected. In the case of a FORMAC program
(ref. 3), the computer will accept the following input statement, where asterisks
denote multiplication.

< LET(Y(1)=X(1)*COS(A)*COS(B)-X(2)*COS(A)*SIN(B)-X(3)*SIN(A));
LET(Y(2)

X(1)*SIN(B)+X(2)*C0S(B));
LET(Y(3)=X(1)*SIN(A)*COS(B)-X(2)*SIN(A)*SIN(B)+X(3)*COS(A));

In order to make certain that the transformation equations have been coded
correctly, it is advisable to instruct the computer to print out the transformation
equations before printing out the problem solution, that is, the expanded form of
equation (2.3.1). In this way the user can make certain that equation (2.3.1) has
been coded without error. With this objective in mind, the next program statement
or instruction to the computer is

PRINT__OUT(Y(]);Y(Z) ;Y(3))s

It should be noted that these program statements must always be reproduced
exactly. Semicolons cannot be replaced by commas. The position of semicolons
must be strictly adhered to. If a program statement ends with a semicolon, it cannot
be replaced by a period. Likewise, the number and positions of parentheses is
invariable, Computers are usually quite inflexible in their insistence on precisely
worded statements.

Having received the transformation equations and printed them out, the computer
will behave in a very human fashion and stop working if it is not told what to do
next. So the next program statement is an instruction to expand equation (2.3.1) in
a manner that exploits the advantages of the summation convention. In this
conne(_:‘“tion, it is perhaps worth repeating that the summation convention, which is a
characteristic property of all tensor expressions, will be used repeatedly in the
examples that follow.

An instruction to a computer to perform a series of operations in a repetitive -
manner takes the form of a “DO” statement; and the group of instructions involved
in carrying out the repetitions constitute what programmers call a “DO” loop. The
“DO” statement prescribes the range of the operation. For example, -in expanding
equation (2.3.1), the indices *“4”” and “‘n” each assume the values 1,2,3 in turn, and
two “DO” statements appear in the program as follows:
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DO I=I TO 3 BY 1;

DO N=I TO 3 BY 1;
The following statement is for initializing the program

LOLET(TC(1)=0);

A key statement, which is the target of the “DO” statements, instructs the
computer how to expand equation (2.3.1). It is a statement that will appear
frequently in subsequent applications; its implementation permits the computer to
differentiate mathematical expressions symbolically. When expressed in computer
language, equation (2.3.1) assumes the following form:

LET(TCC(I)=(DERIV(Y(I),X(N)))*(€{N)))s

This statement is accompanied by the following supplementary statement which
tells the computer to add the results of each step in the operation prior to
incrementing the indices.

LET(TC(I)=TC(I)+TCC(I));

When the index “N” reaches the value 3, the computer is instructed to terminate
that phase of the operation by the following statement:

END;
It is then told to print out the result by the statement,

PRINT _QUT(TC(I));

“I”

It then proceeds to increment the index until all three equations have been
formulated. At this point the computer encounters the final statement in the
program, It is

END;

The reader may wonder why two “END” staternents are necessary. The first
“END” statement encountered terminates what programmers call the inner loop:
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this part of the program manages the formulation of individual equations, and
terminates the operation when the index “N” equals 3. The second “END” state-
ment terminates the program when the index ‘I’ equals 3, that is, when all
equations have been formulated. When this occurs, the problem solution is printed
out. The following list of input equations and formulated transformation equations
are reproduced from the actual computer printout:

Y(1) = COS (B) COS(A) X(1) - c0S (A) SIN (B) X(2) - SIN (A) X(3)
Y(2) = SIN (B) X(1) +‘COS (B) x(2)

Y(3) = COS (B) SIN (A) X(1) - SIN (B) SIN (A) X(2) + COS (A) X(3)
TC(1) = COS (B) €OS (A) C(1) - cOS (A) SIN (B) C(2) - SIN (A) C(3)
TC(2) = SIN (B) C(1) + COS (B) c(2)

TC(3) = COS (B) SIN(A) C(1) - SIN (B) SIN (A) C{2) + COS (A) c(3)

On substitution of the appropriate symbols in these output expressions, equa-
tions (2.3.6) and (2.3.7) and (2.4.3) through (2.4.6) are reproduced. For example, if
the transformation equations for the static force coefficients are required, the
following symbol substitutions should be made

TC(1) = X' 3 C(1) =X
TC(2) = Y 3 c(2) =Y
TC(3) = 2 ; c(3) =2

The appropriate symbol substitutions for the moment transformations are

TC(1) = 7! 4 c(1) =1
TC(2) = m' : C(2) =m
oTe(3)=n' 3 ¢(3) =n
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Static stability derivatives with respect to “A’ are reproduced when the output
symbols are assigned as follows:

) =z 5 () =,
T©(2) =m0 C(2) = m,
TC(3) = ny ; C(3) = ny

and similarly for the static stability derivatives with respect to “B.”
- The same program can be used to carry out the inverse transformations, provided
the coordinate transformation equations(2.3.4) are used instead of equa-

tions (2.3.3), and the transformed coefficients TC(J) obtained from equation (2.5.3)
instead of equation (2.3.1). <

When inverse transformations are required, the input statement and the statement
controlling differentiation are modified to correspond to equations(2.3.4)
and (2.5.3), respectively.

In this case, the input equations are

LET(X{1)=Y(1)*COS(A)*COS(B)+Y(2)*SIN(B)+Y(3)*SIN(A)COS(B));

LET(X(2)=-Y(1)*COS(A)*SIN(B)+Y(2)*COS(B)-Y(3)*SIN(A)*SIN(B));
LET(X(3)=-Y(1)*SIN(A)+Y(3)*COS(A));

and the inverse transformation equation is
LET(TCC(M)=(DERIV(X(M),Y(I))})*(C(M)));

When these modified statements are substituted in the preceding program, the
following output is obtained:

X(1) = COS(B) COS(A) Y(1) + SIN(B) Y(2) + COS(B) SIN(A) Y(3)
X(2) = -COS(A) SIN(B) Y(1) + COS(B) Y(2) - SIN(B) SIN(A) Y(3)
X(3) = -SIN(A) Y(1) + COS(A) Y(3)
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TC(1) = COS(B) COS(A) C(1) + SIN(B) C(2) + COS(B) SIN(A) C(3)
TC(2) = -COS(A) SIN(B) C(1) + COS(B) C(2) - SIN(B) SIN(A) C(3)
TC(3) = -SIN(A) C(1) + COS(A) C(3)

In these output expressions, a coefficient or stability derivative in the body axis
system is denoted by C(M), and the corresponding transformed coefficient in
wind-tunnel axes is denoted by TC(M), where M = 1.2.3. For example, the symbol
substitutions for the force coefficients are

TC(1) = X ;0 C(1) = X'
TC(2) = Y ; . C(2) =Y
TC(3) = Z ;0 C(3) =T

~ Likewise, the symbol substitutions for the moment coefficients are
TC(1)
TC(2) =m ; C(2)

c(1)y =17

1]
)
-

I
3

TC(3) = n ; c(3) = n'

Static stability derivatives with respect to A and B are obtained in a similar
fashion. When interpreted in this manner, the program output gives the inverse
transformations for static force and moment coefficients and the static stability
derivatives by reproducing equations (2.5.4) through (2.5.9). '

2.7 TRANSFORMATION LAW FOR AERODYNAMIC STABILITY
DERIVATIVES

A necessary preliminary to the formulation of mathematical models of aeronauti-
cal systems is the transformation of aerodynamic stability derivatives from wind or
wind-tunnel stability axes to body axes. It will be séen that the aerodynamic
stability derivatives transform like the components of a mixed tensor, having one
index of covariance and one index of contravariance (ref. 4). Moreover, due to the
equivalence of covariant and contravariant transformations in orthogonal Cartesian

94



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 2.7

systems of coordinates, it will be seen that the transformations can be treated as
doubly covariant or doubly contravariant if this simplifies the formulation.

The aerodynamic stability derivatives measure the rates of change of aerodynamic
forces and moments with respect to motion vector components. In keeping with the
usual practice in aerodynamic formulations, motion vector components will refer
specifically to components of the linear velocity vector, components of the angular
velocity vector, and components of the corresponding linear and angular accelera-
tion vectors. The transformation law for these derivatives may be obtained as
follows: let Y’ be a force or moment in the y system of axes, and let U/(y) be a
motion vector component -in this system of axes. Similarly, let X% be a force or
moment in the x system of axes, and let UB(x) be a motion vector component in this
system of axes. Then the stability derivatives with respect to motion components, as
measured in the y system of axes, are related to the corresponding derivatives in the
x system of axes by the following equation:

ay! _ayt ax* athw 2.7.1)
U ax* atfx) aUl(y) |

It should be noted that force, moment, and motion components obey the same
transformation law as the system coordinates, that is

5

ox%
Hence
. i
yi=9" ya (2.7.2)
ax

Vi) = a—yé UBx)

3 (2.7.3)
Therefore, from equatiohs (2.5.2) and (2.7.3)
6
UBx) = 25 Ul(y)
ay (2.7.4)
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qustitution from (2.7.2) and (2.7.4) in (2.7.1) gives

ayi _ fayl axB\ ax s
AUl (y) \ox® ay/ J aUBx) (2.1.5)

Equation (2.7.5) may be rewritten as follows: Let

aY! _vy.i
iy !
and let
ax® _ 2
aUB)
Therefore
. i
izl by (2.7.6)
T ax gy

where the superscript denotes the component of the aerodynamic force or moment,
and the subscript denotes the motion vector component with respect to which the
derivative is obtained.

Equation (2.7.6) shows that the aerodynamic stability derivatives transform like
the components of a mixed tensor, having one index of contravariance and one
index of covariance. Being a tensor of rank two, equation (2.7.6) represents nine
equations, with each equation having, in general, nine terms.

Note that once the tensor law (2.7.6) is established, the specialized form of the
transformation equations can be obtained without further reference to the physics
of the problem. Moreover, the derivations involved are purely mechanical operations
and can be performed by anyone who can differentiate.

Since « and B can each assume the values 1,2,3, we have, by summing first on &

iyl axP

" g+
ax' oy’ ax2 a3yl ax3 oyl
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Summing next on 8 yields the following nine terms:

Yl = ay ax X,+8y ax X1+8y ax X
ax! ayl ax! ay/ ax! ay/

3

NP VLR LN VL Vg

ax? oy ax? ay/ ax? ay/
ay oax! X3 +9- ay ax? X3+ ay ax? = x;3 (2.7.7)
ax3 ay] Ix3 ay] ax3 ay]

Note that while the indices i and j retain the same values throughout, o and § each
assume the values 1,2,3 in turn. Since i,j = 1,2,3, there are nine tensor com-
ponents. These are

B 1 3xB

v, =% &7 X y,l = &7 X
ax% gy! ax% gy?
1 B 2 B

Y, = & X& y,2 =" & X
ax% 9y3 ax% oy!
2 B 2 B8

Y,? = 9 oxP XBOI : Y32 —9y* oxP Xﬁo‘
ox% 9y? ox% 9y3
a3 B 3 ¢}

Y, = oy” ox Xﬁa : Y, = oy> oxP Xﬁa )
ox% ay! ox% 9y?
and
Y3 _ o oxf oxP X &

ax% 9y3

Moreover, for o, = 1,2,3, it has been shown that each of these transformation
equations has, in general, nine terms. Hence, there are, in genéral, a total of 81 terms
to be formulated, using the transformation equations (2.3.3) and (2.3.4). The coeffi-.._.
cient of each wind axes component consists of the product of two partial
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differential coefficients. From equation (2.3.3) the partial differential coefficients of
y with respect to x are

1 1
Q——=COSA cos B ; §L=—COSA sin B
‘axl ox?
1 2
aL=—sinA ; aL=SinB
ox3 ox!
, , -
a—y-'—"-COSB ; ?y—=0 > - (2.7.8)
ox? ax3 ‘ o
3 3
aL=sinAcosB ; iV—=—SinASinB
ax! ox?
3 ,
aL =cos A
ox3 J

From equations (2.3.4), the partial differential coefficients of x with respect to y
are

\
1 1
a—x—=cosAcosB ; ox =sin B
ay! oy?
1 2
ai=sinAcosB ; i)x—=—cosAsinB
oy3 ay!
2 2
ox? =cos B ; ox* _ —sinAsinB ¢ - (2.7.9)
; ay? ay3
3 3
ax7 _ ~-sin A ; ox” _ 0
ay! ay?
3
o _ cos A
oy3 )
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In terms of these partial differential coefficients, each tensor component Y can
be formulated in accordance with the transformation law (2.7.6). From equa-
tions (2.7.7) through (2.7.9), the individual components are

Yll ay ax X 149 ay ax X + 9 ay ax X3l

ox! ay! ox! oy! ax! ay!
1 1 1 2 1 3
+ O o X,? + 93‘_)(22 + Qx_ X2
ox? ay! ax? oy! ox2 ay!

1 1 1 2 1 3
+ 0 e W T s L AT g
ax3 oyt ax3 oy! ax3 ay!
Y,! =(cos? 4 cos? B)X,! —(cos? A cos B sin B)X,!
—(sin A cos A cos B)X ;! - (cos? A cos.B sin B)X,?
+ (cos? A sin? B)X,? + (sin A cos A sin B)X;?

- (sin A cos 4 cos B)X,3 + (sin A cos 4 sin B)X,> + (sin? 4)X;>

1 1 1 2 1 3
Y, 9 92‘_,\/11 +3L QLXZI + 9 ox®
Bx“ ay? ox! ay? ax‘ dy?

Lt ot X2+§_y_ ox? X22+ay 6L3X32
ox? ay?*  ax? ay? ox? 9y?

1 1 1 1 3
RS SR A S R I A
oax3 ay? ox3 9y? ox3 ay?

Y,! =(cos 4 cos B sin B)X,' + (cos A cos? B)X,' -(cos 4 sin? B)X,?

~ (cos A4 sin B cos B)X,2 - (sin A sin.B)X,® - (sin A cos B)X,?
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y.l ay' ox X, ay 0x? X,_’_ay ax 9 x .1
ox! oy ox! ay3 ox! oy3
+§y_l Ox X2+§y_‘ax X22+ay 92‘1,\/32

ax? 9y3 ax? 9y3 ax? 9y3

Y,! = (sin 4 cos A cos® B)X,! - (sin A cos A cos B sin B)X,"
+ (cos? A cos B)X;' - (sin A cos 4 sin B cos B)X,?
+ (sin A cos A4 sin? B)X,? - (cos? A sin B)X,? - (sin? A cos B)X,3

+ (sin? A sin B)X,3 - (sin A cos A)X 33

2.2 a1 2 5,2 2 5.3
Y,? =’ Qx_Xll +¥° aile + 7 QZ‘_X31
ox! oy! ox! ay! ax! oy!

1 2
+—— —X12 +é)1‘ -
ax? ay! ax2? ay! ax? ay!

1 2 2
+a—y-—-_-—X13+aL__ y? x> 45

ox3 ! ox3 oyt ox3 oyt

Y2 = (cos 4 cos B sin B)X,' - (cos 4 sin? B)X,! ~ (sin 4 sin B)X,!

+ (cos A cos? B)X,? - (cos A cos B sin B)X,% - (sin A cos B)X5?
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2 1 2 2 2 3
v =0 0y TP B Ay,

ox! 9y? ax! ay? ox' 9y?
1 2 a2 3
+_ay aLX12 L a_x_X22 + 97 aLX32
ox? oy? ax? ay? ax? ay?

2 1 2 2 2 5.3
I A ' IR A SISl
S ox3 oy? oax3 ay? ax3 9y?

Y,? = (sin? B)X,' + (sin B cos B)X,' + (sin B cos B)X,% + (cos? B)X,?
Y= ay? ax' X,! +ay ax? X, +ay ax3 7 x,1

ox! oy3 ox! 9y3 ox' 0y3

2 1 2 3
L aLX12+ay dx? X22+§— a*x~X32
ox? oy3 ox? oy’ ox? 9y3

L aiXa WE oty W2 é’i—Xg
ox3 9y3 ax3® oy3 ox3 ay3

Y3? = (sin A4 sin B cos B)X,' - (sin 4 sin? B)X,' + (sin B cos A)X,!

+ (sin 4 cos? B)X,? - (sin 4 sin B cos B)X;? + (cos A cos B)X,2

3 1 3 2
WPl a0y, 0 3XX3
ax! ay! ax! ay! ox! ap!

Y13 -

3 1 3 2 3 3
402 At o R 0x s 02 Ay,

- 3
ax? oyt ax? ay! dx? ay!
3 1 3 2 3 3
AR S I S G I L
oax3 ay! ax3 ay! - ox3 ay!
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-

Y3 = (sin 4 cos A cos? B)X,! - (sin A cos A4 sin B cos B)X,'
- (sin? A cos B)X ;! - (sin A cos A4 sin B cos B)X,?
+ (sin A sin? B cos A)X,? + (sin? A4 sin B)X;? + (cos? A4 cos B)X 3

- (cos? A sin B)X,3 - (sin A cos A)X 53

3 1 53
L’ aLX13+aL QfﬁXZS +£ QZC:X33

Y,? = (sin A sin B cos B)X,' + (sin 4 cos? B)X,' - (sin 4 sin? B)X?

- (sin A sin B cos B)X,? + (cos 4 sin B)X,3® + (cos A cos B)X,?

3 4l 3 a2 a3 a3
3:§y_?x_Xl+aLaLle+§_y_aLX3l

Y3 1
ox! ay3 ox! 2y3 ax! ay3
+aLs aile2+ay aL2X2+ay @.’f.s_X32
ox? oy3 ox? oy? ax? oy3
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Y3 = (sin? A cos? B)X,! - (sin? A4 sin B cos B)X,' + (sin A cos A cos B)X5!
- (sin? A sin B cos B)X,? + (sin® 4 sin? B)X,? - (sin A cos A sin B)X3?

+ (sin A cos A cos B)X,3 - (sin A cos A4 sin B)X,? + (cos? A)X,3

When interpreted in terms of conventional aeronautical symbolism, each of these
tensor components represents eight aerodynamic derivatives: four velocity deriva-
tives and four acceleration derivatives. Hence, the transformation law given by
equation (2.7.6) represents a total of 72 transformation equations for the velocity
and acceleration derivatives. The tensor components representing the velocity deriva-
tives may be interpreted as follows:

X' =X, X, 0.0 X2 =Y, Ypmumy, X =2, 2y, n,n,
X' =X, Xq, L, lq X2 =Y, Yq,mv, mgy X3? =2, Zq, Ry, ng
Xs' =X, X,, 1, 1, X2=Y,,Y.m,m, X?=2, 2, Moy My

The derivatives with respect to the acceleration components are obtained by
replacing the velocity component subscripts with the acceleration component sub-
scripts. Meaning may be assigned to the Y]-’ components in the same way with the
understanding that these represent the transformed derivatives. For example

_ v T
Y, =X, X0y 1
Y,2 =Y, Yy, my, my,

Y*=2z, Zé), ny, n'p

2.8 COMPUTER TRANSFORMATIONS OF AERODYNAMIC STABILITY
DERIVATIVES

2.8.1 Direct Transformations

A program to expand equation (2.7.6) requires that both the direct (2.3.3) and
reverse (2.3.4) coordinate transformation equations be used as input. When both
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coordinate transformation equations are used as input, it is expedient to redefine the
functional relationship

x =x() (2.8.1)
as follows:
w = w(z) (2.8.2)

where w takes the place of x and z takes the place of y.

The static force and moment coefficients and their derivatives could be specified
with one index, but the aerodynamic stability derivatives require, for their complete
specification, two indices. Hence, an aerodynamic stability derivative in wind-tunnel
axes will be denoted by C(I,J), and the corresponding transformed derivative by
TC{U,J). The first index in the derivative symbol denotes the force or moment
component being considered, and the second one specifies the motion vector
component with respect to which the derivative is obtained.

Apart from a few auxiliary statements and DO loops, which are conventional
programming steps, the key program statement for the present application, as in the
preceding one, is the statement that causes the computer to differentiate symboli-
cally. The present application requires that equation (2.7.6) be programmed to
facilitate the derivation of the transformation equations for the aerodynamic stabil-
ity derivatives. Apart from the fact that the program for the transformation of the
static aerodynamic coefficients required only two DO loops, and the present
application requires four such loops, the programs are very similar. After substitu-
tion of the functional relationship, equation (2.8.2), for equation (2.8.1), the state-
ment controlling differentiation takes the form

LET(TCC(I,Jd)=(DERIV(Y(I),X(M)))*(DERIV(W(N),Z(J)))*(C(M,N)));
The entire program and the corresponding output follow.
LET(Y(1)=X(1)*COS(A)*COS(B)-X(2)*COS(A)*SIN(B)-X(3)*SIN(A));
LET(Y(2)=X(1)*SIN(B)+X(2)*COS(B));
LET(Y(3)=X(1)*SIN(A)*COS(B)-X(2)*SIN(A)*SIN(B)+X(3)*COS(A));
PRINT OUT(Y(1)35Y(2);Y(3));

104




MATHEMATICAL MODELING OF DIVERSE PHENOMENON

PUT SKIP(5);
LET(W(1)=Z(1)*C0S (A)*COS (B)+Z(2)*SIN(B)+Z(3)*SIN(A)*COS (B));
LET(W(2)=-Z(1)*C0S(A)*SIN(B)+Z(2)*C0S (B)-Z(3)*SIN(A)*SIN(B));
LET(W(3)=-Z(1)*SIN(A)+Z(3)*C0S (A)); ”

DO I=1 TO 3 BY 1;

DO J=1 TO 3 BY 1;

LET(I="1");

LET(J="J");

LET(TC(I,J)=0);

DO M=1 T0 3 BY 1;

DO N=1 TO 3 BY 1;

LET(M="M");

LET(N="N");
LET(TCC(I,J)=(DERIV(Y(I),X(M)))*(DERIV(W(N),Z(J)))*(C(M,N)));
LET(TC(1,J)=TC(I,J)+TCC(I,J));
END;

END;

PRINT_OUT(TC(I,J));

PUT SKIP(5);

END;

END;

2.8
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This program may be said to consist of the single statement
LET(TCC(I,J)=(DERIV(Y(I),X{M)))*(DERIV(W(N) LZ(3)))*(C(M,N))) 5

which enables the computer to differentiate symbolically. With one exception, the
remaining statements are conventional programming steps that instruct the com-
puter how to manage each stage of the differentiation process and carry out the
necessary summations. The exception referred to above is the group of statements:
LET(I = “I”’);  etc. These statements are required to facilitate operations involving
both numerical processing and symbolic manipulation. The statement:
PUT SKIP(S); is for editing purposes and instructs the printer to skip five lines
between each batch of output.
Activation of the preceding program resulted in the following output:

Y(1) = C0OS(B) COS(A) X(1) - COS(A) SIN(B) X(2) - SIN(A) X(3)
Y(2) = SIN(B) X(1) + Cc0S(B) X(2)

Y(3) = COS(B) SIN(A) X(1) - SIN(B) SIN(A) X(2) + COS(A) X(3)
TC(1,1) = -COS(B)COS2(A)SIN(B)C(1,2)-COS(B)COS(A)SIN(A)C(1,3)

)

~C0S(B)COS2 (A)SIN(B)C(2,1)+C0OS2 (A)SINZ (B)C(2,2)

+COS(A)SIN ()SIN(A)C(2,3)-COS(B)COS(A)SIN(A)C(3,])

+COS(A)SIN(B)SIN(A)C(3,2)+SIN2(A)C(3,3)
+C0S2(B)COS2(A)C(1,1)

TC(1,2) = COS2(B)COS(A)C(1,2)-COS(A)SIN2(B)C(2,1)
-COS(B)COS(A)SIN(B)C(2,2)-SIN(B)SIN(A)C(3,1)

-COS(B)SIN(A)C(3,2)+COS(B)COS(A)SIN(B)C(1,1)
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TC(1,3) = -COS(B)COS(A)SIN(B)SIN(A)C(1,2)+COS(B)COS2(A)C(1,3)
-COS(B)COS(A)SIN(B)SIN(A)C(2,1)+COS(A)SIN2(B)SIN(A)C(2,2)
c(2,3

(
(

~COS2(A)SIN(B COS(B)SIN2(A)C(3,1)
)

+SIN(B )SINZ(A €(3,2 SIN(A)C(3,3)

) )-

) )-COS(A
+C0$2(B)COS{A)SIN(A)C(1,1)

) )-

) )-

TC(2,1) = -COS(A)SIN2(B)C(1,2)-SIN(B)SIN(A)C(1,3)
+C0S2(B)COS(A)C(2,1)-COS(B)COS(A)SIN(B)C(2,2)
-COS(B)SIN(A)C(2,3)+COS(B)COS(A)SIN(B)C(1,1)

TC(2,2) = COS(B)SIN(B)C(1,2)+C0OS(B)SIN(B)C(2,1)+C0S2(B)C(2,2)
+SIN2(B)C(1,1)

~ TC(2,3) = -SIN2(B)SIN(A)C(1,2)+COS(A)SIN(B)C(1,3)
+C0S2(B)SIN(A)C(2,1)-C0S(B)SIN(B)SIN(A)C(2,2)
+COS(B)COS(A)C(2,3)+C0OS(B)SIN(B)SIN(A)C(1,1)

TC(3,1) = -COS(B)COS(A)SIN(B)SIN(A)C

) (

) (1,2)-C0S(B)SINZ(A)C(1,3)

-COS(B)COS(A)SIN(B)SIN(A)C(2,1)+COS(A)SINZ(B)SIN(A)C(2,2)

+SIN(B)SIN2(A)C(2,3)+C0S(B)COS2(A)C(3,1)

-C0OS2(A)SIN(B)C(3,2)-COS(A)SIN(A)C(3,3)
+C0S2(B)COS(A)SIN(A)C(1,1)

TC(3,2) = COS?(B)SIN(A)C(1,2)-SIN2(B)SIN(A)C(2,1)
-COS(B)SIN(B)SIN(A)C(2,2)+COS(A)SIN(B)C(3,1)

+COS(B)COS(A)C(3,2)+COS(B)SIN(B)SIN(A)C(1,1)
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TC(3,3) = -COS(B)SIN(B)SIN2(A)C(1,2)+COS(B)COS(A)SIN(A)C(1,3)
-COS(B)SIN(B)SINZ(A)C(2,1)+SIN2(B)SIN2(A)C(2,2)

)
)
-COS(A)SIN(B)SIN(A)C(2,3)+COS({B)COS(A)SIN(A)C(3,1)
-COS(A)SIN(B)SIN(A)C(3,2)+C0S2(A)C(3,3)

(

+C0S2(B)SIN2(A)C(T1,1)

Readers are reminded that, in computer notation, an aerodynamic stability
derivative in wind-tunnel axes is denoted by C(J,J) and the corresponding trans-
formed derivative by TC(I,J). _

The manual derivation of the preceding section uses the notation X ! to denote
the aerodynamic stability derivative in wind-tunnel axes and Y; to denote the
transformed derivative. These two methods are seen to produce identical results.

In this particular case, manual derivation proved to be the quicker method.
Although the actual computing time was quite small, less than 1 min, the program-
ming and debugging time exceeded the time required to formulate the equations
manually. It should be pointed out, however, that this disadvantage is due to the
batch processing mode that FORMAC users are required to use. Those who have
access to a computer system with an interactive mode language, such as that
described in the final chapter, would find that the computerized formulation is
quicker.

The preceding output gives the computerized version of the transformation
equations for the velocity and acceleration derivatives. For example, when the
transformed derivative given by TC(1,1) is transcribed from the computer output
and interpreted in accordance with the definitions assigned to the identifying indices
for angular velocity derivatives, it represents the following equation:

r_ 2 p_ : 2 2
Xp [Xp cos® B (Xq + Yp)smB cos B + Yq sin®? Blcos? A
+Z, sin? 4 - (X, + Zp)cos B-(Y,+ Zq)sin Blsin 4 cos A4

It is instructive to dwell on this rather complicated equation for a moment and
examine its meaning and the meanings of the individual terms and coefficients. This
equation gives the value of the derivatives in body coordinates (primed quantities) in
terms of the corresponding derivatives measured in the wind tunnel (the unprimed
quantities).
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It will be recalled that the aerodynamic forces acting on a body which is moving
through the atmosphere are defined in terms of the force coefficients C,., Cy, and
C,. The magnitude of the force in the x direction being

gSCy, == pV?SCy =X

Y=

When the x direction is in the direction of the velocity vector, which is the
direction of motion of the body, aeronautical engineers usually refer to these forces
as drag forces and define a drag coefficient as follows:

Cp=-C;

In terms of this coefficient the aerodynamic drag force is
35Cp = L pysc
D =5PV?*SCp

If we think of X as a measure of the drag force, the symbol C(1,1) corresponds to
X p and is a measure of the rate of change of the drag force with respect to p, the
angular velocity of the body about the x-axis, or as it is called, the rolling angular
velocity. Likewise, the symbol C(1,2) corresponds to X, and is a measure of the rate
of change of the drag force with respect to the pitching velocity ¢. Similarly, the
symbol C(1,3) corresponds to X, and is a measure of the rate of change of the drag
force with respect to the yawing velocity r.

As in the case of the static forces and moments, the transformation of the
aerodynamic stability derivatives from wind axes to body axes involves the angles 4
and B (see sketch (f)). The angle 4 is the angle of attack, which is the angle between
the component of the wind vector in the plane of symmetry and the longitudinal
axis of the aircraft. The angle B, on the other hand, is the angle of sideslip, which is
the angle between the wind vector and the plane of symmetry.

The remaining transformation equations for the drag force derivatives with
respect to the angular velocity components follow the same pattern. These are
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RELATIVE
WIND

Sketch (f)

3 r 2 _ : 2 _ .
Xq [Xq cos®* B Yp sin®? B + (Xp Yq)sm B cos B]cos 4
- (Zq cos B + Zp sin B)sin A
X,' =(X, cos B~ Y, sin B)cos® A4 - (Zp cos B - Zq sin B)sin? A
2 : 2 p_ , . _ .
+ [Xp cos? B+ Yq sin? B (Xq + Yp)sm BcosB Zr]smA cos 4
In the computed transformation equations the symbols C(2,1), €(2,2); and C(2,3)
correspond, respectively, to Yp, Y, and Y,. The quantity Y is a measure of the side
force acting on the aircraft, and t?ne derivatives Y, Yq, Y, determine the rates of

change of this force with respect to the rolling, pitching, and yawing velocities of the
vehicle. The computed transformations are

v ! = g 2 - 12 —- Yei
Yp —[chos B qum,B+(Xp Yq)schosB]cosA

- (Y, cos B + X, sin B)sin 4
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r_ 2 ) .
Yq chos B+Xpsm B+(Xq+Yp)schosB

Yr' = (Y, cos B + X, sin B)cos A

V 2 p_ 2 _ : :

+ [Yp cos* B Xq sin’ B + (Xp Yq)smB cos Blsin 4
Instead of the quantity Z which determines the lift force acting on an aircraft,

aeronautical engineers use a lift coefficient which is defined by the relation

SPVSCy =-Z
In terms of this notation, the derivatives Zp, Z,,Z, determine the rates of change of
the lift force with respect to the rolling, pifching, and yawing velocities of the
aircraft. In the computed transformation equations, the following substitutions are
required: the symbols C(3,1), C(3,2), and C(3,3) correspond, respectively, to Zp,
Z,, and Z,. When these substitutions are made in the computer printout, the trans-

q
formation equations assume the following form:

! — _ . 2 _ _ . s 2
Zp (Zp cos B Zq sin B)cos® A - (X, cos B- Y, sin B)sin* 4

2 c 2 p_ . _ .
+[Xp cos B+Yq sin‘ B (Xq+Yp)schosB Z,.]smA cos A

. .
Zq = (Zq cos B + Zp sin B)cos A

2 _ 2 _ . .
+ [Xq cos’ B Yp sin® B + (Xp Yq)smB cos Blsin 4

! - 2 2 2 - . i 02
Z, Zr cos® 4 + [Xp cos® B + Yq sin’ B (Xq + Yp)smB cos Blsin? 4
+ (X, + Zp)cos B-(Y, + Zq)sin Blsin A cos A

The same computer output gives the transformation equations for the moment
derivatives also. As already indicated, the first index in the symbol C(Z,J) or TC(I,J)
denotes the force or moment component being considered, and the second one
specifies the motion vector component with respect to which the derivative is
obtained. Hence, if the first index is used to denote moment components instead of
force components, the moment derivatives are obtained. For example, the symbol
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C(1,1), which was previously used to denote the force derivative X,,, may also be
used to denote the moment derivative Ip, where the quantity / is a measure of the
aerodynamic rolling moment. Likewise, C(1,2), which was previously used to denote
X g May now be used to denote / 7 the rolling moment derivative with respect to the
pitching velocity. Finally, ((1,3), which has been used to denote X,, gives the
derivative [,, that is, the rolling moment derivative with respect to the yawing
velocity. These are

"= [lp cos? B - (lq + mp)sin B cos B + m, sin* Blcos?> A + n, sin* 4

lP q

+ [_(lr + np)cos B+ (mr + nq)sin Blsin A cos A

'=. 2 _ .2 _ .
lq [lq cos? B my, sin B+(lp mq)schosB]cosA

- (nq cos B + n,, sin B)sin A

p

lr' = (I, cos B - m, sin B)cos® A4 - (np cos B-n,, sin B)sin? A

q

+ [lp cos? B+ m,, sin? B - (lq + mp)sin B cos B-n,]sin A cos A

q
Again, the symbol ((2,1), which was previously used to denote the force deriva-
tive Yp, may also be used to denote the moment derivative mpy, where the quantity
m is a measure of the aerodynamic pitching moment. Moreover, the symbol C(2,2),
which was used to represent the force derivative Y, is used in the present context to
represent the pitching moment derivative with respect to the pitching velocity, that
is, Mg, and the symbol ((2,3) gives the pitching moment derivative with respect to
the yawing velocity, that is, m,. The transformation equations for the aerodynamic
pitching moment derivatives with respect to the angular velocity components are

’

Mp

- 2 - in2 - :
—[mpcos B Iqsm B+(lp mq)schosB]cosA

-(m,cos B +1, sin B)sin A

L 2 2 :
mg =mg COS B+Ip sin B+(lq+mp)smB cos B

112



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 2.8

m,’ = (m, cos B + 1, sin B)cos A
2 - . 2 - . -«
+ [mp cos B lq sin® B + (lp mq)sm B cosBlsin 4

The remaining moment derivatives are Ny the yawing moment derivative with
respect to the rolling velocity; n e the yawing moment derivative with respect to the
pitching velocity; and n,, the yawing moment derivative with respect to the yawing
velocity. The symbols C(3,1), C(3,2), and ((3,3) correspond respectively to Nps 1
and n,. The transformation equations for the aerodynamic yawing moment deriva-
tives with respect to the angular velocity components are

np' = (ny, cos B~ ng sin B)cos? A - (I, cos B - m, sin B)sin® 4

q

+ [lp cos? B+ m, sin? B - (lq + mp)sin Bcos B-n,]sin A cos A

q

ng = (nq cos B + n,, sin B)cos A

p

sin? B + (lp - mq)sin B cos Blsin A4

2 p_
+[lqcos B mp

! 2 N .
n, =n,cos® A+ [lp cos? B+ m, sin®? B ~ (lq + mp)31nB cos Blsin? A

q

+ [(lr + np)cos B- (mr + nq)sin Blsin 4 cos A

It is hoped that the reader will be sufficiently impressed with the compactness of

the tensor notation and the simplicity of the computer programs for symbolic
-manipulation, that he will be encouraged to write some programs of his own. If he
does, he will discover that there are many formulations that are amenable to the
technique of symbolic manipulation.

The information contained in the tensor transformation equatlon (2.7.6) and its
expanded form as given by the computer output, illustrates again the advantages of
the tensor method and the facility with which the summation convention can be
exploited by a simple computational algorithm.

Another set of derivatives which plays an important role in the study of the
response of an aircraft to aerodynamic forces is the set of aerodynamic stability
derivatives with respect to the linear velocity components u,v,w. These derivatives
are obtained in the same manner as the aecrodynamic stability derivatives with
respect to the angular velocity components. Referring again to the computerized
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version of equation (2.7.6), it will be recalled that the first index of the symbol
C(I.J) denotes the force or moment component being considered, while the second
index specifies the motion vector component with respect to which the derivative is
obtained. In the preceding formulation, all derivatives were obtained with respect to
the angular velocity components, but the present application requires that all
derivatives be obtained with respect to the linear velocity components. In order to
convert from computer output to conventional aeronautical symbolism, the follow-
ing substitutions are required: In the present context, the symbol C(1,1) denotes X, u
where X, is a measure of the rate of change of the aerodynamic drag force with
respect to the velocity component along the x reference axis (see sketch (g)).

Sketch (g)

The rate of change of the drag force with respect to the velocity component along
the y reference axis, that is, the lateral velocity, is X, which in the present context
will be denoted by the symbol C(1 !2). The symbol C(1,3) corresponds to Xw, which
is the rate of change of the drag force with respect to the velocity component along
the z-axis of the aircraft.

The transformation equations for these three components are

X, = [X, cos® B- (X, +Y,)sin B cos B+ Y, sin? Blcos®> 4 + Z, sin? 4
+ [—(XW + Zu)cosB + (Yw + Zv)sin Blsin A cos A
Xv' = (X, cos? B - Y, sin? B + (X, - Y, )sin B cos Bl cos A

-(Z, cos B+ Z,, sin B)sin 4
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X, = (X, cos B- Y, sin B)cos® A - (Z,, cos B- Z,, sin B)sin? 4

+ [X,, cos® B +.Y, sin? B - (X, + Y,,)sin B cos B- Z,, ]sin 4 cos A

The symbol C(2,1) denotes Y,,, which determines the rate of change of the side
force with respect to the ¥ component of velocity. Likewise, C(2,2) denotes Y,
which determines the rate of change of the side force with respect to the »
component of velocity; and C(2,3) represents Y. , the rate of change of the side
force with respect to the w component of velocity.

These three components transform as follows:

Yui =[Y, cos’ B- X, sin? B + (X, - Y,)sin B cos Bl cos A
- (Y, cos B + X, sin B)sin 4
r _ . .
Y, =Y, cos? B + X, sin? B, + (X, + Y,,)sin B cos B
' _ .
YW =(Y,, cos B + X,,, sin B)cos 4
+ [Y,, cos? B- X, sin? B + (X,, - Y,,)sin B cos B]sin A

Proceeding in the same manner, the symbols C(3,1), C(3,2), and C(3,3) corre-
spond, respectively, to Z,,, Z,,, and Zw, the rates of change of the aerodynamic lift
force with respect to the velocity components u,v,w.

In this case the transformation equations are

z, = (Z,, cos B~ Z,, sin B)cos®> A - (X, cos B~ Y, sin B)sin? 4

+ [X, cos? B + Y, sin? B - (X, + Y,,)sin B cos B - Z,,)sin A cos 4
Z, =(Z,cos B+ Z,, sin B)cos A

+ [X,, cos®> B~ Y, sin® B + (X, - Y,)sin B cos B]sin A
Z, =Z,cos? A+[X,cos? B+Y,sin* B-(X, + Y,,)sin B cos B]sin? 4

+ (X, + Z,)cos B - (YW + Z,)sin B]sin A cos 4
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The influence of the linear velocity components on the aerodynamic moments is
determined by a set of stability derivatives analogous to the preceding force
derivatives. Again, we can avail ourselves of the expanded form of equation (2.7.6)
as given by the computer output. In the present application, the first index of the
symbol C(I,J) refers to the aerodynamic moment being considered, while the second
one specifies the linear velocity component with respect to which the derivative is
obtained; that is, C(1,1) corresponds to /,,, which is the rate of change of the rolling
moment with respect to the ¥ component of velocity.

The rate of change of the rolling moment with respect to the v component of
velocity is [, and is given in the present context by the symbol C(1,2). The symbol
((1,3) denotes [,,,, the rate of change of the rolling moment with respect to the w
component of velocity. The transformation equations for these three components
are

1, =1, cos* B~ (I, + m,)sin B cos B + m,, sin? B]cos® A4
+n,,sin? 4 + (-, + ny,)cos B + (m,,, + n,,)sin Blsin A cos A
lv' = (1}, cos? B-m,, sin? B + (I, . m,,)sin B cos B] cos A
- (n, cos B + n,, sin B)sin A

lw' = (l,, cos B - m,, sin B)cos® A - (n,, cos B~ n,, sin B)sin? 4

+ [l cos® B + my, sin® B~ (I, + m,)sin B cos B - n,,]sin A cos A

It is seen that the amount of information contained in equation (2.7.6) and its
expanded form as given by the computer output is quite large. At each step in the
formulation a reinterpretation of the significance of the indices in the symbol C(J,J)
yields additional transformations. For example, if we wish to transform the pitching
moment derivatives from wind-tunnel axes to body axes, the symbols C(2,J) and
TC(2,J) would be used. In this case, the symbol C(2,1) would correspond to m,,,
where m,, is the rate of change of the pitching moment with respect to the u
component of velocity. The symbol C(2,2) can be replaced by m,, the pitching
moment derivative with respect to the v component of velocity, and m,, can be
substituted for the symbol C(2,3) in the computed transformation equations. The
transformation equations for the pitching moment derivatives are
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m,, = [m,, cos® B -1, sin? B + (I, - m)sin B cos B] cos A
- (m,, cos B +1,, sin B)sin A
m,' =m, cos® B + 1, sin> B + (I, + my,)sin B cos B
L ‘ :
m, = (mw cos B + 1,,, sin-B)cos A
+ [m,, cos? B-1,sin? B + (I, - m,)sin B cos B]sin 4
- The yawing moment ,derlvatives with respect to the linear velocity components
" complete the list of aerodynamic stability derivatives required to study the response
of an airpraft to aerody_namic forces of this type. In this case, the symbols C(3,J)
‘and TC(3,J) are required. The symbol C(3,1) represents n,,, which determines the
rate of change of the yawing moment with respect to the u component of velocity.
The symbol C(3,2) can be replaced by n,, the rate of change of the yawing moment
with respect to the v component of velocity. Lastly, n,, can be substituted for
((3,3) in the computed transformation equations, and the yawing moment deriva-
tives transform as follows:
n,' = (n, cos B-n, sin B)cos® 4 - (,, cos B - m,, sin B)sin> A
+ [l cos? B + m,, sin? B ~ (I, + m,)sin B cos B - n,,lsin 4 cos A
ny,' = (n, cos B + n,, sin B)cos A
1oy €082 B-m,, sin> B + (I, - m,)sin B cos Blsin 4
1 — 2 2 . 2 - .
n,, =n,, cos® A+[l, cos®> B+ m,sin? B-(l, +m,)sin B cos B]sin? 4

+ 1, +n,)cos B~ (m,, + n,)sin B]‘sin A cos A

The aerodynamic stability derivatives with respect to the components of linear
and angular acceleration follow exactly the same pattern. These are obtained by a
reinterpretation of the second index in the derivétive symbol. Although the first
index of the derivative symbol C(1,J) still denotes the force or moment component
being considered, the second index now specifies the linear or angular acceleration
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component with respect to which the derivative is obtained. When substitutions are
made in accordance with these interpretations, the computer output yields an
additional 36 equations for the acceleration derivatives. Hence, the compact tensor
equation (2.7.6) and the corresponding computer output represent a total of
72 transformation equations for the aerodynamic stability derivatives.

2.8.2 Aerodynamic Stability-Derivatives as Second Order Contravariant Tensors

As indicated in section 1.4, it is possible to avoid the use of the inverse
transformation x = x(3), if the coordinate transformations are orthogonal Cartesian.
Equation (1.4.12) shows that for orthogonal Cartesian transformations

i i
LI A (2.8.3)
axl  ay!
Substitution of this relationship in equation (2.7.6) gives
. ayi ay] .
Yi==- = (2.8.4)
ax® axP

where the first superscript again denotes the component of the aerodynamic force or
moment, and the second superscript denotes the motion vector component with
respect to which the derivatives are obtained. The form of equation (2.8.4) shows
that it is only necessary to use the direct coordinate transformation y = y(x).

In case some readers are not quite convinced by the arguments of section 1.4, the
computer program will be modified to process equation (2.8.4) for comparison with
the result of processing equation (2.7.6): _

The modified program (which only requires the direct coordinate transformation
equations as input) and the resulting output are as follows:

_ LET(Y(1)=X(1)*COS(A)*COS(B)-X(2)*COS(A)*SIN(B)-X(3)*SIN(A));
LET(Y(2)=X(1)*SIN(B)+X(2)*C0OS(B));

LET(Y(3)=X(1)*SIN(A)*COS(B)-X(2)*SIN(A)*SIN(B)+X(3)*COS(A)) ]
PRINT OUT(Y(1):;Y(2);Y(3));
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PUT SKIP(5);

DO I=1 TO 3 BY 1;

DO J=1 TO 3 BY 1;
LET(I="1");

LET(J="d"); ~
LET(TC(I,J)=0);

DO M=1 TO 3 BY 1;

DO N=1 TO 3 BY 1;
LET(M="M");

LET(N="N");

2.8

LET(TCC(I,d)=(DERTV(Y(I),X(M)))*(DERIV(Y(J),X(N)))*(C(M,N)));

LET(TC(I,J)=TC(I,J)+TCC(I,J));
END;

END;

PRINT OUT(TC(I,d));

PUT SKIP(5);

END; -

END;

Y(1) = COS(B)COS(A)X(1)-COS(A)SIN(B)X(2)-SIN(A)X(3)
Y(2) = SIN(B)X(1)+C0OS(B)X(2)

=<
Camn)
w
e
"

COS(B)SIN(A)YX(1)-SIN(B)SIN(A)X(2)+COS(A)X(3)
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TC(1,1) = -COS(B)COS2(A)SIN(B)C(1,2)-COS(B)COS(A)SIN(A)C(T,3)"
—COS(B)COSZ(A)SIN(B)C(Z,l)+COSZ(A)SIN2(B)C(2,2)
+COS(A)SIN(B)SIN(A)C(2,3)-COS(B)COS(A)SIN(A)C(3,1)
+COS(A)SIN(B)SIN(A)C(3,2)+SIN?(A)C(3,3)
+C0S2(B)COS2(A)C(1,1)

| TC(1,2) = COS2(B)COS(A)C(1,2)-COS(A)SIN2(B)C(2,1)
-COS(B)COS(A)SIN(B)C(2,2)-SIN(B)SIN(A)C(3,1)

B)CNS2(A)C(1,3)

(B)Cos( )-
(B)COS( )
-C0S(B)SIN(A)C(3,2)+COS(B)COS(A)SIN(B
TC(1,3) = -COS(B)COS( )

(B)COS( )

)
)c(1,1)
)
)

(

(
B)COS(A)SIN(B)SIN(A)C(1,2)+C0OS(
B)COS(A)SIN( (
(

-COS2(A)SIN(B)C(2,3)-C0S(B

(
B)SIN(A)C(2,1)+COS(A)SINZ(B)SIN(A)C(2,2)
3)SIN2(A)C(3,1)

)

+SIN(B)SIN2(A)C(3,2)-COS (A SIN(A)C(3,3)

(B) )-

(R) )-
+C0S?(B)COS(A)SIN(A)C(1,1)

(B) )-

(A) )-

TC(2,1) = -COS(A)SIN2(B)C(1,2)-SIN(B)SIN(A)C(1,3)
+C0S2(B)COS(A)C(2,1)-COS(B)COS(A)SIN(B)C(2,2)
-COS(B)SIN(A)C(2,3)+COS(B)COS(A)SIN(B)C(1,1)

TC(2,2) = COS(B)SIN(B)C(1,2)+COS(B)SIN(B)C(2,1)

TC(2,3) = -SIN2(B)SIN(A
(

)
+C0S2(B)C(2,2)+SIN2(B)C(1,1)

(
+C0OS2(B)SIN(A)C(2,1)-COS(B)SIN(B)SIN(A)C(2,2)

(
)
)C(1,2)+COS(A)SIN(B)C(1,3)
)

+C0OS(B)COS(A)C(2,3)+COS(B)SIN(B)SIN(A)C(T,1)
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TC(3,1)

TC(3,2)

TC(3,3)

~€0S(B)COS(A)SIN(B)SIN(A)C(1,2)-COS(B)SINZ(A)C(T,3)
~C0S(B)COS(A)SIN(B)SIN(A)C(2,1)+COS(A)SINZ(B)SIN(A)C(2,2)
+SIN(B)SINZ(A)C(2,3)+C0OS(B)COS2(A)C(3,1)
-C052(A)SIN(B)C(3,2)-COS(A)SIN(A)C(3,3)
+052(B)COS (A)SIN(A)C(1,1)
COSZ(B)SIN(A)C(1,2)-SIN2(B)SIN(A)C(2,1)
-COS(B)SIN(B)SIN(A)C(2,2)+COS(A)SIN(B)C(3,1)
+005(B)COS(A)C(3,2)+C0S (B)SIN(B)SIN(A)C(T,1)
-COS(B
~C0S(B)SIN(B)SIN2(A)C(2,1)+SIN2(B)SIN2(A)C(2,2)
~COS(A)SIN(B)SIN(A)C(2,3)+C0S(B)COS(A)SIN(A)C(3,1)
-COS(A

2

)SIN(B)SIN(A)C(3,2)+C0S2(A)C(3,3)

)C
)S
)
)SIN(B)SINZ(A)C(1,2)+C0OS(B)COS(A)SIN(A)C(1,3) -
)
)
)
+C0S2(B)SIN(A)C(1,1)

Hence, for a given coordinate transformation y =y(x), which is orthogonal
Cartesian, the second-order contravariant transformation gives the same result as the
mixed tensor transformation. By using this property of orthogonal Cartesian trans-
formation, the need for the reverse transformation x = x(y) is eliminated.

2.8.3 Inverse Transformations

Equations (2.7.6) and (2.8.4) give the direct transformation of aerodynamic
stability derivatives from wind-tunnel axes to body axes. It has been demonstrated
that these two transformation laws give identical results 1f coordinate transforma-
tions are confined to orthogonal Cartesian systems. ‘

Use of the simpler form (2.8.4) avoids the need for the reverse coordinate
transformation x = x(»). Hence, if
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yif=aLi E’LanB (2.8.5)
ax® axP o

equation (2.5.2) permits the inverse transformation to be written in the form
yof = ¥ Py (2.8.6)
oyt oy’
Substitution from equation (2.8.3) in equation (2.8.6) gives

. yoB _ 'l i

2x 2B (2.8.7)

When rewritten in covariant form, to conform to the notation already established
for covariant and contravariant tensors, this equation becomes

i ]
X =0 W Y, (2.8.8)
ax® xP
or
aym ayn
ij ol ax/ mn (2.8.9)

As a consequence of equation (2.8.3) the distinction between contravariant and
covariant tensors disappears when coordinate transformations are confined to
orthogonal Cartesian systems.

2.8.4 Inverse Computer Transformations

A computer program to process equation (2.8.9) requires only the direct coor-
dinate transformation y = y(x) as input.

The symbol C(I,J) will again be used to denote an aerodynamic stability derivative
in computer notation. However, in this case C(/,J) will denote a body axis compo-
nent and TC(I,J) will refer to a component relative to wind-tunnel axes.

When I,J are permitted to assume the values 1,2,3, the computer program and
the corresponding output assume the following form:
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LET(Y(1)=X(1)*COS{A)*COS(B)-X(2)*COS(A)*SIN(B)-X(3)SIN(A));
LET(Y(2)=X(1)*SIN(B)+X(2)*C0S(B));
LET(Y(3)=X(1)*SIN(A)*COS(B)-X(2)*SIN(A)*SIN(B)+X(3)*COS(A));
PRINT_OUT(Y(1),Y(2)5Y(3));

PUT SKIP(5);

DO I=1 TO 3 BY 1;

LET(I="1");

DO J=1 TO 3 BY 1;

LET(J="J");

LET(TC(1,J)=0);

DO M=1 TO 3 BY 1;

LET(M="M");

DO N=1 TO 3 BY 1;

LET(N="N");
LET(TCC(I,3)=(DERTV(Y(M),X(I)))*(DERIV(Y(N),X(J)))*(C(M,N)));
LET(TC(I,d)=TC(I,d)+TCC(I,J));3

END;

END;

PRINT_OUT(TC(I,J));

PUT SKIP(5);

END;

END;

2.8
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Y(1)
Y(2)
Y(3)

i i

TC(1,1) =

TC(1,2)

7C(1,3)

TC(2,1)
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COS(B)COS(A)X(1)-COS(A)SIN(B)X(2)-SIN(A)X(3)

SIN(B)X(1)+C0S(B)X(2)

COS(B)SIN(A)X(1)-SIN(B)SIN(A)X(2)+COS(A)X(3)

COS(B)COS(A)SIN(B)C(1,2)+C0S2(B)COS(A)SIN(A)(C(1,3)
+C0S(B)COS(A)SIN(B)C(2,1)+SIN2(B)C(2,2)
+C0S(B)SIN(B)SIN(A)C(2,3)+C0S2(B)COS(A)SIN(A)C(3,1)
+C0S(B)SIN(B)SIN(A)C(3,2)+C0S2(B)SIN2(A)C(3,3)
+C0S2(B)COS2(A)C(1,1) ‘
€0S2(B)COS(A)C(1,2)-COS(B)COS(A)SIN(B)SIN(A)C(1,3)

':—COS(A)SINZ(B)C(Z,l)+COS(B)SIN(B)C(2,2)

-SIN2(B)SIN(A)C(2,3)-COS(B)COS(A)SIN(B)SIN(A)C(3,1)
+C032(B)SIN(A)C(3,2)-COS(B)SIN(B)SINZ(A)C(3,3)
-C0S(B)COS2(A)SIN(B)C(1,1)
COS(B)COS2(A)C(1,3)-SIN(B)SIN(A)C(2,1)
+COS(A)SiN(B)C(2,3)-COS(B)SIN2(A)C(3,1)
+COS(B)COS(A)SIN(A)C(3,3)-CNS(B)COS(A)SIN(A)C(1,1)
—COS(A)SINZ(B)C(1,2 -C0S(B) COS(A SIN(B)SIN(A)C(1,3)
' ¢(2,2)
SIN(B)SIN(A)C(3,1)

)
+C0S2(B)COS(A)C(2,1)+C0S(B)SIN(B)
+C0S2(B)SIN(A)C(2,3)- COS(B)COS(A)
—SIN2(B)SIN(A)C(3,2) C0S(B)SIN(B)SIN2(A)C(3,3)
~COS(B)COS2(A)SIN(B)C(1,1)
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TC(2,2)

1C(2,3)

TC(3,1)

TC(3,2)

TC(3,3)

-COS(B)COS(A)SIN(B)C(1,2)+COS(A)SINZ(B)SIN(A)C(1,3)
-COS(B)COS(A)SIN(B)C(2,1)+C0S2%(B)C(2,2)

(
(
-COS(B)SIN(B)SIN(A)C(2,3)+COS(A)SIN2(B)SIN(A)C(3,1)
-COS(B)SIN(B)SIN(A)C(3,2)+SINZ(B)SIN2(A)C(3,3)

(

(
(
(
+C0S2(A)SIN2(B)C(1,1)
-COS2(A)SIN(B)C(1,3)-COS(B)SIN(A)C(2,1)
B)COS(A)C(2,3)+SIN(B)SIN2(A)C(3,1)

© -COS(A)SIN N(B)SIN(A)C(3,3)+COS(A)SIN(B)SIN(A)C(1,1)

"

)

)

-SIN(B)SIN(A)C(1,2)-COS(B)SIN2(A)C(1,3)

+COS(B)C0OS2(A)C(3,1)+COS(A)SIN(B)C(3,2)
B)

+COS(B)COS(A)SIN(A )C(3,3)—COS(B')COS(A)SIN(A)C.(],])
-COS(B)SIN(A)C(1,2)+SIN{B)SINZ(A)C(1,3)
-COS2(A)SIN(B)C(3,1)+COS(B)COS(A)C(3,2)
-COS(A)SIN(B)SIN(A)C(3,3)+COS(A)SIN(B)SIN(A)C(1,T1)
_COS(A)SIN(A)C(T,3)-COS(A)SIN(A)C(3,1)
+C0S2(A)C(3,3)+SIN2(A)C(T,1)

2.8

Interpretation of these results requires that the body axes derivatives C(1,J) be
treated as primed quantities and wind-tunnel derivatives TC(1,J) as unprimed quan-
tities. As indicated previously, the first index denotes the component of the
aerodynamic force or moment, and the second index the component of the motion
vector with respect to which the derivative is obtained.

When interpreted in terms of conventional aeronautical symbolism, the inverse
aerodynamic derivatives with respect to p, g, r are
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X, = [Xp' cos? A4 +Z,'sin> A + (X, + Zp')sinA cos Alcos’ B
+ Yq' sin? B + [(Xq’ + Yp')cosA +(Y, + Zq’)sin Alsin B cos B
Xq = (Xq' cos A + Zq' sin A)cos? B - (Yp' cos 4 +Y,’ sin A)sin® B
- [Xp' cos? A +Z,/sin? A + (X, ¥ Zp')sin AcosA- Yq']s‘in B cosB -
X, =X, cos? 4 - Zp' sin? 4 - (Xp" - Z,')sin A cos A] cos B
+(Y, cos A - Yp' sin A)siﬁ B
Yp = (Yp' cos A + Y, sin A)cos? B - (Xq' cos A + Zq' sin A)sin? B
- [Xp' cos? A +Z,'sin* A +(X,' + Zp')sin A cosA- Yq']sin B cos B
Yq = Yq' cos? B + [Xp' cos? A+ Z/'sin? A + ’(Xr' + Zp')si»n A cos Alsin? B
- [(Xq' + Yp')cos A+, + Zq')sin Alsin B cos B
Y, =(Y, cos A - Yp' sin A;cosB
+[-X,' cos? 4 + Zp' sin® 4 + (Xp' - Z,')sin 4 cos A]sin B
Zp = [Zp' cos’ A~ X,'sin? 4 - (Xp' - Z,")sin A cos A}cos B
+ (Zq' cos A - Xq' sin A)sin B
Z, = (Zq' cos A - Xq' sin A)cos B
+ [-Zp' cos? A + X,'sin> 4 + (Xp' - Z,')sin A cos A]sin B
zZ, = Zr' cos? 4 + Xp' sin? A - (X,’ + Zp')sin A cos A
Ip = [lp' cos? A +n,'sin? A+ (1’ ¥ np')sinA cos A) cos? B

+m, sin? B+ [(Iq' + mp')cosA +(m, + nq')sin Alsin B cos B

q
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— ] | 2 - ] r . 2.2
Iq (Iq cos 4 +nq sin 4)cos? B (mp cos A + m, sin A)sin* B
_ : 2 [ [ e - _ Py s
[Ip cos* A +n, sin* 4 + {a, + np )sin 4 cos A» mg Isin B cos B
I, =11 cos® A- np' sin? A4 - (lp' ~'n,’)sin A cos A] cos B

+ (m,’' cos A - m,, sin A)sin B

p

— ! r 2 _ ! r . s
my, (mp cos A +m, sin A)cos® B (lq cos A +nq sin 4)sin?* B
_ ' 2 () ' (9™ - 1 a:

[lp cos* A +n, sin’® A + (lr +np )sin A cos A mg 1sin B cos B

m, = m

! 2 ’ 2 r .2 ! . 2n2
q g ©os B+ [lp cos*A +n, sin® A+ (I, +np )sin A cos A]sin’ B

1 ! 1 ’ . .
—[(lq + my, Jeos 4 + (m, + ng )sin A)sin B cos B,

m, = (m,' cos A'- m,' sin A)cos B

p
13 - ! ! - .
+[-1,' cos? 4+ np' sin? A + (lp -n,')sin A cos Alsin B
_ ’ . 2 _ r s 2 _ I_» ' H .
np = [np cos* A-1 sin* 4 (lp n,)sin A cos A]cos B

+(n

] . r . .
q c0§A - lq sin A)smB

_ r . _ ’ . ' . >
nq—(nq cos 4 lq sin A)cos B |
+ [—np' c‘c.>s2 A+1 sin> 4+ Up- n,')sin A cos A]sin B
n,=n,’ cos? 4 + lp' sin? 4 -(l, + np')sin Acos A

The inverse aerodynamic stability derivatives with respect to u, v, w are

X,=1[X,cos? A+Z, sin? 4+ (X, +Z, )sinA cosA]cos? B

+7Y, sin? B+ [(X,'+ 7Y, )cos 4 + (Y, + Z,)sin A]sin B cos B
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X, = (X' cos A + Z,' sin A)cos® B - (Y, cosA + Y, sin A)sin® B
-[X, cos? 4 + Z,sin? A+ (X, +Z, )sin 4 cos A - Y,']sin B cos B
X, =X, cos* A-Z, sin? 4- (X, - Z,,)sin A cos A]cos B
+(Y,, cos A- Y, sin A)sin B
Y, =(Y, cos4 +Y, sinA)cos® B- (X, cosA + Z, sin A)sin? B
-[(X, cos? A+ 2Z, sin? A+ (X, +Z, )sin A cos A - Y,']sin B cos B
Y, =Y, cos? B+ [X, cos? A+ Z, sin? A + (X, ¥ Z,')sin A cos Alsin? B
+ (X, + Y, )cos 4 + (Y,,' +Z,)sin Alsin B cos B
Y, =Y, cosA-7Y, sinA)cos B
+[-X,,  cos?> 4 + Z, sin* A + (X, - Z,,")sin A cos A]sin B
Z,=12, cos* A- X, sin> A- (X, - Z,, )sin A cos A] cos B
+(Z,' cos A - X' sin A)sin B
Z,=(Z, cos A- X, sin A)cos B
+1-Z, cos? A+ X, sind+ (X, -Z, )sinA cos Alsin B
Z,=2, cos? A+ X, sin? A-(X,, +Z,')sin A4 cos 4
I, = {7,' cos> A +n,,"sin* 4+ (1, + n,')sin A cos A] cos® B
+my,"sin?> B+ [(,' + m,)cos A + (m,,," + n,")sin A]sin B cos B
I,= (1, cos A +n, sin A)cos? B - (m,’ cos A +m, sin A)sin® B

+ [, cos? A +n, sin? 4+, +n,')sinA4 cos A - m,'}sin B cos B

w
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Ly = [lw' cos? A-n, sin? A-(l,,'-n, )sin A cos A]cos B
+ (m,,’ cos A - m,," sin A)sin B
my, =(m,' cos 4 + m, sin A)cos? B-(l,’ cos A + n) sin A)sin® B
- [1,' cos? A+ nw' sin? 4 + (1, + n,,")sin A cos A - m,']sin B cos B
my, =m,' cos? B+ [l cos? A +n

w sin? A+ (1, +n,")sin A cos A]sin? B

- 1@, + m,ycos A + (m,,, + n,)sin Alsin B cos B
m,, = (m,,' cos 4 - m,,’ sin A)cos B
+ [, cos? 4 + n, sin> A + (1, - n, ")sin A cos Alsin B
n, = [n,' cos® 4 - 1, sin? A-(,' - n, )sin A cos Al cos B
+(n,' cos A -1, sin A)sin B
n, = (nl," cos 4 -1, sin A)cos B
+[-n, cos?4 +1,/ sin? A + (' - n,")sin 4 cos Alsin B

— ’ 2 . 2 ! ! .
n,, = n,, cos A+lu sin A—(lW +n, )sin A cos A

2.9 TRANSFORMATION OF MOMENTS AND PRODUCTS OF INERTIA

The inertia tensor was discussed briefly in section 1.3. It was shown there that the
inertia properties of a rigid-body were defined by the dyadic ®, where

6 :IXX;;_ IXY;]?— IXZ{];_IYX;{+ IYY;]:\— IYZ]k_IZXkl_[ZYk]+IZZkk
(2.9.1)

In equation (%'9'1) the coefficients of the dyads are the moments and products of
inertia, and i,j, k are a triad of mutually orthogonal unit vectors. This equation can.
be written in compact tensor notation as follows:
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5=Iaﬁaa5 (2.9.2)
where
& =1
a? =j
a* =k
and
Iy =Iyy ; I, =-Iyy; I3 =-Ixz
Iy =-Iyy; I, =1Iyy ; I3 =-lyz
Iy, =-Izx ; Iy, =-Izy ; I33 =175

Due to the equivalence of covariant and contravariant transformations in orthog-
onal Cartesian coordinate systems, equation (2.9.2) can be written in the alternative

form

& = 1% jg (29.3)
where
a, = a%
and
%6 = Iog

The invariance of ® with respect to a coordinate transformation from the x
coordinate system, to the y coordinate system, requires that

Fi)b; (b} () = 1%B(x)a o)) (2.9.4)
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where
;)l-(y) unit vectors in the y-coordinate system-
?za(x) unit vectors in the x-coordinate system
Forming the scalar product of each side of equation (2.9.4) witf} Bj(y) gives
17096, = 100300 { ;) » g} (29.5)
It is shown in section 1.5, equation (1.5.5), that

“ R B ayf
b;(y) c aglx) = ——
Y/ B 2B (2.9.6)

Substitution from (2.9.6) in (2.9.5) gives

Iif(y)l;,-(y) 2 I"‘ﬁ(x)aa(x) (2.9.7)
axB

Forming the scalar product of this equation with Bl-(y) yields

.. I - A
1) = 22 1980 {3,0) - )}
axPB
Using equation (1.5.5) again gives the transformation in thé following form:
- oyl gy
iy =22 2 1%(x) (2.9.8)

ax% ox

This is the transformation law for the components of a contravariant tensor of
rank two (see eq. (1.8.3)). Equation (2.9.8) may be rewritten to conform to estab-
lished terminology .

3 .=§Z_". ay! 2.9.9
;) e axBIaﬁ(x) (2.9.9)
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Equation (2.9.8) is in complete agreement with equation (2.8.4). Therefore, the
program used to process equation (2.8.4) can be used with equal facility to process
equation (2.9.8) or (2.9.9). Hence, if a moment or product of inertia in wind-tunnel
axes be denoted by C(/,J), and the corresponding transformed inertia component be
denoted by TC(,J), where I.J =12,3, the output will be the transformed inertia
components. There is one precaution to be observed, however. In interpreting the
output, it should be noted that

CBN)=-Izy ; C3,)=-Izy ; C(3,3) =1z,

Since these transformations are frequently used in aeronautical studies, they will
be reproduced here for the convenience of readers.

2.9.1 Direct Transformations

When expressed in terms of conventional mathematical symbolism, the trans-
formed inertia components assume the following form:

I'yy = Uy cos® B+ 2 yysin B cos B + Iyysin® B)cos A4 + I sin* A
+ (ZIXZ cos B - ZIYZ sin B)sin A cos A

Iyy =Iyycos? B+ Iyysin? B-2lyy sin B cos B

I77=177cos? A+ (Iyy cos® B+ Iyysin? B+ 2[yy sin B cos B)sin® 4
- (2IXZ cos B - ZIYZ sin B)sin A cos A

Ixy = U yy(cos® B - sin‘2 B) - (Iyy - Iyy)sin B cos B] cos A

“Uygzcos B +IyzsinB)sin A
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15(2’ = ([ yz cos B~ Iyzsin B)cos® A - (Iyz7 cos B - Iy, sin B)sin* 4
-(xy cos? B+ Iyysin® B+ 2yy sin B cos B - I77)sin A cos A
IYZ (Iyz cos B + Iy 7 sin B)cos A
+ [Iyy(cos® B -sin? B)- (Iyy~ Iy y)sin B cos B]sin A
2.9.2 Inverse Transformation

The inverse transformation for inertia components is obtained by solving equa-
tion (2.9.8) for 1%(x).

B
196y = % 2 fij ) . (2.9.10)
ay ay! .

Substitution from equation (2.8.3) in (2.9.10) gives

- 1%x) _wl ! () (29.11)
ox% ox

Since i,j,8,a are dummy indices, equation (2.9.11) may be rewritten as

Fiey = 9% WP g, (29.12)
ax!t ax/
or
m gyn
IU( )= m(y) :
ax’ o (29.13)

In order to be consistent with the notation previously established, the inertia
components should be expressed in covariant form. Therefore

(x)——— W ) (2.9.14)
axt oax/
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This equation is in complete agreement with equation (2.8.9); therefore the
program used to process that equation can be used to transform the inertia
components from body axes to wind-tunnel axes. The results are given in sec-
tion 2.8, and expressed in the following conventional mathematical notation:

Iyx =Uyycos® A+1z7sin* A~ 2y sin A cos A)cos? B + Iyysin® B
- 2(I'yy cos A + Iy z sin A)sin B cos B

Iyy = I,’XX cos? B + UB(X cos? A +17,sin? A - 215(2 sin A cos A)sin? B
+2(yycos A + I'yz sin A)sin B cos B

I77=177c08* A+Iyysin®? A+ 2y,sin A cos 4

Iyy=Uyycos A +Iyzsin A)cos®> B-(I'yy cos A + [y  sin A)sin® B
+(Iyycos* A+1y;sin? A-2[yzsin A cos A-Iyy)sin B cos B

Iyz= [I";(Z(cos2 A -sin? A) + (Iyy - I77)sin A cos A]cos B
+ (I'yz cos A - I'yy sin A)sin B

lyz=yzcos A~ 1.'XY sin A)cos B + [Ij(Z(sin2 A ~cos? 4)

-Uyx- I77)sin A cos A]sin B

2.10 THE FORMULATION OF MATHEMATICAL MODELS OF AIRCRAFT

The response of an aircraft to the aerodynamic, thrust, gravity, and inertia forces
acting on the vehicle in flight is determined by formulating a mathematical model of
the system, solving the equations of the model, and using the solution to drive a
simulator (ref. 5). If the mathematical model is a true representation of the aircraft
and its environment, the response of the simulator will indicate to the aircraft
engineer how the aircraft will behave in an actual flight environment.

The formulation of models of aeronautical systems for simulation and other
purposes involves at least 12 equations — 3 force equations, 3 moment equations,
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3 Euler angle equations to determine the spatial orientation of the body, and
3 equations to determine the location of the body in inertial space (ref. 1).
Moreover, if the spatial orientation is determined by the use of direction cosines
rather than Euler angles, the three Euler angle equations must be replaced by nine
direction cosine equations. In view of this complexity, the formulation should be
rendered amenable to mechanized procedures, routine manual derivations, or both.

An important aspect of the formulation of mathematical models of aeronautical
systems is the specification of the system of forces and moments. In aeronautical
applications, the thrust and gravity forces can be formulated without difficulty, but,
as already indicated, the aerodynamic forces and moments require more detailed
consideration. These are represented by the static forces and moments, the control
derivatives, and the aerodynamic stability derivatives. As demonstrated in previous
sections, these forces and moments have to be transformed from wind or wind-
tunnel stability axes to aircraft body axes before the formulation can proceed. The
equations of motion of aerospace vehicles are formulated with respect to body axes.
The main advantage of these axes in motion calculations is that vehicle moments and
products of inertia about the axes are constants. When the body axes are chosen so
that the products of inertia vanish, they are known as principal axes. A system of
axes which is frequently used to study the stability of aircraft in the presence of
disturbing forces that produce smail perturbations is the flight stability system. This
is an orthogonal system fixed to the vehicle, the y! axis of which is aligned with the
relative wind vector when the vehicle is in a steady-state condition, but then rotates
with the vehicle after a disturbance as the vehicle changes angle of attack and
sideslip. Some of these axes are shown in figure 2.10.1.

Figure 2.10.1.— Systems of reference axes, including body, principal, wind, flight stability,
and wind-tunnel stability.

135



2.11 JAMES C. HOWARD

2.11 AERODYNAMIC FORCES

Two typical functional relations for the aerodynamic force and moment compo-
nents F 4* acting on an aircraft in flight are

N

FAI = FAi(Viapi’V.’l;i’aci’aCi)
and
FAI = FAI(A,B,VA,é)V’pl’bl’acl’Scl)

The independent variables in the first equation consist of the components of
linear and angular velocity v!, p*; the components of linear and angular acceleration
v‘ p'; the control displacements Bc .; and the rate of change of these displacements
6c The corresponding variables in the second equatlon are the angle of attack A4,
the angle of sideslip B, and their rates of change A and B the linear velocity V of the
aircraft and its linear acceleration V the components of angular velocity p' and
angular acceleration p'; and the control displacements 60. and their rates of change
801 '

To be of practical value, much simplification of the above functional relations is
required. By assuming that the motion is limited to small perturbations, it is possible
to simplify the mathematics and still obtain solutions of practical value. For small
Jperturbations, the resulting forces and moments are given by the linear portions of a
Taylor series expansion about the equilibrium state. These are

i aFAi T
FA0+ ; AS
i)

equilibrium values of the aerodynamic forces and moments

where

FAo

oF Al corresponding aerodynamic stability derivatives with respect to the state
asT variables S7, measured at the equilibrium point
(o]
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ST state variables
AST small perturbations in the state variables

Throughout this chapter the aerodynamic stability derivatives with respect to the
variables 1* , p’ have been obtained. Although it has not been stated explicitly, only
the dimensional forms of the aerodynamic forces, moments, and derivatives have
been used. For many applications, the nondimensional forms of these parameters are
preferred. However, it is less complicated to carry out the many transformations
involved in the formulation of mathematical models if the dimensional forms are
used. Consequently, the dimensional forms of the forces, moments, and derivatives
will be used in this section, and only stability derivatives with respect to v and r
will be considered. The same procedure may, of course, be used to transform the
stability derivatives with respect to A, B, V, and p’.

It has been demonstrated in section 2.3, that aerodynamic forces and moments
which are measured in wind axes or wind-tunnel stability axes may be transformed
to body axes when the corresponding coordinate transformation equations are
known. The body axes coordinates y* are related to the wind axes xW’ by equations
of the form

yi=ylx,}A,.B) | Q.11.1)

x,f =x, !4, (2.11.2)

where 4 and B are the angles of attack and sideslip, respectively. Since the
transformation (2.11.1) represents a negative rotation B about the xw3 axis, fol-
lowed by a positive rotation 4 about the resulting x? axis, it may be expressed in
the following alternative forms

y! cos A 0 -sinA\ /fcosB —sinB 0 x,!
y? | = 0 1 0 sin B cos B 0 x,,?
y3 sin A 0 cosAd 0 0 1 x,,°
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y' =x,' cosBcosA-x,>

- - 3 .
w cos A sin B Xy, sin 4

(2.11.3)

1

2 — : 2
y Xy sin B +x,, cos B

3 1 o - 27 : 3
y x,, sinAcosB-x, *sinAsinB+x,,° cosA4

The transformation (2.11.2) is obtained by solving equation (2.11.3) for xwi.

Xy cos B sin B O\ fosA 0 sind y!
x> | =] -sinB cos B 0 0 1 0 y?
x> 0 0 1/ \-sin4A 0 cos y3

x,,' =y' cos A cos B+ y?sin B+ y?sin A4 cos B

x,,2 =-y' cos A sin B + y* cos B- y* sin A sin B (2.11.4)

3 —

x,}=-ylsind +y3cosd

w

Moreover, if a static force or moment in wind axes be denoted by C(«), and the
corresponding transformed coefficient be denoted by TC(i), where i = 1,2,3, then
as indicated in equation (2.3.1)

Fi=tcw =2 c@
'y =TC0) = — ) (2.11.5)
ox&

These coefficients represent the aerodynamic forces and moments acting during a
state of equilibrium. If small perturbations about the equilibrium condition occur,
then, as previously indicated, the resulting forces and moments are given by the
linear portions of the Taylor series expansion

. )
Fy,+ AST
5 as™ )
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where

. _ ayi
FAO —"a-x—a Co(oz)

If an aerodynamic stability derivative in wind axes be denoted by C(a,8), and the
corresponding transformed derivative be denoted by TC(i,r), where i,7,a,8 = 1,2,3,
equation (2.7.6) gives

i
OF 4 . _oyl-axP

=TC(,7) =
asT ax% ayT

C(a,B) (2.11.6)

Hence, if C,(a) be equilibrium values of the static force and moment coefficients in
wind axes, and small perturbations are assumed, the resulting aerodynamic forces
and moments F Al in body axes are

. 8 i B
Fi=¥ o @+ @ 2 resag s 8 8 e n i
ax“ oy% ayT ax% ayT

where »T and p7 are perturbation components of the linear and angular velocity
vectors, respectively, and the subscripts ¥ and & denote differentiation with respect
to linear and angular velocity components, respectively.

The aircraft’s control surfaces give rise to additional aerodynamic forces and
moments. These forces and moments are represented by control derivatives that
obey the same transformation law as the static forces and moments, that is

i
TC, () =2 ¢ (0) (2.11.8)
&

where the subscript ¢ denotes a control force or moment derivative. The correspond-
ing control forces fC_I’ are obtained by multiplying the control derivatives by the
appropriate control increments Bci. These are

. i
1 _ % Cc(“)5ci (2.1 1.9)

¢ ox
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When combined, equations (2.11.7) and (2.11.9) yield the total aerodynamic forces
for the case considered.

B B
= C()+ay O repap + 2 B o + W C(oz)6
ox% ax% ay7 . x% ayT x«

(2.11.10)

It should be noted, however, that the aerodynamic stability derivatives, with
respect to components of the linear and angular acceleration vectors, have been
omitted in this formulation.

Equation (2.11.3) may be used to evaluate the partial differential coefficients in
equation (2.11.10). However, this operation may be simplified by taking advantage
of the following relationship, which is valid in all orthogonal Cartesian coordinate
systems.

o7 _af
axh oy’

Substitution of this result in equation (2.11.10) yields

Ey =2 0@+ 2 VT repag + 7 e B)+ay Cel@sy,
ax® ax% axB 2x% axB ax

(2.11.11)

Note that this modification eliminates the need for the transformation equa-
tion (2.11.4). Only the direct transformation (2.11.3) is now required.

This equation represents six equations: three force equations and three moment
equations. In the form given, the coefficients C(«), C.(a), and C(a,f) are subject to a
dual interpretation; that is, C(c) represents either a force or a moment and C.(a)
represents either a control force derivative or a control moment derivative. More-
over, Cl—,e(a,ﬁ) are aerodynamic stability derivatives of either force or moment
components with respect to linear motion vector components. Likewise, C~(a,3) are
aerodynamic stability derivatives of either force or moment components with
respect to angular motion vector components. It is seen that use of the summation
convention permits a compact formulation of the aerodynamic forces and moments.
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The advantage of the notation used is evident when one considers that, in general,
the aerodynamic stability derivatives with respect to linear and angular velocity
components give rise to 324 terms. An additional 324 terms would be required, in
general, if the acceleration derivatives were included.

Although the form shown is amenable to symbolic mathematical computation, it
is more convenient from the point of view of manual formulation to avoid the dual
interpretation of the coefficients, and separate the force and moment equations.

For i = 1,2,3, the aerodynamic forces F 4! are

_ 8y ay! T ay' ayT ayt
Ful [ (@) + — T PTf( + = 5
A4 xa’® 2x® 358 iyt ax® 3xP ) ax™ e

where

fo(e)  static forces

JP(a,B) stability derivatives of the aerodynamic forces with respect to linear veloc-
ity components

f(eB) stability derivatives of the aerodynamic forces with respect to angular
velocity components

felo) control force derivatives

The aerodynamic moments have exactly the same form. These are

. a N i T
Myt = y m,(a) + ay W’ vimy(a,f) + . W p'mz(a,f) + =— m (a)5
ax ax%® axh ax® axP Ix%
where
my, static moments

myef) stability derivatives of the aerodynamic moments with respect to linear
velocity components '
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m (o) stability derivatives of the aerodynamic moments with respect to angular
velocity components

m (o) control moment derivatives
2.12 THRUST FORCES

The same procedure may be employed to transform the components of the thrust
vectors to body axes. It is assumed that there are n thrust generating systems T,.
Each thrust vector is referred to a thrust axes system, with origin at the point of
application of the thrust vector. The axes are chosen such that each thrust vector
coincides with the xn axis of the system Moreover, each thrust vector is 'then
transformed to a coordinate system Y which has the same origin as the thrust axes,
but is parallel to the body axes system Finally, the components of thrust in the ¥, i
system of axes are transformed to the body axes system, which has its origin at.the
center of gravity of the aircraft. Each thrust axis xn1 is related to the system Yn’ by

transformation equations of the form
Y, I = =Y, ’(x 67”,an) (2.12.1)

The index n denotes which thrust generating system is being considered, and the
subscript T denotes thrust, that is, 84" and 7" determine the orientation of the
nth thrust vector. _

As sketch (h) shows, the coordinates Yn’ are related to the thrust axes coordi-
nates x,,' by the transformation equations

Sketch (h)
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Y,' =x,' cos 6" cos y "

n n
Y,? =x,! cos 84" sin Y7 (2.12.2)
Y, =-x,! sin 01"

Hence, the components of the thrust vector T, in the Y! system of axes are

oY ! oY, 2 Y, 3
n . n i n
T, ; T, ;

1 1 1
axn ox n axn

Ty

These are also the components of thrust in the yi system of coordinates, which
has its origin at the center of gravity of the aircraft. The thrust components due to
all thrust generating systems are obtained from the equation

i
Y,
Fpl = T, (2.12.3)

i
0x,,

The individual components are obtained by summing on #. For n = 4, these are

, Y ,! 3y, Y, Y]
FTl = Tl + T2 + T3 + T4
ox,! ox,! ox 5! 0x 4!
Y2 Y2 Y32 Y
FT2 = Tl + T2 + T3 + T4
ox,! ox ! ox 3! 0x 4!
Y3 3,3 Y2 3Y
F 3= : Tl + T, + T3 + Tq,
T 2
ox,*! ox,! ox 5! ox 4!

When the coefficients are evaluated from equation (2.12.2), we obtain

Ff =T, cos 7' cos yp' + T, cos O cos Yp?

+ T3 cos f7° cos Y7° + T4 cos O7* cos Yt
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Fp* =T, cosOp' sinyp! + 7T, cos 672 sin Y p?
+ T, cos 07 sin Y1° + T4 cos 0r* sin Y7
Fp> =T,sin@p' + T, sinf4? + T, sin 07> + T, sin 6°
2.13 THRUST MOMENTS

The moments produced by all thrust generating systems T, are MTi, where
i=1,2,3, that is \

. )
MTI = Tn ynl*n _ynk

1 1
axn ox n

8%,/

(2.13.1)

where yn’ are the coordinates of the point of application of the nth thrust vector

and i,j,k are in cyclic order.
Assuming again that there are four thrust generating systems, and summing on »,
we obtain

. 3y, k ay,/ av,k Y,
MTI=T1 v/ ‘J’1k + T {ys! ‘J’2k
axll axll ale aX2l
k o k .
Y, oY,/ . 0Y, 8Y4]
+ T, J’3] ‘)’3k + T, J’4] -}’4k
ox 5! 0x 5! xg' Ox !

By assigning appropriate values to the superscripts i,j,k, and remembering that
these have to be in cyclic order, we obtain the three thrust moments as follows

aY,? av,? Y, Y2
My =Ty, -y + Tyl y, -,
ox,! 0x, ox,! ox,! ’
0Y,3 0Y,2 Y3 0Y,?
+ T3 ys3 -Vs3 + To|ya -yd
0x 3 0x 5 0x4 ox,!
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oY} o aY,! Y,?
MT2 =T|y? - + Th|y? -y
ox,! 0x ! ox,! ox,!
0Y,! Y3 oY,! Y3
+ Tslys® -3 + T4l yd® - ¥4
ox 4! ox;! axg' - oxg!
s aY,? oY,! 0Y,? oY,!
MT =T »:! -2 » + 7, J’2l -y5°
ox,! ox,’ ox,’ ox,!
0Y,? oY,! 0Y,? oY,
+ T5|y; "J’32 + Ty|ya —y42
ox 5! 0x 4! ox 4! 0x 4!

Substitution from equation (2.12.2) in these equations gives the moment compo-
nents in terms of the orientation of each thrust vector. These are

MTl =-[T;(y,? sin 6T1 +y,3 cost?Tl sin lei
+ To(y5? sin 072 + ¥, cos 072 sin Yp?)
+ T3(y3? sin 072 + y3® cos 077 sin Yp?)
+ T4(p4? sin 07* + y,3 cos 87 sin \DT“)]

Mp? =T, cos 87" cos ' +y,! sinp')
+ T,(y,? cos 6% cos Yp? +y,' sin647)
+ T3(y3® cos 87> cos Yp® + y5! sin 07°)

+Ty(y4® cos 07 cos Yp* + 4! sin 67%))
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Mp® =[T,(y," cos 87" sin y7' - y,? cos 01! cos Y7')
-+ T2 (2! cos 872 sin Yp? - y,? cos 01* cos Y7?)
+ T3(y3' cos 873 sin Y73 - y32 cos 843 cos Yy 7°)
+ T4(yq! cos 7% sin Y7 - y4? cos 7% cos Y7*)]
2.14 GRAVITY FORCES

Newton’s law of gravitation states that every particle in the universe attracts every
other particle with a force which is directly proportional to the product of the two
masses and inversely proportional to the square of the distance between them, the
direction of the force being in the line joining the two points (ref. 6); that is, the
gravitational attraction of a particle of mass m; toward a particle of mass m; is

)\ml- m]
2

ri]-

where A is the gravitational constant and rij is the distance between the particles.

Since the law applies only to particles, the attraction exerted by bodies of finite
size must be determined. However, because the potential is a scalar function and
force a vector function, it is frequently more convenient to obtain the potential of
the attracting mass first, and then determine the force associated with the given
potential by using the well-known relation

Fg=VV

Let the potential function be defined by the integral

V=>\fd—’”
p -

and consider the potential of the spherical shell shown in sketch (i).
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Sketch (i)
and
dm = oa’t sin ¢ do do
where ¢ and ¢ are the density an'd the thickness, respectively, and
p? =a®> +r*-2arcos¢

which is independent of 8. On differentiating with respect to p, bearing in mind_that
a and r are constant, it is found that

d¢

=gqr sin ¢ —
P oj do
Therefore

dm _ (Zg_tdpfd6:27ratodp
p r r

and
G 2 w
V= A2mato dp = Mua“ro _ MM

r . r r
r-a
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From this result it follows that if M is the mass of a homogeneous shell and if the
attracted point P lies outside the shell at a distance r from its center, the force of
attraction of the shell on a unit mass at P is

and is directed toward the center of the sphere. The resulting attraction of any
number of such shells that are concentric is directed toward their common center,
and its intensity is simply the sum of the intensities for the individual shells. Hence,
if M is the mass of a sphere, its attraction upon an exterior point is

It is not necessary that all the shells have the same volume density. It is sufficient
that each shell separately shall be homogeneous. It is evident that a solid sphere
which is homogeneous, or homogeneous in concentric layers, attracts a unit mass
which is located at an exterior point, as though it were a particle of the same mass
located at the center of the sphere.

If the acceleration due to gravity at the surface of a sphere of radius R is g, then
the gravitational force attracting a body of mass m, located on the surface of the
sphere, is

__ Mm _
Fg— RZ mg
and therefore
M =gR?

It follows that the gravitational force attracting a body of mass m, which is
located at a distance r > R from the surface of the sphere, is given by the equation
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The corresponding potential function is

_ \Mm _ mgR?
r r

vV

It should be noted that this equation fails to give an accurate description of the
influence of the Earth’s gravitational field on bodies, such as satellites, in close Earth
orbit. Due to lack of homogeneity and sphericity, the Earth’s gravitational potential
function consists of an infinite series of spherical harmonics. However, the assump-
tion of a homogeneous, spherical Earth is adequate for most aeronautical applica-
tions. Indeed, it is frequently assumed, as the ancients did, that the Earth is flat. By
assuming that the Earth is an indefinitely extended plane with a constant surface
density, it is found that the acceleration due to gravity is independent of the
distance from the Earth’s surface. This can be seen as follows:

Consider a uniform circular disc of radius R (see sketch (j)), and 'surface density o,
then

Sketch (j)

dm = o2nrdr .

and
. R
‘ V=>\f@’.=ozw>\ rdr

But

p2 =r2 +x2
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Therefore
pdp=rdr
and so
rar _ dp
P
Hence

VR +x?
V = 2moA dp = 27ra7\(\/R2 +x2 - x)

X

The force of attraction of the disc on a unit mass on its axis is given by the equation

WV _oaonf — X
ox U\ R E

As the radius R tends to infinity, the first term on the right-hand side of this
equation tends to zero, and the force of attraction on a unit mass assumes the form

Hence, the acceleration due to the gravitational attraction of an Earth which is
assumed to be an indefinitely extended plane would be

g=2mwoA
and the gravitational force acting on a body of mass m would be
mg = 2moAm = Fg
which is independent of the distance from the surface.

The gravitational force vector acting on an aircraft in flight will be assumed to
have the value mg, where m is the mass of the aircraft and g is the acceleration
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vector. The magnitude of g is assumed constant, which is tantamount to the
assumption of a flat Earth.

The gravity vector is specified in an Earth fixed system of axes, in which the
coordinates xg’ are related to the body axes coordinate 3* by equations of the form

I gy 0

where dzg, Gg, and ¢g are the Eulerian angles which relate the moving body axes to
the set of Earth-fixed axes in which the gravity vector is specified. In accordance
with aeronautical convention these transformation equations represent the result of
a rotatxon x[/ about the y3 body axis, followed by rotations 0 and ¢> about the y2
and y3 axes, respectively. Hence, if it is assumed that the body axes and the
Earth-fixed axes are initially coincident, equation (2.14.1) may be expressed in the
following alternative forms

1 o ; ' 1 \
¥y 1 0 0 'cos Bg 0 sin 6 'cos \l/g sin d/g 0 Xg
2 — : i 2
y =1 0 cos ¢g sin ‘7’g 0 ' 1 0 sin \pg cos xpg 0 Xg
)3 e . . ’ 3
3 0 sin ¢g cos ¢g sin Og 0 cos ()g 0 0 1 Lo
1 N H —ar 1
y cos Og cos \bg cos 6g sin \pg sin Og Xg
b1 )= —c.os ¢g s‘m x[/g co§ ¢g c9s lgg . sin ¢’g cos Bg xgz
+sin ¢g sin Og cos ‘I’g +sin d’g sin 8 sin x,lzg
sin ¢, sin -sin ¢, cos
»3, . 9 Awg ) %g ] Zg . cos ¢, cos 6, xg3
cos ¢g sin 65 cos l[/g +cos ¢gvsm g sin wg J
©
(2.14.2)
Therefore
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1 1 2 : v 3
y' =xg cOs 0g cos wg+xg cos Bg sin wg Xg> sin Gg
2 — 1 N - : _ .
y P (sin ¢g sin Og cos wg cos ¢g sin wg)
2' . . . 3 .
+ Xg (cos ¢g cos u,bg + sin ¢g sin 0g sin ‘l’g +xg sin ¢g cos Hg) L (2.14.3)

3 1 . .
y Xg (sin (bg sin llfg + cos ¢g sin Bg cos wg)

2" . . o 3
+ Xg (cos ¢g sin Gg sin l[/g sin ¢g cos wg) + Xg~ COS ¢g cos Gg )

Using the notation already established, these equations assume the more compact
form
i_ oyt

ax goz

xga (2.14.4)

y

where i,a=1,2,3. .
If a gravity force component in body axes be denoted by Fg’ and the gravity

vector is assumed to coincide with the xg3 axis of the Earth-fixed system

mg (2.14.5)

Equations (2.14.3) may now be used to evaluate the individual terms of equa-
tion (2.14.5). These are

1
Fgl = ﬂ—mg = -mg sin Hg
axg3
2
F)? =6ng=mg sin ¢, cos 0, ( (2.14.6)
£, s g €08 Vg
g
3
Fg3 = Q—mg = mg cos ¢4 cos 0,
ox,> )
4
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2.15 SUMMATION OF FORCES AND MOMENTS

The total force acting on the aircraft is the sum of the aerodynamic, thrust, and
gravity forces, that is

i i i ’
Fl=Fy'+Fff +Fy (2.15.1)

Hence

. i i T - i T
Fi= [?y—a fot@) + 2o DorTrplad+ 2L O b p)

ax ax% dx ax® axP
i i i
+ O rs, |+ 2T+ (2.15.2)
ax I ax axg®

Likewise, the total moment is the sum of the aerodynamic and thrust moments.
These are '

. . . - 2 15 3

. i . P i 3 T d i T
M' = [a_y' my(e) + 22~ Lgva )+ 2 2y (o)

ox< oax% ax ax® axB
i 3y K ay,/
ax< I ax,’' ax,,!

and i,j, k are in cyclic order.

The equations of motion can now be formulated by invoking the principle of
D’Alembert. This principle states that the external forces applied to a system must
be balanced by the inertial forces. Therefore, we have merely to add to the
aerodynamic, thrust, and gravity fo.rces already obtained, the inertial forces -F 1’.
Similarly, the inertial moments -M [’ must be added to the aerodynamic and thrust
moments to complete the description of the force and moment system,
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When the inértial forces are added to the aerodynamic, thrust, and gravity forces
in equation (2.15.1), D’Alembert’s principle (ref. 7) requires-that

Fl=Fi+Fl+Fl-Ff =0 (2.15.5)
This equation is usually written in the form
Fi=Fj +FJ +F}/ (2.15.6)

The forces F, Ii are ‘equivalent to the rates of change of linear momentum. For bodies
of constant mass m, the components are

: i i .
F]’=m§—]; =m<g—‘; +p1,,k_pkv1)- (2.15.7)

where i, j, k are in cyclic order and where

!

i rates of chahge of velocity components with respect to inertial space

ovt

o rates of change of velocity components with respect to a set of moving body

axes
vt linear velocity components

pf angular velocity components

When equations (2.15.2) and (2.15.7) are combined, we obtain for the force system

m(a—vl + phvk - pkvj) B [BL:! fple) + 3_)% Q}%wfﬂa’ﬁ) o p'f5(eB)

ot ax ax%® 3x T ax® oxB
i i i ’
+ fe(a@)d, | + oY T, + oy mg (2.15.8)
ax<% d E)xn1 6xg3 .

where i, j, k are again in cyclic order.
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z

Likewise, when the inertial moments —MIi are added to the aerodynamic and
_thrust moments in equatlon (2.15.3), we have in accordance with D’Alembert’s
principle

M4 +Mp-Mf=0 (2.15.9)
or in the more familiar form

M =My + My (2.15.10)
The moments M Ii are equivalent to the rates of change of angular momentum.
For a body with constant inertial components, these are
M === +piEk - pkhi 2.15.11
dt at ( )

where i,j,k are in cyclic order and where

H' components of angular momentum

-

dH'

it rates of change of angular momentum components with respect to inertial

space

i .
il rates of change of angular momentum components with respect to a set of

moving body axes
Moreover

H =1"% = I, p® (2.15.12)

where [;, are moments and product;s of inertia. Substitution of equation (2.15.12)
- in equation (2.15.11) yields

. i
M[z=fil_ftf_1 P+ I o p%! - Iapapk (2.15.13)
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In accordance with the summation convention, each term on the right-hand side of
this equation must be summed on c. '
The following definitions are required:

I, =Iy1y1 ; I, =1y2y2 ; I3, =Iy3y3
=-1,1,2. _-
1, yiy*; 1,4 ,Iy1y3’ Lrs ='Iy2y3
These are the moments and products of inertia relative to the y!y2y3. body axes.

The above substitutions should only be made subsequent to the completlon of
summation on «.
When equations (2.15.4) and (2.15.13) are combined, we obtain

Ligh® + I 00! - i ®p* = [ mo(@ + 2= 2 (0 p)
ox® B

ax% ox
A S(ep) + 2 mc(a)S
ax® axﬁ ax ,
. .
_dY, 3y, /]
T P Rl el (2.15.14)
axn‘ axn‘

where a = 1‘,2,3 and i,jk are in cyclic crder.

The solution of equations (2.15.8) and (2.15.14) yields the components W of
linear velocity, and the components p* of angular velocity. These components may
be used to determine the geographical location of the aircraft and its spatial
orientation.

2.16 SPATIAL ORIENTATION IN TERMS OF EULER ANGLES

The values of the angular velocity components pi obtained by solving the
equations of motion (2.15.8) and (2.15.14) may be used to determine the Euler
angles ¢, 0, and ¢, which relate the moving body axes to an Earth-fixed system.
The equations relating the body angular rates p’ to the Euler angle rates may be
obtained by considering sketch (k) and making the necessary transformations.
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Sketch (k) ' -

Consider a set of Earth-fixed axes with origin at the center of a sphere, and a set
of moving axes having the same origin. The moving axes are subject to a rotation
about the 3 axes, followed by a rotation 6 about the »? axis and a rotation ¢ about
the y! axis. The angular velocity components p' of the moving body axes may be
obtained as functions of ¥, 8, and ¢ by constructing a set of axes on the surface of
the sphere, rather than at its center. This procedure produces a less cluttered
diagram and simplifies the transformations.

The required relationships are most easily obtained by considering the contribu-
tion of each Euler angle rate to the angular velocity vector.

" For a rotation ¥ about the y3 axis, the angular velocity components are

pl=0; p*=0; p*=y

For a rotation  about the y3 axis, followed by a rotation 8 about the y? axis, the
angular velocity components are

p' =-{sin@; p>=6; p3=ycosh

Finally, for a rotation y about the y3 axis, followed by a rotation § about the y2
axis and a rotation ¢ about the y! axis, the angular velocity components are
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p! =<;>—1Lsin9
p? =écos¢+¢cos()sin¢

p3 =\i/cosecos¢-ésin¢

In matrix notation, these equations assume the form

and therefore

D S

.

or

(=2 =)

0 ~sin 6 ¢
cos¢p - cosfsing¢ 0
-sin ¢ cos 6 cos ¢ l[/
sin ¢ tan 6 cos ¢ tan 0 p!
cos ¢ -sin ¢ p?
sin ¢ sec @ cos ¢ sec 6, p3

¢ = p' + tan 6(p? sin ¢ + p3 cos ¢)

8

=p? cos¢-p3 sin¢

\Z/ = (p? sin ¢ + p3 cos ¢)sec 6 | .

When the values ofpi obtained by solving equations (2.15.8) and (2.15.14) are
substituted in these equations, and the resulting equations .integrated, the spatial
orientation of the aircraft is determined. :

The spatial orientation of the aircraft may also be obtained by considering the
direction cosines relating the moving body axes to a set of Earth-fixed axes.
Although the Euler angle equations are nonlinear, the direction cosine equations are
linear. These may be obtained as described below.
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2.17 SPATIAL ORIENTATION IN TERMS OF DIRECTION COSINES

Let an Earth-fixed reference system be determined by a tnad of mutually orthog-
onal unit vectors I J, K, and let the moving body axes coincide initially with the
unit vectors 7, J, k. These two systems of axes, which are assumed to have a common
origin, are related by the matrix equation '

I dyy dy, dy; i
J =1 42 d;, dy; ;
K ds, ds; dss) \k

where d;; are the direction cosines.
Smce the magmtudes and the directions of I J and K are constant, it follows that

As observed from an inertial reference frame, which is momentarily coincident
" with the moving body frame, the rates of change of these vectors are

-

dl _al  _ =
— =4 —
Py p x] = (0
al _of . _ =
oW o=
g ar ¥/ =0
dK 9K, — 5 )
=4 =
g o T exk=0
where
)

— denotes the rate of change with respect to the moving body axes

@x is the rate of change due to the rotation of the axes
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Therefore .
-df_ - N T — . - ~
E—(dn’"'dlz]"'dlsk)+0~?x(d111+d12]+d13k)
dj_ I S — - ~ ~
E;‘-(dzll+d22]+d23k)+wx(d211+d22]+d23k)
df(_ R S S S — - A -
E—(d3,l+d32]+d33k)+wx(d311+d32]+d33k)

_and
o=pli+p*+pk

Substitution of this value of @ in the above equations yields the required differential
equations for the direction cosines. These are

dy, +p*d,; -p3d;, =0
dy, +p3d,, -p'd;3=0
dy3 +p'd, ,-p*dy, =0
dyy +p*dy3-p3dy, =0
dy, +p3d,, -p'd,3 =0
d,3 +pldy, - p?d,; =0
dsy, +p*d;; -p*d;, =0
d3y, +p3d;, -p'd;3 =0
dy3 +plds, - p?ds, :‘0
These are the differential equations for thé direction cosines that relate the

moving-body axes to the Earth-fixed axes. They may be written more compactly as
follows:
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dyj +dggd! - dip* =0 @=1,2,3

where i,j,k are in cyclic order.

Now that the linear velocity components and the Euler angles are known, it is
possible to determine the geographical location of the aircraft in an Earth-fixed
reference frame. The procedure is described below.

2.18 COORDINATES OF THE AIRCRAFT IN AN EARTH-FIXED
REFERENCE FRAME

Equation (2.14.4) gives moving body axes components yi as functions of the
components xg’ in an Earth-fixed reference system, that is

i_ oy’ x o
axg“ &

y

Since the superscripts i and « are dummy indices, this equation may be rewritten
as follows: , ' ’
: o
po = ) 20
ax ! £
4

i

By solving this equation for the Earth-fixed coordinates x, i , we have

i
e iz o (2.18.1)
&~

Bearing in mind that
ol _ o
ax/ ayi

equation (2.14.3) may be used to obtain the partial differential coefficients required
to formulate equation (2.18.1), and to determine the Earth-fixed cocrdinates. These
are
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xgl =y! cos 0g cos wg + y2(sin ¢g sin Bg cos Yg = cos ¢g sin l,bg)

+ 3 (sin ¢ sin Y, + cos 9g sin 0, cos Yp) (2.18.2)
xg2 =y! cos Bé sin Y + yzksin ¢g sin 0, sin Y, + cos ¢ cos ¥g)

+ y3(cos g sin Og sin \[/g - sin $g cos V) A _ (2.18.3)

xg3 = -yl sin Gg + y2 sin $g cOS Gg + y3 cos ¢g cOs Bg o (2.184)

Let ;he linear velocity components in an Earth-fixed reference system be Qenoted
by X E’, then these components are related to the body axes components ! by the
equation

Yo a"gi o
E =—=vV ; )
2y (2.18.5)

Evaluation of the differential coefficients from equations (2.18.2) through
(2.18.4) and substitution in equation (2.18.5) yields '

’{/El =p! coé Og cos ‘l’g + p2(sin ¢g sin Gg cos ‘I’g - cos ¢g sin x,l/g)
+ v3(sin ¢g sin Y, + cos g, sin O sin 65 cos Y,)

XE2 =y! cos Gg sin Vg +~ v’_ (sin g sin Og sin x[/g + cos ¢, cos Yg)
+ v3(cos $g sin O, sin Y, - sin ¢, cos V)

3 —_,1 o 2 o 3
XE y sm0g+v sm¢gcos6g+v cos¢gcoseg

Integration of these equations gives the Earth-fixed coordinates of the aircraft at
time f. These are

- | _ yl v, i
| Xg =X +[Xgat

where XiEo are the initial values of the coordinates in the Earth-fixed reference
system.
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This completes the formulation of the simplified mathematical model of the
aeronautical system considered, using linear aerodynamic theory. A more complete
description of the system would include such items as the control loops that are
interposed between the pilot’s control levers and the various control surfaces. A
description of these loops would entail discussions of linear and nonlinear control
theory, and is beyond the scope‘ of the present treatment. -

It should be noted that the mathematical model has been formulated in such a
-way that specialized forms can be obtained by expanding the force and moment
terms in accordance with the transformation laws established. Given the transforma-
tion laws and the system parameters, the model equations can be derived without
further reference to the physics of the problem. The only operations required are
differentiation and summation, and these can be performed either manually or by
computer as previously indicated. '

To demonstrate the feasibility of formulating mathematical models of aeronauti-
cal systems by algebraic computation, a mathematical model of a general aircraft has
been formulated by computer in the final chapter. It will be seen that the interactive
capability of the computer system used enhances the utility of the method by
permitting the user to modify the formulation as he proceeds.
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3.1

3.1 FORMULATION OF CHRISTOFFEL SYMBOLS USING COORDINATE
TRANSFORMATION EQUATIONS

The importance of the Christoffel symbols (ref. 1) and their derivation in terms of
either, coordinate transformation equations or metric tensors was discussed in
section 1.12. For reasons that will become apparent as we proceed, the equations of
motion of a particle can be formulated in any curvilinear coordinate system once the
Christoffel symbols are known. It is perhaps appropriate at this stage to review again
the essential difference between the tensor method and the conventional approach,
and the reason why a tensor formulation is so attractive. Conventionally, a vector is
expressed in terms of its physical components and a corresponding set of unit base
vectors. The tensor components of a vector are not, in general, the same as the
physical components. Instead, they are components that obey transformation laws
corresponding to their variance. The transformation laws for covariant and contra-
" variant vectors are given by equations (1.6.5) and (1.6.3), respectively. It may be
noted that when the base vectors define an orthogonal Cartesian reference frame,
the tensor components are the same as the physical components. As a consequence
of the geometrical simplification inherent in the tensor method, the operations
involved in obtaining derivatives and formulating the equations of mathematical
physics in curvilinear coordinate reference frames are routine operations involving
" only summation and differentiation.

To illustrate the method of deriving the Christoffel symbols of the first kind from
the coordinate transformation equations, consider the functional form given by
equation (1.13.11) and the defining formula (1.13.14). The technique may be illus-
trated by using the transformation from an orthogonal Cartesian reference frame to
a curvilinear coordinate system in which x are cylindrical polar coordinates. If the
curvilinear coordinate system is cylmdrlcal polar, the Cartesian coordinates ylare
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related to the curvilinear coordinates by the following transformation equations
(fig. 3.1.1).

y! =x! cos x?

y? =x'sinx? (.1.1)

]

Y

Figure 3.1.1.— Cylindrical coordinates.

The inverse transformation is given by
xl — /(yl)2 + 0,2)2

2
X2 =tan”<i—1 ) . | (3.1.2)

3

)

x3=y

}

By substitution from equations (3.1.1) and (3.1.2) in equations (1.13.14)
and (1.13.15), the Christoffel symbols are obtained.

Equation (1.13.14) will be used to obtain the nonzero Christoffel symbols of the
first kind. With the exception of the dummy index, the superscripts appearing on
the right-hand side of equation (1.13.14) must correspond to those appearing on the
Christoffel symbol. For example
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a7y* o

ox'9x? ox?

[12,2] =

Pyl oyl @y oy, 3y ¥

ox!ox? 9x? ox!'ox? ox® ox'ox? ox?
=-sin x2(-x! sin x2) + cos x2(x! cos x2)
= x1(sin?x? + cos? x2) = x1
Therefore

[12,2] =[21,2] =x!

Likewise
7y

9x2?9x? ox!

[22,1] =

A A S VO A Y

ox29x? ox! ox20x? ox! ox%0x? ox!
=-(x! cos x?)cos x2 - (x! sin x2)sin x?

=-x!(cos? x? + sin? x?) = -x!

The procedure for determining the Christoffel symbols of the first kind for a
spherical polar coordinate system is the same as that used for a cylindrical polar
coordinate system. In this case, however, the terms of equation (1.13.14) have to be
obtained from a different set of coordinate transformation equations. The Cartesian
coordinates y' are related to the spherical polar coordinates x! by the following
transformation equations (fig. 3.1.2):

y! =x! sin x2? cos x3

y2 =x! sin x? sin x3 (3.1.3)

y3 =x! cos x?
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Figure 3.1.2.— Spherical coordinates.

The inverse transformation is given by

Xl =\/(yl)2 +(yz)2 +(y3)2 W

P (\/(y*)z ¥ @3)2>

y3

x3 = tan™! y?
y! )

By substitution from equation (3.1.3) in equation (1.13.14), the Christoffel symbols
of the first kind are obtained. For the special case being considered, there are
6 nonzero symbols out of a total of 18. To illustrate, equation (1.13.14) will again
be used to obtain the nonzero Christoffel symbols of the first kind. By substitution
ffom equation (3.1.3) in the expanded form of equation (1.13.14), it is found that

(3.1.4)

(22,11 = 2221 ', 3%y ¥y, 9%y 9P
ox29x? ox' ox2ox? ax' Ax?9x? ox!

[33,2] = 0¥t ' 9%y 3, 3%y oy?

ox39x3 9x? ox30x3 ox? ox30x3 ox?

=-(x1)? sin x? cos x?
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aZyl M a2y2 aL2 32y3 ay3

[12,2] = + + = =x!=[21,2]
ox'ax? ox? o9x'ox? 9x? ox'ox? ox?
(133] = 2271 ', a%y? 3y?, 3%y 3?
oxlox3 ax3 o9x'ox3 ox3 oxlox3 ox3
= [31,3] = x! sin? x2
[33,1]=.323’1 oyt %ty ay?, 9%y? ?
ox30x3 ax!  ax3ox3® ox! 9x39x3 ox!
=-x! sin? x?
[23,3]:3_2)’l E-F a%y? a_yj+_azy3 [

ax209x3 ox3 09x2%0x3 ox3 oOx20x3 ox3
= (x!)? sin x2 cos x? = [32,3]

Equation (1.13.15) may be used to obtain-the nonzero Christoffel symbols of the
second kind. With the exception of the dummy index, the superscripts appearing on
the right side of the equation (1.13.15). must correspond to those appearing in the
Christoffel symbol. For example

az o axl
22 axZax? ™

By substitution from equations (3.1.3) and (3.1.4) in equation (1.13.15), all the
Christoffel symbols are obtained. For the special case being considered there are
6 nonzero 'Christoffel'symbols out of a total of 18. Of course, as indicated pre-
viously, the operation of obtaining Christoffel symbols from formula (1.13.15) and
the use of the transformation equations could be performed by a computer pro-
grammed for this kind of operation. To illustrate, equation (1.13.15) will again be
used to obtain the nonzero Christoffel symbols. By substitution from equa-
tions (3.1.3) and (3.1.4) in the expanded form of equation (1.13.15) it is found that

1 2,1 1 2.2 1 2,3 1
{72}= Oyl T oty ol Oy 3L~>=_x1
< ox2ax2 3yl ax?ax? ay? ox2ax? 9yl
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2,1 2 2,,2 2 2,3 2
— ( 0°y!  ax? o’y ai-{-_a y? ox = -sin x? cos x?

ax3ax3 oy!  ox3ax3 oy?  oax3ox® 9yl

%)

Q

=
Y

azyl E{- a2y

ox'ox? 9y' ax'ox? 9y?  oax'ox? 9ys

| )
- )
) ()
- )
}

a2y3 ) 2

g o)
P
Il
R e

ox'ax? ay' ox'ax® ay? ox'ox® 9y3

|
@ ow
P—
Il
X_l__

azyl a—xl—+ a2y2 —a}.—l+ a2y3 a 1

ox3ox3 ay'  oax3ox3 9y?  ox3ax3 oy

= -x! sin? x?

2,,1 3 2,2 3 2,3 3 3

ox2ox3 ay! o9x20x3 9y? oax2ox3 9y?
These results are seen to agree with those obtained in equation (1.3.8).

3.2 METRIC TENSOR INPUTS

An alternative method of obtaining the Christoffel symbols is based on the use of
the metric tensors. These were defined in terms of the scalar products of the base
vectors and their reciprocals in equations (1.12.1) and (1.12.2), respectively. In
general, it is more convenient to obtain these tensors in terms of the coefficients
appearing in the fundamental quadratic form, equation (1.15.15), that is

ds® =g;; dx’ dx/ (3.2.1)
Substitution of the & in the formulas of definition
Lij k] =%<~’—k L (322
ox/  ax!  ax -

{/;, = g'%Yjk,a] (3.2.3)
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vields the required set of Christoffel symbols. Given the metric tensors, the only
operations required to formulate these symbols are partial differentiation, addition,
and multiplication. These are routine operations that can be performed manually or
executed with speed and efficiency on any computer equipped with a formula
manipulation compiler. No multiplications are required to obtain the Christoffel
symbols of the first kind. For example

ag og 0
[]1’”:_1_( 11+ 11_ 811
: 2\ ax! ox! ox!

13811
11,1] == ——
[ ] 5

ax!

Therefore

Since there is a repeated index in the definition of the Christoffel symbol of the
second kind, a summation is required on that index. In a space of three dimensions

i . , .
‘fkl =gl [jk,1] + g2 [jk,2] + g3 [jk,3]
Thereforé _
{i} 1| gin (%, %k1 %8k
ik 2 axk  ox/ ox1!

_ {98, og 0g; [dg;. Og 0g;

+ 12 /2 + k2 _ ]k +gl3 J3 + k3 _ ]k (32 4)

& k k '
ax ox!  ax? ox ax/  ax3 .

The determination of the fundamental quadratic form, equation (3.2.1), is no
more difficult than finding the coordinate transformation equations(1.13.11)
and (1.13.13). Indeed, it is often much simpler. For example, consider again the case
of a problem being studied in a cylindrical polar coordinate system. In this system of
coordinates, the square of an element of arc is given by the following equation:

ds? =(dx')? + (x! dx?)? + (dx3)? : (3.2.5)
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Therefore =
g1 =1
g22 = (x')? ) . (32.6)
g33 =1

where x! is the radial distance, x? is the angular displacement, and x3 is the axial
displacement. In this case the coordinate transformation equations assume the form

y! =x! cosx?

y2 =x! sin x? 3.2.7)

Likewise, the square of an element of arc in a spherical coordinate system is given
by ‘

\

ds? = (dx')? + (x! dx?)? + (x! sin x? dx3)? (3.2.8)
where x? is the polar angle and x3 is the longitude.

g1 =1

22y = (x,)? (3.2.9)

- 833 = (x! sinx?)?
The corresponding coordinate transformation equations are given by
equation (3.1.3).

In these two cases, the determination of the metric tensors from the square of the
line element is no more difficult than finding the coordinate transformation equa-
tions. More importantly, if the functions gi]-(x) are such that the system of equa-
tions (1.13.12) has no solution, then no admissible transformation of coordinates
exists, which reduces equation (3.2.1) to the Pythagorean form. In this case, the
manifold is nonEuclidean and the use of coordinate transformation equations as
inputs will fail. )
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The manual derivation of the Christoffel symbols of the first kind for a cylindrical
polar coordinate system would proceed as follows: Referring to equation (3.2.6), it
is seen that g,, is the only metric tensor component that is a function of a
coordinate, the coordinate x'. In view of this, it is clear that the only nonzero
Christoffel symbols of the first kind are those in which the indices assume the
following values:

[12,2) ;- [21,2] 5 [22,1]

When evaluated, these yield

og og og
[12‘2]:.__12‘( 12+ 22_ 12) =xl

ax? ax! ox?

In view of the symmetry of the metric tensors
&ij = &ji

and the definition of the Christoffel symbols of the first kind

ikl =1(ﬂc+ag_fk_ %
2\ax/  axi  axk

It follo;vs that
lij k] = [ji k]
and therefore |
[21,2]1 =[12,2] =x!

Or by direct evaluation

[21,2] =%(ag” L ag\“)=x1

ox! ax? dx?
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The remaining symbol is

1[0821 0821 0g22
[22,1] == + - =-x!
2\ ax? ox?  ox!

Hence, the only nonzero Christoffel symbols of the first kind are
©[21,21 =[12,2] =x!
and |
[22,1] =-x!

In this case it is much quicker to formulate the Christoffel symbols of the first
kind manually than by digital computer. Nevertheless, a computer program will be
written to mechanize the formulation and to prepare the reader for more complex
cases to follow. A computer program and the corresponding output would assume
the following form if the coordinate system were cylindrical polar.

LET(G(1,1)=1);

LET(G(2,2)=(X(1))**2);

LET(6(3,3)=1); :
PRINT OUT(G(1,1) G(2,2) 6(3,3));

PUT SKIP(5);

DO I=1 TO 3 BY 1;

DO J=1 TO 3 BY 1

DO K=1 TO 3 BY 13

LET(I="1"); .
LET(3="J");
LET(K="K");
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LET(D(I,Jd,K)=(1/2)*DERIV(G(I,K),X(J)));
LET(E(J,K,1)=(1/2)*DERIV(G(J,K),X(I)));
LET(F(I,J,K) (1/2)*DERIV( (1,3),X(K)))s
LET(C(I,J,K)=(D(I,d,K)+E(J,K,I)-F(I,d,K)));
PRINT=0UT(C(I,J,K))s

END;

END;-

END;

The output from this program follows:

G(1,1) =1 C(2,1,1) = 0
G(2,2) = X(1)? €(2,1,2) = X(1)
G(3,3) =1 €(2,1,3) = 0
C(1,1,1) = 0 €(2,2,1) = -X(1)
C(1,1,2) = 0 €(2,2,2) = 0
C(1,1,3) = 0 €(2,2,3) = 0
€(1,2,1) = €(2,3,1) = 0
C(1,2,2) = X(1) 0(2,3,2) = 0
€(1,2,3) = 0 €(2,3,3) = 0
C(1,3,1) = €(3,1,1) = 0
C(1,3,2) = 0 €(3,1,2) = 0
€(1,3,3) = 0 €(3,1,3) = 0
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¢(3,2,1) = 0
¢(3,2,2) = 0
¢(3,2,3) = 0
0(3,3,1) = 0
0(3,3,2) = 0
¢(3,3,3) = 0

Proceeding next to the formulation of the Christoffel symbols of the first kind for
a spherical polar coordinate system and noting from equation (3.2.9) that g, isa
constant, g, , a function of x!, and g;; a function of x! and x?, it follows that the
only nonzero Christoffel symbols are those with indices as follows: )
(22,r]; [21,21; [12,2]
[33,11; (31,31 ; [13,3]
[33,2]; 132,315 [23.3]
Moreover, the general property already established for the Christoffel symbols
(i k] = [jik]

can be used to reduce the number of independent Christoffel symbols from nine to
six. These are

[22,11; [33,11; [33,2]
[21,2] = (12,2}
[31,3] = [13,3]
(32,31 = (23,3}

Using again the defining formula, eduation (3.2.2), we obtain
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(22.1] =_]2_<agzx + 0g21 _ agn) =y

ax? ax?
og og ag
[21,2] = 1222 (=22 22 1 =112,2]
2\ ox? ox?
og og Bg
[33,1] =1 i + 3 >3 =~x! sin? x
2 ax3 ax3

ox! ax3

0g3 2 0232 0833
+ -

ox3 ox3

=—(x!)2sin x2 cos x?

og og og "
(31,3] =%( TR “) =x! sin? x2 = [13 3]

| og og og
[32,3] =l( 222 “) = (x1)?sin x2 cos x? = [23 3]
2\ ax2 ax3  axd

" An advantage of a computer formulation is that once a program is written it can
be used to derive the Christoffel symbols in any orthogonal curvilinear coordinate
system of interest, the only requirement being that the metric tensor inputs are
appropriate to the coordinate system being used. For example, when the same
program is used to formulate the Christoffel symbols of the first kind, in a spherical
polar coordinate system, we obtain

LET(6(1,1)=1);

LET(6(2,2)=X(1)**2);

LET(6(3,3)=(X(1)#SIN(X(2)))%%2);

PRINT OUT(G(1,1)36(2,2)3;G(3,3));
. PUT SKIP(5);

DO I=1TO 3 BY 1
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LET(I="I");
DO J=1 TO 3 BY 1;
DO K=1 TO 3 BY 1;

LET(J="J");

LET(K="K");
LET(D(1,d,K)=(1/2)*DERIV(G(I,K),X(J)));
LET(E(J,K, 1)=(1/2)*DERIV(G(J,K),X(1)));
LET(F(1,d,K)=(1/2)*DERIV(G(I,Jd),X(K)));
LET(C(I,0,K)=(D(1,d,K)+E(J,K, 1)-F(1,d,K)));

PRINT_DUT(C(I,J,K));
END; |
END;

END;

The output from this program follows:

G(2,2) = X(1)2
G(3,3) = SIN2 (X(2)) X(1)?

c(1,1,1) =0
(1,1,2) = 0
c(1,1,3) =0
c(1,2,1) =0
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c(1,2,2

C

( )
€(1,2,3) = 0
(1,3,1)

)

c(1,3,2

i
o

c(1,3,3) = SINZ (X(2)) %(1)
0(2,1,1) = 0
€(2,1,2) = X(1)
c(2,1,3) = 0
c(2,2,1) = -x(1)
(2,2,2) = 0
(2,2,3) = 0
c(2,3,1) = 0
c(2,3,2) = 0
c(2,3,3) = COS (X(2)) SIN(X(2) X(1)2
(3,1,1) = 0
c(3,1,2) = 0
(3,1,3) = SINZ (X(2)) X(1)
€(3,2,1) = 0
€(3,2,2) = 0
€(3,2,3) = COS (X(2)) SIN(X(2)) X(1)2
€(3,3,1) = -SINZ (X(2)) X(1)

181



3.3 , JAMES C. HOWARD

C(3,3,2) = -COS (X(2)) SIN (X(2)) x(1)2

€(3,3,3) =0

3.3 THE VELOCITY VECTOR

Three methods of obtaining the metric tensors have been indicated: one of these
uses the method of vector calculus; another uses the known differential coefficients
from the coordinate transformation equations; and the method described in the
preceding section uses the coefficients of the fundamental quadratic form. Since the
coordinate transformation method is more adaptable to digital logic than the vector
method, it can be used for all Euclidian applications. However, a formulation using
metric tensor coefficients can be used for Euclidian and nonEuclidian applications.

Given the Christoffel symbols, it is seen that there are two forms for the intrinsic
-or absolute derivative of a vector. Equation (1.12.19) gives the intrinsic derivative in
terms of the contravariant components; and equation (1.13.33) gives the same in
terms of the covariant components. Either of these equations may be used. How-
ever, to avoid the necessity of transforming covariant components into contravariant
components, and vice versa, it is better to match the formula to the variance of the
vectors. In the course of the analysis, it will become evident what the variance of the
vectors is. For example, the variance of the differential elements can be determined
as follows: the differential elements dy'in the y coordinate system are related to the
elements dx/ in the x coordinate system by-the following equation:

o

. i .
dyi = gyl (3.3.1)
ox/

By comparing this equation with equation (1.6.3), it is seen that the differential
elements are the components of a contravariant vector. Likewise, equation (3.3.1)
shows that the components of velocity in the y coordinate system are related to
those in the x coordinate system by the equation

‘ ayf _ay! ax]
) dt ax] dt

That is,
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R i .
- Vi) =22 Uix)- (33.2)
. . ax]

where ¥{(y) are the velocity components in the y coordinate system, and U/(x) are
the velocity components in the x coordinate system. Comparison of equation (3.3.2)
with equation (1.6.3) shows that the components of the velocity vector also obey
the contravariant transformation law. To obtain the velocity vector from equa-
tion (1.12.19), the position vector 7 is substituted for the vector 4, that is

A=Alg; =7 - (3.3.3)
Hence, in a cylindrical polar coordinate system

Al =x', A*? =0, A3=x3 " (3.3.9)

By substitution of these values in equation (1.13.4), the velocity vector is obtained
as follows

— dl_ 2 dx2_ dx3_.
V=—:;t—al+{12}x1?az+——a3

When the appropriate value of the Christoffel symbol is substituted from equa-
tion (1.13.3), the tensor components of the velocity vector are given by

= dx' . dx? . | dx3 _
V=% 5 +% 5, +%2
ar T T o
that is,
= _ dxl 3.3.5
V=% ;. (3.3.5
dt i

In order to reduce equation (3.3.5) to the conventional form, where the physical
components of velocity are associated with a set of unit base vectors, equa-
tion (1.9.1) may be used to express the base vectors in unitary form. In this form
the velocity V is given by
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= _ dx! . dx?\ . dx3 .
V=" +x'""—)a,+ =—a

a ( dt) 2 a5 (3.3.6)

If the coordinate x! is identified with the radial distance 7, the coordinate x? with

the polar angle 6, and the coordinate x3 with the axial displacement z, the equation
for the velocity in a cylindrical polar coordinate system assumes the familiar form

ar do dz
=‘7:a, +(r—>a2 +—z—a3

<

dt dt
where a,,a,, and a5 are a triad of mutually orthogonal unit vectors in the directions
of increasing r, 8, and z, respectively.
In a spherical polar coordinate system, the vector A has the following
components:

Al=x', A*=4°=0

When these values are substituted in equation (1.13.9), the velocity vector in this
coordinate system is given by

= dx! _ 2 dx? P dx - '
V=___ + 1 1
a - {12} dar |13} % (3.3.7)

Again, by substitution of the Christoffel symbols from equation (1.13.8), the
veloCity vector may be expressed in terms of its tensor components and a corre-
sponding set of base vectors as follows:

_ 1 2 3
V-_—dial +dL52+dL53
dt dt dt
that is,

(3.3.8)

K1

Nl
I

dx!
dt
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From a comparison of equations (3.3.5) and (3.2.8), it is seen that when expressed
in terms of its tensor components, the velocity vector has the same form in both
coordinate systems. This is true, in general, since by definition

e i
v =dr_ or dx’ (3.3.9)

Of course, the physical components of velocity are different, as can be seen when
the base vectors are reduced to unitary form. By substitution from equation (1.13.6)
in equation (3.3.7), the velocity vector may be expressed in terms of its physical
components and a set of unit base vectors as follows:

- _dx! . dx?\ . o dx3\ . ’

V== +{x! =V}a, +{x!sinx2 &= 3.3.10

ar @ ( dt) 2 ( * dt)a3 (3:3.10)

When the coordinate x' is identified with the radial distance r, the coordinate x2

with the polar angle @, and the coordinate x3 with the azimuth angle ¢, the
equation for ¥ assumes the more familiar form

—  dra do\ ~ : p .
V = (7 1-|-(r‘§)a2+(rsm0 %) as | . (3.3.11D)

where @, ,4,, and a5 are a triad of mutually orthogonal unit vectors in the directions
of increasing r, 0, and ¥, respectively.

3.4 THE ACCELERATION VECTOR

If the acceleration vector were required, the velocity vector ¥V would be substl-
tuted for the vector 4 in the equation for the intrinsic derivative:

; |
z=7:%_l (3.4.1)

185



34 JAMES C. HOWARD

Hence, in a general curvilinear coordinate system, the acceleration vector is given by

dv_ (avi  [i],; ax¥\ .
dv_ (av_ iy dxny (3.4.2)
dr ( ar { jk} ar )

By substitution from equation (3.4.1) in equation (3.4.2), the acceleration vector
may be written in the following alternative form:

v _ <d2xl + [ i)dx] dik> a; (3.4.3)
dt dr? jk) dt ar |
This equation gives the acceleration in any coordinate system, provided the Christof-
fel symbols are appropriate to the coordinate system chosen to describe the
problem.

In a three-dimensional cylindrical polar coordmate system, equatlon (3.4.2)
reduces to the form given by equation (1.13.4) when the vector ¥ is substituted for
the vector A. Likewise, in a three-dimensional spherical polar coordinate system,
equation (3.4.2) reduces to the form given by equation (1.13.9) when the vector ¥V
is substituted for the vector 4. If equation (1.13.9) is used to obtain the acceleration
vector, the tensoi components of velocity, rather than the physical components,
must always be used. The tensor components of velocity are given by. equa-
tion (3.4.1). These are

, ‘A2=‘—Z‘Tz, A3 =

dx!
dr

@
dt

Al = (3.4.4)

Substituting these values in equation (3.4.3) gives the acceleration in terms of
spherical polar coordinates

av _ (&', ‘1 }dx2 ax? , (1) ax®axd).
av _ ax- ax- ax” ax” g
at dr? 22) dt ar 33) ar adrt
2,2 1 2 3 3
n dx:!_2 2 ‘ix_di+{2}dx dx i,
ar? 12f dr dt  \33) ar ar

2.3 3 1 3 2 3)
N CE { dx’ dx® | 5 3}QL£ i, (3.4.5)
ar 13) dr dr 23] ar ar
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By substitution of the Christoffel symbols from equation (1.13.8) in equa-
tion (3.4.5), the acceleration vector may be expressed in terms of its tensor compo-
nents and associated base vectors as follows:

dV _[arxt | (ax®\? ., [a*\?]).
ar | g e ) T \ar) |&

2,2 1 2 3\2
+[Lx +£didi—sinx2 cos x?2 <dL a,
dr? x! dt dt . dt

+ d2x3 +_2_ gx—l d_{i + 2 cot x2 d._x__z_ é'_x_:, a | (3'4'6)
- drt -yt dt at ar dt ) ? :

The corresponding physical components of the acceleration vector are obtained
when the base vectors are expressed in terms of unit vectors in accordance with
equation (1.13.6). When appropriate substitutions are made, equation (3.4.6) gives

dv _[a2xt a2V (. ,dx*V].
— = -x | —] - x (sinx‘ — a,

24,2 1 2 3\2
+ [x‘ d”x’ +2% % - x1 sin x? cos x? (@-—) ]?12
dr? . v

2 3 1 3 v . 2 3
+ [ x! sin x?2 d’x> + 2 sin x2 dx” dx + 2x! cos x2 dx® dx i,
dr? dt dt dt dt

3.5 EQUATIONS OF MOTION IN A GENERAL CURVILINEAR
COORDINATE SYSTEM

In using tensor methods to derive equations of motion, it is again important to
remember that the acceleration and force vectors must always be expressed in terms
of their tensor components rather than their physical components. Hence, the two
sides of every equation must balance with respect to their covariant or contravariant
properties before applying Newton’s second law of motion. In this connection it is
worth noting that, although the acceleration vector is expressed in contravariant
form in equation (3.4.3), the force vector may appear in the form of a covariant
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vector. The force vector assumes the covariant form when it appears as the gradient
of a scalar point function. This occurs in the equations of motion of a space vehicle
which, in addition to the thrust force, is subject to gravitational forces. If the
gravitational forces are expressed in the form of the gradient of a gravitational
potential function, the force vector is

F=V¢+T ' (3.5.1)

where ¢ is the gravitational potential function, which may include the influence of
oblateness and extraterrestrial gravitational forces, and T is the thrust vector.
The gradient of a scalar point function assumes the form

ve=29% G (3.5.2)
ox!

The use of the reciprocal base vector a in equation (3.5.2) is justified by the
following considerations: the components of the gradient of the gravitational poten-
tial function in the y coordinate system are related to those in the x coordinate
_system by the following equation:

2 _ 09 af
ayi ax/ "ayi
or
j
F) = 9% F(x) (3.5.3)
i PR
oy
where N
Fyy)=-2
ayt
Fix) =2
ox/!

188



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 3.5

Therefore, the transformation of the components of the gradient vector from the x
coordinate system to the y coordinate system obeys the covariant transformation
law as defined in equation (1.4.6).

The equation of motion of a point mass which is subject to gravitational and
thrust forces is obtained by combining equations (3.4.3) and (3.5.1):

2,0 i j gk —
n(Z e )4 e o
t B

where M is the mass.

It is seen that the acceleration components represented by the left-hand side of
this equation are all contravariant. The thrust vector, on the other hand, is usually
given in terms of its physical components, and as already indicated in equa-
tion (3.5.3), the gravitational forces assume the form of covariant vectors. To have a
force system compatible with the accelerations, it is necessary to convert all the
force terms to the contravariant form. The potential gradient function may be
converted to contravariant form with the aid of equation (1.7.6). From equa-
tions (3.5.2) and (1.7.6) ‘

_ a¢ _; .. a¢ _
‘Ve=—al=g" =3 3.5.5
ox/ ax/ ' ( )

The thrust vector may be expressed in the following alternative forms:

T opls —
T=Ta;=r14a;
where T% are the contravariant components of the thrust vector, and ! are the
corresponding physical components. The physical components of the thrust vector
are related to the contravariant components by equation (1.9.2)

i1 i

(3.5.6)
V(i)

By substitution from equations (3.5.5) and (3.5.6) in equation (3.5.4), the equation
of motion assumes the following form
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M(dzxi + ‘ ,_d_’i M)a = gi]'ﬂ+—_7i i
t 7 ; — {
dr? ]k dt d ax] \/g(ii)

Therefore

(a*x? dx/ axk 3 7l
M + ‘ } 3 dr =g 9% T (3.5.7)
dr ! ax \/g_(”)
When the expression for the gravitational forces is expanded in a general three-
dimensional coordinate system, equation (3.5.7) becomes

d*x! dxl ax*\ _ s 8¢ . in 3¢ . i3 7l
M( z +(k’ ) e e g 2y (3:5.8)
dt / ox ox? ox3 4 /%(ii) <

However, in a rectangular coordinate system

gij =0 for i#j
and
g(ii) = l/g(,'i)

where the parentheses imply suspension of the summation convention.
Substituting these values in equation (3.5.8) gives for orthogonal systems

2.0 i J vk i
m(Ex +‘.I dx’ dx®\_ 1 a_¢.+ T (3.5.9)

Equation (3.5.9) may be rewritten as follows:

d*x! dx/ dxk | _ 8¢ i
M [g(ii) e g { ar dr ]—g Ve T

or in the alternative form
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k
dx) dx _ 99 —
[g(u) +lik.il - dt] =i + VEa T (3.5.10)

The derivation of equation (3.5.10) may, at first sight, seem to involve an
unnecessary degree of complexity. However, when it is realized that this equation is
valid in all orthogonal curvilinear coordinate systems, the effort expended will be
seen to be worthwhile. Although in using the conventional approach, the equations
have to be reformulated each time a new set of coordinates is considered, the tensor
equation requires no such modification. Hence, the expenditure of time and effort,
which has to be made repeatedly when the formulatlon is conventional, is avoided
when the tensor equation is used.

Equation (3.5.10) may be formulated in terms of either coordinate transforma-
tion equations or metric tensors. When a particular application suggests a formula-
tion in terms of coordinate transformation equations, the metric tensors and the
Christoffel symbols may be replaced by their equivalents from equations (1.13.12)
and (1.13.14), respectively.

When these substitutions are made, equaiion (3.5.10) assumes the following
modified form:

ml 2% a2l | a2y ay\ax] axkl_ 3, foy® a®
ax 3x(@ | gr axiaxk axi/ dt dr | xi ax(® ax()

(3.5.11)
As indicated previously, a repeated index implies summation with.respect to that
index. '‘An exception to this rule occurs when repeated indices are enclosed in
parentheses. Parentheses around an index imply that the summation convention is to
be suspended for that index. This means that for each value of the index i,
equation (3.5.11) must be summed on «, j, and k. For example, when equa-
tion (3.5.11) is summed on a, it appears as follows:

aull 2t 'y a9y 8y? |atx
ax@® ax@ 55 3x() 55 3xD ] gs2
3%yt ay1+ 922 Qy_’_'_ 32y3  3y3 gx_]d_ik
Bxlaxk ax!  axoxk ox! axiaxk oxi) dt dt

~8¢  Joyt oyt L ay? oy o P i (3512
ax! ax® ax(). ax() 3x(@) 5% ()
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The left side of this equation must also be summed on j and k. When each of these
indices is permitted to take the values 1, 2, 3, in turn, equation (3.5.12) assumes the
following form:

M oyl ! + ay? oy? +6y3 ay3 ] d2x!
@D 3x(D  ax® 5 () 5x () 35 ] gr2

o2 vt @ a9y @)@dx_l

ax'ax! ax? ax'ax! ax! oaxlox! axi/) dr dt

+ [ 9%y oyt 9%y ay? 3%y 3yd)ax! dx?
ax'ax? ax!  axlox? ox! axlox? ox!/ 4t at
2,1 1 24,2 2 2,3 3 1 3
(0 o 9%yt R, 9%y7 9yT)dx dx”
ox'ax3 ox! oxlax® ox! oxlox® axi /) 4t at
2,,1 1 242 2 2,.,3 3 2 1
ff20y 9% oy 9%yT ByT) dx® dx
ax2ox! ax!  ax2ox! ax! ax2ox! axi/ dt dt

' 2,1 1 2,2 2 2.3 3 2 2
(2 v %yt oyt 97y7 0y7)dx® dx?
© \ox2ax? ax!  ax2ax? ax!  ax2ax? axi/ 4t dt
2,,1 1 2.2 2 2,3 3 2 3
(2 o, Oy oyt By i)‘i&&
ax2ox? ax!  oax2ax® ax! oxzox? axi/) dr dt
2,1 1 24,2 2 25,3 3 3 1
2y v %y oy 3%y7 3yT)dx® dx
ax3ax! ox! ox3ox! ax! ox3ax! axi /) dt dt
2,1 1 2.2 2 2,3 3 3 2
(2T oy, ¥y Bt 9y a;)éigb;
ax30x2 ax! ox3ax? ax! oaxdox? axi/ dt dt

ax3ax® ax!  ox3ax® ax!  ax3ox?

+( aZyl M+ a2y2 ay2 + a2y3

ORT=Y)
vl
\—/

Q
SIE

dx?
dt
!l oy oyt ¥y dyd

_ 0 , _[oy ;
ax® Y ax@ ax@D  ax(® 5x()  gx() 5x()
(3.5.13)
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The form of this equation is well suited to routine non-numeric computer opera-
tions. . The large number of terms appearing in equation (3.5.13) is due to the
generality of the equation, which is applicable to any space of three dimensions.
Hence, to obtain the equations of motion in any system of coordinates by using
transformation equation inputs, the only information required is the special form of
equation (1.4.4), relating that system of coordinates to the orthogonal Cartesian
coordinates y*.

3.6 COMPUTER DERIVATIONS OF EQUATIONS OF MOTION OF A
PARTICLE

Equation (3.5.11) can be mechanized to formulate the equations of motion of a
particle in any orthogonal curvilinear coordinate system requested by the user. The
key statement in the mechanization program utilizes the analytic differentiation
routine. This statement must be written according to the rules of analytic differen-
.tiation specified in the user’s manual. In the case of computers equipped with
formula manipulation compilers, the statement corresponding to equation (3.5.11)
would assume the following form (ref. 2):

M*(((DERIV(Y(A),X(1)))**2)*A(I)
+(DERIV(Y(A),X(J),X(K)))*(DERIV(Y(A),X(1)))*V(J)*V(K))

= DPHI(I) + SQRT((DERIV(Y(A),X(I)))**2)*T(I) ~(3.6.1)
where .
Aan=%x . =+ (3.6.2)
dr?
V) = af V(K) = axk (3.6.3)
dt ’ dt ST
Y() =yt ; Y(A4) = y* (3.6.4)

A simple program using equation (3.6.1) and supporting statements to formulate
the equation of motion of a particle will require as input, the coordinate transforma-
tion equations corresponding to the coordinate systems being considered; the
following are examples. T
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~

N

3.6.1 Spherical Polar Coordinates

Consider a transformation of coordinates specifying the relation between the

spherical polar coordinates x! and the orthogonal Cartesian coordinates yi. In this
case, equation (1.4.4) becomes

y! =x! sin x2 cosx?

\

3

Input ={ y? = x! sin x? sinx
y3 =x' cos x?

The corresponding output is
2x' ) (ax2 dx3\'| _ 3¢
M -xP{E—) - x!{sinx? = =22 4+ 1
dr? dt dt ox!

T 242 ‘ 1 2 3\2 ) ,
M(xl)z——dx +2.x‘didi—(),c‘)zsinxzcosx2 x> =—§2+x’1-2
dr? dt dt , dt ax?

-

r 3
2x3 1 gx3 2 4.3
M |[(x! sinx?)? x4 2x! sin? x? dx_ dx” | 2(x1)? sin x? cos x? dx” dx’
dr? dt dt dt dt

e

— ¢ + x! sin x273
ox3

Because of its generality, equation (3.5.13) is applicable in all coordinate systems.
Therefore, to obtain the equations of motion in any other coordinate system, all
that is required is to supply the computer with the appropriate coordinate transfor-
mation equations.

3.6.2 Cylindrical Polar Coordinates

As a further illustration of the procedure involved, consider the equations of
motion in a cylindrical polar system of coordinates. In this case, the coordinate
transformation equations are
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y! =x! cos x?
y? =x! sin x?

3 3

yo=x

. When these coordinate transformation equations were used to evaluate the terms of
equation (3.5.13), the following output was obtained.

2,1 2 2
M d x- - xl QL d_x_) = ﬂ + Tl
dr? dt dt ax!

M|(x1)? =—— d’x? + 2l 2 dx! dx* | _ 3¢ + x172
dr? dt dt ax?

M d—-—zxs) - 00 + 73
dr? ox?

Another interesting system of orthogonal curvilinear coordinates is the prolate
spheroidal coordinates. Coordinate surfaces are obtained by rotating a family of
confocal ellipses and hyperbolas about their major axes. Rotating these conic
sections gives rise to a system of prolate spheroids and hyperboloids of two sheets. A
family of planes through the axis of rotation completes the system of orthogonal
surfaces. The curvilinear coordinate systems generated by the curves of intersection
of these surfaces are useful in certain quantum mechanical problems. The transfor-
mation equations relating this system of coordinates to the orthogonal Cartesian
system are as follows (ref. 3):

3.6.3 Prolate Spheroidal Coordinates

y! =a sinh x! sin x? cos x3
y? =asinh x! sin x? sin x?

3 =a cosh x! cos x?
To obtain the equations of motion relative to a prolate spheroidal system of

coordinates, these transformation equations were substituted for equation (1.4.4) in
the computer program. The equations of motion were obtained as follows:
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2,1 1 2

M a2(sin2 x? + sinh? xl)ix— + 242 sin x2 cos x? di d.i_

dt? dr dt

1 1 2 2

+ a? sinh x! cosh x! dx_ dx__ > sinh x! coshx! & dx”

dt dt dt dt

2 7.3 .

- a? sin* x? sinh x! cosh x! ‘% ‘%] =g \/sin? x? + sinh? x17! + 99
ox!

' 2,1 1 1

M|a?(sin? x2 + sinh? x!) dx__ a? sin x2? cos x2 dx_ dx”
i dr? dt dt

1 2 2 2

+ 2a? sinh x! cosh x! dx_ di+a2 sin x2 cos x2 dx” dx”
dt dt dt

_ ' 3 753
- a? sin x? cos x? sinh? x! %= @——] =a(\/sin2 x? + sinh? x‘)12 + 9
dt dt ox?

/
243 1 3
M|a? sin? x2 sinh? x! 97 4 242 sin? x? sinh x! coshx! & X7
. dr dt dt

Ldxt dx

+ 242 sin x2 cos x2 sinh? x
dt dt

] =gasin x? sinhx!73 + 99
ox3

3.6.4 Oblate Spheroidal Coordinates

Confocal ellipses and hyperbolas rotated about their minor axes generate the
oblate spheroids and hyperboloids of one sheet. These surfaces, together with a
family of planes through the axis of rotation, constitute a family of orthogonal
surfaces. The curvilinear coordinate systems generated by the curves of intersection
of these surfaces are called oblate spheroidal coordinates. Oblate spheroids are
sometimes referred to as planetar_y ellipsoids, because the Earth and the planet
Jupiter are approximately of this form. The transformation equations relating this
system of coordinates to the orthogonal Cartesian system are as follows (ref. 3):
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y! =a cosh x! sin x? cos x3
y? =a cosh x! sin x2 sin x3
y3 =asinh x!' cos x?

These transformation equations again take the place of equation (1.4.4) in the
computer program. The equations of motion relative to a system of oblate spheroi-

dal coordinates were obtained in the following form:

1
[ (sinh? x! + cos? x ) +a2(s1nhx cosh x! )dx dx_
- 2a? cos x? sin x2 = dx! dx? _ a? sinh x! cosh x! dx? dx?
dt dt dt dt
3 .3 :
- a? cosh x! sinh x! sin? x?2 dx” dx” =a(\/sinh2 x! + cos? x’)'r1 + 9¢
‘ dt dt ax!
1
a?(sinh? x! + cos? x2) + a? sin x2 cos x2 =/ dx! dx!
1 2 2
+ 242 sinh x! cosh x! dx! dx? _ a? sin x2 cos x2 = dx” dx”
dt dt dt

dx? dx? - F)
- a? coshx! sin x? cosx? &= ¥ [ =, \/smh2 X' + cos? x2 12 + 92

dt dt ax?

M(a2 cosh? x! sin2? x2 d’x? + 242 sinh x! cosh x! sin? x2 (ilxt d;t

dt?
+ 242 cosh? x! sin x? cos x2 = dx? dx?\) _ a cosh x! sin x273 + 99
dt dt : ox3

The preceding technique for formulating equations of motion by symbolic mathe-
matical computation is based on the use of coordinate transformation equations.

However, in many cases it will be convenient to use the metric tensors, rather than
the coordinate transformation equations. 'When this procedure is adopted, the

A ~
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necessity for evaluating equation (1.13.12) is eliminated and equation (3.5.10) is
modified as follows:

2y og.; 0g,; O 1 1 0g,; 0g,;
g(”)d +1 o, % 31'1 dx! dx! | [ %1 %
2 ox! ax! ox! dt dt dx2 ax!

] agn)‘dgi ax? (agu' %80 agw)d_ﬁ 20,1 (aﬁ Y

axi dt dt 9x3 ax! axi dt dt ax! ox?

e \ax @, (ang i agzz)dx_z axt , (%, %
ax! dr dt ox2 ax2 ax!t dt dt oax3 ox?

) 3323)Qc_2 axd|, 1 <ag3f+agu ag31>dx3 axt (8_82+3g_2,

axi dt dt 2 ax! ax3 ox! dt dt Ax? ox3

- 083, dx? dx? 083; _ag3i 0833 dx3 dx3
) >“_+ ' et Ve

axi dt dt ax3 ax3 ax dt dt ax(l)

If this form is used to derive the equations of motion of a particle in cylindrical
polar or spherical polar coordinate systems, the inputs to the computer program
would be given by equations (3.2.6) and (3.2.9), respectively, rather than by equa-
“tions (3.1.1) and (3.1.3).

Consider again the problem of formulating the equations of motion of a particle
in a cylindrical polar coordinate system. In this case the metric tensors are

g1 =1
2 =(x')?
833 =1

The following simple program consisting of two separate DO loops may be used
to formulate the equations of motion of a particle in a cylindrical polar coordinate
system :
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LET(G(1,1)=1);

LET(G(2,2)=X{(1)**2);
LET(G(3,3)=1);

PRINT OUT(G(1,1):6(2,2);G(3,3));

PUT SKIP(5);

DO I=1 TO 3 BY 1;

LET(I="1");

D0 J=1 TO 3 BY 1;

LET(J="d");

DO K=1 TO 3 BY 1;

LET(K="K");

LET(D(I,J,K)=(1/2)*DERIV(G(I,K),X(J)));

)
LET(E(J,K,1)
LET(F(I,J,K)

1/2)*DERIV(G(I,d),X(K)));

(
(1/2)*DERIV(6(J,K),X(1)));
(

LET(C(T,J,K)=(D(1,d,K)+E(J,K,1)-F(1,3,K)));

PRINT OUT(G(I,d,K));

END;

END;

END;

PUT SKIP(3);

00 1=1 T0 3 BY 13

LET(I="1");
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LET(ST(1)=0);

DO J=1T0 3 BY 1;

LET(J="3");

DO K=1 TO 3 BY 1;

LET(K="K");
LET(ST(1)=ST(1)+C(3,K,1)*V(3)*V(K));
LET(A(T)=( (DPHI(I)+SQRT(G(I,1))*T(I1))/M-ST(1))/G(I,1));
END; |
END;

PRINT OUT(A(I));

PUT SKIP(3);

- END;

The output from this program is as follows: - -

200

— G(1,1)

=1 c(1,2,3) = 0

6(2,2) = x(1)2 : c(1,3,1) = 0

6(3,3) =1 , €(1,3,2) = 0

€(1,3,3) = 0

c(1,1,1) = 0 c(2,1,1) = 0
c(1,1,2) = 0 c(2,1,2) = x(1)

€(1,1,3) = 0 €(2,1,3) = 0
c(1,2,1) = 0 c(2,2,1) = -x(1)

= x(1) €(2,2,2) = 0

c(1,2,2)
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€(2,2,3) =0 C(3 2,1) =0

€(2,3,1) = 0 €(3,2,2) = 0

¢(2,3,2) = 0 ¢(3,2,3) = 0

c(2,3,3) =A0 : €(3,3,1) =0 -

c(3,1,1) =0 €(3,3,2) =0

€(3,1,2) = €(3,3,3) =0

€(3,1,3) =

A(1) = X(1) v(2)2 + (DPHi(]) + %(]))/M

A(2) = (-2x(1) V(1) V(2) + (DPHI(2) + X(1) T(2))/M)/x(1)2
A(3) = (DPHI(3) + T(3))/M

In interpreting these output statements, it should be noted that

)

CUJK) = [ij K]

where [ijk] are the Christoffel symbols of the first kind, and

. 2 l' N
A = d°x : DPHI(I) = ﬂ
dt? ox!
dxt
Vi) =—=— ; M = Mass
) 7

Also, T(J) is the ith component of the thrust vector.
In terms of conventional mathematical symbolism, these equations are

M(dle l dx2 dx ) =i¢_ +Tl
dr? dt di ax!
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Moty X0y g & B 00
dr? dt dt ax?

M(d—zxs) ~ 0 4 73
dr? ox3

The same program may be used to formulate the Christoffel symbols of the first
kind and the equations of motion of a particle in a spherical coordinate system,
provided the metric tensors from equation (3.2.9) are used as input.

With this change, the program and the output appear as follows:

202

LET(G(1,1)=1);
LET(G(2,2)=X(1)**2);
LET(G(3,3)=X(1)*SIN(X(2)))**2);
PRINT_OUT(6(1,1)36(2,2);6(3,3))3
PUT SKIP(5);

DO I=1 TO 3 BY 1; ‘ ©
LET(I="1");

DO J=1 TO 3 BY 1;

LET(J="J");

DO K=1 TO 3 BY 1;

LET(K="K");
LET(D(1,d,K)=(1/2)*DERIV(G(I,K),X(J)));
LET(E(J,K,I)= (1/2)*DERIV(G(J,K),X(1)));
LET(F(I,J,K)=(1/2)*DERIV(G(I,J),X(K)))3
LET(C(I,J,K)= ( )

(D(I,d,K)+E(J,K,I)-F(I,J,K)));
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PRINT OUT(C(I,J,K))3
'END;
. END;
END;
PUT SKIP(3);
DO I=1 TO 3 BY 1;
LET(I="1");
LET(ST(1)=0);
DO J=1 TO 3 BY 1;
LET(J="d");
DO K=1 TO 3 BY 1;
LET(K="K");
LET(ST(I)=ST(I)+C(J,K,I)*V(J)*V(K));

LET(A(T)=((DPHI(I)+SQRT(G(T,1))*T(1))/M-ST(1))/G(I,1));
END; '

END;

PRINT OUT(A(I));

PUT SKIP(3);

END;

6(1,1) = 1

G(2,2) = X(1)?

G(3,3) = SIN? (X(2)) X(1)2

3.6
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c(1,1,1) =0
€(1,1,2) = 0
€(1,1,3) =0
c(1,2,1) = 0
€(1,2,2) = X(1)
€(1,2,3) = 0
€(1,3,1) = 0
€(1,3,2) =0
€(1,3,3) = SIN2 {X{2)) X(T)
€(2,1,1) = 0
€(2,1,2) = X(1)
€(2,1,3) = 0

€(2,2,1) = -X(1)

€(2,2,2) = 0

€(2,2,3) = 0

€(2,3,1) = 0

€(2,3,2) = 0
€(2,3,3) = COS (X(2)) SIN (X(2)) X(1)?
€(3,1,1) =0

€(3,1,2) =0

€(3,1,3) = SINZ (x(2)) x(1)
€(3,2,1) =0
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€(3,2,2) = 0

€(3,2,3) = COS (X(2)) SIN (X(2)) X(1)2
0(3,3.1) = <SIN? (x(2)) X(1)

€(3,3,2) = -C0S (X(2)) SIN (X(2)) X(1)2

€(3,3,3) = 0 |

3.6

A1) = X(1) V(2)2 + SINZ (X(2)) X(1) V(3)2 + (DPHI(T) + T(1))/m

A(2)
+ (DPHI(2) + X(1) T(2))/M)/X(1)2

- 2 SIN2 (X(2)) X(1) V(1) V(3) + (DPHI(3)
+ SIN (X(2)) X(1) T(3))/M)/(SIN? (X(2)) X(1)2)

A(3) = (-2 COS (X(2)) SIN (X(2)) X(1)2 v(3) v(2)

In conventional notation, these equations assume the more familiar form
; r.dzx‘ ax?\? ax3\? 0o
M|=—— - x"{=—) - x![sinx? = =—=+7!

ox?

2.3 1 3
MI:(x1 sin x2)? d’x> + 2x! sin? x2 dx_ dx*

2 dx? dx?
dt dt

+ 2(x')? sin x? cos x? =— ] = (M + x1 sin x27

ax3

(-2X(1) V(1) v(2) + €COS (X(2)) SIN (X(2)) X(1)2 v(3)2

2.2 1 4.2 ’ 3\2 \
Mi(x!)? LRES M ‘—ii—di—(xl)z sin x? cos x? (cix_) ]:<_a£ +x172)

)
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The same procedure can be employed to obtain the equations of motion of a
particle in any other coordinate system provided the fundamental quadratic form is
known. For example, the technique has been used to derive the equations of motion
-of a particle relative to a prolate spheroidal system of coordinates. In this form, the
equations are useful in certain quantum-mechanical problems.

3.7 OBSERVATIONS

1t is seen that a digital computer can be used to facilitate the formulation of the
equations of motion of a particle in any curvilinear coordinate system of interest.
The simplification inherent in the tensor method is again evident. Equations (3.5.10)
and (3.5.11) are applicable in all three-dimensional systems of coordinates. With
these equations, the user has d choice of two methods: (1) a formulation based on
metric tensor inputs and (2) a formulation based on coordinate transformation
equation inputs. As in the case of aeronautical applications, it should be observed
that, in each case, the only operations involved are summation and symbolic
differentiation.

3.8 ILLUSTRATIVE EXAMPLES

The following illustrations and applications of the equations derived in preceding
sections are designed to provide readers with some physical insight and an oppor-
tunity to reexamine the equations when they are expressed in more familiar
symbology. -

The use of indices, such as superscripts and subscripts, is advantageous from the
point of view of symbolic mathematical computation. However, some readers may
feel more comfortable with the equations when the following substitutions are made
(see sketch (D)):

x! =r
x2 =0 " polar coordinates : >
x3=9¢
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x! =r i
x2 =0 cylindrical coordinates
x3 =z

e e o e g,

y1/ . ,————5\

Sketch ()]

Equations (3.5.10), and subsequent equations, give the components of accelera-
tion in any curvilinear coordinate system. In terms of the more familiar (r,0,¢)

coordinates these components are
fr = r- 702 - rsin? 062)
fg = 0 + 28 - rd? sin 8 cos 6)

f¢ = (r.¢; sin f + 2r¢ sin 8 + 2r<f;é cos 6)
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3.8 1 Motion on the Surface of a Sphere
For the special case of motion on the surface of a spherfe of radius a, these
equations take a simpler form.
The acceleration toward the center is
a(? + sin? 9(;)2)
Acceleration along a meridian curve is -
a(.H.— #? sin 0 cos 0)
The acceleration perpendicular to a meridian plane is
a(:;b.sin g+ 2¢0 cos 8)

3.8.2 Motion of a Particle on a Right Circular Cone (sketch (m))

'O
Sketch (m)

For this kind of motion, we substitute § = 8, and obtain for the acceleration along
a generator OP

(- ré? sin? B)
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Along the inward normal PQ, the acceleration is

(r$? sin B cos B)

and the acceleration normal to a meridian plane is
(r;p.sin B+ 2ré sin Bj

3.8.3 Motion of a Particle in a Central Force Field Varying Inversely as the Square
of the Radial Distance From the Center

3.8.3.1 Polar orbits. The equations of motion of a particle describing a polar
‘orbit are obtained by substituting ¢ = a« = constant, and by applying the appropriate
force function, that is

(r- réz_) = —ﬁz
r

- (6 +2/6) = 0

where u is the force per unit mass. The second of these equations may be rewritten
as follows: . -

1d 28y-0
p

d
dt
Therefére

P20 = h

where 4 is the constant angular momentum of the particle. By substituting foré in
the first equation we obtain

~

A useful form of solution is obtained.by making the substitution u = 1/r, which gives
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d‘i = hu? d%
Hence
F=-n %‘
and
N R
Therefore
(.._ frz;) _ (_hzuz 322 _ h2u3) = - uu?
or

This well-known equation has a solution of the form

u=h—’; + D cos(@ - 5)=%

where D and @ are constants of integration. -
This equation may be rewritten as

2 2
h” _q 4012 cos(d - @)
pr !

which is recognized as the polar equation of a conic with focus as origin. The
semilatus rectum is /, where '
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In terms of this relationship the polar equation of the conic, when expanded, is
(see sketch (n))

é=I+A cos 6 +Bsiné

SEMILATUS RECTUM

Sketch (n)

To determine the integration constants, it is noted that when

Therefore, B=0and I/r = (1 + A cos 6).
The constant A4 is determined by noting that when

0=0, r=a(l-e)

where g and e are the semimajor axis and the eccentricity,' respectively. Substitution
of these values and use of the known relationship

. I=a(l-e?)
yields the value

A=e

and gives the equation of the orbit in the form
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=1+ecosf

‘:|~

which is the typical form of the equation of a conic.
3.8.3.2 Equatorial orbits. Equatorial orbits are obtained by letting 8 = w/2, and
subjecting the particle to the same force function, that is,

¥-ré? = -r—';

o+ 26 =0

Solving these equations leads to a solution of the same form as the preceding case,
that is,

L 1 +ecos¢
r
3.8.3.3 Kepler’s second law. Let dA be the element of shaded area in sketch (o)

below.

Qs

dA

Sketch (o)

Then

1
dA=—-pdS
2P
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where p is the perpendicular distance to the tangent vector and dS is an element of
orbital arc. It follows that

-

O | —

]

IN
N | —

S

pV

From the second orbital equation r26 = r¢ = h, which is the constant angular
momentum of the particle. Moreover, the angular momentum of the particle is also
equal to pV. Hence

r29 =r2¢=h=pV

Therefore

SIS

N | —
BN | —

This is the mathematical expression of Kepler’s second law (ref. 4), which states:
the radius drawn from the center of force to a planet describes equal areas in equal
times. _

3.8.3.4 Kepler’s third law. Kepler’s third law follows immediately from this
result. If P.be the planetary period, then

b _2mab
p="ab _
h/2 h
but
o =
a
or
h=b1t
a /
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Therefore ' -

and .

_4n%a’
u

P2

This is Kepler’s third law which states that the square of the periodic times of differ-
ent planets is proportional to the cubes of the semimajor axes of their orbits (ref. 5).

3.8.4 Motion on the Surface of a Cone

As an example of the use of cylindrical coordinates, consider the motion of a
heavy particle of mass m on the surface of a smooth, right circular cone, with axis
vertical and vertex downward (sketch (p)). By resolving along a generator, we
obtain ‘ :

Sketch (p)

m(F - rf?)sin a + 7 cos a = -mg cos a
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and
Z=rcotuw
Therefore
. 7 cos? «
(r-r82)sina+——— =-gcosa
sin &
or

r-r0?sin? a =-gsin acosa

As demonstrated in a previous example, this equation may be rewritten as

d?u sin o cos &
+ u sin? a—-g———

do? h?u?

This is the differential equation of the projection of the path on a horizontal plane.
Moreover, since

rdd =7idf and r=Fsin«a
then
dO =df cosec a; u =i cosec a

Making these substitutions in the equation of the prOJectlon of the path on a
horizontal plane yields

2

Q,

i

~ +_=gsin2acosoz
02 u 2:-2
h‘u

Y

Hence, if the cone be developed into a plane, it is seen that the orbit of the path on
the surface will be the same as would be produced by a particle moving in a plane
under the action of a constant central force.
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4.1

4.1 FORMULATION OF THE NAVIER-STOKES EQUATIONS AND THE
CONTINUITY EQUATION

The Navier-Stokes equations form the basis of the whole science of fluid mechan-
ics (ref. 1). The technique described in preceding chapters can be used to facilitate
the derivation of these equations and the corresponding continuity equation. In fact,
any equation or system of equations that can be expressed in tensor form is
amenable to formulation by the methods described. Again, it will be seen that in
order to formulate the equations describing the flow over a given surface, it is only
necessary to know the metric tensors for that particular surface, since all essential
metric properties of the surface are completely determined by this tensor. The
metric tensors may be obtained from the fundamental quadratic form, which is an
expression for the square of the distance between two adjacent points on a surface,
or in terms of coordinate transformation equations. If a formulation in terms of
coordinate transformation equations is adopted, the methods described in sec-
tion 1.13 may be used. For reasons that will become apparent as we proceed, the
relationships expressed in equations (1.13.12),(1.13.14), and (1.13.15) are adequate
to our needs.

A form of the Navier-Stokes equations of motion of a compressible viscous fluid,
which is valid in all curvilinear coordinate systems, is (ref. 2)

i M a2pi - o j o i (i
LN KL R S TN
ot axJaxk akl oyl aj} axk k) ax \gxk \oy

o HE - "“’_"})Va &l op Vf(i"__i+ (] Voz)
mkl) \aj aml) \jk P ax] ax/ o

.. k .
+ gl O <3V— + ‘kl V“>+F’ (4.1.1)
37 axd \axk ok -~
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In this equation, the summation convention is assumed. That is to say, if in any
term an index occurs twice, the term is to be summed with respect to that index for
all admissible values of the index.

If the body forces are assumed to be known, it is seen that the Navier-Stokes
equations involve five unknowns: V’(x,t), (i =1,2,3), p(x,t), and p(x,t). To complete
the system, two more equations are added. One of these is the equation of state that
relates the pressure and the density. It may be written as follows:

p = p(p) 4.1.2)

The other equation expresses the principle of conservation of mass and assumes the
form (ref. 1)

dp , (VK ‘kl _
dt+p(axk+ wl V) =0 (4.1.3)

Furthermore, if the process is not isothermal it is necessary to make use of the
energy equation, which draws up a balance between mechanical and thermal energy
and furnishes a differential equation for the temperature distribution. However, to
simplify and clarify the exposition, the flow will be assumed to be incompressible
and viscous. Hence, this equation will not be included here. Moreover, equa-
tion (4.1.2) will not be required in this case, and equaticgn (4.1.3) will assume the

simpler form (ref. 3)
et lad v)
— + V¥) =0
<6xk ok (4.1.4)

For orthogonal coordinate systems

g =0 for i#j (4.1.5)
and

g = 1 (4.1.6)
R -{(7))

where parentheses around a repeated index imply suspension of the summation
convention for that particular index. With these simplifications, equation (4.1.1)
may be rewritten as follows:
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o [ B sy (e a1y o
at ax]ax] ax] ]] a_x] of mj aj

i i i i
- l ’{mD yo|- L1 3 _yifdV ['} V“) +F @1
amJiji 8(ii) P ox* axt o
where the kinematic viscosity » is defined by the equation

4.1.8)

S
1
ANk~

It is instructive to dwell on this rather complicated equation for a moment and
examine its meaning and the meaning of the individual terms and coefficients. This
is the equation of incompressible, viscous flow in which the density p and the
kinematic viscosity v are assumed to be constants. It represents the three equations
of motion obtained by invoking the principle of conservation of momentum.
Likewise, the principle of conservation of mass yields equation (4.1.4). With known
body forces F’,_ there are, therefore, four equations for the three unknown velocity
components V! and the pressure p. Since the coefficients are metric tensors or
Christoffel symbols, which are functions of the metric tensors, the formulation of
these equations in any particular coordinate -system depends only on the specifica-
tion of the metric tensors. For a formulation in terms of coordinate transformation
equations, the curvilinear coordinates x! are assumed to be related to an orthogonal
Cartesian triad »' by the following coordinate transformation equations:

yi - yi(xlxzxa)
4.1.9)
i=1,23 '
This transformation is assumed to be reversible and one-to-one. Hence
xi=xiply?ysd) (4.1.10)

In terms of these functional relationships, the metric tensors and the Christoffel
symbols are defined as follows:

oy ay¢

g =2 L (4.1.11)
T oxt axd
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i a2yB  ax!
= I- —_— 4.1.12
‘jk’ (axjaxk ayﬁ> (- !

Before substituting these relationships in equation (4.1.7), the following simplifica-
tion will be helpful

y* ay® ([ a2yF ax!
&) ']k’ {ax(l) ax(’)][axjaxk ayB:,

Therefore -
o) -2 o2
#an) ik axfax : ax?
where
- 5oz_O for a+#f
g 1 for a=§
Hence
i 32y% gy -
g,} = T = 4.1.13
Wl (axlaxk ax’ @113

The expression on the right-hand side of equation (4.1.13) defines the Christoffel
symbol of the first kind in terms of coordinate transformation equations. The
Christoffel symbol of the first kind was defined in terms of metric tensors in

equation (1.12.3), that is
(] =1(ag_fk 4 %k _ &)
b 2 . .

axl  axl  axk

. Substitution from equations (4.1.11) through (4.1.13) in equation (4.1.7) gives
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B B i . Ayl 2,,m m ,
Py s (e WV L) _3y_.§z_. yeyi
ax(D ax(® \ o ax/ ax%x/ ax?

_|2f af Fio 8y, |0 k]7([2f af] av
ax(®) ax(® axt [ax®) ax®] \ [ax® ax®] axax/

Lol o aym|ave [af b |[a2ym axe]ov
_ax“axf axt | ax/ ax @ ax () _axjaxj aym | ax%

[ 2P af) o (o ad) | (o7 a2\ o
|ax() ax @] ax/ \axx/ ay™ axTax/ axif\ax%x] ay™

AN RAY U | P (4.1.14)
ax%x" axi/\axTax] ay™ '

Equation (4.1.14) represents three tensor equations of motion of an incompres-
sible viscous fluid relative to any orthogonal curvilinear coordinate system. Since the
derivation merely requires the determination of the partial differential coefficients
of y with respect to x, and of x with respect to y, the form of this equation is well
suited to routine nonnumeric computer operations. Moreover, the only inputs
required are the coordinate transformation equations that are given in equa-
tions (4.1.9) and (4.1.10). The required inputs can be reduced further by elimina-
tion of the partial differential coefficients of x with respect to y from equa-
tion (4.1.14). This can be done by using the following relationship, which is valid in
all orthogonal coordinate systems:

(4.1.15)

o2y axl _ (f oyf\" a2y g
ax! ax/

axiaxk gy axiaxk axi

By substitution from equation (4.1.15) in equation (4.1.14), a form of the
Navier-Stokes equation is obtained whose derivation in any coordinate system
depends only on equation (4.1.9). This is
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[2F 8 (QIL’H/;'QK +<a_2£’_ ™\ payi
ax (D ax(@ |\ ot ax/ ax%x/ ax!
ax(i) ax(i) axi ax(j) ax(j) ax(i) ax(i) axjaxj
azym aym\ave | ayB 8y |l ay™ ay7 |7 [ 22ym ay™\av!
ax%xl ax? Jaxl  |ax® ax® ||ax(® ax(@| \oxiax/ ax®/ ax®
-1
+ ayB ayﬁ 2 P o azym aym
ax® ax(®fax/ [ax@ ax®Df \ox¥ax/ ax!
r -1
(22T YT ) a7y o™
ax"ax/ axi Jlax() ax(r)] \ax®ax/ ax”
- =-1 ’
( 02yY ay> oy oyT| [ a2y™ ay™ Va) (4.1.16)
x%x” ox! _ax(’ ) ax(r )_ ax’ox/ ox’ .

4.2 THE PHYSICAL FORM OF THE NAVIER-STOKES EQUATIONS

Because equation (4.1.16) is a tensor equation, all the velocity and force compo-
nents occurring in this equation are tensor components. This form of the equation is
well suited to theoretical studies. However, in practical applications, it is the
physical components that are of interest (ref. 1). The tensor components of a vector,
or first-order tensor, are related to its physical components as follows (ref. 2):

pia Y 4.2.1)

Fi=__I (4.2.2)
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where Vi and v are the tensor and physical components, respectively, of the velocity
vector ¥; and F’ f* are the tensor and physical components, respectively, of the
force vector F. By substitution from equations(4.2.1) and (4.2.2) in equa-
tion (4.1.16), the physical form of the Navier-Stokes equations is obtained

i

[_aﬁ ayﬁ i 4 + v/ 9 yi
) axDflar [y 3y P b ax/  [ayf 9B
ax(®) ax () ax) ax() ax(®) ax(@)
N < azym‘ M) " ol
ax%x/ ax! \/ aP  ayb ‘/ayﬁ P
| d

x(@ 5x(@) ¥ 5x() 5x()

= /ﬁiyﬁfi_iﬂl avk ayk |f[ayB P | &2 y!
ax(® ax (D) ox? ax() ax(j) ax(®) ax(® ax/ox/ ‘/M_P_}_)_B_

ax(,i)‘ax(i)

+ 2( 2y M)_Q_ s

ax%x! axt/ax/ W
3x (@ 55 (@)
o8 ][ a7 o] [z »mya v
ax@ ax® ax(a) ax(@| \ax/ax/ ax® ) ax® QJLB_ ﬂ
, ax(® ax(®)

+ ayB ayB KB ayﬂ ayP o a2y aym'
ax(®) ax(’) axf ax(® ax@® ax%x/ ax!
27 ay'Y> (ayT ayT-‘ ! < 92yM aym)

raxl axt J|ax(") ax(r)] \ax%x/ ax"

< d
( a2y’)' ay’y) ray‘r aqu ‘1<azym aym)’ e ;
— (4.2.3)
x%ox” dx! _ax(’ ) ax(r )_ axlox! ax’/) oy B I

ax(a) ax(a) ’

+
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Because the index i can assume the values 1, 2, or 3, equation (4.2.3) represents
three equations. If the forces f* are assumed given, there are only three equations for
the four variables v/ and p. However, as indicated previously, another equation can
be obtained from the continuity condition. Satisfaction of this condition requires
that the physical components of ¥ satisfy the equation

-1 .
i vk + aya ayOl (a2y1'. aLT vl =0 (4.2.4)
axkl [ayP 3y ax(K) ax(B)  \axkaxi axk) [ayf ayf
ax (k) gx(k) ax() ax()

The form of equations (4.2.3) and (4.2.4) is such that the only computer input
required is the transformation equation expressing the Cartesian coordinates y! as
functions of the curvilinear coordinates x!. The inverse transformation is no longer
_ required. - ‘

Although these equations are complicated, the only computer operations required
to formulate them are summation and symbolic differentiation. A program that
consists of a few statements for controlling symbolic differentiation, supported by a
simple computational algorithm for exploiting the summation convention, was
demonstrated in chapter 2." The methods employed there can be used with equal
facility to formulate equations (4.2.3) and (4.2.4). Moreover, once these equations
are programmed and made available in a program library, the researcher need only
specify the surface or boundary that determines the flow.

Those who do not have access to a digital computer will find that a manual
formulation has certain advantages. Indeed, even in those cases where a digital
computer is available, it is recommended that at least some of the formulations be -
performed manually. By doing so, the user will be made aware of the inherent
simplicity of the method, which involves nothing more than repeated partial differ-
entiation. A point to be noted is that once the general formulation is available, the
specialized form can be obtained without further reference to the physics of the
problem. The nature of the problem is such that given a set of transformation
equations, the required model can be formulated by anyone who can differentiate.

To demonstrate again the inherent simplicity of the method, and the fact that the
formulation of complex models only requires a series of repeated differentiations,
one of the equations (4.1.16) will be evaluated in a cylindrical polar coordinate
frame of reference, where
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y' =x1 cos x?
y? =x! sinx?
=X
. The first factor in equation (4.1.16) is

ayB ayﬁ

4.2

(4.2.5)

It will be recalled that parentheses around an index implies suspension of the
summation convention for that index. Bearing this in mind we sum this factor on §,

remembering to keep the i constant, that is

And fori=1

From equation (4.2.5), we have

1 ay?
ax! ox! ax!l

Substitution of these values in equation (4.2.6) yields

P of

ax! ax!

= (cos? x! +sin? x!') =1

Therefore, for i = 1, the first term of equation (4.1.16) is

ayB ayB\art _ apt
pl= ) =p 5
ax! axl ot ot

08 B |_ [ay 2+ Qz_2+ |
_ax(’:) ax(i)J ax(® ax(® ax(

[of af]  _ (@) ; (ey_) ; (ey_
__ax(i) ax("{ =1 ox! ox? ax!

. ay3 '
2. = cosx! ; =sinx! ;. 2 =0

(4.2.6)

@.2.7

(4.2.8)
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To this must be added
. 1 1 1 1
yiv _ (wﬂm@y_waez’_
ax/ ax! 9x? ox3
and the first two terms are
1 1 1
,,(aV AR Y Ve
ot ox! ax? ox3
The third term involves a summation on m, ¢, and j. Summing first on m gives
M MY papio (At 3%yt 3%y 3 )y
ax%x/ ax! /i<, ax%x/ ax!  ax%x/ ax! 9x%x/ ox!

From equations (4.2.5), it is seen that y3 is independent of x! . Hence, the last term
on the right-hand side of this equation vanishes, and we are left with

MM) Van=<_az'_aL*+ 2y 9%\ poyi
ax%x] ax! ax%x/ ax'  3x%x/ ox!

Summing next on &, and noting that terms involving & = 3 vanish, we obtain

a2y1. Q_l_+ aZy2 ay VlV]+ a2yl. E-}- a2y2. gﬁ WV]
oxlax] ax!'  ax'ax/ ax! ax?ax/ ax' ox%ox/ ox!

Summing next on j, we find that the coefficient of (V! )? is zero since

2,,1 2,,2
%y _ 9 _
ox!ox!  ax!oax!

The coefficient of V! V2 is also zero because

-~

2,1 1 2,2 9y
Fyt oy . 07y L) = (-sinx? cosx? + cos x2 sinx%2) =0
ox'ox? ox! ox!'ox? ox! :
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and the coefficient of V2 V! is zero for the same reason. Hence, the only nonzero
coefficient is the coefficient of V2 V2, which is

2,1 l 2.2 2
Oy o YT QL)WW=—x1V2m
0x209x2 ax! 9x%0x? ox!
and when expanded, the first three terms of equation (4.1.16) yield
p[aV +n V! +p2 vt | ys oV ov! xl(Vz)z] 4.2.9)
ot ax! ax? ax3

Proceeding next to the right-hand side of-equation (4.1.16), but still retaining the
value i = 1, we find on using the value already obtained for

ayP ayP
ox! axt

~

in equation (4.2.7), that the body force and pressure gradient components are

Fr_ip_

(4.2.10)
ax!

The first viscosity term on the right-hand side of equation (4.1.16) is
ayk ay yﬁ ayB) 92

M —

ax axDf\ax! ax!/ axiax/

P b
ax! ax!?

Becaus'e the term

has already been evaluated and found to be equal to unity, the first viscous term

reduces to
-1
y ak ak] an
ax(j) ax(j) ax/axT
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When expanded, these factors give rise to the following three terms:
-1 -1 . -1
, (ai‘ M) 02! +<@_yf éz.’f) 2y, (ak ok a2
“N\ox! ax! ox!ox! ox? 0x2/ 9x?ox? ox3 ox3/ ox3ax3

Because the index k is a dummy index, it can be replaced by any other index. In
particular, it can be replaced by the index g, that is » -

ark a_y"> _ (2 2\ _,
ox! ox! ox! ox!

and the first viscosity component is

a2V1 l -

ox!ox!

u

To evaluate the coefficient of the second term

ayk ayk

ox? 9x?
it is necessary to refer again to equation (4.2.5), which gives

wk ayk

=(x')? (4.2.10a)
ox? 0ox2

Therefore, the second viscosity component is

s,
u %

(x!)? ax2?ox?

Likewise, the coefficient of the last term is

A .
(al aL) — (4.2.10b)

ox3 ox3
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and the last term is simply

a2t
u

ox3ax3 -

Combining these three components yields the first viscosity term as follows:

i 2171 211 2171
u 0V n 1 0°V 4 ‘v 4.2.11)
ax'ax!  (x')® ax?ax?  ax?ox?

The next viscosity term is .

k A k]!
o ay* oy 32ym gyMm Jy <
ax) x| ax®x/ ax' ax/

(4.2.12)

When this expression is summed on j, we obtain
\—1 ' -1
2M6L"a_yi‘) oy ay\ove , o (v aykY'(( a2y aym) ave
ax! ax! ax%x! ax'/ ax! ax? ax2/) \ox%x? ax'/ ox?

ayk ayk - 92ymMm  9y'M\ gy
RN Y (o Ry Bl iy iy ole
ax3 ax3 oax%ox3 ax'/ ax3

It has been shown that

k o~k k 8.k
Tt ; aLQ__:(xl)?
ox! ox!? ax? ox?
and
ak ok _ |
ox3 9x3

Therefore, equation (4.2.12) reduces to

u (a2ym ay'")aV"‘+ 1 (azym ay'")g‘".+ (a2ym M) grf]
ax%x! ax!/ax'  (x1')?\ox%x2 ox!/ ox? ax%x3 oax'/ ox3
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The next step in the formulation is a summation on m which yields

-2#[( 2yt 9ty %y ali)m*

ox%x! ax! ax%x! ax! 9x%x! ax'/ ox!

ox?

N R S G O A Y
1) \ax%x2 ax'  ox%x? ax' ox%x' ox!

[y @y oyt @7y ) or*
oax%x3 ax!  ax%x3 ax!  9Ix%x3 ax!/ ax3

Consider the coefficient of dV%/ax! in this expression, and sum on o.
For ac = 1, each term of this coefficient is zero since

azyl _ azy2 _ a2y3

ax'ax! ax'ox! . 9x!ax!

=0

For o = 2, we have

2,1 1
Fy wy = -sin x2 cos x?2
ax?ax! ox!
and
9%y? ay? _ ,

~“— =gin x2? cos x?
ox?ax! ox!

 Because y? is independent of x! and x2, the last term is zero, that is

9%y ¥’
ax2ax! ox!
Hence, for a = 2, the coefficient of 8V %/dx! is zero.
For o = 3, all terms of this coefficient vanish because y! and y? are independent

of x3, and y3 is independent of x!. Therefore, the coefficient of 3V %/ax! is zero for
all o
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Proceeding next to the coefficient of 3V%/9x2, and summing for a= 1, we note
that the sum of the terms vanishes. This is because the coefficient of 3V % ox! for
o = 2, which has been shown to be zero, is the same as the coefficient of 3V %/dx?
fora=1.

Fora=2
2,1 1
o’y =-x! cos? x2
ox29x? ox!
and
2.2 2
O’y wy* =-x! sin? x?

ax29x? ox!?

Because y3 is independent of x! and x2, the last term of this coefficient vanishes,
and the coefficient of 3V%/ax? is

. 1
(-x! cos? x2 - x! sin? x?)=- —
(x1)2 xl

Recalling that because y! and y? are independent of x3 and y3 is independent of
x!, the coefficient of 97 %/ax? is zero for & = 3. For the same reason, the coefficient
of aV%ax3 is zero for all values of . It follows that when the viscosity
term (4.2.12) is summed on «, j, k, and m, the result is simply

_(zg a_VS‘)
x! ox?

Corribining the results obtained so far, we have fori =1

1 1 1 1
,,[9&+V1§K_+Wal+yaal_xlm)z]
ot ax! ax? ax3

2971 21
—pr|oBp @V L BV VT 2V (g3
ox! axlax!  (x1)? 9x2?9x?  oax39x3 x! ox?
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The next viscous term to be formulated is

-1 . -1
I a1 (fﬂ ay_‘*) " T (a’y’" ay’">a_V‘
3y ayD | \axt ax'/|ox(@ ax(@] \oxlax/ ax%/ ax®

Y

In spite of its forbidding appearance, this term can be formulated easily if one
uses the results of the previous work. A little practice with expressions of this type
will show that it is not always necessary to carry out all the summations specified
for the general case. By referring to the second viscous term considered (4.2.12), it
will be observed that in the subsequent summations, the only nonzero value of the
factor

a2ym aym
ax%x/ ax!
occurred when the indices assumed the following values: a = 2;j = 2.

When formulated in terms of the given transf_ormation equations and summed on
m, this factor was shown to satisfy the equation

a2y oy

ox29x? ox!

xl

It follows that the only indices that need to be considered are a=1; j=2.
Moreover, it has been shown that forj =2 :

a_y’_c a_y]_c=(x1)2

N ) ox2 ax?

aF a_y_") _ <_a_y_ Q) o
ox! ox! ox! ox!

and this viscous term reduces to

and

1 1
—u—l-—(—x‘)£=£— v

(x!)? ox!  x! ox!
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When we add this component to the previgusly.obtained results (4.2.13), we have

1
p[aVl W W e OV —x‘(V’){,

ot ax! ax? ax?
21 2171 1
ox! oxtox!  (x')? ox%0x?  ox339x3 x! ox? x! 9x!

(4.2.14)

Although the remaining three terms look equally forbidding, all the factors except
one can be evaluated by inspection.
Consider first the term

-1
o |25k a_yfaﬁ__ of b\ (a2ym o™\ o
ax @) axDf \oxt ax!Jax/ \oxt ax!/ \ox%x/ ax!
We have already determined that

P P
ox! ox!

o [af éﬁ) o
ax/ \ax! ax!
Hence, this term vanishes for all values of the indices.
The next term to be considered is

-1, -1 ‘
u Z)y’_c ay"C azy‘Y‘ Y\ [ay" oy a’ym' aym>Va
ax) axD) \ax"ax/ axt/\ox() ax() ox%ax/ "

The factor

=1

and therefore

a2y Y
- axTax!  ax!
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has been shown to be zero unless the indices assume the value__s r=2,j=2,in which
case it satisfies the equation

3yY ¥ _ 1

0x29x? ax! x!

With these indices, the other factors are
<3Lk aL") _ (@»_ @) __1
dx2? 9x? 0x2? ox? (x1)?
( a2y ﬂ) S
ax29x? ox!
and this viscous term assumes the simpler form

u (azym aym>Va

(x1)3\ax%x? 9x?

The only nonzero value for this factor occurs when the index a = 1. In this case

L%y g™

ox'0x? 9x2

xl

and this viscous component is simply

- [ Vl
(x')?

When this component is added to the previously obtained results (4.2.14), we have
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1 1 1 1
p[aV W4 g IV xl(V’)z]

o ax1 ax? ax3
21 2171 2171
=F1_Q+#‘[6V+l L Gk 4
ax! axlax!  (x!')? ox%29x? ox3ox3
1 1
-la—ﬁ+i@i- V] (4.2.15)
x! ax?2  x! oax' (x!)?

Again, by inspection we find that the last term
-1 -1
#[ayk ayk] ( a2y w)[ay’r ayT] ( 92yMm aym) ——
ax) ax(NJ \ax%x" ax'/Lox( ax()] \oxfox/ ax”

This term vanishes because the only nonzero value of the factor

o7y ay™
oxlox/  ax”

occurs whenj=2,r=1, and forr = 1, the factor

(_____azy7 M) =0
ax%x" ox!/,=,

Hence, this component vanishes for all values of the indices, and equation (4.2.15) is
the complete equation for i = 1. The remaining two equations of (4.1. 16) can be

formulated in the same manner.

Equation (4.2.15) is a tensor equation, that is,.all the force and velocity compo-
nents are tensor components. A formulation in terms of physical components is
obtained by transforming all tensor components to physical components. From

equation (4.2.1)

1

vl

]/éy_ﬁ ayP
ax! ox!

yl =
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By substitution from equation (4.2.7) in this equation, we obtain
vt =yt " (4.2.16)
Again, from equation (4.2.1), we have

Vi 2
ayP ayP

ox? ox?
Substitution from equation (4.2.10a) in this equation gives

oV (4.2.17)

The component V3 is given by

and from equation (4.2.10b)

P ayf _
ax3 ox3

Hence

V3 =3 (4.2.18)

I'd

The force component F 1 is subject to the transformation (4.2.2), that is

fi
ayB 8y
ox! ax!

F' =
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Substituting again from equation (4.2.7), we find that

F' =1 (4.2.19)

Substitution from equations (4.2.16) through (4.2.19) in equation (4.2.15) gives
the physical form of this equation as follows:

1 1 2 1 1 232
) 21_1_+v,aL+V_ aL+V3a_V-_Q_)_
ot ox!  x! ax? axd® x!

=fl‘i+ﬂ ?vt 1 ot . 3%
ox! oxlax!  (x')? ox29x? ox3ox3

2 @2 1w v‘] (4.2.20)
(x1)? ax?2  x! ax! (x')? .

A formulation in terms of metric tensor inputs will be described next. Specifi-
cally, attention will be focused on the formulation of the Christoffel symbols. Once
the user knows how to derive these symbols, he can formulate the Navier-Stokes
equations and the corresponding continuity equation in any coordinate system of
interest.

4.3 FORMULATION OF THE CHRISTOFFEL SYMBOLS OF THE
SECOND KIND

From the formulas of definition, equations (1.12.3) and (1.12.4), the Christoffel
symbols are

‘ dg;, og;. Og;
[ii.k] = l<_’__" + 2tk 0
2 ax] axl axk

k
l } = g ij.0)
l
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Therefore
k
{i].} =gk 1,11 + g2 (5,21 + k3 [i7,3] (4.3.1)

In orthogonal coordinate systems / = k, and in this case

k _
l“]=J*wx]
ij

Therefore

k
{ﬁ}=#‘WJ]+£2w2]+£3W3] 4.3.2)

A simple program designed *o formulate the Christoffel symbols of the first and
second kinds, by using the metric tensors as input, would assume the following form
if the .coordinate system were cylindrical polar. Equations (3.2.6) give the metric
tensors for this particular coordinate system (ref. 4).

LET(G(1,1)=1);
LET(G(2,2)=X(1)**2);
LET(6(3,3)=1);

PRINT OUT(G(1,1);6(2,2)36(3,3));
PUT SKIP(5);

LET(H(1,1)=1);

LET(H(1,2)=0); -
LET(H(1,3)=0);
(2,1)-0);
(

(H
LET(H
LET(H(2,2)=1/6(2,2));
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LET(H(2,3)=0);
LET(H(3,1)=0);
LET(H(3,2)=0);
(H

LET

PRINT_OUT(H(1,1);H

PUT SKIP(3);

DO I=1 TO 3 BY 1;

LET(I="1");

DO J=1 TO 3 BY 1;

LET(J="3");

DO K=1 TO 3 BY 1;

LET(K="K");
LET(D(I,J,K)=
LET(E(J,K,I)=
LET(F(I,J,K)=

( )=

LET( Igl],

(1/2)*DERIV(G(I,K) ,X(
(1/2)*DERIV(G(J,K),X(1)));
(1/2)*DERIV(G(I,J),X(
(D(I,J,K)+E(J,K,I)-F(

4.3

(3,3)=1/6(3,3));

(2,2)3H(3,3));

K),X(3)));

K)))s
-F(1,9,K)));

PRINT_OUT(C(I,J,K));

END;
END;
END;
PUT SKIP(3);
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D0 I=1 TO 3 BY 1;
LET(1="1");
DO J=1 TO 3 BY 1;
LET(J="J");
DO K=1 TO 3 BY 1;
LET(K="K");
LET(T(I,J,K)=0);
DO N=1 TO 3 BY 1;
LET(N="N"); ,
LET(CI(I,J,K)=H(N,K)*C(I,J,N));
LET(T(I,d,K)=T(I,d,K)+CT(I,J,K));
END;
" PRINT _OUT(T(I,d,K));
END;
" END;
END;

The output from this program is as follows:

6(1,1) =1 H(1,1) =1
G(2,2) = X(1)2 H(2,2) = 1/X(1)2?
G(3,3) =1 “H(3,3) =1
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c(1,1,1)
C(1,1,2)
c(1,1,3)
c(1.2,1)
c(1,2,2)
€(1,2,3)
C(1,3,1)
c(1,3,2)
€(1,3,3)
c(2,1,1)
€(2,1,2)
£(2,1,3)
(2,2,1)
€(2,2,2) =
c(2,2,3)
€(2,3,1)
€(2,3,2)
€(2,3,3)
€(3,1,1)
€(3,1,2)
€(3,1,3)

i i) (] i 1] 1 " H 1} 1] []
fam) (o] (ew] [} (e o o [en} o

<o

"

1] 1] f " " i

><
——
—
—

X(1)

{
><
—
—
~—

o o' O o o o (oo} o

1¢(3,3,3)

€(3,2,1)
€(3,2,2)

1]

€(3,2,3)
€(3,3,1)
€(3,3,2)

] I u 1]

o <o o [} (e} (] o o [} [

T(1,1,1)
T(1,1,2)

[{]

T(1,1,3

T(1,2,1

"

)
)
1(1,2,2)
1(1,2,3) =
)
)

]

T(1,3,1
T(1,3,2

i

T(1,3,3)

o O O o o

T(2,1,1) =
7(2,1,2) =

|l

T(2,1,3)
T(2,2,1)

T(2,2,2)
T(2’233) =

]

4.3

1/X(1)

1/7X(1)

-X(1)
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T(2,3,1) = 0 S T(3,2,1) =0
7(2,3,2) = 0 T(3,2,2) = 0
7(2,3,3) = 0 T(3,2,3) = 0
T(3,1,1) = 0 T(3,3,1) = 0
7(3,1,2) = 0 T(3,3,2) = 0
7(3,1,3) = 0 T(3,3,3) = 0

In this program and output, C(I,J,K) denotes a Christoffel symbol of the first
kind and T(I,J,K) is a Christoffel symbol of the second kind.

When formulated in this system of coordinates, the Navier-Stokes equations and
the continuity equation are in a form suitable for studying flow through pipes.
Moreover, in physiological applications, the equations may be used to study hemo-
dynamic problems involving flow through distensible arteries. The equations can be
formulated by specifying the metric tensors, deriving the Christoffel symbols of the
second kind and proceeding as indicated in equations (4.1.4) and (4.1.7). Mechaniza-
tion of these operations led to the following results:

G(1,1) =1 T(1,1,1) = 0
G(2,2) = X(1)? T(1,1,2) = 0
G(3,3) = 1 T(1,1,3) = 0
T(1,2,1) = 0
H(1,1) =1 T(1,2,2) = 1/%X(1)
H(2,2) = 1/X(1)2 7(1,2,3) = 0
H(3,3) =1 T(1,3,1) = 0
T(1,3,2) = 0
T(1,3,3) = 0
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A(2)

T(2,1,1) = 0 T(3,1,1) = 0
- T(2,1,2) = 1/x(1) T(3,1,2) = 0
T(2,1,3) = 0 T(3,1,3) = 0
T(2,2,1) = -X(1) T(3,2,1) = 0
T(2,2,2) = 0 T(3,2,2) = 0
T(2,2,3) = 0 T(3,2,3) = 0
T(2,3,1) = 0 7(3,3,1) = 0
T(2,3,2) = 0 T(3,3,2) = 0
T(2,3,3) = 0 T(3,3,3) = 0

F(1) - u(1) Nuzx(1)2 + o) 2) L (x(2),%(2)) NU/X(1)2

- 20(2)(1) L (x(2)) NUZX(1)2 + u(1) (1) L (x(1)) NU/X(1)
U(1) (1 2) . (x(3), X(3)) N+ u()(12) | (x(1), X(1)) NU
u(1) (1) L (x(1)) u(1) - w1 L (x(2)) u2)/x(1)

S u(1)(1) L (x(3)) U(3) - P(1) . (X(1))/PHO + U(2)2/X(1)

F(2) - U(2) NU/X(1)2 + 20(1){1) . (X(2)) NU/X(1)2

S u(2)(12) L (x(2), X(2)) NU/X(1)2 + u(2)(1)

C(X(T)) NUZX(1) + u(2)(1 2) L (X(3), X(3)) Nu + u(2)(1 2)

S (X(T), X(1)) NU - U(2) U(1)/x(1) - u(2)(1) . (x(1)) u(1)

S u(2)(1) . (x(2)) u2)/x(1) - u(2)(1) - (x(3)) uE) - pl1)
. {(X(2))/%x(1) RHO
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A(3) = F(3) + U(3)(1 2) . (x(2), X(2)) NU/X(1)2 + u(3)(1)

- (X(1)) Nuzx(1) +u(3) (1 2) L (x(3), X(3)) Nu o+ u(3)(1 2)
. (X(1), (1)) N - U(3)(1) (x(1)) u(1) - u(3)(r)

L (X(2) u(2)7x(1) - U L (X(3)) u(3) - p1)

. (X(3))/RHO |

DRHO = -U(1) RHO/X(1) - U(2)(1) . (X(2)) RHO/X(1) - u(1)(1)
. (X(1)) RHO - U(3)(1) . (X(3)) RHO

Using the definitions on page 250, these equations are interpreted as follows:

L S SR )
ot ax!  x! ax? x! ax3

¥fl'-ﬂ+# 9% v! +L vt 9%y!
ox! axtaxl  x! ox! (x»)? (x!)® Ox2%9x?

2w ! ‘ ‘ (4.3.3)
(x1)? ax?2  ox30x3

2 2 1,2 2
p<av +,av +v_aL+vv +V36L>

ot ox!  x! ax2  x1 ax3
=f2__1_£+#_§i+_1_§ﬁ_ v? +_ 1 9?y?
x! ox? ax'ox! x' ax' (x')* (x')? dax?ox?
1 2,2 )
+ 2 ov n %y (4.3.4)
(x1)? ox%  ox3ax3
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p(av +y y o3 +1_zi ov3 43 E)
ot ox!  x! 3x? ox3

RN IR I UGS W W AP (4.3.5)
ox3 oxlax! x' ax'  (x!')? ox%0x? ox3ax3

aL+_l_+_l- ﬂ’i.p.a_v_:o (4.3.6)

ox! x! x' oax?  ox3

As a further illustration of the procedure involved in using a computer to derive
the equations of fluid motion and the continuity equation, the automatic derivation
of these equations in a spherical polar coordinate system will be considered. When
transformed to this system of coordinates, the Navier-Stokes equations and the
continuity equation are in a suitable form for oceanographic studies involving tidal
motions on planetary surfaces. In physiological applications, these equations may be
used to study the hydrodynamics of ocular systems. As in the previous case, it is
only necessary to specify the metric tensors, derive the Christoffel symbols of the
second kind, and proceed as indicated in equations(4.1.4) and (4.1.7). Equa-
tion (3.2.9) gives the metric tensors for this coordinate system. Mechanization of
these operations ted to the following results:

G(1,1) =1 - T(1,2,1) =0
6(2,2) = X(1)? T(1,2,2) = 1/X(1)
G(3,3) = SIN2 (X(2)) X(1)2 7(1,2,3) = 0
H(1,1) = 1 ‘ T(1,3,1) = 0
H(2,2) ="1/X(1)2 T(1,3,2) = 0
H(3,3) = 1/SIN2(X(2)) X(1)2 CT(1,3.3) = 1/X(1)
T(1,1,1) = 0 T(2,1,1) = 0
T(1,1,2) = 0 T(2,1,2) = 1/x(1)
T(1,1,3) = 0 T(2,1,3) = 0
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-X(1)
0
0
0
0

COS(X(2))/SIN(X(2))

COS (X(2))/SIN(X(2))

-SIN2(X(2))X(1)

~COS(X(2))SIN(X(2))

0

F(1)-20(1)NU/X(1)2-2C08 (X(2) JU(2)NU/SIN(X(2) )X(1)?
+0(1)(12) . (X(3)), X(3))NU/SIN2(X(2))X(1)2

+U(1) (1) (X(2))coS(X(2) )NU/SIN(X(2))X(1)2

~20(3) (1) (X(3))NU/SIN(X(2))X(1)2

+0(1)(12) (x(2),X(2))Nu/x(1)2-20(2) (1) . (x(2))Nu/x(1)2
s20(1) () (x()NUZX(D)+ (1) (12) (x(1),x()N0
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A(2) =

A(3) =

o)) (x(1UM-u(1) (). (x(2))u(2)/%(1)

~u() (1) (x(3))u(3)/SIN(X(2))X(1)

-u(1) (1) (X(3))U(3)/SIN(X(2))X(1)

-P(1) L (X(1))/RHO+U(2)2/X(1)+U(3)2/X(1)
F(2)-U(2)NU/X(1)2-C0S2(X(2))U(2)NU/SIN2(X(2))X(1)2
~20(3)(1) . (X(3))CoS(X(2) )NU/SIN2(X(2))X(1)2

+0(2)(12) _(X(3),X(3))Nu/SIN2(X(2))X(1)2+u(2) (1)
(X(2))CoS(X(2) )NU/SIN(X(2))X(1)2+20(1) (1) (x(2))NU/X(1)2
+0(2) (12). (x(2) . x(2) Nu/x(1)2+20(2) (1), (x(1) JNU/X(1)
+0(2)(12). (x(1),X(1)IN-0(2)u(1)/X(1)-u(2) (1) (x())u()
-u(2) (1) (x(2))u(2)/7x(1)-u(2) (1) (x(3))u(3) /SIN(X(2))X(1)
-P(1) . (x(2))/X(1)RHO+COS (X(2) )U(3)2/SIN(X(2))X(1)
F(3)-U(3)NU/X(1)2-C0S2(X(2) )U(3)NU/SIN2(X(2))X(1)2

+20(2) (1) (X(3))C0S(X(2) JNU/SIN?(X(2) )X(1)2
+u(3)(12).(x(a),X(3))NU/51N2(X(2))X(1)2

+0(3) (1) (x(2))cos(x(2))NU/SIN(X(2))X(1)2

+20(1) (1) (X(3)INU/SIN(X(2))X(1)2+u(3)(12)
A(X(2),x(2))Nu/x(1)2+20(3) (1) . (x (1) INu/x(1)+u(3)(12)

| COX(T)LX(T))NU-U(3)u(T)/x(1)-u(3) (1)

A(X(1))U(1)-c0S(X(2))u(3)u(2)/SIN(X(2))X(1)-u(3)(1)
AX(2))u(2)7%(1)-u(3) (1) (X(3))U(3)/SIN(X(2) )X(1)
-P(1) . (X(3))/SIN(X(2))X(1)RHO
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DRHO = -2U(T)RHO/X(1)-COS(X(2))U(2)RHO/SIN(X(2))X(1)
—U(3) (1) (X(3))IRHO/SIN(X(2))X(1)-0(2) (1) (x(2) )RHO/X (1)
~0(1) (1) (x(1))RHO

Interpretation of the output requires that the following computer notation be
understood:
vt

A0=5"

U(i) physical components of the velocity vector

OO - x(y) =Y.
ox’/

92 Ui

Ua1?) - (x(), x(k)) =
axTaxk _

P - (x(y) = 2P
ax/

RHO =p

DRHO =%
ot

2

ac

Il

<

I
° |

When expressed in terms of conventional mathematical symbolism these results
appear as follows (ref. 1):
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‘ 1

p[iv.‘+,,la_v‘_+v_2_@4_‘+ v’ a_vl__<v2>2_<v3>2]
ot 1

ax!  x! 9x? x!sinx? oax3 «x x
2,1 1 2,1 2,1
:fl__qp_+#[av‘+2au+1 %t 1 3%
ox! ox'ax!  x'ox'  (x')* ox?ox?  (x')? sin? x? 3x3ax?
h pootx® vt 2 a? 2 W w' 2cotx? v'-’]
xH? ax?  (x!)? ox? (x)?sinx? ax3 (x1)?2 (x!)?

2 2 2 3,2 3 3 1,2 2
p[aL Fopr W vt ot v 9 vt cotx? (1,3)2]

ot ox!  x! oax? x!'sinx? ox3 x‘/ x!
2,2 2 2,2 2.2
=f2_L33+“[au 2w 1 % 1 3%y
x! 9x? ox'ox! x' ox? (x')? 9x%20x? (x!)? sin? x? 9x30x3
yootx? 2 2cotx? P, 2 W _ v? ]
(x1H? ax?  (x!)?sinx? 9x3 . (x')? ax? (x!)? sin? x?

p[@w R e, 1w s cot? ]

of ox!  x! 9x? x!sinx? ax3  x! x!
2,3 3 2,3
=f3___1_._ﬂ+#[av s 2 1 0%y B
x! sinx? ox3 axtax! x! ax! (x!)? 9x29x?
2,3 2 a3 : 1
+ 1 0%v +cth E_)v_+ 2 aw'

(x")? sin? x? ax3ax®  (x1)? ax? (x!)? sinx? 9x3

1 2
4 _2cotx’ ow?_ 1 v3]
(x1)2 sin x? 9x3 (x')? sin? x?
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1 2 3
§V_+ o + 1 _@V_+lpl+

ox! x'9x? x'sinx? ox3 x!

cot x? 2 =

xl

With the exception of the section on particle dynamics, emphasis has been placed
on applications occuiring in cylindrical and spherical coordinate systems. This
course of action has been adopted in the belief that the demonstration of principles
and techniques is more effective if it is conducted in a coordinate system with which
the reader is familiar. Once the technique has been thoroughly grasped, the reader
can proceed to less conventional coordinate systems, if he so desires. For example, a
problem of interest to physiologists is the study of fluid flow in the semicircular
canals of the inner ear. These canals are the basic transducers for a vestibulo-ocular
reflex which compensates the eyeball for the rotational movements of the body and
of the skull which are encountered in normal life. Each inner ear has three
semicircular canals in approximately mutually perpendicular planes, so that all three
degrees of freedom can be sensed. These canals are small-bore circuits containing
fluid which rotates relative to the skull when the skull rotates in space. The small
bore of the canals ensures laminar flow of the contained fluid. The equations
describing the motion of this fluid can be obtained in the manner described for the
two previous cases. The curvilinear coordinates best suited to the description of fluid
flow in the semicircular canals are toroidal coordinates.

A variety of other curvilinear coordinate systems is available for special situations.
For example, confocal ellipsoidal coordinates have proved useful in hydrodynamics
problems (ref. 5). Once a curvilinear coordinate system is chosen, the formulation
can proceed by the method of equations (4.2.3) and (4.2.4) which relies on coordi-
nate transformation equations, or by the method of equations (4.1.1) and (4.1.3)
which uses metric tensor inputs. As indicated in section 3.2, the determination of .
the fundamental quadratic form is usually no more difficult and is frequently much
simpler than finding the coordinate transformation equations. More importantly, if
the functions gl-]-(x) are such that the system of equations (1.13.12) has no solution,
then no admissible transformation of coordinates exists which reduces equa-
tion (3.2.1) to-the Pythagorean form. In this case, the manifold is non-Euclidean and
‘the use of coordinate transformation equations as input will fail. A non-Euclidean
model is described in section 5.1.
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5.1

5.1 NEWTONIAN AND RELATIVISTIC FIELD EQUATIONS AND
TRAJECTORY EQUATIONS

The advantages of symbolic mathematical computation are most evident in
problems analogous to those described in this chapter, that is, the formulation of
cosmological models and their associated trajectory equations. The field equations
that govern the trajectories of bodies in space have, in general, large numbers of
terms, with each term a complicated mathematical expression. The evaluation of
these terms and the derivation of the equations of the geodesics that describe the
trajectories of bodies in space require a substantial amount of algebraic manipulation
and symbolic differentiation. For the models considered, the required operations
were executed with speed and efficiency on an IBM360/67 computer. For example,
in the case of the nonhomogeneous Schwarzschild model, the computer times
required to formulate the field and trajectory equations were 0.74 and 0.30 min,
respectively. By mechanization of the procedure in the manner described, computa-
tion time is saved, the possibility of error is reduced, and the scope of the inquiry
may be extended.

The present chapter indicates how symbolic mathematical computation can be
used to formulate a variety of cosmological models. As in previous applications, all
formulations evolve from a fundamental metric, and each model is determined by
the metric of the Riemannian space. The only inputs required are the coefficients of
the fundamental quadratic form. For illustrative purposes, only spherically symmet-
ric static models are considered. The determination of the geodesics that describe
the trajectories of bodies in space requires that the appropriate potential functions
be known. The relativistic analog of Poisson’s equation, which in the Newtonian
theory connects a single gravitational potential function with the density of matter,
is a relation between the potential functions and the components of the -energy
momentum tensor. In general, this relationship gives rise to 10 nonlinear partial
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differential equations. The solution of these equations then yields the potential
functions and must precede any attempt to obtain the corresponding trajectories.

Consider the equation of motion of a particle which is moving under the influence
of gravitational forces. When the equation is written in the notation of the tensor
calculus, it assumes the form (ref. 1)

2 i j
m|EX +{ ,dx dx¥ i=v¢ (5.1.1)
where i,j,k =1,2,3 and
_ 99 ~j_ ij 3¢
Vo =—"al =gl =g, 5.1.2
ox/ ol ! ( )

In these equations the summation convention is again assumed. That is to say; if
in any term an index occurs twice, the term is to be summed with respect to that
index for all admissible values of the index.

In relativistic mechanics, equation (5.1.1) is replaced by the following trajectory
equation, which is the equation of a geodesic (ref. 2)

2.0 ] i k .
dx +Hdi TNV ijk=1234 (5.1.3)
as?2 - Uk) ds ds :

where the line element ds satisfies the equation of the fundamental quadratic form
(ref. 3) )

ds? = g;idx'dx! (5.1.4)

The Newtonian theory of gravitation connects a single potential function ¢ witﬁ

the density of matter. In this theory, the gravitational potential function is required
to satisfy Poisson’s equation (ref. 4)

V2¢ =-4mp ’ (5.1.5)

At all points of space devoid of matter p = 0, and Poisson’s equation reduces to
Laplace’s equation (ref. 4)

258



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 5.1

Vieg=0 (5.1.6)

The relativistic analog of Poisson’s equation is the following tensor equation
(ref. 5) '

1

where

Rij Ricci tensor (disc;ussed in sec. 1.16 and defined in eqgs. (1.16.2) and (1.16.3))
R Ricci scalar (defined in eq. (1.18.5))

8jj metric tensor

A constant, the so-called cosmological constant

K constant

By raising indices, ihe field equations can be written in the alternative form

: R . ; V
R]'l - 5 sle + 6111\ = _KT]'I (518)

Contraction of equation (5.1.8) yields

In regions of space devoid of matter, all the components of the energy momen-
tum tensor are zero, and equation (5.1.9) simplifies accordingly. In this case

R =4A (5.1.10)

When this result is substituted in equation (5.1.7), the field equations assume the
form
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Nevertheless, in empty space, the trajectories of bodies moving within the solar
system correspond with great precision to the simpler field equations (ref. 5)

R 0 (5.1.12)

i~

Equation (5.1.12) is the relativistic analog of the Laplace equation. It represents
10 nonlinear partial differential equations for the 10 unknown functions 8jj- Once a
set of functions satisfying equation (5.1.8) or (5.1.12) is found, the corresponding
trajectory equations can be formulated.

Before proceeding with the formulation of specific models, it is worthwhile to
examine the equations on which the models are based. The relevant field equations
are (5.1.7), (5.1.8), and (5.1.12). With the exception of the energy momentum
tensor, which is unspecified, the terms of these equations consist of the Ricci tensor
and the Ricci scalar. The Ricci scalar is the product of the Ricci tensor and the
corresponding metric tensor. For the convenience of readers, these tensors are
reproduced here. The equation for the Ricci tensor is (ref. 5)

st [0 Bl ) )

The equation for the Ricci scalar is simply
= ik

It is seen that although the field equations are complicated, the individual terms
of the equations are simply products of the Christoffel symbols of the second kind
or derivatives of these symbols. Moreover, the Christoffel symbols are known when
the metric tensors are known, that is, when an expression for the square of the
distance between two adjacent points of the space can be formulated. The depen-
dence of the Christoffel symbols on the fundamental metric tensor can be seen from
the following equations:

- =1<ag_ﬂc+ag_ﬂc_ %y
2\ox/  axt  axk

o i
{.. = %Ki, k]
y
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It was demonstrated in preceding chapters that, given the fundamental metric
tensor, the Christoffel symbols can be formulated without difficulty. Hence, the
evolution from the fundamental metric tensor to complex cosmological models is
easily accomplished.

5.2 MODELING CONSIDERATIONS

For the purpose of illustrating the modeling capability of symbolic mathematical
computation, a spherically symmetric static field is assumed. This assumption
implies that the metric tensors gjj are spherically symmetric and independent of the
time. Moreover, the metric tensors must be chosen in such a way that the line
element will reduce to the special relativity form for flat space time. These consider-
ations led to the adoption of the following set of metric tensors for anisotropic
space:

1
&11 =~ L(x")

g22 =-(x')?

fas = (! sinx2)? (5:2.1)
844 = eM(x')

where the implicit functions L(x') and M(x!) can be adjusted to account for the

distortion of space in the presence of matter. The corresponding space-time interval
is

ds? = [-eLO ax1 ) - (x'dx?)? - (" sinx? dx) + MO axty2)
(5.2.2)

where
dx* =cdt

and
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1

X radial coordinate

x?  polar angle coordinate

3

x> azimuthal angle coordinate

And for convenience, the velocity of light is assumed to be 1.
If the space is assumed to be isotropic, the metric tensors are modified as follows:

811 =_eL(xl) ‘

822 _eL(xl )(xl )2

| (5.2.3)

833 = :_eL(Xl )(xl sin x2)2

844 =eM(xl)

The space-time interval in the isotropic case is

ds* = {_eL(XI)[(dxl)2 + (x! dx?)? + (x! sinx? dx?)?] + eM(xl)(dx“)z}
(5.2.4)

In order to demonstrate the feasibility of using symbolic mathematical computa-
tion to formulate different models of the universe, a computer program was written .
that required only the postulated metric tensors as inputs.

The notation adopted in this and subsequent sections corresponds to the form of
the printed output. At the time of writing, the formulated mathematical expressions
could only be printed out in the form of capital letters, and the functions L(x") and-
M(x")are printed out as L*(x(1)) and M-(x(1)), respectively. Moreover, the ith deriva-
tive of the functions L(x') and M(x!) with respect to x!'are printed out as L(I)°(x(1))
and M(I)-(x(l)), respectively. To fix the ideas, the reader is referred to section (5.8)
where the components of R(/,J) from Section (5.3) have been interpreted in terms
of conventional mathematical symbolism in equations (5.8.2) through (5.8.5).

It should be noted that the field equations, which are denoted by E(/,J) in the
printed output, are related to the energy momentum tensors as indicated in equa-
tions (5.1.7) and (5.1.8). However, in empty space where all the components of the
energy momentum tensor are zero, the'field equations reduce to the simpler form
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Rl] =0
which, as already noted, is the relativistic analog of Laplace’s equation.
The comments appearing between each batch of computer output are pro-
grammed statements and occur without variation during each run. This accounts for
the stilted form of the language.

5.3 ANISOTROPIC MODEL

The field equations and the corresponding trajectory equations for this condition
can be obtained by using the tensors defined in equations (5.2.1). With these tensors
as inputs to a digital computer, which was programmed to formulate models of the
universe, the following output was obtained. (The computer program and related
documentation are available from Computer Software Management and Information
Center (COSMIC), Barrow Hall, University of Georgia, Athens, Georgia, 30601.)

The metric coefficients determine the gravitational model being studied. In order
that each run be identified with the correct inputs, the postulated metric coeffi-
cients are printed out before the main results. In the case under consideration, these
have the following values:

6(1,1) = -gb" (X))

6(2,2) = -x(1)2
G(3,3) = -SIN 2(x(2))x(1)2
6(4,4) = EM -(X(1))

The program uses the metric tensor inputs to evaluate the Christoffel symbols of
the first and -second kinds. In order to reduce the amount of output, the Christoffel
symbols of the first kind are not printed out. In terms of the system coordinates and
the unknown functions L and M, the Christoffel symbols of the second kind are

!
(o]

11,10 = (L Meay - 10.1,3) -
0 T1.1.4) =

!
o

T(1,1,2)
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T(1,2,1) =0 1(2,2,3) = 0

7(1,2,2) = 1/x(1) 7(2,2,4) = 0

7(1,2,3) = 0 1(2,3,1) = 0

7(1,2,4) = 0 1(2,3,2) = 0

T(1,3,1) = 0 T(2,3,3) = COS{X(2))/SIN(X(2))
7(1,3,2) = 0 1(2,3,4) = 0

1(1,3,3) = 1/x(1) T(2,4,1) = 0

T(1,3,4) = 0 T(2,8,2) = 0

T(1,4,1) = 0 T(2,4,3) = 0

T(1,4,2) = 0 T(2,4,4) = 0

T(1,4,3) = 0 ' T(3.1,1) = 0

T(1,4,4) = (y2mDx(1))  T(3,1,2) = 0

T(2,1,1) = 0 T(3,1,3) = 1/X(1)

T(2,1,2) = 1/X(1) T(3,1,4) = 0

T(2,1,3) = 0 1(3,2,1) = 0

T(2,1,4) =0 7(3,2,2) = 0

1(2.2.1) = -£L (X(y(qy 7(3,2,3) = COS(X(Z))/SIN(XSZ))
T(2.2.2) = 0 1(3,2,4) = 0
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13,3,1) = -6 KODsin@ex(2)x (1)
T(3,3,2) = -COS(X(2))SIN(X(2))

1(3,3,3) =
1(3,3,4) =
(3,4,1)

1

T(3,4,2
T(3.4,3

it

f

)
)
7(3,4,4)
1(4,1,1) =

#

0
Q
0
0
0
0
0
0

7(4,1,2)
T(4,1,3)

i

0

1(4,1,8) = (2m(x(1))
T(4,2,1) =
T{4,2,2)

1

0
0
T(4,2,3) = 0
T(4,2,4) = 0
T(4,3,1) = 0
7(4,3,2) =

<

7(4,3,3) =

o

T(4,3,4) = 0
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ey = (172t KOO (x(ay)
T(4,4,2) =0 —~
T(4,4,3) = 0

T(4,4,4) =0

Once the Christoffel symbols of the second kind are known, the components of
the Ricci tensor can be derived. The individual components are

R0 = L yxan-azam) xa- (x())
+(7amM2x+ar2m@ (x(1))

R(1,2) = 0 |

R(1,3) = O

R(1,4) = 0

R(2,1) = O

R(2,2) = -(172)e™ DL ey yxqn)
+(1/2)E'L'(X(]))M(])-(XU))X(1)+E'L'(X(]))-1

R(2,3) = 0 '

R(2,4) = O

R(3,1) = 0

R(3,2) = 0

R(3,3) = -(172)e™5 KON xaysindixz))xn)
+72)E7 RO (x1)) s (x(2))x (1)
£ KON sin2(x(2))-sIv2(x(2))

R(3,4) = 0
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R(4,1) = 0

R(4,2) = 0

R(4,3) = 0

R(4,4) = -£-L XOOAM-CXOW (D) oy ey y/x ()
_(174)"L KON (XA (Y205 1))
(174 XODM-XONW) . O (xa)
172yt (XONM-XONDW2)  (x(1))

G(IJ) and R(I,J) are both known at this stage of the program; therefore, the Ricci
scalar can be obtained. It is given by the following equation:
R = 2670 XD x4y e XODLD . (k) yx(1)
e O (x(yyx(n)- (7207 RO 2y
+172)e™ FODWM M. xar)
e E ROy (1))e2/x(1)?

The preceding information is next used to obtain the field equations. The
individual equations are '
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ET(1,2) = O

ET(1,3) = 0

ET(1,4) = 0

ET(2,1) = 0

£1(2,2) = -(172)e" 5 KON W xayyxin

- +(12)e KO k) x)

+(1/8)E™ L-(x(1)),(1) .2 (X(1))
-yt O i ey
+(172)e7t (W2 (x(1y)

ET(2,3) = 0O

£T(2,4) = 0

ET(3,1) =0

ET(3,2) = 0

ET(3,3) = -(172)e” - AN oy xn)
(17267 O ixayyx (1)
+(a)e L (DY) 2044y
-(za)et O e (xay)
+(]/2)E"L'(X(]))M(‘Z)-(XU))

ET(3,4) = 0

ET(4,1) = 0
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ET(4,2) = 0
ET(4,3) = 0
er(a,4) = g5 D) 2. - OV LOY 1)y /x(1)-17%(1)2

The choice of an energy momentum tensor completes the specification of this
{ype of model. Solution of the resulting equations gives rise to the components of
the potential function. In the case under consideration, the solution yields the
unknown functions L(x!) and M(x!). In terms of the postulated metric tensor
inputs, the computer derives the equation of the trajectories as follows:

A1) = -2t w2t XDy yy(2)?
L XD (x(2))x(1)v(3)2
(1/2)E"t KO KON 1)y (a)2

A(2) = -2v(2)V(1)/X(1)-COS (X(2))SIN(X(2))V(3)?

A(3) = -2v(3)v(1)/Xx(1 )-ZCOS(X(Z))V(3)V(2)/SIN(X(_2))

As) = -v o x(n)vav ()

5.4 ISOTROPIC MODEL

If the universe is isotropic, the line element will assume the form of equa-
tion (5.2.4). When the corresponding metric tensors (5.2.3) were used as inputs to
the computer program, the following output was obtained.

The metric coefficients determine the gravitational model being studied. In order ’
that each run be identified with the correct inputs, the postulated metric coeffi-
cients are printed out before the main results. In the case under consideration, these
have the following values:
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61,1 - - ()
6(3,3) = -e5 KOV gin2(x(2)yx(1)2
a(4,4) = " (X))

The program uses the metric tensor inputs to evaluate the Christoffel symbols of
the first and second kinds. In order to reduce the amount of output, the Christoffel
symbols of the first kind are not printed out. In terms of the system coordinates and
the unknown functions L and-M, the Christoffel symbols of the second kind are

1(1,1,1) = (/20 - (x(1))
T(1,1,2) =0

T(1,1,3) = 0

T(1,1,4) = 0

T(1,2,1) = 0

10.2.2) = 1xM+0720 M xa)
T(1,2,3) = 0

T(1,2,4) = 0

T(1,3,1) =0

T(1,3,2) = 0

1(1,3,3) = x(+/2LM x(1y)
T(1,3,4) = 0

-T7(1,4,1) =0

T(1,4,2) = 0

T(1,4,3) =0
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1]

7(1,4,4)
T(2,1,1)

7(2,1,2)

7(2,1,3)

T(2,1,4)
T(2,2,1)

1(2,2,2)

o O o o o

T(2,2,3)

T(2,2,4)
T(2,3,1)

T(2,3,2) =
T(2,3,3) =
T(2,3,4) =

T(2,4,2)

T(2,4,3)

(

(

(
T(2,4,1) =

(

(

(

T(2,4,4)
T(3,1,1)
T(3,1,2)

T(3,1,3)
T(3,1,4)

"

(72mM . (x(1))

0

x+t M xen)

) .

0

(M- (1721 (x(1))x(1)?

COS(X(2))/SIN(X(2))
0

0
0
0
0
0
0

17x(1)+(172)L M (x(1))
0
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T(3,2,1) = 0
T(3,2,2) = 0
T(3,2,3) = COS{X{2))/SIN(X(2))
T(3,2,4) = 0

T(3,3,1) = —SINZ(X(Z))X(l)-1/2L(])-(X(]))SINZ(X(Z))X(])2
T(3,3,2) = -COS(X{2))SIN{X(2))

T(3,3,3) =
T(3,3,4)

1

T(3,4,1)

T(3,4,2)

1)

T(3,4,3)
T(3,4,4)
T(4,1,1) =

0
0
0
0
0
0
0
T(4,1,2) = 0
T(4,1,3) = 0
1(4,1,4) = (17200 (x(1))
T(4,2,1) = 0
T(4,2,2) = 0

T(4,2,3)

0
7(4,2,4)

{1
[em)
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T(4,3,1) = 0

T(4,3,2) = 0

T(4,3,3) = 0 o

T(4,3,4) = 0

T(4,8,1) = (172)" L XOOM-XODW(D Ly 1)
T(4,4,2) = 0

7(4,4,3) =

T(4,4,4) = 0

Once the Christoffel symbols of the second kind are known, the components of
the Ricci tensor-can be derived. The individual components are

R(1,1) = L xayxay-aamMe (M- (xny)
+(17amM 20 B xay+172m) . (x(1))
R(1,2) = 0 ‘
R(1,3) = 0
R(1,4). =0
R(2,1) = 0
)

= a2 M xaxy+72m M (x(1))x(1)

/aL D 2oanxayZeaamM . xanc M xan)xm)?
+(172)L @) (x(1))x(1)2 |

0

= -
— —
Ny nNo
= w
~— ~—
| i

=0
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R(3,1) =0

R(3,2) = 0 |

R(3,3) = (3/2)L)- (x(1))s1v (x(2))x(1)
+(172m L (x(1)sTN (x(2))x(1)
+/aL M 20x(1))sIN(x(2))x(1)2
+(17am M LM  (x(1))sv (x(2))x(1)2

+(172)L ) (e))sIN (x(2) (1)

R(3,4) =0

R(4,1) = 0

R(4,2) = 0

R(4,3) =0

R(4,4) = -g"L XEDIM-KODW . (x (1)) x(1)

_ayE-t (XA (X)L (1) 205 1y
_yayent (AN kM x 1))

(1/2)E-L (X(] )) * (X(] )) (2) (X(] ))
G(I,J) and R(I,J) are both known at this stage of the program; therefore the Ricci

scalar can be obtained. It is given by the following equation:
R = —ae™s DL xyyxn-zet KO xyy/xany
Syt KON 25 (q))-(172)t X (‘>)M(1) (x(1))
-(1/2)E LA ML xM (x(1))-26t FONL2) (x(ay)
L-(X ( ))M( ). A(X(1)) : '

. The preceding information is next used to obtain the field equations. The
individual equations are
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ET(1,1)

m m
-
— —
> >
w nNo
A e
" 1

m m
—~H
——— — — ~~ ——

N —
- v

-
- S

il ]

ET(2,3) =
ET(2,4) =
ET(3,1) =
ET(3,2) =

ET(3,3) =

Ly eel KO yxyaaet- CONLA) (xayy x()
et O (1 /x)-(ram ) 2ex(iyy et KON,
sazamM oMk ek 0N
L@y et XNy qom2). (x(1
(/e XODLM 200 qyy1(17a)7L
(1/4) LM xa ))L‘1> (x(1))
£ XL (x(ry w72y RO (x(ry)

(

)

N/ k0,
X(1)) ( )-Z(X(1))

o O O o

(/2)es CONLM xayyx)
+(172)e™ KON (xayyx()

%(1/4)E'L'(X(‘)) M .2¢xy)+172)e™ FONLR) (x (1)
+(172)e™ K2 (x1y)

0
0
0
0
(172)e”- XD x (1)) /x(1)
+(172)E"5 XD (x (1)) /x(r)
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(7)™t O 251y (17207 KON (x (1))
+(1/2)e K@) (x(y)

ET(3,4) = 0
ET(4,1) = 0
ET(4,2) = 0
ET(4,3) = 0
eT(4,4) = 2675 AN ey e+ (yayert- XN ) 2xqy)

L (XONL@) k)

The trajectory equations for the isotropic case are

A = -2t xanvn v B2 (xanxe)?
+SIN2(X(2))X(V(3)2+(172)L ) (x (1)) ST (X(2))x (1) 2V (3)2
-(1/2)et (KOO (1) yu(a)?

A(2) = -2v(v(1)/x(1)-LT) (x(1))v(2)v(1)+c0s (X(2) ) SIN(X(2) )V (3)?

A3) = -2v3v(xM-LT xvEv) |
~2C05 (X(2) )V (3)V(2)/SIN(X(2))

A = M xy)yvav

5.5 STATIC HOMOGENEOUS MODELS

In the case of a static homogeneous universe, it is evident that coordinates can be
chosen so that the line element will exhibit spherical symmetry around any desired
origin, since all parts of the universe are permanently alike. Hence, the line element
may be taken in the spherically symmetric static form of equation (5.2.2). In
obtaining this form of line element, local irregularities in the gravitational field,
which would occur in the immediate neighborhood of individual stars or stellar
systems, are neglected.
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For the system described, it can be shown that the components of the energy
momentum tensor are (ref. 5)

ET(1,1) = ET(2,2) = ET(3,3) = 8mp,,

~

ET(4,4) =-8mp, (5.5.1)

CETU)=0  for I#J

where p, and p, are the pressure and density, respectively, as measured by an
observer who is at least momentarily at rest with respect to the spatial axes. The
solution of these equations gives rise to the components of the potential function. In
the case of the field being considered, the solution yields the unknown functions
L(x") and M(x"). '

In order to satisfy the conditions of static homogeneity, it can be shown that the -
implicit functions L(x!) and M(x!) are subject to the following constraints: If the
model is homogeneous, the pressure as measured by a local observer will be the same
everywhere. Again, owing to the assumed homogeneity of the model, the density
will be the same everywhere. Moreover, the line qlement must reduce to the special
- relativity form, for flat space time, owing to the known validity of the special theory
in such regions. By imposing these conditions, it can be shown that there are only
three possibilities for a static homogeneous model (ref. 5)

M=0 ' (5.5.2)

X L+M=0 (5.5.3)
L=M=0 “(5.5.4)

These conditions lead, respectively, to the Einstein, the De Sitter, and the special
relativity line elements. . ~

5.6 THE EINSTEIN MODEL UNIVERSE

Substitution from equation (5.5.2) in equation (5.2.2) yields the following metric
for a homogeneous model which is not isotropic

Cds? = [-e L0 )@ty - (rlax?)? - (x! sinx? dx?)? + (@x*)2] (5.6.1)
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If the model were assumed to be homogeneous and isotropic, it would be
necessary to use equation (5.2.4) subject to the constraint equation (5.5.2).

Cosmological considerations led Einstein to consider a universe defined by the
metric (5.6.1). When the metric coefficients were supplied as input to the computer
program, the following output was obtained.

Again the metric coefficients determine the gravitational model being studied. In
order that each run be identified with the correct inputs, the postulated metric
coefficients are printed out before the main results. In the case under consideration,
these have the following values:

6(1,1) = -L- (X(1)

6(2,2) = -x(1)2
6(3,3) = -SIN?(X(2))xX(1)?
G(4,4) =1 . .

The program uses the metric tensor inputs to evaluate the Christoffel symbols of
the first and second kinds. In order to reduce the amount of output, the Christoffel
symbols of the first kind are not printed out. In terms of the system coordinates and
the unknown functions L and M, the Christoffel symbols of the second kind are

1(1,1,1) = a7 xa T(1,3,1) = 0
T(1,1,2) = 0 7(1,3,2) = 0
7(1,1,3) = 0 T(1,3,3) = 1/X(1)
T(1,1,4) = 0 T(1,3,4) = 0
T(1,2,1)- = 0 T(1,4,1) = 0
T(1,2,2) = 1/X(1) T(1,4,2) = 0
7(1,2,3) = 0 T(1,4,3) = 0
T(1,2,4) = 0 T(1,4,4) = 0
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T(2,1,1) = 0
T(2,1,2) = 1/x(1)
T(2,1,3) = 0
7(2,1,4) = 0

T(2,2,1) = -4 Wy
T{2,2,2) =
T(2,2,3) =

7(2,3,1) =
7(2,3,2) =
7(2,3,3) =*c05(X(2))/siN(x(2))
7(2,3,4)
7(2,4,1)
7(2,4,2) =

(

(

( 0

( 0
7(2,2,4) = 0

{ 0

( 0

(

(

[

]

0
0
T(2,4,3) = 0
0
0
0

T(2,4,4) =
T(3,1,1) =
T(3,1,2) =
1(3,1,3) = 1/X(1)
T(3,1,4) =0

5.6
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T(3,2,2)

T(3,2,1)

T(3,2,3)

]

7(3,2,4) =
T(3,3,1)

T(3,3,2)

7(3,3,3)
T(3,3,4)
T(3,4,1)

T(3,4,2)

o o (] o o o o o O o

T(3,4,3)
7(3,4,4)

T(4,1,1)
T(4,1,2)

7(4,1,3) =
T(4,1,4) =
T(4,2,1) =
T(4,2,2) =
)

)

T(4,2,3

o

T(4,2,4

JAMES C. HOWARD

0
0

COS(X(2))/SIN(X(2))

0 «

et KON s ix2))x(n)
~00S(X(2))SIN(X(2))

0

0
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T(4;3,1) = 0 \
T(4,3,2) = 0
T(4,3,3) =0
T(4,3,4) = 0
T(4,4,1) = 0
T(4,4,2) = 0
T(4,4,3) = 0
T(4,4,8) = 0

- Once the Christoffel symbols of the second kind are known, the components of
the Ricci tensor can be derived. The individual components are

R(LLY) = L x()/x(n
R(1,2) =0
R(1,3) = 0
R(1,4) = 0
R(2,1) = 0
R(2,2) = -(172)E"L XD yayyxay+et (XD 4
R(2,3) = 0
R(2,8) = 0
R(3,1) = 0
R(3,2) = 0
R(3,3) = -(172)E™= KON M x1y)sivd(x(2))x (1)

£ L KOs x(2))-sIN3(x(2))
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R(3,4) = 0
R(4,1) = 0
R(4,2) = 0
R(4,3) = 0
R(4,4) = 0

G(I,J) and R(I,J) are both known at this stage of the programi therefore, the Ricci
scalar can be obtained.:It is given by the following equation:

R = -26~5 (XD 1) Za2e b RO LD xnyyx(1)+27x(1)2

The preceding information is next used to obtain the field equations. The
individual equations are

er(1,1) = £L O 2 ) xy) e XM yxy

' ET(] 2) =0
ET(1,3) = 0
ET(1,4) = 0
ET(2,1) = 0
eT(2,2) = -(1/2)e"5 O xyyx
ET(2,3) = 0
ET(2,4) = O
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ET(3,1) = 0

ET(3,2) = 0

ET(3,3) = -(172)e”5 CON M vy

ET(3,4) = 0

ET(4,1) = 0

ET(4,2) = 0

ET(4,3) = 0

eT(4,4) = £ D) )2 - CRONL (5 () /x(1)-17x(1)2

The equations of the corresponding trajectories are
Ay = e XODsi2(x2)xva)Z-r2 M. (x(v(n)?
s L XMy (1yy(2)2

A2) = ~2V(2)V(1)/X(1)+C0S (X(2))SIN(X(2) )V(3)?
A(3) = -2V(1)V(3)/X(1)-2C0S(X(2))V(2)V(3)/SIN(X(2))
A(4) = 0 N

5.7 THE De SITTER MODEL

As already indicated, the only other general relativistic model that is static and
homogeneous is the De Sitter universe. In the next section the Schwarzschild model
will be considered. It will be found to have the same form, although not the same
content, as the De Sitter model. Although the Schwarzschild universe is inhomoge-
neous, the implicit functions L(x!') and M(x') that satisfy its field equations also
satisfy equation (5.5.3). In view of these considerations the De Sitter model will not
be formulated.
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5.8 A NONHOMOGENEOUS CASE

The Schwarzschild model represents a specially important application of relativity
theory, since it provides a treatment of the gravitational field surrounding the sun.
This problem was first studied by Schwarzschild in 1916, and the results obtained
were used to distinguish between the predictions of the Newtonian theory of
gravitation and the more exact predictions of relativity theory. Since the space
surrounding the sun is assumed to be devoid of matter, all the components of the
energy momentum tensor are zero. In this case, the field equations have been shown
to satisfy equation (5.1.12), that is

R;i=0 (5.8.1)

Therefore, the components of the Ricci tensor obtained for the anisotropic model
and satisfying equation (5.8.1) yield the components of the potential function for
the field surrounding a single attracting mass, which is spherically symmetric.

In terms of conventional mathematical symbolism,' the Schwarzschild field equa-
tions assume the following form:

. 2

e |l @M 1 aLam 1 dM) tar] _, (5.82)

11 Y5 T - - T - I - - .0.
2 dxldxl 4 dxl dxl 4 dxl xl dxl

Ry, ={elh+Lla(aM _dL)} b _, (5.8.3)
2 dxl dxl
1
Ry =sin? x2{eLf1 + 5 (M _dL)l 4l _g (5.8.4)
2\dx!  dx! v

2
2
Reg=cM-L|1aL dM 1 &M 1 dM 1(dM) |_, (5385)
axt ax' Zaxtax' xtaxt 4

The corresponding trajectory equations are
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dx' L1 dL (@) op () (e
dsz 2 dxl dS A} ds

_1  mep aM [axtY (5.8.6)

2 dxl ds .

2.2 1 g2 3\? '
dx? _|_ 2dxldx? | g2 o0y (X (5.8.7)
ds? ! ds ds ds
2,3 1 3 2 3 i
dix” _ [ 2dx dx® 5 42 dX2 dx (5.8.8)
ds? x1 ds ds ds ds
d*x* _[_dM dx' dx* ' (5.8.9)
ds? dx! ds ds o

It is seen that
R3; =sin? x2R,,

and there .are, therefore, only three equations in L and M. In this connection, it
should be noted that the 10 equations given by equation (5.1.8) or (5.1.12) are not
all independent since, theoretically at least, they would then determine completely
the metric tensor and would restrict the choice of reference system. Therefore, there
. can be no more than six independent conditions between the components of Rij to
permit a free choice of coordinate system in four-dimensional space.

The system of 10 nonlinear partial differential equations

Rl]=0

for the 10 unknown functions gjj is very complicated. The general solution of this
system is not known. However, for the case considered in this’ section, it is possible
to obtain a closed-form solution. It can easily be deduced that’

L=-M
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and
eM=1+2 =¢L
xl
Hence,
1 \
i1 = ——— -
. (1 + @a/x")}
=-(x1)?
. &2 =b) » (5.8.10)

833 = -(x! sinx?)?

g44—1+—
x! J

If a = -2m, the metric (5.8.10) is consistent with the existence of one gravitating
mass m situated at the origin and surrounded by empty space.

If the metric tensor inputs (5.2.1) consisting of unknown functions of x! are now
replaced by the known functions(5.8.10), and the program rerun, the trajectory
equations are obtained in the following form:

d2x! N a <d_x_1) . (1 +£)(1x_2>2
L ds2  20x1)2[1 + (a/x?)] \&S Y \ds

vl ain2 42 dx3 all +(a/x’)] (4X_4)2 — )
x! sin? x <1+x1)(ds> ————2(x1)2 75 0 (5.8.11)

2,.2 1 2 3\2 ‘
[dx + 20 A G2 cosx? (%)]=0 (5.8.12)

dS2 xl —dT ES_

- 2.3 1 3 2 3 )
(dx +g@c_di+_2cotxzdid_x_)=o (5.8.13)
ds? x! ds ds ds ds |
2.4 U x4
d2x* a dx_ dx”\ _ (5.8.14)
ds*  (x))?[1+(a/xt)] B
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5.9 CONCLUDING COMMENTS

Symbolic mathematical computation can facilitate the formulation of mathemati-
cal models. This has been demonstrated by using the method to formulate several
cosmological models and their associated trajectory equations. It has been shown
that such models can be derived with speed and efficiency on present generation
computers, provided they are equipped with formula manipulation compilers. For
example, in the case of the Einstein and De Sitter models, the computer times
required to formulate the field and the trajectory equations were 0.66 and 0.32'min,
respectively. For the nonhomogeneous Schwarzschild model, the corresponding
times were 0.74 and 0.30 min, respectively. In addition to saving time and eliminat-
ing the errors to which humans are prone, the method facilitates the study of a
greater variety of models.
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6.1

6.1 REDUCE AND MACSYMA

A variety of other languages is available for carrying out symbolic manipulations.
‘The choice of language depends on accessibility, personal preference, the type and
magnitude of the models to be formulated, and the computer facilities available to
the user. At the time of writing, the two most important contenders in the symbolic
manipulation field appeared to the author to be REDUCE and MACSYMA (ref. 1).
REDUCE is a language which was developed by Professor Anthony Hearn of the
University of Utah. It is designed for general algebraic computations of interest to
mathematicians, physicists, and engineers. In addition to the usual algebraic manipu-
lations, it has the capability of performing calculations of special interest to high
energy physicists.

REDUCE, in one form or another has been available for over 10 years. Originally
it began as a system for solving special problems that arise in high energy physics,
where much tedious repetitive calculation is involved. However, it was quickly
recognized that the simplification processes being used were quite general, and in
(1967 REDUCE was announced as a system for general purpose algebraic simplifica-
tion and released for distribution.

Although REDUCE can operate in a batch processing mode, it is intended
primarily for interactive calculations in a time-shared environment. Hence, it is
command-oriented rather than program-oriented, since the result of a given com-
mand may be required before proceeding to the next step. Since REDUCE is well
known to computer users and is available for use on most IBM360 or 370 series
computers, the DEC PDP-10 and the CDC 6400, 6500, 6600, and 7600 machines, it
will not be discussed further but, instead, the MACSYMA system, which is less well
known, will be examined.

At the time of writing, the MACSYMA system was available only at MIT through
the ADVANCED RESEARCH and PROJECT AGENCY (ARPA) network. Since
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MACSYMA appears to the author to be a very promising system, which is flexible
and continuously evolving to meet the needs of users, it will be demonstrated by
using it to reformulate some of the problems considered in previous chapters. It is a
large computer programming system which can be used to perform symbolic as well
as numerical mathematical computations. It was developed by the MATHLAB group
of project MAC’s Automatic Programming Division specifically for interactive use,
and has capabilities for manipulating algebraic expressions involving numbers, varia-
bles, and functions. It can differentiate, integrate, take limits, solve systems of linear
or polynomial equations, factor polynomials, expand functions, plot curves, and
manipulate matrices. Since, however, the tensor operations contemplated here only
require differentiation and summation, attention will be confined to these two
operations. '

6.2 USE OF MACSYMA TO TRANSFORM AERODYNAMIC STABILITY
DERIVATIVES

In chapter 2, section 2.7, it was deduced that the aerodynamic stability deriva-
tives transform like the compohents of a mixed tensor, having one index of
contravariance and one index of covariance. Moreover, due to the equfvalence of
covariant and contravariant transformations in orthogonal Cartesian systems of
coordinates, the transformations can be treated as doubly covariant or doubly
contravariant, if this simplifies the formulation (see sec. 2.8.2). When the doubly
contravariant form is used, the transformation law assumes the following form
(ref. 2): _ )

yii= ' % yap 6.2.1)
ax axB

where the first index denotes the component of the aerodynamic force or moment,
and the second index denotes the component of the motion vector with respect to
which the derivatives are obtained.

When y = y(x) is specified, equation (6.2.1) can be evaluated. Let it be assumed
that a transformation from wind axes to body axes is required (see sec. 2.2). In this
case the transformation equations are

y! =x! cos A cos B - x2 cos A sin B - x? sin 4
y2 =x'sinB+x?cosB (6.2.2)

y3 =x! sin A cos B- x? sin A sin B + x3 cos 4
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As noted previously, the angles A and B correspond to the angle of attack and the
angle of sideslip, respectively. ]

Implementation of the technique of symbolic mathematical computation requires
that equation (6.2.2) be used as input to a computer program to permit expansion
of equation (6.2.1). To illustrate the technique of using MACSYMA interactively, let
us carry out the steps involved in expanding equation (6.2.1).

When a user has established communication with the system, MACSYMA
responds by typing the label C(1), which means that the system is ready to accept
the first command from the user. The user than types a command or statement in
the MACSYMA input language. The first three input statements are the three
equations (6.2.2). The MACSYMA system requires that these be given in the
following modified form, where asterisks again denote multiplication:

(C1) Y[T]:X[] ]*COS(A)*COS(B)-X[2]*COS(A)*SIN(B)-X[3]*SIN(A)$
(C2) Y[2]:X[1]*SIN(B)+Xx[2]*C0S(B)$
(C3) - Y[3]:X[1J*SIN(A)*COS(B)-X[2]*SIN(A)*SIN(B)+X[3]*COS(A)$

Note that the corresponding FORMAC input statements employed the conven-
tional equality sign and enclosed the identifying indices in parentheses, whereas
MACSYMA replaces the equal sign with a colon and encloses the indices in brackets.
“Again, it will be seen that although the FORMAC indices retain the parentheses
when printed out, MACSYMA prints the output statements in conventional sub-
scripted form.

When the user has finished typing the three transformation equations in the
'MACSYMA input language, the system prompts the user by typing another com-
mand label. In this case MACSYMA types the label C(4). The same notation for the
aerodynamic parameters is used in this program as was used previously; that is,
C(1,J)y denotes an aerodynamic stability derivative and TC(J,J) denotes a transformed
.derivative. The simplicity of the program is evident from the fact that only three
additional program steps are required: (1) an initializing command, (2) a DO loop,
and (3)a DISPLAY command which replaces the printout statement in the

- FORMAC program. . )
The following program and the displayed output are taken from actual computer

printout: i
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(C4) 1C[1,d]:=0%

(C5) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
FOR M:1 THRU 3 DO FOR N:1 THRU 3 DO
TC[I,d]:TC[I,d]+DIFF(Y[I],X[M])*DIFF(Y[J], X[N])*C[M N]$

(C6) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
DISPLAY(TC[1,d])$

- 2
1,1 ° C2, o COS (A) SIN (B) ~ C2 7 C0S (A) COS(B) SIN(B)
COSZ(A) COS(B),SIN(B) *C3 5 COS(A) SIN(A) SIN(B)

COS(A) SIN(A) SIN(B) + ¢,  COS%(

j—
-
N

A) cos?(B)

~N
-
w

COS(A) SIN(A) COS(B) - C] 3 COS(A) SIN(A) COS(B)

w
¥
—

2
3, 3 SIN“(A)

1,2~ S,

COS(A) COS(B) SIN(B) - C3, 1 SIN(A) SIN(B)

—
(]
1]

COS(A) SIN2(B) - C, , COS(A) COS(B) SIN(B)

-—
(")
—

COS(A) C0S2(B) - C;, - SIN(A) COS(B)

-
-
N

C. . COS(A) SIN(A) SIN2(B)

1,3°C2, 2
COS(A) SIN(A) COS(B) SIN(B)

—
(]
it

\
~No

-
—

"COS(A ) SIN(A) COS(B) SIN(B) + C3, 2 SINZ(A) SIN(B)
2

—
-
N

C0s?(A) SIN(B) + C; ; COS(A) SIN(A) COS®(B)

N
-
w
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i C; SIN*(A) COS(B) *+ C; 5 cos2(A) cos(B)
- Cy_ 3 COS(A) SIN(A)
) 2 \
TC, 1= - Cy , COS(A) SIN(B) - .C, , COS(A) COS(B) SIN(B)
+Cq 1 COS(A) COS(B) SIN(B) - C, 5 SIN(A) SIN(B)
+C, 1 COS(A) cos2(s) - C, 3 SIN(A) COS(B)
¢, 5= Gy SIN?(B) + C,. 1 COS(B) SIN(B)
+Cy 5 COS(B) SIN(B) + ¢, cos2(B)
TC, 3= -Cy , SIN(A) sIN?(B) - Cg, 2 SIN(R) COS(B) SIN(B)
+Cy  SIN(A) COS(B) SIN(B) + C; , COS(A) SIN(B)
+C, - SIN(A) COS2(B) + C, . COS(A) COS(B)
2,1 2,3
TC; 4 =C, , COS(A) SIN(A) SINZ(B)
- €y 4 CoS(A) SIN(A) COS(B) SIN(B)
- €y 5 COS(A) SIN(A) COS(B) SIN(B) + C, 5 SIN°(A) SIN(B)
- Cy coS2(A) SIN(B) + C, 1 COS(A) SIN(A) cos2(B)
S SIN?(A) COS(B) + ¢ 4 cos2(A) cos(B)
- €3 5 COS(A) SIN(A)
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= - C, . SIN(A) SIN’(B) - C, ., SIN(A) COS(B) SIN(B)

—
o
|

2, 1 2, 2

SIN(A) COS(B) 'SIN(B) + C3 1 COS(A) SIN(B)

—
-
—

SIN(A) COS?(B) + C; , COS(A) COS(8B)

—r
-
N

3, 2

=, SIN?(A) SIN%(B) - ¢, 1 SIN2(A) COS(B) SIN(B)

SINZ(A) COS(B) SIN(B) - C3 2 COS(A) SIN(A) SIN(B)

pe—
")
N

COS(A) SIN(A) SIN(B) + c% : SIN?(A) COSZ(B)

(3]
v
w

COS(A) SIN(A) cOS(B) + C]’ 3 COS(A) SIN(A) COS(B)

w
-
—

+C, . COS2(A)

3, 3

6.3 PRINTOUT OF INPUT COMMANDS

If the user wishes to have any input command printed out, this can be accom-
plished by terminating each command with a semicolon (;) instead of a dollar sign
($). For example, when the.input commands to the preceding program for the
transformation of aerodynamic stability derivatives are terminated in this manner,
the results appear as follows:

(c1) Y[1]:X[1]*COS(A)*COS(B)-X[2]*COS(A)*SIN(B)-X[3]*SIN(A);
(D1) - X5 COS(A) SIN(B) + X COS(A) C0S(B) - X3 SIN(A)

(C_2) Y[2]:X[1]*SIN(B)+X[2]*COS(B);
(D2) X] SIN(B) + X5 COS(B)

(C3) Y[3]:X[1]*SIN(A)*COS(B)-X[2]*SIN(A)*SIN(B)+X[3]*COS(A);
(D3) - X, SIN(A) SIN(B) + X] SIN(A) COS(B) + X3 COS(A)

296



MATHEMATICAL MODELING OF DIVERSE PHENOMENON 6.4

6.4 CENTRAL PROCESSING UNIT TIMES

MACSYMA makes it easy for the user to obtain the central processing unit (CPU)
time required to perform each operation. This is a convenient facility that enables
the programmer to keep track of costs.

By typing the command

SHOWTIME: TRUES

-

the CPU time is printed out after each operation. When this command is used in the
preceding program, the time required for each operation is printed out as follows:

(C1) SHOWTIME:TRUE$
time= 1 msec.
(C2) Y[1]:X[1]*COS(A)*COS(B)-X[2]*COS(A)*SIN(B)-X[3]*SIN(A)$
time=22 msec.
- (€3) Y[2]:X[1]*SIN(B)+X[2]*C0S(B)$
time= 8 msec. |
(C4) Y[3]:X[1]*SIN(A)*COS{B)-X[2]*SIN(A)*SIN(B)+X[3]*COS(A)$
time=(17 msec.
(c5) TC[I,d]:=0%
time= 2 msec.
(C6) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
FOR M:1 THRU 3 DO FOR N:1 THRU 3 DO
TC[I,d]:TC[I,3]+DIFF(Y[I],X[M])*DIFF(Y[J],X[N])*C[M,N]$
time=2247 msec.

(C7) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO DISPLAY(TC[I,J])$
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c0sZ(A) SIN2(B) - C., . COSZ(A) COS(B) SIN(B)

C2, 2
C0S2(A) COS(B) SIN(B) + C

2, 1

3, 2 COS(A) SIN(A) SIN(B)

COS(A) SIN(A) SIN(B) + C, . COS2(A) COSZ(B)

1, 1
COS(A) SIN(A) coS(B) - C]’ 3 COS(A) SIN(A) COS(B)

SINZ(A)

- 62’ 1 COS(A) gINZ(B) ~‘C2, 2 COS(A)’COS(B) SIN(B)

COS(A) COS(B) SIN(B) - C3: 1 SIN(A) SIN(B)

C0S(A) cos2(B) - Cy, , SIN(A) COS(B)

2
2, 2 COS(A) SIN(A) SIN®(B)

COS(A) SIN(A) COS(B) SIN(B)

COS(A) SIN(A) COS(B) SIN(B) + C; , SIN(A) SIN(B)

cos2(A) SIN(B) + Cy ¢ COS(A) SIN(A) cos2(B)

SIN°(A) COS(B) + C; , COSZ(R) COS(B) -

b

COS(A) SIN(A)

- €, COS(A) SIN(B) - C

, 2, 2 COS(A)ﬂCOS(B) SIN(B)

C0S(A) COS(B) SIN(B) - C, . SIN(A) SIN(B)

1, 3
cos(A) cos?(8) - ¢, 5 SIN(A) COS(B)
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1 SINZ(B) + C2 1 COS(B) SIN(B) + Gy o COS(B) SIN(B)

.
c0s2(B)
- €, SIN(A) SIN?(B) - C, o SIN(A) COS(B) SIN(B)

SIN(A) COS(B) SIN(B) + C; 5 COS(A) SIN(B)

3
SIN(A) COS2(B) + C,. 5 COS(A) COS(B)

C,. 5 COS(A) SIN(A) s;NZ(B)
COS(A) SIN(A) COS(B) SIN(B)
COS(A) SIN(A) COS(B) SIN(B) + C, 4 SIN?(A) SIN(B)

cosZ(A) SIN(B) + C, ; COS(A) SIN(A) cos?(8)

3

SIN2(A) COS(B) + C., . COSZ(A) COS(B)

3,1
COS(A) SIN(A)

2
- CZ, 1 SIN(A) SIN®(B) - CZ, 5 SIN(A) COS(B) SIN(B) .

SIN(A) COS(B) SIN(B) + C., . COS(A) SIN(B)

3, 1

SIN(A) COS®(B) + C, . COS(A) COS(B)

3, 2
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= ¢, SIN(A) SIN®(B) - ¢, | SIN2(A) COS(B) SIN(B)

2

—
(]
w
w
1

SIN2(A) COS(B) SIN(B) = Cy. p COS(A) SIN(A) SIN(B)

-
~N

COS(A) SIN(A) SIN(B) + C; SIN?(A) COS2(B)

N
-
w

COS(A) SIN(A) cOS(B) + C], 3 COS(A) SIN(A) COS(B)

L
-
—

cos2(A)

3, 3

time= 34 msec.

~

It should be noted that all times are given in milliseconds.
6.5 FORMULATION OF CHRISTOFFEL’S SYMBOLS

The Christoffel symbols of the first and second kinds are related to the fundamen-
tal metric tensors as shown in equations (6.5.1) and (6.5.2), respectively (ref. 3).

lij, k] =< (=K 4 =ik (6.5.1)
2 ax/ ax' axk

k
lii} = g®l1ij,0 6.5.2)

Given the metric tensors for the coordmate system being consxdered it is a simple
matter to program the formulation of these symbols.

As in the previous example, only three program commands are required, that is,
an initializing command, a DO command, and a DISPLAY command.

Since the Christoffel symbols of the second kind are required in the formulation
of mathematical models, and will be used in later applications, a MACSYMA
program will be written to derive them.

The first step in this program, as in the corresponding FORMAC program, is to
input the metric tensors. In this application both the covariant and the contravariant
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form of the metric tensors are required. Since the applications being considered are
confined to orthogonal coordinate systems, it is possible to use the following

simplifications:
gﬁ=gﬁ=0 for i#j
gij = for i=j

that is

.y 1
gl =
(i)
where a subscript in parentheses denotes suspension of the summation conventien.

MACSYMA will accept the metric tensor inputs if the following substitutions are
made:

r

8 =GILTI

g = HILI

. ‘k}
4=TIK,IJ]
if :

The “following notation will be used by MACSYMA to display the formulated

_ Christoffel symbols:
T _{*
K, 1J i

The computer program and the formulated Christoffel symbols for a cylindrical
polar coordinate system assume the following form:

~ (C1) SHOWTIME:TRUE$
time= 1 msec.
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(C2) G[1,1]:1%
time= 3 msec.

(C3) G[2,2]:x[1]**2¢
time= 4 msec.

(C4) G6[3,3]:1%
time= 1 msec.

(C5) FOR I: 1 THRU 3 DO H[I,I]:1/G[I,I]$
time= 17 msec.

(ce) T[I1,d,K]:=0%
time= 2 msec.

)

(C7) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO FOR K:1 THRU 3 DO
T[I,J,K]:T[I,d, K]+H[I I]*(DIFF(G[J 1], X[K])+DIFF(G[K 11,X[3])
-DIFF(G[J, K], x[I]))/2$

time= 794 msec.

(C8) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
FOR K:1 THRU 3 DO DISPLAY(T[I,J,K])$

1,170 M,3,1°0
M,1,2°0 ,3,2°0
T,1,3°0 M,3,3°0
M,2,1°0 T2,1,1°0
M,2,2°°% T2,1,2° i'
]
T -0
23 T2,1,3°0
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T2,2,1=}(; T3,1,3°0 _
T2, 2,270 EEA

Ta, 2,370 2270
To,3,170 52370
T2,3,270 R

T2, 3,370 %3270
T3,1,17 0 5387
T3,1,2=0_ ‘ time= 104 msec.

The same program may be used to formulate the Christoffel symbols of the
second kind for a spherical polar coordinate system. The only difference is that the
metric tensor inputs must be changed to correctly describe an element of arc in this
system, that is

ds?* = (dx')? + (x'dx?)? + (x! sin x2dx3)?

where x! is the radial distance, x? the polar angle, and x3 the azimuth. Therefore

GI1,11 =1
G[2,2] = (x')?

GI[3,3] = (x! sinx?)?
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With these inputs, the program and the corresponding Christoffel symbols assume
the following form:

(C1) ‘SHOWTIME: TRUE$
time= 1 msec.

(C2) G[1,1]:1%

time= 3 msec.

(C3) G[2,2]:X[1]**2$

time= 4 msec.

(C4) G[3,3]: (X[1I*SIN(X[2]))**2$
time= 9 msec.

(C5) FOR I:1 THRU 3 DO H[I,I]:1/G[I,I]$
time= 20 msec.

(C6) T[1,d,K]:=0%
time= 2 msec.

(C7) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO FOR K:1 THRU 3 DO
T[1,d,K]:T[I,J K]+H[I 17*(DIFF(G[J,I], X[K])+DIFF(G[K 11,X[31)
-DIFF( G[J K], x[I]) /2%

time= 843 msec.

(C8) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
FOR K:1 THRU 3 DO DISPLAY(T[I,J,K])$

1,170 M,2,2°°X
M,1,2°0 M,2,3°0
,1,3°0 N,3,1°0
,2,1°0 ,3,2°0
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Ty 337 - Xy SIN(X,)
T2,1,1°0
2,1, 2 ='i'
]
T2,1,3°0
T2, 2,1 =-i'
1
| T2, 2,270
T2,2,3°0
T2,3,1°0
T2, 3,270
T, 3, 37 - C0S(Xp) SIN(X,)

T3,9,1°0
T3,1,2°0
T3,1,3° i'
1
73,2,1°0
T3, 2,2°0

COS(X,)

3, 2,37 070 :

> &3 SIN(x,)
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1
3, 3,17
X

COS(X,)

3,3, 2% 275707

> 92 SIN(K,)
T = 0

time= 104 msec. : ~

A Christoffel symbol which occurs in cosmological studies is derived from metric
tensors that are exponential functions of the coordinates. The formulation of
Christoffel symbols of this type will be used to demonstrate the method employed
by MACSYMA to differentiate a function of a variable. In MACSYMA, functional
dependence can be declared by using a DEPENDENCIES function. For example,
since MACSYMA knows the chain rule for symbolic differentiation, the statement

DEPENDENCIES(F(X,Y),X(T),Y(T));

followed by _
DIFF(F,T);

will yield

DF DY | DF DX

DY DT DX DT
Moreover, it will be seen that executing D‘EPENDENCIES(Y(X)) will cause the
differential of Y with respect to X to be displayed as DY/DX.

Apart from the use of the DEPENDENCIES function, the program required to
formulate Christoffel symbols of this type is the same as before, except that the
extent of each dimension is increased from 3 to 4. Hence, the range of the DO
command and the DISPLAY command must be increased to account for this
change.
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Since the processing time increases with the complexity of the formulation, the
CPU time required for each step of the operation will again be requested by typing
the additional command

SHOWTIME: TRUES

The DEPENDENCIES functions together with the components of the fundamen-
tal metric tensor and the initializing statement are

(C1) SHOWTIME:TRUE$
time= 1 msec. v

" (C2) DEPENDENCIES(L(X[11))$
time= 1 msec.

(C3) DEPENDENCIES(M(X[11))$
time= 1 msec.

(C4) G[1,1]:-%E**L(X[1])$ s
time= 12 msec.

(c5) G[2,2]:-X[1]**2$
time= 4 msec.

(C6) G[3,3]:-(X[1]*SIN(X[2]))**2$
“time= 10 msec.

(C7) G[4,4]):%E**M(X[1])$
time= 5 msec.

~(C8) FOR I:1 THRU 4 DO H[I,I]J:1/G[I,I]$
time= 27 msec.

- (c9) T[1,J,K]:=0%
time= 2 msec.

Note that the base of natural logarithms e is written as %E, hence the statement
PE**L(x[1])
is equivalent to-

eL(x‘ )
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and similarly

. E**M(x[1])

is equivalent to

M)

The following program statements are the same as before, except that the range of
the DO command and the DISPLAY command has been increased to account for
the fact that the space is now four dimensional. With these mputs, the MACSYMA
program and the formulated Christoffel symbols are

(C10) FOR I:1 THRU 4 DO FOR J:1 THRU 4 DO

FOR K:1 THRU 4 DO T[I,J,K]:T[I,d,K] _
+H[I,I11*(DIFF(G[J,I], X[K])+DIFF(G[K 17,X[J])-DIFF(G[J,K],X[1]))/2¢
time= 2155 msec.

(C17) FOR I:1 THRU 4 DO FOR J:1 THRU 4 DO
FOR K:1 THRU 4 DO DISPLAY(T[I,J,K]);

d

-SoL(x)
X, -

T = .
1,1, 1 ;
1,171,270
1,1,3°0
,1,4°0
,2,1°0
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| ] Lty

T],Z,Z—-X]/’E.
Ty, 2,370

Ty, 2,470
Ty,3,1°0
N,3,2°0

ot x)
T 33X % SIN®(X,)

Ty,3,4°0
Ty,4,1°0

Ty, 4,270
Ty,4,3°0
M(X,) - L(X)

% | U mixy))
X,
Ty 4. g = =mmmmmmmmmmmmmmm e
9 bl 2
To,1,1°0
1
T =1
2, 1,27
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T2,1,470
T2,2,1=:‘(‘

1
T2,2,2°0
T2,2,‘3=0
T2, 2,470
T2,3,1°0
T2, 3,20

T, 3.3 - COS(X))
T2,3,4°0
T2, 4,170
T2, 4,270
T2,4,3%0
T2, 4,4°0
T3,1,1°0
3,1,2°0

310
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73, 4,470
T4,1,1°0
T4,1,2°0
T4,1,3°0
4. M(X, )
dx
Ty, 1, 4 = oo
> 1 2
Tq,2,1°0
Tg, 2,270
Tq, 2,370
T4,2,4°0
T4,3,1°0
T4, 3,270
T4, 3,370
T4,3,4°0
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4omx,)
X,
T : = e m——————
4, 4,1 ;
Ty 4, 270
Tg,4,3°0
T4,4,4°0

time=519 msec.

6.6 EQUATIONS OF MOTION OF A PARTICLE

A form of the equations of motion of a particle which is valid in all orthogonal
curvilinear coordinate systems is given in section 3.5, equation (3.5.9). For the
convenience of readers this equation is reproduced here (ref. 4)

i k\ .- i
ule= dxl axk __1_ ﬂ T (6.6.1)

If the components d%x ’/dt2 be denoted by A[I] and the component

b %=L

be denoted by R[[], then a program to formulate the equations of motion of a
particle in a given coordinate'system would proceed as follows.

The first and most important step in the formulation of equation (6.6.1) is the
determination of the components of the Christoffel symbols, given the components
of the fundamental metric tensor. The facility with which MACSYMA can formulate
the Christoffel symbols was demonstrated in the preceding section, where the

notation i

was used to display the formulated symbols.

(
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A program to formulate the equations of motion of a particle in a cylindrical
polar coordinate system would require, as input, the metric tensors for this system
of coordinates. These are

(1) 6[1,1]:1%
(€2) G[2,2]:X[1]**2%
(€3) G[3,3]:1%

Since, for the cases being considered, the contravariant metric tensors are simply
the reciprocals of the corresponding covariant metric tensors, they can be formu-
lated as follows:

(C4) FOR I:1 THRU 3 DO H[I,1]:1/G6[I,11$

As already indicated, the notation T[/,J,K] will be treated by MACSYMA as a
Christoffel symbo: of the second kind. Hence, the initializing statement and the DO
command required to formulate these symbols, can be taken from any one of the
three preceding programs. These two programming steps assume the following form:

(C5) T[I,d,K]:=0$%

(C6) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO FOR K:1 THRU 3 DO
T[1,d,K]:T[I,d,KI+H[T,1]*(DIFF(G[J,1],X[K])+DIFF(G[K,1],X[J])
-DIFF(G[J,K],X[1]))/2%

The equation for R[I] has already been defined, and it will be formulated by
instructing MACSYMA to execute the following DO command:

(C7) R[I]:=0$.

~

(€8) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO FOR K:1 THRU 3 DO
R(IT:R(I+TLLL LKV T*VK]S

The gravitational potential function denoted by ¢ in equation (6.6.1) is a function
of the coordinates. To facilitate the printout of results it will be denoted by P in the
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present program. As in previous applications, functicnal dependence canbe declared.
by using the DEPENDENCIES function. The ith component of the gr.avitatidnal
force is given by the partial differential coefficient of P with respect to x*. Denoting
by F% the ith component of the thrust vector, and declaring the dependence of P on
x!, the programmed version of equation (6.6.1) and the formulated equations are
obtained as follows:

(C9) DEPENDENCIES(P(X[1]))$

(C10) FOR I:1 THRU 3 DO
A[I]: (H[I,I]*DIFF(P(X[I]),X[I1])+F[I]*SQRT(H[I,I1]))/M-R[1]$

(C11) FOR I:1 THRU 3 DO DISPLAY{A[I])$

d

-=- p(x]) + F]
dx, )
R + XV
M
-4 p(x,)
X, )
--------- +
2 X
w5 12y,
2 ~ TTTTTTT My
X
-4p(xg) + F,
dX
A = __§ ___________ »
3
M

+ Exactly the same procedure may be used to formulate the equations of motion of )

a particle in a spherical polar coordinate system. When the metric tensors which
characterize an element of arc in this coordinate system are used as input, the
MACSYMA program and the formulated equations assume the form
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(c1) a[1,1]:1%

(c2) G[2,2]:X[1]**2$

(C3) G[3,3]: (X[1I*SIN(X[2]))**2$

(C4) FOR I:1 THRU 3 DO H[I,I]:1/G[I,I]$

(€5) T[1,9,K]:=0

(C6) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO FOR K:1 THRU 3 DO
T[1,,K]:T[1,d,KJ+H[I,1]*(DIFF(G[J,1],X[K])+DIFF(G[K,1],X[J])
DIFF(GLI,KI,X[11))/2$

(c7) R[1]:=0%

(C8) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO FOR K:1 THRU 3 DO
REIJ:RII+T[I,d,KI*V[I]*V[K]$

(C9) DEPENDENCIES(P(X[11))$

(C10) FOR I:1 THRU 3 DO
CALT]: (HLT,1I*DIFF(P(X[1]),X{I])+F[TI*SQRT(H[I,1]))/M-R[I1]$

(C11) FOR I:1 THRU 3-DO DISPLAY(A[I])$

Sop(x)) + Fy
dx
A i 2 2 2
A= -l oo + %, V& SINA(X,) + X, V3
-4 p(x,)
X, F,
_________ + £
xf X ) 2V, V,
T . + V5 C0S(X,) SIN(X,) - ---1--f
M X;
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- p(xy)
R b
2 2 X, SIN(X,) '
o - i(l_f.lﬂ_fi(gz____l____ 2 2 V2 V3 COS(XZ) 2 V-| V3
S Wt SN it S W
M SIN(XZ) X]

6.7 FORMULATING MODELS OF AERONAUTICAL SYSTEMS

The formulation of models of aeronautical systems for simulation and other
purposes involves at least 12 equations: 3 force equations; 3 moment equations;
3 Euler angle equations, or 9 direction cosine equations to determine the spatial
orientation of the body; and 3 equations to determine the location of the body in
inertial space. In view of this complexity, it is important to mechanize as much-of
the formulation as possible. An important aspect of the formulation of models of
aeronautical systems is the specification of the system of forces and moments. In
aeronautical applications, the thrust and gravity forces can be formulated without
difficulty, but the aerodynamic forces and moments require more detailed consider- _
ation. These are represented by the static forces and moments and the aerodynamic
stability derivatives. These forces and moments have to be transformed from wind or
wind-tunnel stability axes to body axes before the formulation can proceed.
Although the aerodynamic transformations and formulations are not complicated,
they are complex and unwieldy and are likely to contain errors when formulated
maﬁually. In summary, formula manipulation as implemented by the MACSYMA
system can be used -to facilitate the formulation of complex mathematical models
and reduce the errors to which human operators are prone. The interactive capabil-
ity, versatility, and simplicity of the system make it attractive to programmers and
" nonprogrammers alike. In order to illustrate these aspects of the system, a mathe-
matical model of an aeronautical system has been formulated.

6.8 AERONAUTICAL REFERENCE SYSTEMS

There are many coordinate systems in use in aeronautical research. Aerodynamic
data obtained from wind-tunnel experiments may be referred to wind axes or to
wind-tunnel stability axes. When the wind axes are used, the X, axis is aligned with
the relative wind at all times. Most wind-tunnel data are referred to the wind-tunnel
stability axes system. For this system, the X, axis is in the same horizontal plane as
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the relative wind at all times. In addition to the wind axes and the wind-tunnel
stability axes, there are other systems of axes fixed ia the body and moving with the
body. These are referred to as body axes. In aerospace applications, a body axis
system has-the Y, axis fixed along the longitudinal centerline of the body, the Y,
axis normal to the plane of symmetry, and the Y, axis in the plane of symmetry.
The equations of motion of aerospace vehicles are formulated with respect to body
axes. The main advantage of these axes in motion calculations is that vehicle
moments and products of inertia about the axes are constants. When the body axes
are chosen so that the products of inertia vanish, they are known as principal axes. A
system of axes, which is frequently used to study the stability of aircraft in the
presence of disturbing forces that produce small perturbations, is the flight stability
axes. This is an orthogonal system fixed to the vehicle, the Y, axis of which is
aligned with the relative wind vector when the vehicle is in a steady-state condition,
but then rotates with the vehicle after a disturbance as the vehicle changes angle of
attack and sideslip (ref. 5). Some of these axes are shown in figure 6.8.1.

Figure 6.8.1.— Systems of reference axes, including body, principal, wind, flight stability,
and wind-tunnel stability. .

6.9 TRANSFORMATION EQUATIONS

As indicated in section 6.7 the first step in the formulation is the transformation
of relevant data. The elements of the matrices defining a transformation from wind
or wind-tunnel stability axes to body axes are functions of the angle of attack (4)
and the angle of sideslip (B). Moreover, coordinates-in wind-tunnel axes are denoted
by a column vector of coordinates X;, and the body axes coordinates by a column
vector Y;. To bring a reference frame from the wind axes into coincidence with the
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body axes involves a negative rotation (B) about the Y axis, followed by a positive
rotation (A) about the Y, axis. These matrices may be entered and multiplied when
communication has been established and the system prints (C1). When this occurs,
the user types ENTERMATRIX(m,n) which allows one to enter a matrix, element

by element, with MACSYMA requesting values for each of the (m,n) entries as
follows:

~

(C1) ENTERMATRIX(3,3);
ROW 1 COLUMN 1 COS(A);
ROW 1 COLUMN 2 |
ROW 1 COLUMN 3 -SIN(A);
ROW 2 COLUMN 1 03
ROW 2 COLUMN 2 . 1
ROW 2 COLUMN 3 0
COLUMN 1 SIN(A);

ROW 3
ROW 3 COLUMN 2 O0;
ROW 3 COLUMN 3 COS(A);

MATRIX-ENTERED

[ COS(A) 0 - SIN(A)
(01) o 1 o

E SIN(A) 0 COS(A)

[ NS | T ) S | S S

(C2) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 COS(B);
ROW 1 COLUMN 2 -SIN(B);
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320

ROW
ROW
ROW
ROW
ROW
ROW
ROW

1 COLUMN
2 COLUMN
2 COLUMN
2 COLUMN
3 COLUMN
3 COLUMN
3 COLUMN

3

MATRIX-ENTERED

(D2)

(C3) ENTERMATRIX(3,1);

ROW 1 COLUMN 1 X[1];

ROW 2 COLUMN 1

X[2];

ROW 3 COLUMN 1 X[3];

MATRIX-ENTERED

(c4) (D1).(D2).(D3);

[
[
L
[
[

COS(B)
SIN(B)
0

Jodt Il

- SIN(B) O %
COS(B) 0 %
0 1]

JAMES C. HOWARD
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COS(A) (X, COS(B) - X, SIN(B)) - X5 SIN(A)

[
[
(D4) [ X; SIN(B) + X, COS(B)
[ _
[
[ .

f N | N | N | WS N ) S ) " | N_—

SIN(A) (X] COS(B) - Xy SIN(B)) + X3 COS(A)

(C5) FOR I:1 THRU 3 DO ROW[1]:FIRST(ROW((D4),1))$
(C6) FOR I:1 THRU 3 DO (Y[IJ:ROW[IJ[1],DISPLAY(Y[I]));

-
|

1° COS(A) (X] C0S(B) - X5 SIN(B)) - X3 S‘IN(A\)

(D6) Y, = Xy SIN(B) + X5 COS(B)

2 1

SIN(AY (X, COS(B) - X

Y 1

SIN(B)) + X, COS(A)

3 2 3

In order to more fully app: eciate the results obtained so far, the reader should note
that MACSYMA requests the ith row and the jth column of the matrix being entered
by typing ROWICOLUMNIJ. The user merely provides the corresponding element.
When all m X n elements have been entered, the system types MATRIX-ENTERED,
formulates the matrix and assigns an identifying number (DI). When the user types
the command (C4), that is, (D1).(D2).(D3), the three matrices are multiplied in the
order requested and the product matrix is displayed in (D4).

The two programming steps shown in (C5) and (C6) lead to the functional form
(D6), which represents the required transformation from wind axes Xy to body axes
Y. N

6.10 TRANSFORMATION LAW FOR STATIC FORCES. -
The static aerodynamic forces transform like .the components of a contravariant
vector; that is, if Sg_ denotes a static aerodynamic force in the X frame of

reference, and SF; denotes the corresponding transformed force in the Y reference
frame, then'(ref. 6) ,
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oyl 6.10.1)y
SF;="—Sp_ ( )

X"
where Y = Y(X) is obtained from the displayed output (D6).

Given the transformation equations (D6), the transformed aerodynamic static
forces are obtained by expanding equation (6.10.1). The three programming steps
used in previous applications may again be employed to formulate the required
values. The simple program and the displayed results are

(C7) SF[1]:=0%

(C8) FOR I:1 THRU 3 DO FOR M:1 THRU 3 DO
SF[I]:SF[I]+DIFF.(Y[I],X[M])*S[F[M]]$

(C9) FOR I:1 THRU 3 DO DISPLAY(SF[I]);

SFy = - Sc "COS(A) SIN(B) + S COS(A) COS(B) - S. SIN(A)
1 F, F Fy
SF, = sF] SIN(B) + st COS(B)
SF, = - S SIN(A) SIN(B) + S SIN(A) COS(B) + S_ COS(A)
3 F, F Fl
(D9) ~ DONE

6.11 TRANSFORMATION LAW FOR CONTROL FORCE DERIVATIVES

The control force derivatives obey the same transformation law as the static
forces; that is, if DFn,CK denotes the nth control force derivative with respect to
the Kth control surface as measured in the X reference frame, and TDj ¢ denotes the
corresponding transformed derivative in the Y frame, then

_av!
T Di c Dp

e = PP G : (6.11.1)

where Y = Y(X) is again obtained from the displayed output (D6).
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As in the preceding section, the transformed control derivatives are obtained by
expanding the transformation law for derivatives given the transformation equations
(D6). The transformed derivatives are obtained by executing the following simple
program, which has exactly the same form as the program used to transform the
static forces in section 6.10. These are:

(c10) TD[I,C]:=0%

(C11) FOR I:1 THRU 3 DO FOR M:1 THRU 3 DO _
TD[I,C]:TDLI,CI+DIFF(Y[I1],X[M])*D[F[M],C[K]I$

(C12) FOR I:1 THRU 3 DO DISPLAY(TD[I,C]);

D = -D.. COS(A)SIN(B) + D COS(A)COS(B) - D SIN(A)
D =D SIN(B) + D COS(B)
2,C F]’CK F2,CK
1D = -D SIN(A)SIN(B) + D SIN(A)COS(B) + D COS(A)
3,C F2,CK F]’CK F3,CK
(D12) DONE

The corresponding control forces are obtained by multiplying the control deriva-
tives by the appropriate control increments ACg. The following two programming
steps are sufficient to ensure evaluation of the required forces. These are denoted by
CF; in the displayed output.

(C13) FOR I:1 THRU 3 DO CF[I]:TD[I,CI*DEL(C[K])$
(C14) FOR I:1 THRU 3 DO DISPLAY(CF[I]);

CFy = (-DF C COS(A)SIN(B) + D COS(A)COS(B) - D

SIN(A))
2:Lk F]’CK F3’CK

DEL(CK)
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.CF2 = (DF],CKSIN(B) + DFZ,CKCOS(B))DEL(CK)

SIN(A)SIN(B) + D¢ 'SIN(A)COS(B) + D

C COS(A))
K 1°7K

C Fa,C

2’ 37K

DEL(C,)

(D14) : DONE

6.12 FORCES PRODUCED BY LINEAR VELOCITY PERTURBATIONS

The next step in the formulation involves the determination of the aerodynamic
forces produced when an aircraft is subjected to linear velocity perturbations AUj.
Before these forces can be determined, the aerodynamic stability derivatives, with
respect to linear velocity components, must be transformed from wind or wind-
tunnel stability axes to aircraft axes. For a detailed discussion of the transformation
of these derivatives, the reader is referred to section 2.7. The program used for the
transformation in section 6.2 can be used in this case also. In this application, the
aerodynamic stability derivatives of the ith force with respect to the jth velocity
components are denoted by D F;,U;- The .corresponding transformed derivatives are
denoted by TDF,-,U-- When the program of section 6.2 is rewritten to accommodate
the notational changes required for this application, it assumes the form

(C15) TDU[I,J]:=O$V

(C16) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
FOR M:1 THRU 3 DO FOR N:1 THRU 3 DO
TDU[1,d]:TDULT,JJ+DIFF(Y[1],X[M])*DIFF(Y[J],X[N])*D[F[M],U[N]]$

It only remains to multiply the transformed derivatives by the appropriate
velocity increments to obtain the required forces, which are denoted by FDU;. The
next three programming steps instruct MACSYMA to evaluate and display the forces
produced by linear velocity perturbations. These are
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" (€17) FDU[1]:=0%

(C18) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
FDU[1]:FDULT1+TDULI,J]*DEL(U[J])$

(C19) FOR I:1 THRU 3 DO DISPLAY(FDU[I]);

FDU

‘ 2
1° (DFZ,U2 COS(A)SIN(A)SIN®(B)

=Dy COS(A)SIN(A)COS(B)SIN(B)
2’1

- D COS(A)SIN(A)COS(B)SIN(B) + D SIN?(A)SIN(B)
Fi:Up F3sUs |

7

- D COS(A)SIN(A)COSZ(B)

2
F COS“(A)SIN(B) + DF ,

2:U3 1°Y4
cos2(A)cos(B)
3

D v

SIN2(A)COS(B) £ Dy
32U | 1’

D

COS(A)SIN(A))DEL(U3)

F3sUs

3:U

-+

(-D COS(A)COS(B)SIN(B)

F 2

U U

COS(A)SIN?(B) - D
2:U1 | 23

+

D U COS(A)COS(B)SIN(B) - D¢

SIN(A)SIN(B)
1’71 '

F 3-U;

C0S(A)COS2(B) - D

-+

D SIN(A)COS(B))DEL(UZ)

39

c0s2(A)SIN2(B) - Dy
2,

2

-+

(D¢, c0S2(A)COS(B)SIN(B)
2°72 1 \

c0S2(A)COS(B)SIN(B) + D

D
F19U2 F3,U

COS(A)SIN(A)SIN(B)
2
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+D COS(A)SIN(A)SIN(B) + D cos2(A)cos?(B)
Fpsly © Fp U, :
- D COS(A)SIN(A)COS(B) - D COS(A)SIN(A)COS(B)
FaoUy FisUs
2
+ DF3,U3 SIN®(A))DEL(U,)
DU, = (-D. , SIN(A)SIN®(B) - D SIN(A)COS(B)SIN(B)
2 1:U2 FoslUy

+D SIN(A)COS(B)SIN(B) + bF],U3 COS(A)SIN(B)

F'I ’U'l

+
(=

COS(A)COS(B))DEL(U

, 2
SIN(A)COS“(B) + D )
FpsUy FpslUy 3

2

COS(B)SIN(B) + D COS(B)SIN(B)

+

(D B) + D
F]aU] F2,U] F]’UZ

4D cos2(B))DEL(U,) + (-D COS(A)SIN(B)

D

COS(A)COS(B)SIN(B)

COS(A)COS(B)SIN(B) + De
1

2 1’

2
Fuly COS(A)COS*(B)

F,,U U

2’

D SIN(A)SIN(B) + D

3 .

F],U

-D SIN(A)COS(B))DEL(U])

F2,U3

2( SINZ(A)COS(B)SIN(B)
1

FoU, = (DF B) -D

3 F

SIN2(A)SIN '

22U 27

COS(A)SIN(A)SIN(B)

_SIN?(A)COS(B)SIN(B) - D
2

2 - 3

-D

FqsU U

'l’
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D COS(A)SIN(A)SIN(B) + D SIN?(A)COSZ(B)
3 1°Y

D COS(A)SIN(A)COS(B) + D COS(A)SIN(A)COS(B)
F33U] . F]9U3

F,,U

2’

+

+

De_.u

COSZ(A))DEL(U3) + (=D
3,

F

' SIN(A)SIN?(B)

3 2°71

D
FasUs

SIN(AJ)COS(B)SIN(B) +D " SIN(A)COS(B)SIN(B)

F'I ,U'I

-+

D COS(A)SIN(B) + D SIN(A)COSZ(B)
F3’U] F],UZ

+

Dr_,u

COS(A)COS(B))DEL(UZ)
3°72

COS(A)SIN(A)SIN?(B)

-+

(D
F2’U2

De U COS(A)SIN(A)COS(B)SIN(B)
2’71

De . COS(A)SIN(A)COS(B)SIN(B) + D SINZ(A)SIN(B)

1°Y2 A FasUs

c0sZ(A)SIN(B) + D

2
u, )+ D¢ COS(A)SIN(A)COS“(B)

1

D

F3, -l,U

SIN2(A)COS(B) + D

2
3 F3.U;

-D COS™(A)COS(B)

Fi,U

'I)
-D COS(A)SIN(A)) DEL(U,)
Fa,U 1
3’73
6.13 FORCES PRODUCED BY ANGULAR VELOCITY PERTURBATIONS

The program used in section 6.12 can, with suitable notational changes, be used
to formulate the forces produced by angular velocity perturbations. However,
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whereas in the preceding application the required forces were obtained by multiply-
ing the transformed aerodynamic stability -derivatives by linear velocity increments,
in the present case the transformed derivatives must be multiplied by angular
- velocity increments. In view of these similarities, the following program and dis-
played forces will be presented without further comment, except to point out that
the acrodynamic stability derivatives of the ith force with respect to the jth angular
velocity component are denoted by DF, P The corresponding transformed deriva-
tives are denoted by T. DF P> and the resulting forces by FDP;.

(620) TOP[1,J]1:=0%

(C21) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO

FOR M:1 THRU 3 DO FOR N:1 THRU 3 DO
TDP[1,J]:TDP[I,d+DIFF(Y[1],X[M])*DIFF(Y[J1,X[N])*D[F[M],P[NI]$
(c22) FDP[1]:=0%

(C23) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
FOP[I]:FOP[I]+TDP[I,d]*DEL(P[J])$

(C24) FOR I:1 THRU 3 DO DISPLAY(FDP[I]);
. FDP, = (D CoS(A)SIN(A)SINE(B)
1 F,sP,
COS(A)SIN(A)COS(B)SIN(B)

D
FasPq

Dy p_ COS(A)SIN(A)COS(B)SIN(B) + Dy p  SIN’(A)SIN(B)
1°P2 F3:Pp

D COS2(A)SIN(B) + Dr COS(A)SIN(A)COSZ(B)
FasP3 F12P1

D p SIN2(A)COS(B) + D cos2(A)cos(B)
3:Py

DF3 p COS(A)SIN(A))DEL(P 3)
>3

F],P3
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COS(A)COS(B)SIN(B)
2

+ D p

COS(A)SIN?(B) - D
2°Py ,

2 P

+

D COS(A)COS(B)SIN(B) - D SIN(A)SIN(B)

-+

D C0S(A)C0s?(B) - D

) FasP

3:P2
cosZ(A)SIN?(B) - D

FyuP SIN(A)COS(B) )DEL(P,)

c0s2(A)COS(B)SIN(B)

-+

(OF.p

29.2 F P

2> 1
D

COSZ(A)COS(B)SIN(B) +D COS(A)SIN(A)SIN(B)
FesPy F3:Py

c0s2(A)cos?(B)
1

COS(A)SIN(A)COS(B)

“ O b, COS(A)SIN(A)SIN(B) + O ,p

D

F. p, COS(A)SIN(A)COS(B) - D

33 P

F1:P3

1

) -
+ DFB’P3 SIN®(A))DEL(P,)

FDP, = (-D SIN(A)SIN?(B) - D SIN(A)COS(B)SIN(B)
2 F],Pz F29P2

+ D

F..p SIN(A)COS(B)SIN(B) + De p COS(A)SIN(B)

1°71 173

+

2
DFZ,p] SIN(A)COS“(B) + DFz’P3 COS(A)COS(B))DEL(P,)

-+

2
D SIN2(B) + D
FisPy FosPy

-+

D

2 2
F)uP, C0S“(B))DEL(P,) + (-DF],P2 COS(A)SIN®(B)

D COS(A)COS(B)SIN(B) + D COS({A)COS(B)SIN(B)
FarPa F1-Py

6.13

COS(B)SIN(B) + De p COS(B)SIN(B)
1272
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cos2
- DFI,p3 SIN(A)SINGB) 4 DFZ’P7 C0S(A)cos?(p)

- DF2,P3 SIN(A)COS(B))DEL(Pl)

Fop, (o SINZ(A)SINZ(B) - D
2:P,

- SINZ(A)COS(B)SIN(B)
2Py
-0, SINz(A)COS(B)SIN(B) -0
1°P |

Fasp, COS(A)SIN(A )SINB)
3P, :
-0 COS(A)sTN(A)s N3y .2, SIV(A)cos2g
2:P3 1P
*0p COS(A)SIN(A)COS(B) *0p COS(A)SIN(A)COS(B)
3P 1°P3
O, COSZ(A))DEL(P3) feo SIN(A)s N2 (g
3 2P
"0 SIN(A)COS(B)SIN(B) *0p SIN(A)COS(B)SIN(B)
2:P5 1P
+ DF3,p] COS(A)SINGB) 4 D, SIN(A)cos2(p)
1°P5
) + D

Ok COS(A)COS(B))DEL(Pz) ‘
3°F -

t 0 COS(A)SIN(A)SINZ(B)
2 b 2 .

- DFZ’PI COS(A)SIN(A)COS(B)SIN(B)

- DF]’PZ COS(A)SIN(A)COS(B)SIN(B)

+ D, SINZ(A)SIN(B) - D COSZ(A)SIN(B)
2:P3 F3:P,
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+D COS(A)SIN(A)COSZ(B) - Dr . SIN°(A)COS(B)

1 1°P3
2(

Fq.P

'I,

+ DF p C0S

3oPq A)COS(B) - D, COS(A)SIN(A))DEL(P,)

33
6.14 FORCES PRODUCED BY LINEAR ACCELERATION PERTURBATIONS

The procedure used in the preceding two sections may, with equal facility, be
used to formulate the aerodynamic forces produced by linear acceleration perturba-
tions. However, in this case the required forces are obtained by multiplying the
transformed aerodynamic stability derivatives, with respect to acceleration compo-
nents, by. linear acceleration increments. The aerodynamic stability derivatives of the
ith force component Fi with respect to the jth linear acceleration component A]- are.
denoted by DF]-, Aj> and the transformed derivatives by TDF; 4 ].."I:he corresponding
force components in body axes are denoted by FDA;.

Due to the fact that lift responds in a transient .manner when, for example, the
angle of attack A or the linear velocity component U; is suddenly changed, the
acceleration derivatives are very different from the velocity derivatives, which can be
determined on the basis of steady-state aerodynamics. This is a consequence of the
fact that the pressure distribution on a wing or tail surface does not adjust itself
instantaneously to its equilibrium value when the angle of attack or the velocity
components are suddenly .changed. Hence, in order to get a sufficiently accurate
description of these derivatives during the indicial response phase, it may be
necessary to use function generation or look-up tables (ref. 7).

When the program of the preceding section has been modified to incorporate the
necessary notational changes, it assumes the following form:

(C25) TDA[I,J]:=0%

(C26) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO

FOR M:1T THRU 3 DO FOR N:1 THRU 3 DO \
TDA[I,J]:TDA[L,dJ+DIFF(Y[I],X[M])*DIFF(Y[J1,X[N])*D[F[M],A[N]]$
(C27) FDA[I1]:=0$%

(C28) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
FDA[LI]:FDA[I]+TDA[I,JI*DEL(A[J])$
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(C29) FOR I:1 THRU 3 DO DISPLAY(FDA[I])$

Execution of this program yields the aerodynamic forces produced by linear
acceleration perturbations. These are

FDA, = (D COS(A)SIN(A)SINZ(B)
1 Foohy

COS{A)SIN(A)COS(B)SIN(B)

D
BRPILY

De COS(A)SIN(A)COS(B)SIN(B) + DF A SINZ(A)SIN(B)
3’

1°R2 2

D COSZ(AISIN(B) + D COS(A)SIN(A)COSZ(B)
FasAs F1:R4

C0S2(A)COS(B)

2
D SIN“(A)COS(B) + D
F3,A] . F],A3

DF3,A3 COS(A)SIN(R)DEL (A )

<+

(-De_.a

COS(A)SIN(B) - Dr 5 COS(A)COS(B)SIN(B)
22 M 22R2

COS(A)COS(B)SIN(B) - D SIN(A)SIN(B)

<+

De Fa\ A

1M 37

-+

2
DF],A2 COS(A)COS“(B) - DF3,A2 SIN(A)COS(B))DEL(A,)

-+

) 2 2 _ 2 .
(DFZ,A2 COS“(A)SIN(B) - DFZ,A] COS(A)COS(B)SIN(B)
' COS(A)SIN(A)SIN(B)
2

2
DF],AZ COS“(A)COS(B)SIN(B) + DF3,A
D A COS(A)SIN(A)SIN(B) + De

A cos2(A)cos2(B)
2:R3 1°A1
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- DF3,A] COS(A)SIN(A)COS(B) - DF]’A3 COS(A)SIN(A)COS(B)

2
+ DF3,A3 SIN (A))DEL(A1)

FDA, = (-D SIN(A)SINZ(B) - D SIN(A)COS(B)SIN(B)
2 F Fpohy

1°R2

+D SIN(A)COS(B)SIN(B) + DF],A3‘COS(A)SIN(B)

FisAq

L

2 .
. DFz’A1 SIN(A)COS“(B) + DFZ’A3 COS(A)COS(B))DEL(A5)

SIN?(B) + D

<+

(DF],A] Flohy COS(B)SIN(B) + DF],A2 COS(B)SIN(B)

+

2 2
DFZ,AZ Cos (B))DEL(AZ) + (_DF],AZ COS(A)SIN™(B)

D COS(A)COS(B)SIN(B) + D COS(A)COS(B)SIN(B)

coS(AJC0S2(B)
1

DF],A3 SIN(A)SIN(B) + De

‘2’A

DFZ’A3 SIN(A)COS(B)DEL(A])

= 2 2 ' 2 ;
FDA3 = (DFZ’A SIN“(A)SIN®(B) -'DFZ’A1 SIN“(A)COS(B)SIN(B)

2

- D SIN2(A)COS(B)SIN(B) - D COS(A)SIN(A)SIN(B)
BELY L

- D COS(A)SIN(A)SIN(B) + D SINZ(A)COS2(B)
Foohs Fohy

+ DF

A COS({A)SIN(A)COS(B) + Dr a COS(A)SIN{A)COS(B)
1°773

3’
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2 2
* Dy, 005 (A))DEL(Ag) + (-DFZ’A1 SIN(A)SIN(B)

- Dp 4 SIN(A)COS(B)SIN(B) + D SIN(A)COS(B)SIN(B)
1

2289 F

1°A

+Dg_ . COS(A)SIN(B) + D , SIN(A)COSZ(B)
32A 1:R2

+D COS(A)COS(B))DE_L(AZ)

F3sh;

+ (g, COS(A)SIN(A)SIN?(B) " )
2:R7

- DF A COS(A)SIN(A)COS(B)SIN(B)
2°"1

- Dp_ 4 COS{A)SIN(A)COS(B)SIN(B)
1°72

+D SIN®(A)SIN(B) - D

Fashs

A

2
CoS2(A)SIN(B)
F3sh; -

COS(A)SIN(A)COS2(B) - D
1

2’

SIN2(A)COS(B)
3

+D

FolA FisA

1’ 1’

+Dp g C0S2(A)COS(B) - D= 5 COS(A)SIN(A))DEL(A,)
F3hy 3'73 ‘

The components of the resultant aerodynamic force are

(C27) FOR I:1 THRU 3 DO FA[I]:FDU[I]+FDP[I]+FDA[I]+CF[I]+SF[I]$

6.15 GRAVITY FORCES

The gravitational force vector acting on an aircraft has the value Mg, where M is
the mass of the aircraft and g is the gravitational acceleration vector. The magnitude
of g is assumed constant, which is tantamount to the assumption of a flat earth. The
gravity vector is specified in an earth-fixed reference frame; and it is required to find
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the components of this vector in aircraft body axes. In accordance with aeronautical
convention, a transformation from earth-fixed axes to aircraft body axes involves a
rotation R; about the Y3 body axis, followed by a rotation R, about the Y, body
axis, and a rotation R, about the Y, body axis. Hence, if it is assumed that the
body axes and the earth-fixed axes are initially coincident, the components of the
gravitational force FG; in body axes are given by an equation of the form

[FG] = [R,][R,][R3] [Mg]

where [FG] is a column vector of body axes components, [R,], [R,], and [R;5]
are rotation matrices, and [Mg] is a column vector of earth-fixed axes components.
These matrix operations can be performed by MACSYMA to yield the required
force components in body axes as follows:

(C31) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 COS(R[3]);
ROW 1 COLUMN 2 SIN(R[3]);
ROW 1 COLUMN 3 0;
ROW 2 COLUMN 1 -SIN([31);
ROW 2 COLUMN 2 COS(R[31);
ROW 2 COLUMN 3 0;
ROW 3 COLUMN 1 0;
ROW 3 COLUMN 2 0;

_ROW 3 COLUMN 3 1;
MATRIX-ENTERED

[ COS(Ry)  SIN(Ry) 0]
[ ]
(D31) : [ -SIN(R;)  COS(R;) O]
[ J
[ 0 0 1]
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(C32) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 COS(R[2]);
ROW 1 COLUMN 2 0;
ROW 1 COLUMN 3 -SIN(R[2]);
ROW 2 COLUMN 1 03

ROW 2 COLUMN 2 1;

ROW 2 COLUMN 3 03
ROW COLUMN 1 SIN(R[2]);
ROW 3 COLUMN 2 0; )

ROW 3 COLUMN 3 COS(R[2]);

MATRIX-ENTERED

[ ooS(Ry) 0 -SINGR,) ]
(D32) E 0 1 0 %
E SIN(R,) 0 COS(R,) %

(C33) ENTERMATRIX(3,3);

ROW 1 COLUMN T 1;
ROW 1 COLUMN 2 0
ROW T COLUMN 3 O0;
ROW 2 COLUMN 1 0;
ROW 2 COLUMN 2 COS(R[1]);
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ROW 2 COLUMN 3 SIN(R[1]);
ROW 3 COLUMN 1 0;

ROW 3 COLUMN 2 -SIN(R[1]);
ROW 3 COLUMN 3 COS(R[11);
MATRIX-ENTERED

Ié 1 0 0 %
(D33) [0 COS(Ry)  SIN(R,) ]
[ ]
[ 0 -SIN(Ry)  COS(Ry) ]
[ ]

(C34) ENTERMATRIX(3,1);

ROW 1 COLUMN 1 0;
ROW 2 COLUMN 1 O0;
ROW 3 COLUMN 1 M*G;
MATRIX- ENTERED [
. [
(D34) [
. [
[

The product of these four matrices gives the following column vector of gravita-
tional force components relative to aircraft body axes: '
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- {c35) (D33).(D32).(D31).(D34);

| [ -SIN(R,) G M %
(D35) E SIN(R;) COS(R,) G M %
[ COS(R,) COS(R,) G M ]

These vector components may be expressed in conventional form by executing
the following two programming steps, which yield:

(C36) FOR I:1 THRU 3 DO ROW[I]:FIRST(RON((DBS‘),I))-$
‘(C37) FOR I:1 THRU 3 DO (FG[I]:ROW[I][]],DI',SPLAY(FG[I]))$

FGy = —SIN(RZ) G M

FG, = SIN(R]) COS(RZ) G M
FG5 = COS(R]) COS(RZ) G M

where R; # (R + &8R;), RP are equilibrium values, and §R; are angular

perturbations.
6.16 INERTIA FORCES

The formulation of the inertia forces involves the determination of the product of
an angular velocity matrix and a column vector of linear velocity components. This
product is the matrix equivalent of the familiar vector product & X V. By adding to
the components of this vector, the components of linear acceleration relative to
aircraft body axes, the components of inertial acceleration relative to these axes are
obtained. The required matrices may be entered and multiplied as follows:
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(C38) ENTERMATRIX(3,3);

ROW 1 COLUMN

ROW 1 COLUMN
ROW 1 COLUMN
ROW 2 COLUMN
ROW 2 COLUMN
ROW 2 COLUMN
ROW

ROW 3 COLUMN

w

COLUMN

ROW 3 COLUMN

1
2
3
1
2
3
1
2
3

MATRIX-ENTERED

(D38)

03
-PL3);
P[2];
P[31;

03

-P01);
-pPL2];
POTTs
0

o
1
A
w

[
[
E Ps 0

(C39) ENTERMATRIX(3,1);

ROW 1 COLUMN
ROW 2 COLUMN

1
1

ROW 3 COLUMN 1

MATRIX-ENTERED

ul1ls

ul2l;
ul3d;

[ NS | RO | N | N | N | S

6.16
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[y, ]
(D39) % U %
D
| "
[ 3]
(c40) (D38).(D39);
[ P, U;-U, Py ]
: [ 23772 31
(D40) E Uy Py - Py Us %
[Py U, - Uy Py ]
(C41) FOR I:1 THRU 3 DO ROW[I]:FIRST(ROW((D40),I))$

(C42) FOR I:1 THRU 3 DO (C[IJ:ROW[IJ[1],DISPLAY(C[I]))$

C; =Py U3 - Uy Py
Cp = Uy Py - Py U,
C3=Py U - Uy Py

‘A statement of the fact that the ith componént of the linear velocity vector is a
function of time, requires the use of the DEPENDENCIES function. The use of this
function permits the system to differentiate the components U; with respect to
time. The remaining two programming statements request the system to add the
components, multiply the individual sums by the mass M of the vehicle, and display
the resulting inertial force components FR; as follows:

" (C43) DEPENDENCIES(U(I,T))$
(C44) FOR I:1 THRU 3 DO FR[IJ:M*(C[I]+DIFF(U[I],T))$
(C45) FOR I:1 THRU 3 DO DISPLAY(FR[I])$
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: d .
FRy ={-- Uy + P, Uy - U P»)M
1 (dT 1 2 73 23

\ d
FR, = (S- U, - P, Uy + U, P ) M
2 (dT 2" "1 %370 T3
M

d
-U; P, + == Uy + P U)
( 172 dT 3 172

FR

3
6.17 RESULTANT FORCES

It only remains to réquest MACSYMA to combine the aerodynamic, gravitational,
and inertia forces that were.formulated in preceding sections and display the results.
The ith component of the resultant force will be denoted by F T; where T; is the ith
component of thrust. The two programming steps and the formulated equations
follow.

(C46) FOR T:1 THRU 3 DO FT[I):FR[I]-FG[T]-FA[1]$
(C47) FOR 1:1 THRU 3 DO DISPLAY(FT[I1)$

FT; = =(-Dp

COS(A)SIN(B) + D . COS(A)COS(B)
2’ 17K

Cy

D 2(B)

COS(A)SIN(A)SIN

Fyuc, SINANDEL(C,) - (0

35C FasUs

DF U COS(A)SIN(A)COSkB)SIN(B)
2’71 '

- D COS(A)SIN(A)COS(B)SIN(B) + D SINZ(A)SIN(B)
ALY F3:U,

-D

. COS(A)SIN(A)COSZ(B)
FasUg

'I .

2
COS“(A)SIN(B) + DF U

'.l,

Do ., SIN2(A)COS(B) + D cos2(A)cos(B)
FoUy FpoUs

2 COS(A)SIN(A)SINZ(B)

DF3,U3 COS(A)SIN(A))DEL(U3) - (DFZ’P

)
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COS(A)SIN(A)COS(B)SIN(B)

COS(A)SIN(A)COS(B)SIN(B) + DF3,P2 SINZ(A)SIN(B) |

c0S2(A)SIN(B) + D » COS(A)SIN(A)COSZ(B)

F

SINZ(A)COS(B) *De b COSZ(A)COS(B)

173

COS(A)SIN(A))DEL(P3) - (Dp COS(A)SIN(A)SIN?(

2°°72

COS(A)SIN(A)COS(B)SIN(B)

2(p)SIN(B)

COS(A)SIN(A)COS(B)SIN(B) + D SIN

F3:A;

3:A

CoSZ(A)SIN(B) + O A, COS(A)SIN(A)COSZ(B)
SINS( 2(

A)COS(B) +Dp_ p COS A)COS(B)

1°7°3

COS(A)SINZ(B)

COS(A)SIN(A))DEL(A3) - (-D
1

F2,U

COS(A)COS(B)SIN(B) + DF1,

U, COS(A)COS(B)SIN(B)

SIN(A)SIN(B) + Dp_ COS(A)C0S%(B)
12Uz
COS(A)SIN?(B)

SIN(A)COS(B))DEL(U,) - (-D

)

[

COS(A)COS(B)SIN(B) + DF],P] COS(A)COS(B)SIN(B)
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SIN(A)SIN(B) - D COS(A)C0S2(B)

1 1°P2
SIN(A)COS(B))DEL(P,) - (-D. COS(A)SIN?(B)
2 2-Ry

COS(A)COS(B)SIN(B) - DF

A COS(A)COS(B)SIN(B)
2 1°1

SIN(A)SIN(B) + D COS(A)COS2(
F-l SAZ

B)

SIN(A)COS(B))DEL(A,) - (DFZ,U2 cos2(R)SIN?(B)

C0SZ(A)COS(B)SIN(B) - D COS*(A)COS(B)SIN(B) -

1°U2

COS(A)SIN(A)SIN(B) + D

COS(A)SIN(A)SIN(B)

C0S%(A)COS?(B) - D COS(A)SIN(A)COS(B)

F39U]

; COS(A)SIN(A)COS(B) + DF3’U3 SINZ(A))DEL(U1)'

c0sZ(A)COS(B)SIN(B)
1

coS2(A)SIN2(B) - Dp p
2’ 2’

-=-D p COSZ(A)COS(B)SIN(B) + DF p COS(A)SIN(A)SIN(B)

F1:P) 3°P2
" COS(A)SIN(A)SIN(B) + D CoS 2(
N FpoPy

+D A)COS(B)

F’

-D COS(A)SIN(A)COS(B) - D COS(A)SIN(A)COS(B)

F3sPy

P Fq,P

3 1°7°3

+D SINZ(A))DEL(P.) - (Dr cos2(R)SIN?(B)

F3sP3 1 22R9

3:P
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COS?(A)COS(B)SIN(B) - D A c0S2(A)COS(B)SIN(B)
1°R2 '

COS(A)SIN(A)SIN(B) + D COS(A)SIN(A)SIN(B)
3A2 Fashs
] c0s2(A)cos2(B) - De 5 COS(A)SIN(A)COS(B)
1° - Faah

- D (COS(A)SIN(A)COS(B) + D, SIN’(A))DEL(A,)

F1:A3 3:A3

d
S Uy + PUL - UPIM
1 237 23

+

SIN(RZ)GM + |

+S_ COS(A)SIN(B) = S. COS(A)COS(B) + S. SIN(A)
Fa F F3

FT, = -(DF],CK SIN(B) + DFZ’CK COS(B))DEL(C,)

SIN(A)COS(B)SIN(B)
2

- (-D

SIN(A)SIN®(B) - De |

F,,U

'I, 2 2’

D

-+

SIN(A)COS(B)SIN(B) + De_ v COS(A)SIN(B)

FqisU 1°Y3

'l,

+D

F COS(A)COS(B))DEL(U3)

2
SIN(A)COSZ(B) + D
22U F2:Us

- SIN(A)SIN?(B) - D

F 1P, SIN(A)COS(B)SIN(B)

1
—
o

Fa:Ps

+D SIN(A)COS(B)SIN(B) + D ~ COS(A)SIN(B)
TFysPy F1:P3

2 |
DFZ’P1 SIN(A)COS“(B) + DFZ’P3 COS(A)COS(B))DEL(P,)

+

(-Dp » SIN(A)SIN(B) - D SIN(A)COS(B)SIN(B)

1°R2 2Ry
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D

+

F],A] SIN(A)COS(B)SIN(B) + DF],A3 COS(A)SIN(B)

\ el
ot DFZ’A] SIN(A)COS“(B) + DFZ’A3 COS(A)COS(B))DEL(A3)

SIN%(B) + D
1

- (D - COS(B)SIN(B)

COS(B)SIN(B) + DF U2

1 1°
2(

Fi,U

1° F

25U

+ Dp COSZ(B))DEL(UZ) - (D SIN“(B) + D COS(B)SIN(B)

] !
2(

22Uy FqsP FysP
‘ 2
COS(B)SIN(B) + DFz’Pz oS (B))DEL(PZ) - (D, SIN®(B)

1°M

COS(B)SIN(B) + D COS(B)SIN(B)

RELY!

1A

COS(A)SIN?(B)

BELY

COSZ(B))DEL(AZ) - (D

']5

COS(A)COS(B)SIN(B) + D C0S(A)COS(B)SIN(B)

F29U2“ F'I,U-I

SIN(A)SIN(B) + D COS(A)C0S2(B)

1°U3 22U —

5. SIN(A)COS(B))DEL(U;) - (D COS(A)SIN?(B)
3 1-P2

COS(A)COS(B)SIN(B) + De p COS(A)COS(B)SIN(B)
1°P1

SIN(A)SIN(B) + D_ 2(

F B)

p COS(A)COS
2° \

1
SIN(A)COS () )DEL(P,) -‘(-DF],A2 COS(A)SIN?(B)

£ . COS(A)COS(B)SIN(B)
I /

| 2
a. COS(A)COS™(
1

COS(A)COS(B)SIN(B) + D

- D SIN(A)SIN(B) + D

B)
3 Fas
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- DF’ A SIN(A)COS(B))DEL(A]) - SIN(R])COS(RZ)GM

23

+ (L Uy - P

U, + U]P
dT

1Ug M - sF] SIN(B) - Sg_ COS(B)

3 2

C SIN(A)SIN(B) + DF C SIN(A)COS(B)
2°°K 1°~K
2(

COS(A))DEL(CK) - (DFZ’UZ'SIN A)SINZ(B)

|
[

SIN?(A)COS(B)SIN(B) - . ,u, SIN?(A)COS(B)SIN(B)

|
o
n
(o=

COS(A)SIN(A)SIN(B) - DF2,U3 COS(A)SIN(A)SIN(B)

SIN2(A)C0S2(B) + D COS(A)SIN(A)COS(B)

]

+
)

Fqy,U F3,U-|

'I’

-+

D

2
DF,.U, COS(A)SIN(A)COS(B) + OF U, €0 (A))DEL(U4)

(O, ,p

SIN?(A)SIN?(B) - De b SINZ(A)COS(B)SIN(B)
2:P2 22

1
-D 2(

SIN“(A)COS(B)SIN(B). - DF p COS(A)SIN(A)SIN(B)

F1-P2 3:P2

D COS(A)SIN(A)SIN(B) + D

SIN®(A)c0s%(B)

F2,P3 F],P]

+D COS(A)SIN(A)COS(B) + De COS(A)SIN(A)COSz(B)

FoP

3°P1 1-P1

D. , SIN’(A)COS(B) + D. ,, COSZ(A)COS(B)

F1:P3 F35P
- Dp_ p. COS(A)SIN(A))DEL(P;) - (D

COS(A)SIN(A)SIN?(B)
3°P3 |

F2 ’A2
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D

COS(A)SIN(A)COS(B)SIN(B)

F A]

2’

FssA

- D COS(A)SIN(A)COS(B)SIN(B) + D SIN?(A)SIN(B)
F1ohs _ 2°R3

= Dp , COS?(A)SIN(B) + D, COS(A)SIN(A)COS®(B)

3972 1A

"% a, sIN?(A)Cos(B) + O A cos(A)cos(8)

-0, COS(A)SIN(A))DEL(A )+ M(-upp, + -,
3°13 dT
*+ PqU,) - COS(Ry)COS(R,)GM + st SIN(A)SIN(B)

- S¢ SIN(A)COS(B) - Sg COS(A)
1 3

0% e, SIN(A) COS2(B) + % ., COS(A) COS(B)) DEL(P,)
2(8) - D SIN(A) COS(B) SIN(B)

Fashy

- (_DFz’A1 SIN(A) SIN A

23

COS(A) SIN(B)

+D SIN(A) COS(B) SIN(B) + D
Fi,A 1

1°M F

3R

' enc2
+D SIN(A) COS“(B) +
Fiah, F3,

2(

A COS(A) COS(B)) DEL(AZ)

- (DF U COS(A) SIN(A) SIN“(B) - DF U COS(A) SIN(A) COS(B) SIN(B)
2°72 2’71

2
- De_ SIN®(A) SIN(B)

COS(A) SIN(A) coS(B) SIN(B) + D
] » 2 .

2’73

C0S(A) SIN(B) + D, COS(A) SIN(A) COS%(B)

- - D
7 P, FpoUy
- D SIN Cos

1

2 : 2
A) COS(B D A) COS(B)
. uy SIC(A) CoS(B) + 0y, COsE() COS(3)
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- DF U COS{A) SIN(A)) DEL(U]) - (D COS(A) SIN(A) SINZ(B)

3:U3 FasPy

-D COS(A) SIN(A) COS(B) SIN(B)

F2,P]
- DF p COS(A) SIN(A) COS(B) SIN(B)
1°°2

C0S2(A) SIN(B)
2

+ D SINZ(A) SIN(B) - D

F,,P F P

25 3 3,

+ DF’ p_ COS(A)SIN(A)COS(B)
1°"3

+D
F3:P3

- D SINZ(A)COS(B)SIN(B) - D SIN2(A)COS(B)SIN(B)
Fashy Fiohs

c0SZ(A))DEL(P.,) - (D SINZ(A)SIN?(B)

) -
3 F2,A2

- D a COS(A)SIN(A)SIN(B) - DFZ’A3 COS(A)SIN(A)SIN(B)

372

+D SIN2(A)COS2(B) + D,

COS(A)SIN(A)COS(B)
LY 3°A |

* D A

COS(A)SIN(A)COS(B) + D, cos2(A))DEL(A)
1°R3 _ 3:A3 '

SIN(A)COS(B)SIN(B)
2

- (<D SIN(A)SIN?(B) - D

F2’U'I F2,U

+ DF U SIN(A)COS(B)SIN(B) + D COS(A)SIN(B)

1°% F3:Up

SIN(A)COS2(B) + DF3’U2 COS(A)COS (B) )DEL(U,)
2
- (-Dp 3 SIN(A)SIN®(B) - O b, SIN(A)COS(B)SIN(B)

SIN(A)COS(B)SIN(B) + De COS(A)SIN(B)

3P
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6:18 SPECIAL FORMS OF THE EQUATIONS OF MOTION

In aeronautical studies involving small perturbations about the equilibrium or trim
condition, the investigator sometimes wants to know how the vehicle will respond if
the motion is restricted in some way. For example; he might wish to determine
vehicle response in the absence of sideslip (ref. 8). MACSYMA is well equipped to
implement assumptions of this type. By using a substitution command, MACSYMA
goes through the equations, makes the required substitutions, and displays the
modified results. For the case of zero sideslip the program requests MACSYMA to
make the substitutions: SIN(B) =0 and COS(B) =1 .in each force equation. The
required substitution and display commands and the modified equations assume the
“following form:

(C48) FOR I:1 THRU 3 DO FT[I]:SUBST([SIN(B)=0,COS(B)=1],I;T[I])$
(C49) FOR I:1 THRU 3 DO DIS’PLAY(Ff[I])$

_ : 2
FT, = -(0; c COS(A) - DF c SIN(A))DEL(CK) (-Dp_ . SIN*(A)
1 3:Ck 32U
- Dp__y. COS(A)SIN(A) + D/  COS(A)SIN(A)
3:U3 12U
L COSZ(A))DEL(U3)~- (-De_p SINZ(A) - D _p. COS(A)STN(A)
1°U3 3:P 3:P3
- 2
+Dp p COS(A)SIN(A) + Dy, COS (A))DEL(P ) - (-Dp_p. SIN(A)
1°P1 1°P3 3:A1
- Dp_.p. COS(A)SIN(A) + D__, COS(A)SIN(A)
3:A3 M
+Dp , COSP(A))DEL(Ag) = (D COS(A) - Dp SIN(A))DEL( )
10R3 12Uz 3:Up
- (D COS(A) - D SIN(A))DEL(P,). - (D COS(A) *
F1oP, FpPy 2 oA,
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2 .

- Dp_, SIN(A)DEL(A,) - (Do, SIN°(A) - D , COS(A)SIN(A)

- Dp_y, COS(A)SIN(A) + D¢ COSP(A)JDEL(U;) - (D, SIN“(A)
1°U3 179 3°P3

- DF3,P1 COS(A)SIN(A) - DF1,P3 COS(A)SIN(A)

+

2 2 '
DF}’p] COS“(A))DEL(Py) - (DF3’A3 SIN“(R) - DF3’A] COS(A)SIN(A)

1

2
DF],A3 COS(A)SIN(A) + DF1’A] COS“(A))DEL(A}) + SIN(R,)GM

(- v
dt

<+

1t P2U3 - U2P3)M + SF3 SIN(A) - SF] COS(A)

DEL(C

FT, = -D e (DFZ’U]'SIN(A) + DF2,U3 €0S(A))DEL(U,)

FZ’CK

- (D SIN(A) + D p COS(A))DEL(P3) - (DF A SIN(A)

F2:Py 2:P3 CFashy
COS(A) JDEL(A,) - DFZU DEL(U,) = DF?P2 DEL(P,))

o+

D
PYLY 2

\
'

D . DEL(A,) - (D COS(A) - D SIN(A))DEL(U,)
Fashy 2 F2’U1 F2,U3 . 1

(D COS(A) - D SIN(A)) DEL(P]) - (D COS{A)

FarPy

DFZ’A3 SIN(A))DEL(A]) - SIN(R])COS(RZ)GM

F2,P FZ’AY

dT 2
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FT. = -(D

3 SIN(A) + De_ ¢ COS(A))DEL(CK)

F1:Cx 3:Cy

COS(A)SIN(A) + Dp U COS(A)SIN(A)
1 1°73

2
- (D SIN“(A) + D
F],U-| F3,U

2 2
3oUs Cos (A))DEL(U3) - (DF],P] SIN“(A) + DF3,P] COS(A)SIN(A)

+D COS(A)SIN(A) + D

2 2
: COS“(A))DEL(P,) - (D SIN“(A)
F],P3 .F3,P3 3 F],A]

+D COS(A)SIN(A) + D

COS{A)SIN(A)
1 -

F3,A F],A3

COSZ(A))DEL(A3)°— (D SIN(A) + D COS(A))DEL (U

+D
F13U2

5)

o

Faq,U

F3:A3 3:Up

N

SIN(A) + D COS(A))DEL(P,) - (D SIN(A)
F1sPs F3P, 2! ™ TRy,

+D COS(A))DEL(AZ) - (-D SINZ(A) - D COS(A)SIN(A)

F A2 F1,U3 F3,U3

COSZ(A))DEL(U])

3’

+ D - COS(A)SIN(A) + D
F]aU] F3’U]
SINZ(A) - D

- (-D COS(A)SIN(A) + D

3

: . COS(A)SIN(A)
F],P3 F3,P F],P]

+ D o COSZ(A))DEL(P]) - (-D SIN?(A)

3°"1 FyoA

1’73

- D, COS(A)SIN(A) + D cos(A)SIN(Aj

33 3 F],A]

2 d '
+ DF3,A] oS (A))DEL(A1) + M(-U]EZ + 8? Ug + P;U,)

- COS(R])CQS(RZ)GM - S SIN(A) - SF COS(A)

F 3
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In addition to the zero sideslip condition, the investigator might wish to deter-
mine vehicle response when the angle of attack A is limited to small values. For this
condition the program would request MACSYMA to make the subs,titution‘
SIN(A)=A. Moreover, if the angle of attack were sufficiently small, the program
would request MACSYMA to make the additional substitution COS(A)=1.

In this case, the required substitutions and display commands give rise to the
following modified equations:

(C50) FOR I:1 THRU 3 DO FT[I]:SUBST([SIN(A)=A,COS(A)=1],FT[I1])$
(C51) FOR I:1 THRU 3 DO DISPLAY(FT[I])$ ‘

A

= 2
FT] --(DF C - D¢ C A)DEL(CK) - (-DF U A= - D ;

10k Fa3aly 32U5 Fss

2
~)DEL(U,) - (-D A" - D A+D A
U3 3 3,P1 F3,P3 F],P]

U

°

+D A+DF

F1-Uy K
| 2
D p JDEL(P) - (<D , A®-D. , A+D. , A
[INREL S Faohy Fauhy A ¥ OFLA
D JDEL(A5) - (Dp y - Dp .y AJDEL(U,) - (D
FpoAg DEEAS) = (Dp Ly = DLy, 2) - O p,

A)DEL(P,) - (D -D
P2 2 F],A2 F

+

+

-D A)DEL(AZ) - (DF u A

Ay 3°U3

2
A-D A+D. . )DEL(Uy) - (D A2 _
1 Fi:Us FysU, 1 F3.P3 3P

F3» 3’

“De v

3’

2

P30 TP S Fphy 3R

1 1’73

d .
F],A])DEL(A]) + SIN(RZ)GM + (a_-r U.,V+ P2U3 - U2P3)M + SF

+

D A-Se

3 1
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FT, = -D

5 A+0D

JDEL(U
3

DEL(C,) - (D ) - (D A
FlsCy K Fpsl, FosU 307 VR

+D JDEL(P3) - (Dp_, A +D

J)DEL(A,) - D
F2,P3 2°A F2,A3 3 F

DEL(U

2 2)

2:U

-D DEL(P,) - D DEL(A,) - (D -D
F2,P 2 F2,A2 2 FZ’U] | F

A)DEL(U])
2 ;

2:U3

- (0 - D 'A)DEL(P]) - (D - D

A)DEL(A])
3

F 3

F,,P F F

2Py P A

2’ 2oh ol
4y, - P, + UPIM - S
2 = Pz + UpPaiM = Sp

dT 2

2
(D A
F],U] F

2
JDEL(U,) - (D A=+ D
3 3 F1,P] F
2

+ D A

A+ D . )DEL(C
F.,C 3,U]

K 37K

FT3 = -0 ¢ K -

A+D A

+D *0rLp,

A+ DF

Fi:U3 3’

U P

31

p )DEL(P3) - (DF A A= +D

, 33 1’1

YDEL(A,) - (D A+D YDEL(U,) - (D A
32R5 3 FysU, FaaU, 27 7 VFLP,

A+ DF A A

F3sA FysR3

3:A

+D )DEL(P,) - (D A+ D )DEL(A,) - (-D A
F.,P 2 Fish, Fashy 2 FioUs

2
A+ D
3 FpsUy F

)DEL(U]) - (-D A® - D

32U Fi:P3

2
) A+ D
1°R3 F3.A

+D A+D
F],P] F,,P

)DEL(P;) - (-D A
3P ) Fouh

1

d
DEL(A]) + M(-U]P2 + == U

dT

MW 3+ PyUp) - COS(R)COS(R, )M

- SF A-S

1 F

3

353



6.18 JAMES C. HOWARD

Examination of these equations reveals the existence of terms such as A2. If it is
assumed that second-order terms in A are negligible, a program statement instructing

MACSYMA to make the substitution A2 =0 would simplify the equations as -
follows:

(C52) FOR I:1 THRU 3 DO FT[I1]:SUBST([A**2=0],FT[1])$
(C53) FOR I:1 THRU 3 DO DISPLAY(FT[I])$

FT, = (D, . - D . AJDEL(C,) - (<D , A+Dc , A
‘ FraCe o Fauly : Fa:Us ™ 7 TFaly

+ D

FpaUg /D Us) = (D p A+ Dp p A+ D

)DEL(P.,)
15U3 3 1°P1 1:P3 3

A+ D
3°R3 1° F

F

A A3)DEL(A3) -'(DF U

1 1° 1°72

-D A)DEL(U,) - (D -D A)DEL(P,) - (Dp
F3,U2 2 F],P2 F3,P2 2 F]’AZ

-D A)DEL('/—\Z) - (-DF A-D

A+D )DEL(U,)
F3,A2 3:Uq. F.,U 17

Fi:U3 1°Y1

'I’

- (-D A-D

A+D )DEL(P;) - (-D
Fy,sP F.,P 1 F 1 173

Fs.P 1°P3 1°P1 3

3 A

+
o

d
DEL(A]) + SIN(RZ)GM + (-- Uy + P2U3 - U2P3)M+ SF A-S

dT 3 ,’F1

DEL(C,) - (D A+D JDEL(U,) - (D A
K FZ’U1 F2,U3 3 FZ’P1

~)DEL(P,) - (D A+D JDEL(A;) - D DEL(U,)
3 Fashy F2,A3 3 F2’U2 2

DEL(PZ) - D¢ -D

DEL(A,) - (D
2 2

‘ : A)DEL(U,)
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- (D -D

: A)DEL(P1) - (D - Dp A A)DEL(A])

F2’P F2)P3 FZSA] 29 3

~

d

A+D
1:k 3:Cg’ F

324y 1-U3 F3:U3

A
1

DEL(U;) - (Dg p A +D A DF3’P3)DEL(P3) - (O p

F3, 1 F

F3,

+ DF A A+ DF A )DEL(A3) - (DF],UZ A+ DF3’U2)DEL(U2)

1°73 3’73

- (Dp. p A+D

DEL(P,) -
- (0 o, o JDEL(P,) - (D

A+D )DEL(A,)
32P9 A FqsA 2

F RELY! 3:R9

A+D A+D A

- (-D A+DF U]

u. JDEL(U3) - (-D
FasUq 19 F F

3 ] 3>P3 F

1:P

+

D )DEL(P;) - (-Dp A+D A + Dp -, )DEL(A,)
F3,P] 1 F3,A3 F],A] F3,A] . 1

-+

d
M( - U]P2 + c-i'-[ Uy + P]Uz) - COS(R])COS'(RZ)GM - SF1 A - SF3

Additional simplifications are possible if it is assumed that angular velocity
perturbations are negligible. This assumption can be implemented by again using the
substitution command, which yields the following greatly simplified equations:

(C54) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
FT[I] SUBST([DEL(P[J])=01,FT[I])$
(C56) FOR I:1 THRU 3 DO DISPLAY(FT[I])$
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FT, = -(D -D ADEL(C,) - (-D A+D A
] FioCe  Faly K FasU3 ™ 7 TFYy

+D )DEL(U,) - (-Do , A+ D A+D JDEL(A.)
Fialy 3 Fyh, Fiohy Fyshs 3

- (D - D "A)DEL(U,) - (D - D." , A)DEL(A.)
Fi.Uy © TF3.U, 2 Fishs o TF3sA, 2

A-D A+D

3

A - D

A
F],A

)DEL(U]) - (-D
3

F3,U F],U F],U] F3,A]

273

. : -d
+ DF]’A])DEL(A]) + SIN(RZ)GM + (aT U] + P U, - U2P3)M*-SF

A -S
3 N

FT2 =D ¢ DEL(C

»:Cy k) = Op_ y A+Dp ) JDEL(U3) - (Dp_ n A

2°71 2’73 2’

DEL(A3) - DF DEL(UZ) - DF DEL(AZ)

)
2:A3 2:Up 2:R2

- (D -D A)DEL(U;) - (D -D A)DEL (A, )
Fpuly ™ PF,Ug 1 Foohy ™ UF A, 1

: d
- SIN(R1)COS(R2)GM + (8} U, - P]U3 + U]P3)M - SF2

A+D A+D

)
19Us FasU

FT, = -(D A+D JDEL(C,) - (D

DEL{U,) - (D A+D A+0D YDEL(A,) - (D A
) 3 F3sA FisAy FysAq 3 FysUy

+D )DEL(UZ) - (DF A+D )DEL(AZ) - (-D A

F3,U2 F3,A2 F

1-h2 3>U3

+ D A+D )DEL(U,) - (-D A+D A
F1,U1 F3,U] 1 F3,A3 F1,A]
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d
+D )DEL(A,) + M(-U,P, + =- U, + P.U,)
F3,A] 1 12 dT 3 172
- COS(R1)COS(R2)GM - SF] A - SF3

Finally, it may be of interest to consider the effect of omitting the linear
acceleration terms. By comparing the response of the system with and without
acceleration perturbations, the influence of these perturbations can be determined.
Again, a simple substitution command is all that is required to implement the
assumption that DEL(A;)=0. Execution of this command yields the modified equa-
tions as follows:

(C57) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO -
FT[1]:SUBST([DEL{A[J]1)=01,FT[1])$

(C58) FOR I:1 THRU 3 DO DISPLAY(FT[I])$

FT, = -(D - D A)DEL(C,) - (-D A+D A
1 FisCy ~ OFgsCy K Fasly F1sU;
+D )DEL(U,) - (D - D A)DEL(U,) - (-D A
FloUs 3 FroUy ™ O 50, 2 Faol;
- d
- Dp_ . A+ Dp y IDEL(U;) + SIN(R,)GM + (S Uy + PyUs - U,Po)M
1°U3 1:Y3 dT |
+S. A-S
Fs F
FT, = -D DEL(C,) - (D A+ D )DEL(U,) - D DEL (U.,)
2 FlsCy K F U FpsUs 3 Fpuly 2
- (Dp_ . = Dy AIDEL(U}) - SIN(R;)COS(R,)GM
2+ 2:U3
y |
+ (g7 Up - PyUg + UyPydM - S,

2
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FTy = =(Dp o A+ D  JDEL(C,) - (Dp , A+Dg , A+D. )

3 175 3%k 3°Ys 1°Y3 3°Y3
DEL(U,) - (D A+D JDEL(U,) - (-D A+0D A
3 R F1,U2_ FssU, 2 F3.Us FysU,
.. d
+D )DEL(U,) + M(-U,P, + -~ U, + P, U,)
FaUs 1 2" 13 1°2

- COS(R1)COS(R2)GM - SF] A - SF3

6.19 THRUST FORCES

It should be noted that the thrust forces T; appearing on the left-hand side of
these equations are the resultant of a number of thrust generating systems, each
contributin_g a thrust vector T,. Each thrust vector is referred to a thrust axes
system X with origin at the point of application of the thrust vector. The axes are
chosen such that each thrust vector commdes with the X axis of the system
Moreover, each thrust vector is then transformed to a coordmate system Y which
has the same origin as the thrust axes, but is parallel to the body axes system.
Finally, the components of thrust in the Yn’ system of axes are transformed to the
body axes system, which has its origin at the center of gravity of the aircraft. Each
thrust axis Xnl is related to the Yn’ system by the following transformation
equations (see sketch):

Y, =X, cos(K,) cos(P,))
Y,? =X,' cos(K,) sin(P,,) (6.19.1)

Yn3 = —Xn1 sin(K,,)
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Hence, the components of the thrust vector T, in the Yni system of coordinates are

ay," = ay,? . Y3 '
T noro noro (6.19.2)
1
ax,, - ax,! ax,"

These are also the components of thrust in the yi system of coordinates, which ~
has its origin at the center of gravity of the aircraft. The thrust components due to
all thrust generating systems are obtained by summing the right-hand side of the
following equation (
| T aY"iT

= n

5 an (6.19.3)

The expanded form of equation (6.19.3), when summed over n will yield the
resultant thrust components. When the number of thrust generating systems is
known, the components 7% can be formulated and displayed by using equa-
tion (6.19.3), and executing the following two commands, which yield the compo-
nents contnbuted by the nth thrust generating system. These are

1) Y[1,N]:X[1,N]*COS(K[N])*COS(P[N])$
C2) Y[2,N]:X[1,NJ*COS(K[NT)*SIN(P[N])$

(C

(

(C3) Y[3,N]:-X[1.NI*SIN(KIN)$

(C4) FOR I THRU 3 DO T[I1:DIFF(Y[I,NI,X[1,N],1)*T[N1$
(

C5) FOR I:1 THRU 3 DO DISPLAY (T[I])$

T] = TN COS(KN) COS(PN)
T2 = TN COS(KN) SIN(PN)
Ty = -TN SIN(KN)
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6.20 DETERMINATION OF THE GEOGRAPHICAL LOCATION
OF AIRCRAFT

In order to determine the geographical location of an aircraft relative to some
initial location, it is necessary to transform the components of the aircraft’s velocity
vector from aircraft body axes to a system of Earth-fixed axes. The transformed
components can then be integrated to find the location of the aircraft as a function
of time. The product of the three rotation matrices (D33), (D32), and (D31), which
were used to transform the gravity vector from an Earth-fixed axes system to
aircraft body axes, may be transposed and used to transform the aircraft velocity -
components to an Earth-fixed system. If the column vector (D39) of aircraft
velocity components is premultiplied by the transposed matrix, the velocity compo-
nents relative to the Earth-fixed system are obtained as follows:

(C56) TRANSPOSE((D33).(D32).(D31)).(D39);
(D56) MATRIX([U3(SIN(R])SIN(R3) + COS(R])SIN(RZ)COS(R3))

+ U (SIN(R])SIN(R )COS(R3)' - COS(R])SIN(R3)) + U]COS(RZ)COS(R3)],

2 2

[UZ(SIN(R])SIN(R )SIN(R,) + COS(R])COS(R3))

2 3)

+ U (COS(R1)SIN(R2)SIN(R3) - SIN(R1)COS(R3)) + U]COS(RZ)SIN(R3)],

3
[-U]SIN(RZ) + UZSIN(R])COS(RZ) + U3COS(R])COS(R2)])

If the components X’i relative to the Earth-fixed system be denoted by DX;,
execution of the following programming steps will ensure that the required velocity
components are displayed in conventional form.

(C57) FOR I:1 THRU 3 DO RON[I]:I;'IRST(ROW((DSG),I))$
(C58) FOR I:1 THRU 3 DO (DX[IJ:ROW[IJ[1],DISPLAY(DX[1]));
(SIN(R])SIN(R3_) + COS(R])SIN(RZ)COS(R3))

DX; = U

1 3

+ UZ(SIN(R])SIN(P.Z)COS(R3) - COS(R])SIN(R3)) + U]COS(RZ)COS(R3)
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DX, = U JSIN(R

5 2(SIN(R])SIN(R

| + C0S(R)COS(Ry))

2 3)

+ 93(COS(R])SIN(R2)SIN(R3) - SIN(R])COS(R3)) + U]COS(RZ)SIN(R3)

DX3 = -U]SIN(RZ) + UZSIN(R] )COS‘(RZ) + U3COS(R] )COS(RZ)
Integration of these velocity components will yield the required coordinates of
the aircraft relative to a set of Earth-fixed reference axes. These are

Xg' = X5+ f DX[Idt

where X };0 are the initial values of the coordinates in the Earth-fixed reference
frame. )

6.21 TRANSFORMATION LAW FOR STATIC MOMENTS _
The static aerodynamic moments obey the same transformation law as the static
aerodynamic forces; that is, if Spy denotes a static moment in the X frame of
reference, and SM; denotes the corresponding transformed moment in the Y refer-
ence frame, then
ay!

M. =21 s
M, ax Mn (6.21.1)

where Y = Y(X) is obtained from the displayed output (D6) and reentered here to
facilitate the formulation of the moment equations. Given the transformation
equations (D6), the transformed aerodynamic static moments are obtained by
expanding equation (6.21.1). The three programming steps used to transform the
static forces may again be employed to transform the static moments. The simple
program and the displayed results are

(C1) Y[1]:X[1]*COS(A)*COS(B)-X[2]*COS(A)*SIN(B)-X[3]*SIN(A)$ -
_(C2) Y[2]:X[1]*SIN(B)+X[2]*C0S(B)$
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(C3) Y[3]: X[1T*SIN(A)*COS(B)-X[2T*SIN(A)*SIN(B)+X[3]*COS(A)$
(C4) SM[1]:=08 '

(C5) FOR I:1 THRU 3 DO FOR N:1 THRU 3 DO
SM{I]:SM[I]+DIFF(Y[I],X[N])*S[M[N]I$

(C6) FOR I:1 THRU 3 DO DISPLAY (SM[I])$.

SM, = -S,, COS(A)SIN(B) + S, COS(A)COS(B) - S,, SIN(A)
1 M, M] M3
SM2 = SM] SIN(B) + SM2 COS(B)
SM, = -S,, SIN(A)SIN(B) + S,, SIN(A)COS(B) + S,, COS(A)
3 M, M, My

6.22 TRANSFORMATION LAW FOR CONTROL MOMENT DERIVATIVES

The control moment derivatives obey the same transformation law as the static
moments; that is, if DMnaCK denotes the nth control moment derivative with
respect to the Kth control surface as measured in the X reference frame, and TDI, C
denotes the corresponding transformed derivative in the Y frame, then

, = p (6.22.1)
I,C_ﬁ Mn’Ck ' e

where Y = Y(X) is again obtained from the displayed output (D6).

As in the preceding section, the transformed control derivatives are obtained by
expanding the transformation law (6.22.1) given the transformation equations (D6)..
The transformed derivatives are obtained by executing the following simple pro-
gram, which has exactly the same form as the program used to transform the static
moments in section 6.21. These are '
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(C7) TD[I,C]:=0%

(C8) FOR I:1 THRU 3 DO FOR N:1 THRU 3 DO
TD[I,C):TD[I,C+DIFF(Y[I],X[NT)*D[M[N],C[K]]1$

(C9) FOR I:1 THRU 3 DO DISPLAY(TD[I,C])$

D, . = -D COS(A)SIN(B) + D COS(A)COS(B) - D SIN(A)
1,€ MasCy | MyCy MysCy
D, . = D SIN(B) + D oS (B)
2,6 M ,Cy MysCy
D, . = -D SIN(A)SIN(B) + D SIN(A)COS(B) + D COS(A)
3,C MysCy My Cy M3sCy

The corresponding control moments are obtained by multiplying the control
derivatives by the appropriate control increments DEL(Cg). The following two
programming steps are -sufficient to formulate the required moments. These are
denoted by CM; in the displayed output.

(C10) FOR I:1 THRU 3 DO CM[IJ:TD[I,C]*DEL(C[K])$'
(C11) FOR I:1 THRU 3 DO DISPLAY(CM[I])$

CMy = (-Dy_ ¢  COS(A)SIN(B) + Dy . COS(A)COS(B)
2°“K , 127K
- Dy o SIN(A))DEL(C,)
3°7K
CMy = (Dy_ ¢ SIN(B) + Dy €0S(B))DEL(Cy )
12K 2°7K
" CM3 = (-Dy o SIN(A)SIN(B) + Dy . SIN(A)COS(B)
2°7K 177K
* Dy, ¢, COSIADIDEL(C)
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6.23 MOMENTS PRODUCED BY LINEAR VELOCITY PERTURBATIONS

The next step in the formulation involves the determination of the aerodynamic
_moments produced when an aircraft is subjected to linear velocity perturbations
DEL(Uj). Before these moments can be determined, the aerodynamic stability
derivatives with respect to linear velocity components must be transformed from
wind or wind-tunnel stability axes to body axes. For a detailed discussion of the
transformation of these derivatives, the reader is referred to section 6.2. The pro-
gram used for that transformation can be used in this case also. In this application,
the aerodynamic stability derivative of the ith moment with respect to the jth.
velocity component will be denoted by DM,-,U~- The corresponding transformed
derivatives are denoted by TDM,-,U-- When the program of section 6.2 is rewritten to
accommodate the notational changes required for this application, it assumes the
following form:

Vi

(C12) TOU[I,J]:=0

(C13) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
FOR R:1 THRU 3 DO FOR N:1 THRU 3 DO
TDU[I,d]:TOULT,J+DIFF(Y[T],X[R])*DIFF(Y[JI],X[NT)*D[M[R],U[N]]$

It only remains to multiply the transformed derivatives by the appropriate
velocity increments to obtain the required moments, which are denoted by MDU;.
The next three programming steps instruct MACSYMA to evaluate and display the
moments produced by linear velocity perturbations. These are

(C14) MDU[1]:=0%

(C15) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
MDU[TJ:MDU[I]+TDULI,J]*DEL(U[J])$

(Cle) FOR I:1 THRU 3 DO DISPLAY(MDU[I])$

MDU, = (D, COS(A)SIN(A)SINZ(B)

22Uz

- Dy U COS(A)SIN(A)COS(B)SIN(B)
2’71
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COS(A)SIN(A)COS(B)SIN(B) + DM u SINZ(A)SIN(B)

D
My.Us 32Uy

COSZ(A)SIN(B) + D COS(A)SIN(A)COSZ(B)

M]’U]
2 2

SINT( COS™(A)COS(B)

3

A)COS(B) + D

M.,U

]’
COS(A)SIN(A))DEL(U5) + (-DMz’U1 COS(A)SIN?(B)

COS(A)COS(B)SIN(B) + DM],U] COS(A)COS(B)SIN(B)

C0S(A)COSZ(B)
2

SIN(A)SIN(B) .+ DM U

‘I’

SIN(A)COS(B))DEL(U,) + (D C0S2(A)SIN?(B)

M5.U,

: COSZ(A)COS(B)SIN(B) - DM]’QZ COSZ(A)COS(B)SIN(B)

COS(A)SIN(A)SIN(B) + D COS(A)SIN(A)SIN(B)

M2,U3

COS(A)SIN(A)COS(B)
1

cos2(A)cos2(B) - Dy o

3’

4. COS(A)SIN(A)COS(B) + Dy, SINS(
3 .

A))DEL(U])
3

3-U

2
= (-D SIN(A)SIN®(B
2 M]’UZ

) - DM2,U2 SIN(A)COS(B)SIN(B)

+ Dy . SIN(A)COS(B)SIN(B) + D COS(A)SIN(B)
1°%1 -

M]’U3

' 2
+ DMZ,U] SIN(A)COS“(B) + DMZ’U3 COS(A)COS(B))DEL(U,)
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2( COS(B)SIN(B) + D COS(B)SIN(B)

+ (D SIN

1

B) + D

MU M, .U, My .U,
+D, . COSZ(B))DEL(U,) + (-D COS(A)SIN?(B)

- Dy U COS(A)COS(B)SIN(B) + Dy U COS(A)COS(B)SIN(B)

2°72 1’71

2
- DM],U3 SIN(A)SIN(B) + DMZ’U] COS(A)COS“(B)

- D SIN(A)COS(B))DEL(U])

My,Us

MDU, = (D SIN?(A)SIN?(B) - D, SINZ(A)COS(B)SIN(B)

3 My, Uz 2:Uy

COS(A)SIN(A)SIN(B)
) (

D

2
M. .U SIN“(A)COS(B)SIN(B) - DM U

1°%2 3’

SIN?(A)COS2(B)
1

D

M COS(A)SIN(A)SIN(B) + DM

3 - 1°

COS(A)SIN(A)COS(B) + DM],U3 COS(A)SIN(A)COS(B)

U U

2’

' DM3’”1

+ Dy | C0S2(A))DEL(U,) + (-D SIN(A)SIN?(B)

3:U3 3

22Uy

U SIN(A)COS(B)SIN(B) + DM U SIN(A)COS(B)SIN(B)
2 1771

D
M, |
2
(B)

+ DM3,U] COS(A)SIN(B) + DM],UZ SIN(A)COS

2

+

Dy COS(A)COS(B))DEL(UZ) + (Dy COS(A)SIN(A)SIN“(B)
2

_3’U

2:Up

Dy, COS(A)SIN(A)COS(B)SIN(B)

22U
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Dy

COS{A)SIN(A)COS(B)SIN(B) + D SINZ(A)SIN(B)
1’U2 M2,U3

D

COSZ(A)SIN(B) +:Dy, 2(8)

U COS(A)SIN(A)COS
2 1° '

M 1

3>V
cos?(
:

-D SIN

2
M],U (A)COS(B) + DM

A)COS(B)
3 3’ ~

U
-D COS(A)SIN(A))DEL(U])

M3.U3

3°U

6.24 MOMENTS PRODUCED BY ANGULAR VELOCITY PERTURBATIONS

The program used in section 6.23 can,with suitable notational changes, be used to
formulate the moments produced by angular velocity perturbations. However,
whereas in the preceding application the required moments were obtained by
multiplying the transformed aerodynamic stability derivatives by linear velocity
increments, in the present case the transformed derivatives must be multiplied by
angular velocity increments. In view of these similarities, the following program and
displayed moments will be presented without further comment, except to point out
that the aerodynamic stability derivatives of the ith moment with respect to the jth
angular velocity component are denoted by DMi ;- The corresponding transformed
derivatives are denoted by T, DMi P and the resulting moments by MDP;.

(C17) TOP[I,01:=0% - |

(C18) FOR I:1 THRU 3 DO FOR J:1 THRU-3 DO

FOR R:1 THRU 3 DO FOR N:1 THRU 3 DO

TOP[I1,J]):TDP[I,J +DIFF(Y[I],X[R])*DIFF(Y[J],X[N])*D[M[R],P[N]$
(C19) MDP[1]:=0%

(C21) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
MDP[ I]:MDP[I]+TDP[I,J]*DEL(P[J])$

(C22) FOR I:1 THRU 3 DO DISPLAY{(MDP[I])$
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 COS(A)SIN(A)SIN?(

B)
My, Py

MDP, = (D

COS(A)SIN(A)COS(B)SIN(B)

]
o

COS(A)SIN(A)COS(B)SIN(B) +DM SINZ(A)SIN(B)
B 3 b

Py

0S2(A)SIN(B) + D COS(A)SIN(A)COSZ(B)

3 MysPy
c0S2(A)cos(B)

5, .
Pl SIN“(A)COS(B) + DM],P3

COS(A)SIN?(B)

COS(A)SIN(A))DEL(P4) + (-Dy
1

2:P

COS(A)COS(B)SIN(B) + D COS(A)COS(B)SIN(B)

M1.Py
SIN(A)SIN(B) + Dy COS(A)C0S2(B)
1°P2

SIN(A)COS(B))DEL(PZ) + (DM p 2(A)SINZ(B)

2 . 2’ 2

C0S

c0s2(A)COS(B)SIN(B) - O, C0S2(A)COS(B)SIN(B)

Py

COS(A)SIN(A)SIN(B) + D COS{A)SIN(A)SIN(B)

My, P3

cos2(A)cos2(B) - Dy p. COS(A)SIN(A)COS(B)

3:P1

COS(A)SIN(A)COS(B) + D SIN2(A))DEL(P])
3°P3 '
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SIN(A)SIN?(B) - Dy
2 22

MDP2 = (-D SIN(A)COS(B)SIN(B)

P,

M],P

+ DM P SIN(A)COS(B)SIN(B) + D
1*°1

M],P3 COS(A)SIN(B)

4+

Dy_p. SIN(A)COS®(B) + D COS(A)COS(B) )DEL(P,)

2°P1 M2:P3

SIN%(B) + D

+
—
[

COS(B)SIN(B) + DM p COS(B)SIN(B)
1 12
2

,P:l M'2,P

+

2
DM2’P2 COS®(B))DEL(P,) + (—DM],P2 COS(A)SIN®(B)

Dy p. COS(A)COS(B)SIN(B) + Dy o COS(A)COS(B)SIN(B)
2:P2 1°P1

COS(A)COS2(

1

- D SIN(A)SIN(B) + D

B)
My,P .

M

3 2:P

D

1y SIN(A)COS(B))DEL(P;)
MDP = (Dy SIN2(A)SIN?( 2(

B) -D SIN
2:P5 M,,P

2’1

A)COS(B)SIN(B)

D SINZ(A)COS(B)SIN(B) -D COS(A)SIN(A)SIN(B)

M, .P, My, P,
SIN?(A)C0S2(B)

DM p COS(A)SIN(A)SIN(B) + Oy ]

2> 3 1

,P

-

Dy p COS(A)SIN(A)COS(B) + D
32"

+

v. p_ COS(A)SIN(A)COS(B)

1773

2 2

+ Dy COS(A)IDEL(P;) + (-D, , SIN(A)SIN(B)
373 : 2"

" Dy, p, SIN(R)COS(B)SIN(B) + Oy

SIN(A)COS(B)SIN(B)

Py
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COS(A)SIN(B) + D SIN(A)COS2(B)
| O P, )

* Dy_.p

3’
2(

+

D CdS(A)COS(B))DEL(PZ) + (D COS(A)SIN(A)SINT(B)

M35P5 2:P

- Dy p COS(A)SIN(A)COS(B)SIN(B)
2’1

- DM p COS(A)SIN(A)COS(B)SIN(B) + DM ‘P SINZ(A)SIN(B)
1°72 o 2°"3
2(B)

CoSZ(A)SIN(B) + D COS (A)SIN(A)COS

1

-D

M.,P

M3:Py 1’
cos2(
1

- D SIN2(A)COS(B) + Dy A)COS(B)

3 3P

M.,P

]’
- D COS(A)SIN(A))DEL(P])

M3.P3

3+P

The same proéedure may be used to formulate the aerodynamic moments pro-
duced by linear and angular accelerations. These moments will not be included here,
since the cases considered so far are sufficient to demonstrate the facility with which
symbolic mathematical computation can be used to formulate and transform aero-
dynamic moments.

6.25 INERTIA MOMENTS

The formulation of inertia moments involves the determination of the product of
an angular velocity matrix, a matrix of inertia coefficients; and a column vector of
angular velocity components. This product is the matrix equivalent of the familiar
vector product & X H, where & is the angular velocity vector and H is the angular
momentum vector. By adding to the components of this vector, a vector which
represents the rate of change of angular momentum relative to the moving body
axes, the inertial moments relative to these axes are obtained (ref. 9). The rate of
change of angular momentum relative to the moving body axes may be expressed as
the product of the inertia matrix and a column vector of angular acceleration
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components. The required matrices may be entered and multiplied as follows: The
first matrix to be entered is the inertia matrix, with elements J,-’]-. It is entered by
typing the statement ENTERMATRIX(3,3) and responding to the system’s request
for elements.

(C23) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 J[1,11;

ROW 1 COLUMN 2 J[1,21;

ROW 1 COLUMN 3 J{1,31; -
ROW 2 COLUMN-1 J[2,1];

ROW 2 COLUMN 2 J[2,2];

ROW 2 COLUMN 3 J[2,3];

ROW 3 COLUMN 1 J[3,1];

ROW 3 COLUMN 2 J[3,2];

ROW 3 COLUMN 3 J[3,3];

MATRIX-ENTERED

[

[
(D23) [J

[

[ J

[
- A statement of the fact that the ith component of the angular velocity vector is a
function of time requires the use of the DEPENDENCIES function. The use of this
function permits the system to differentiate the components P; with respect to time,

and to enter the resulting acceleration components in the form of a column vector as
follows:

. . 371



6.25 JAMES C. HOWARD

(C24) DEPENDENCIES(P(I,T))$
(C25) ENTERMATRIX(3,1);

ROW 1 COLUMN 1 DIFF(P[1],T);
ROW 2 COLUMN 1 DIFF(P[2],T);
ROW 3 COLUMN 1 DIFF(P[3],T);

MATRIX-ENTERED
L d_p
= dT

(D25) = (_j_ P2 =
- dT ©

r
—_ | W ) W —

] L d_p

= dT

e b eI

The angular velocity matrix and a column vector of angular velocity components
are entered next ‘

(C26) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 0;
ROW 1 COLUMN 2 -P[3];
ROW 1 COLUMN 3 P[2];
ROW 2 COLUMN 1 P[3];
ROW 2 COLUMN 2 0;
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ROW 2 COLUMN 3 -P[1];
ROW 3 COLUMN 1 -P[2];
ROW 3 COLUMN 2 P[1];
ROW 3 COLUMN 3 0;
MATRIX-ENTERED

Lo 7]
(D26) % P3 0 -P] %
[—P P 0 ]
[ 2 ]

(C27) ENTERMATRIX(3,1);

ROW 1 COLUMN 1 P[1];
ROW 2 COLUMN 1 P[2];
ROW 3 COLUMN 1 P[3];
MATRIX-ENTERED

-

(D27)

Lo Lo T T T T |
0 O
[AS]

w

These four matrices are now combined to yield a column vector of inertia
moments relative to aircraft body axes.

(C28) ((D23).(D25)+(D26).(D23).(D27));

373



6.25 ’ : JAMES C. HOWARD

s

d_p

dT

d
(== Py)
1,1 Y7 ]

(D28) MATRIX([J , APy v £

)
a7 3 2

1,2

+ P, (P,J P,Jd + P,d P, +P

p(Pgdz 3+ Pydg o+ Pedg 1) - Pgldy gPs + Pody 5+ Pydy 3]s

d d
[J (=- p,) +J (-- P,) +J (=- P;) - P,(P,J + P,J
2,3 (7 Pa) ¥ 92,5 CoPp) #0p0 U0 Py Pr{P3ds 3 * Pads o
: d
Pid3q) + Py q) + Py sP3 + 3y 0Py + Pydy 1)1 D33 (&? P3)

d
=- P2) +J

dr

d
=-Py)+ P

dT

+J (J, P, + P,J + P,J

3,2 ( 3,1 ( 1005 3P3 + Pody 5+ Pydy 4)°

- P P, +J P. + P.J

(97 33+ Iy Py + Pydy 4)])

The next two programming steps enable the system to express these inertia
moments in conventional functional form.

(C29) FOR I:1 THRU 3 DO ROW[I]:FIRST(ROW((D28),1))$
(C30) FOR I:1 THRU 3 DO (IM[I]:ROW[I]J[1],DISPLAY(IM[I]))$

' d d d '
IM J (=- P,) +J (=- P,) +J (=- P;) + P,(P,Jd
17 91,3 G Pg) H iy o) v 0y p 0 2(P3d3 5
+ Poda o+ Ppdy q) - Py(Jp 3Py + Pody o+ Pdy g)
My = 3, 5 (4 Py) + Jp.2 (- py) + o1 (- P - Py(Py 3,3
>3 04T dT dT
* Pyly o ¥ Prdg q) + Py(dy 3P3 + g 5Py + Pydy 4) B
T Mg = dy s (- p3) + 95, (- pp) +35, (S p) +p 1095 3P3
' dT 2 47 T
¥ Py 5 F Py 1) - Poldy Py dy oPp ¥ P1J1 1)
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6.26 RESULTANT MOMENTS

i It only remains to request MACSYMA to combine the aerodynamic and inertia
moments which have been formulated in preceding sections and to display the
results. The ith component of the resultant moment will be denoted by TM;, where
TM; isvthe ith component of the moment due to thrust. The two programming steps

- and the-formulated equations follow.

~(C31) FOR I:1 THRU 3 DO TM[I]:IM[I]-SM[I]-CM[I]-MDU[I]-MDP[I]$
(C32) FOR I:1 THRU 3 DO DISPLAY(TM[II1)$

COS(A)SIN(B) + D COS(A)COS(B)

™, = -(~D
1 MysCy

MZ’CK

» 2

D SIN(A))DEL(C,) - (D COS(A)SIN(A)SIN"(B)
My, c, STNAVIDEL(Cy) - Ma>Up

- Dy . COS(A)SIN(A)COS(B)SIN(B)

MysUy

-D COS(A)SIN(A)COS(B)SIN(B) + D SINZ(A)SIN(B)

-~

MU COSZ(A)SIN(B) + Dy COS (A)SIN(A)COSZ(B)
2’3 'Ia-l

-D

2

2 -
- Dy_.y, SIN(A)COS(B) + Dy ; COST(A)COS(B)
3°7 1°Y3
C0S(A)SIN(A)SINY(

- DM3,U COS(A)SIN(A))DEL(U,) - (D B)

3 MssPy
- Dy p. COS(A)SIN(A)COS(B)SIN(B)
2> .
- D, , COS(A)SIN(A)COS(B)SIN(B) + D SINZ(A)SIN(B)
P M.,P :
1:P2 3:Po
2

-D COS“(A)SIN(B) + D
M2,P3 : M]’P1

M

COS(A)SIN(A)COS2(B)
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SIN2(A)COS(B) + D c0s2(A)COS(B)
1 My5P3

COS(A)SIN(A))DEL(P5) - (-Dy |, COS(A)SIN?(B)

373 2°71

-D COS(A)COS(B)SIN(B) + D COS(A)COS(B)SIN(B)

Y%
2
COS(A)COS“(

SIN(A)SIN(B) + Dy B)

1 1°

2
M3,U2 SIN(A)COS(B))DEL(UZ) - (-DMZ’P] COS(A)SIN (B)

Up

COS(A)COS(B)SIN(B) + Oy, b, COS(A)COS(B)SIN(B)
, COS(A)COS2(B)

SIN(A)SIN(B) * Oy p
2(p)SING(

SIN(A)COS(B))DEL(PZ) - (DM U coS B)

Ps 22Uy

c0S?(A)COS(B)SIN(B) - Dy, C0s2(A)COS(B)SIN(B)

22U BALELY

COS(A)SIN(A)SIN(B) + D COS(A)SIN(A)SIN(B)

RLE

COS(A)SIN(A)COS(B)

cos?(A)cos2(B) - Dy
1

']9 3’U

2
M. U COS(A)SIN(A)COS(B) + Dy, Ly, SIN (A))DEL(U])
1°V3 3’73
2( 2( oS

(D coS B) - D 2(AYCOS(B)SIN(B)

A)SIN
MZ’EZ

MZ’P]

D

M

o COSZ(R)COS(B)SIN(B) + Dy p -COS(A)SIN(A)SIN(B)
3P

172
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+

D cos2(A)cos2(B)

1

COS(A)SIN(A)SIN(B) + D

M.,P

MysP3 1°

)

Dv..p COS(A)SIN(A)COS(B) - D

M. . P COS(A)SIN(A)COS(B)
3771 1°°3

+* Dy p SINZ(A))DEL(P]) + Sy COS(A)SIN(B) - SM COS(A)COS(B)
3°°3 2 1

d
SIN(A) + J1,3(;} P3) + 912

+

d d
(b + 3y (e

S
M3

+

P2(P3J3’3 + Pyl ) - Po(Jd, 4P, + P

2,373 + P

3,2 7 P93, 3 2922+ P1dpq)

™, = -(D

2

M. .C SIN(B) + DMZ’CK COS(B))DEL(CK)

1°7K

- (=D SIN(A)SIN?(B) - Dy_y. SIN(A)COS(B)SIN(B)
1 25

Uy 2

+

D

M

u. SIN(A)COS(B)SIN(B) + Dy |, COS(A)SIN(B)
1°73 '

1°71 ‘

+

: 2
Dy_ . SIN(A)COS“(B) + Dy |,

C0S(A)COS(B) )DEL(Us).
1 2’

M2, 3

- (-D SIN(A)SINZ(g) ) SIN(A)COS(B)SIN(B)

M5, Py

],Pz 2sP

+

Du. .p SIN(A)COS(B)SIN(B) + D

o COS(A)SIN(B)
11

M 1°P3

M

+ Dy SIN(A)COS?(B) + D, b COS(A)COS(B))DEL(P,)
:P3

M2, P, 2

2
- (DM]’U1 SIN®(B) + DMZ’U] COS(B)SIN(B) + DM1,U2 COS(B)SIN(B)

nel
+ Dy U C0S“(B))DEL(U,) -

2
25U, 2) (DM],P] SIN®(B) + D, p  COS(B)SIN(B)

2’1
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\ 2
M]’PZ COS(B)SIN(B) + DMZ’PZ COS (B))DEL(PZ)

2

+D

- (-Dy, - COS(A)SIN®(B) - D COS(A)COS(B)SIN(B)
M],Uz M2,U2

Dm. .u COS(A)COS(B)SIN(B) - D SIN(A)SIN(B)

1°U MU

1°73

; SIN(A)COS(B))DEL(U;)

+ D COS(A)COS2(B) - D

M,,U M,,U

2’71 2’

COS(A)COS(B)SIN(B)
2

- (-D COS(A)SIN?(B) - D

1:P2 M

2:P

+D

M

p COS(A)COS(B)SIN(B) - Du. p SIN(A)SIN(B)

1:P4 1°P3
COS(A)COS2(B) - D
1

+ D p SIN(A)COS(B))DEL(P]) - Sy SIN(B)

2’3 1
d d

(=- P,) +J, (== P,)

M,,P M

29

-5

d
M C0S(B) +J2’3((-j{_ P3) +J

2
= Pp(Pgdg 3+ Ppds 5+ Pydg q) + P3(dy 3Py + 0y 5Py + Pydy 4)

SIN(A)SIN(B) + D
K

™, = -(-D

3 SIN(A)COS(B)

MysCy

Z’C -|3C

2 2
+ DM3,CK COS(A))DEL(CK) - (DMZ,UZ SIN“(A)SIN®(B)

- D SINZ(A)COS(B)SIN(B)

M,,U M.,U

SIN?(A)COS(B)SIN(B) - D
22U . 1°Y2

-D U COS(A)SIN(A)SIN(B) - DM U COS(A)SIN(A)SIN(B)
2 2°"3 ;

+D SIN2(A)cOS?(B) + D COS(A)SIN(A)COS(B)
MU, M3, U,
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+D

- (D

-D

_DM

M2,P2

2073

MysPo

P

COS(A)SIN(A)COS(B) + Dy, |, cOSZ(A) )DELU,,)
. 3°U3

SINZ(A)SIN?(B) - D, 3 SINZ(A)COS(B)SIN(B)
2,

SINZ(A)COS(B)SIN(B) -D COS(A)SIN(A)SIN(B)

M3,P2

COS(A)SIN(A)SIN(B) + D, p SINZ(A)COS2(B)
1°M ‘

COS(A)SIN(A)COS(B) + DM],P3 COS(A)SIN(A)COS(B)

COSZ(A))DEL(P3) - (-DMZ,U] SIN(A)SIN?(B)

SIN(A)COS(B)SIN(B) + D SIN(A)COS(B)SIN(B) -

M-I ’U-l

COS(A)SIN(B) + D SIN(A)COS*(8)

COS(A)COS(B))DEL(U,) - (—DMZ,P1 SIN(A)SIN?(B)
SIN(A)COS(B)SIN(B) + D, 3 SIN(A)COS(B)SIN(B)
'|,

COS(A)SIN(B) + D SIN(A)COSZ(B)

My Py.
COS(A)COS(B))DEL(P,) - (DMz’Uz COS(A)SIN(A)SIN?(B)

~

COS(A)SIN(A)COS(B)SIN(B)

COS(A)SIN(A)COS(B)SIN(B) + Dy, | SIN?(A)SIN(B)

2:U3
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D COSZ(A)SIN(B) +D COS(A)SIN(A)COSZ(B)

SIN2(A)COS(B) + D cos2(A)COS(B) -
1°U3 M3,y

Dy

COS(A)SIN(A)SIN(B)

D COS(A)SIN(A))DEL(U,) - (D
My.Us 1~ Pu,p,

D

M..Pp COS(A)SIN(A)COS(B)SIN(B)

2> 1

D SIN?(A)SIN(B)

M COS(A)SIN(A)COS(B)SIN(B) + D

2

1°P MpsP3

COS(A)SIN(A)COSZ(B)
]

- D, C0S2(A)SIN(B) + D

M3,P2 M;,P

'I,

- DM

b SIN2(A)COS(B) + Dy p c0s2(A)COS(B) -
i 3°P

3

Dy

p COS(A’)SIN(A))DEL(P]) + SM SIN(A)SIN(B)
2

33

7
: SIN(A)COS(B) - S

d_p

S COS(A) + (-
dT

P3)+J

d
J, o(=- )
M My 3,3' 1 3,2 2

d
*+ ;5 1‘;} P1) + Pr(dp oP3 * Pody o + Pidy q)

Je P+ d

- Poldy sP3 + dy 5Py

P +PJ

2 1,1

6.27 SPECIAL FORMS OF THE MOMENT EQUATION

As in the case of the force eduations, the investigator sometimes wishes to modify
the moment equations to determine how the vehicle will respond if the motion is
restricted in some way (ref. 8). For the case of zero sideslip, MACSYMA goes
through the equations, makes the appropriate substitutions, and displays the modi-
fied results. The zero sideslip condition requires that SIN(B) =0 and COS(B) = 1.
The substitution and display statements required to implement this assumption and
the modified moment equations assume the following form:
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(C33) FOR I:1 THRU 3 DO
TM{I]:SUBST([SIN(B)=0,C0S(B)=1],TM[I])$

(C34) FOR I:1 THRU 3 DO DISPLAY(TM[I])$

™ COS(A) - DM3Q¢K SIN(A))DEL(CK)

= -(D
SINY(

A) - D
3°Y;

COS(A)SIN(A) + D
3

COS(A)SIN(A)

- (-D
M M3,U M],U1

2(

A))DEL (U 2(

+

Oy uy €08 3) - (-Dy_p SIN(A) - D COS(A)SIN(A)

3>P] M,,P

3> 3

+

D COS(A)SIN(A) + D

1

N ( ))DEL(P ) - (D M],U COS(A)

My»P 2

My,P3

COS(A) --D
2

D SIN(A))DEL(UZ) - (D

SIN(A))DEL(P
"0, (A))DEL(P,)

M 2

],P M3,P

(D SINZ(A) - COS(A)SIN(A) - D COS(A)SIN(A)

M 3

D
33U3 M3,U] M]’U

SIN2(A) - D
3

+

D c0S2(A))DEL(U 1) - (D

M

p 5. COS(A)SIN(A)

M50, M3.P,

3,
cos(
1

DM COS(A)SIN(A) + D

p A))DEL(P]) +S
173

SIN(A)

M 3

P M

'I’

dp

dT

d
(== P;)
1,10

d
- SM] COS(A) + J],3(a} P3) J],Z( 2) + 4

<+

Pp(P3dy 3+ Ppdg 5+ Pydg 1) = P3ldy gP3 + Pody 5+ Pydy q)

DEL(CK) - (DMZ,U] SIN(A) + DMZ,U3 COS(A))DEL(U3)

- (Dy P, SIN(A) + DMZ’P3 COS(A))DEL(P3) - Dy U DEL(U,)

2°72
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-D DEL(P,) - (D COS(A) - D SIN(A))DEL(U,)

M2,P2 2 M2,U] M2,U3 1

d

- (D COS(A) - D SIN(A))DEL(P,) + J (-- P,)

My Py MysPy 17728y 73
. d d
+J, ,(=- P,) - Sy, +J, (- Py) - P(P,J + P.J + P.Jd, )

2,2 dT 2 M2 2,1 dT 1 1YV 373,3 2°3,2 1-3,1

+

P3(Jq 3P3 + Jy oPp *+ Pydy 4)

TMy = (D, ¢ SIN(A) + D, . COS(AVIDEL(C,) - (D, , SIN(A)

1°% 30k 1°Y

+‘DM3,U] COS(A)SIN(A) + DM],U3 COS(A)SIN(A)

2 2
+ DM3,U3 N (A))DEL(U3) - (DM],P] SIN“(A) + Dy

2
+ DM]’P3 COS(A)SIN(A) + DM3,P3 COS“(A))DEL(P5) - (DM],U2 SIN(A)

p COS(A)SIN(A)
371

+D COS(A))DEL(UZ) - (DM SIN(A) + DM p

COS(A))DEL(P.,)
M3.Up 1:P2 MyoPy 2
2( COS(A)SIN(A)

- (-D SIN

3

A) - D COS(A)SIN(A) + Dy U

3 1’71

2
SIN“(A) - D
MysPs M3,P4

M,,U 3,U

1 M

+

D COSZ(A))DEL(U]) - (-D

M COS(A)SIN(A)

§]

371

-~ 2
*D y.py €08 (A))DEL(P;) - S, SIN(A)

COS(A)SIN(A) + D

M;,P

1°71

d d d
- Sy, COS(A) + J, (== PL) + 3, o(=-P,) + 3, ,(-- Py)
M3 3,3 dT 3 3,2 dT 2 3,1 dT 1

t P10y 3P+ Pydy 5 + Pydy ) - Poldy Py * dy oPy + Py )

~
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In addition to the zero sideslip condition, the investigator frequently wishes to
determine vehicle response when the angle of attack is limited to small values. For
this condition MACSYMA would implement the assumption that SIN(A) = A. More-
‘over, if the angle of attack were sufficiently small, the program would request
MACSYMA to make the additional substitution COS(A) =1.

In this case, the required substitution and display statements give rise to the
following modified moment equatlons

(C35) FOR I:1 THRU 3 DO TM[I]: SUBST([SIN( ) A,COS(A)=1],TM[I]1)$
 (C36) FOR I:1 THRU 3 DO DISPLAY(TM[I])$

2

™, = -(DM],CK - DM3,CK A)DEL(C,) - (-Dy, b, A - DM3,U3 A
Dy Ly A DM]’U3)DEL(U3) . (-DM3,P1 A2 . O py A Oy, ,p, A
+ DM],P3)DEL(P3) (DM],U2 - Oy, A)DEL(U,) - (DM1’P2
. On,.p, MOEL(Py) - (D a2 O, A = O u, A
* Dy g, JOEL(Y) - (O, p, A~ Dup. A= Dy p. A
+ Dy p JDEL(Py) + Sy A+ J, 35 Py) + 0y o5 ) + J1,1(g' Py)
1°M1 3 >3 47 T dT
" omy t Pz(P§J3,3 t Py ot Pydsy) T_P3(J2 3P3* Pal, 2
* Pyda,g)
™y = Oy o DEL(Cy) - (O, A+ DMZ,U3)DEL(U3) ; (DMZ,P] A
¥ DMZ’P3)§EL(P3) <Oy, DEL(U,) O, ,p, DEL(P,) - (DMZ,U]
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-D

M

u. RIDEL(U7) - (Dy p - Dy p AJDEL(Py) + Jy 5(=- Pj)

3 1Py 2:P3
d d
4 p + 3, (9 p
2,2%y7 2 2lgr

2’

P.J, )

+J ) - S ) - P 3,2 7 P13y

2 M 1 1 373,3 2

+ Po(J; Py *+dy ,P, + P, )

3(1,'33 1,2°2 11,1

M,.c, ** Dy * DM3,U] A

127K

)DEL(C A

K

) - (D
C K M, .U,

2

A+ DM U )DEL(U3) - (DM ,P] A-+D

3,

A+D
M3,P1 M],P3

*Dy. .y A

1°73 3’73 1

+

D )DEL(P,) - (D A+D

JDEL(U
MysU M

2

) ) - (D A
M3,Ps 3 32U 2 M1sPy

2

-+

D )DEL(P.,,) - (-D A¢ - D
MysP, 2 MysUs 3

A2 -, o A+D

+D
M3,

)DEL(U,) - (-D

d

A+ -- P

+D ( )
M-I 3,3 dT 3

)DEL(P,) - S
M5 P 1

d
g Pp) + Pyldy 3Py * Pody o + Pydy 4) 5

+ 3 4(

- Poldy 3P3 + 34 5Py + Pydy 4)

Examinatibn of these equations reveals the existence of terms such as 42. If it is
assumed that second-order terms in A are negligible, a program statement instructing
MACSYMA to make the substitution A2 = 0 would simplify the moment equations
as follows: -

(C37) FOR I:1 THRU 3 DO
TMLI]:SUBST([A**2=0],TM[1])$

(C39) FOR I:1 THRU 3 DO DISPLAY(TM[I])$
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A)DEL(C,) - (-D A+D A
K K M3,U3 M1,U1

A+D

)DEL(P
1 3

P M,,P

1°°3

- (D -D A)DEL(U,) - (D -D A)DEL(P,)
M],u2 M3sU, 2 M1,P2 M3,P2 2

M3,U

+

D p JDEL(P

1°71
d

Jy (== Py) - S
1,1 dT 1 M

) +S

M 1

+

o Py(P3d3 3+ Ppds 5 + Pydg q)

- P3(Jy gP5+ Pody 5+ Pyd, q)

™, = -D DEL(C,) - (D A+D )DEL(U,) - (D A
2 M,sCy K M, M,,Us 3 My P

Uy 2

+ D
: 1

)DEL(P3) - DM U

DEL(U,) - D
3 2> 2- M

2 2°

DEL(P,,) - (D
M.,,P P, 2 M, U

dp

dT

- Dy_y. MIDEL(Uy) - (Dy o - D ; A)DEL(P,) + J

( )
5> M,P 2,32 73

3

d
+J, (== P,) - §
2,2 dT 2 M

2’

d |
t 1y (52 Pp) = Py(Pgds 5+ Pydg 5 % Pydg q)

2 dT

+ P,(J J; P, + PyJ

3(97,3P3 * 91, oP2 * Pydy )

™, = -(D

A+0D )DEL(C,) - (D A+0D A
3 M]’CK M3,CK K M3,U] M],U3

+D )DEL(U,) - (D A+ D A+D )DEL(P,)
MgsUg 3 MgsP MysPs Mg,Ps 3
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JDEL(U,) -
2 2"

A+ D YDEL(P.,)
MysPy MgsP, 2

- (D A+D (D

M]’UZ M,,U

3’

- (-D A+0D A+0D

JDEL(U,) - (-D

M3,U‘l
' d
1)DEL(P]) -~SM] A+ J3’3((-1_-r P3) - SM + J3 2(

-+

D
M3,P

(Jp 3P3 * Ppdp o * Pdp o)

-+

d
-- P]) + P]

J
30T

1

- Poldy 3Py 9y Py * Prdy g)

An additional simplification is possible if the assumption that angular velocity
perturbations are negligible is a valid one. Implementation of the assumption that
DEL(P)) = 0 yields the following greatly simplified equations:

(C40) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
TM[I]:SUBST([DEL(P[J])=01,TM[1])$

(C41) FOR I:1 THRU 3 DO DISPLAY(TM[I])$

- (-D A+D

™= -0y ¢ - Oy c, AOEL(C) s o A
# 0y y DELUG) - Oy - By, ADEL(Y,) - (—DM3’U] A
- DM1’U3 A+ DM]’U])DEL(U]) + sM3 A+ J],3(3% P5) +‘J],2(§% P,)
#0018 Py) = Sy # Py(Pydy g Py o ¥ Py )
dT 1 |
- P33y, P3 * Pady o + Pydp )
™, = By ¢, DEL(C) = (B y A+ By JOEL(U3)
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d
- D DEL(U,) - (D - D MDEL(U}) + 9, 4(§r P)
My U, 2 My.U;  OMy,U, 2,337 P3
d d
+J, ,(=- P,)) -S, +Jd, (== Py) - P.(P,J + P,J + Pyd, 4)
2,27 P2) = Sw, 92,10 Py 1(P3dg 3+ Ppds 5 + Pydg 4
+ P3ldy 3P+ dy Py + Py y)
™, = -(D A+ D, . )DEL(Cy) - (D A+ D A
3 My LCy Mgy K My, My .U

+ Dy U )DEL(U3) - (D A+ DM U )DEL(UZ) - (-D U A

U3 L My.U, 32Uy M3.Us3
' d
+D A+D DEL(U) - Sy A+ J, o(9- P) - s
My sU, MysU; 1 M, 3,305 P3) 7 Sw,
d d
* J3,2(a} Py) + J3,1(a} P1) + Py(Jy gPg + Pody o + Prdy o)

6.28 THRUST MOMENTS

As indicated in section 6.19, the thrust moments TM; appearing on the left-hand
side of these equations are the resultant of the moments produced by a number of
thrust generating systems. The equatlons (6.19.1) relate the thrust axes coordinates
Xy I to the coordinate system Y , which has the same origin as the thrust axes buit is
parallel to the body axes system.

To facilitate the formulation, equations (6.19.1) are entered here.

(C1) Y[1,NI:X[1,N]*COS(K[N])*COS(P[N])$
(C2) Y[2,N]:X[1,N]*COS(K[NT)*SIN(P[N])$
(C3) Y[3,N]:-X[1,N]*SIN(K[N])$
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The point of application of the nth thrust vector relative to the body axes system,
with origin at the center of gravity, has components (L, ,n’Lz,n’L3,n)' The compo-
nents of the nth thrust vector in this coordinate system are given by equa-
tions (6.19.2). The product of the position matrix v/ith elements (Ll,n’Lz,n’Lz n
and a column vector of thrust components can be processed as follows. ’

First enter the (3,3) position matrix, element by element, as requested by
MACSYMA. Next enter the (3,1) column vector of thrust components in the same
manner. When the matrices are entered the displayed form of each matrix assumes

the conventional textbook form

(C4) ENTERMATRIX(3,3);

ROW 1 COLUMN 1
ROW 1 COLUMN 2
ROW 1 COLUMN 3
ROW 2 COLUMN 1
ROW 2 COLUMN 2
ROW 2 COLUMN 3
ROW 3 COLUMN T
ROW 3 COLUMN 2
ROW 3 COLUMN 3
MATRIX-ENTERED

(D4)

03
-L[3,N];
L[2,N];
L{3,N];
03
-L[1,NTDs
-L[2,N];
LLT,NTs
S

[ | e | s [ e [ s [ g |

(C5) ENTERMATRIX(3,1);
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ROW 1 COLUMN 1 T[NJ*DIFF(Y[1,N],X[1,N1);
ROW 2 COLUMN 1 T[NJ*DIFF(Y[2,N],X[1,N]);
ROW 3 COLUMN 1 T[NI*DIFF(Y[3,N1,X[1,N]);
MATRIX-ENTERED

% Ty CO 0s( Ky) COS(P)
(D5) E N COS(Ky) SIN(Py)
[
[

—TN SIN(K )

| NS ) SN | NSO | WU ) N Y o |

By requesting the system to multiply these two matrices, the following product
matrix is obtained:

(C6) (D4).(D5);
; E ~Ly y Ty COS(Ky) SIN(PY) = Ly Ty SIN(K,) %
(D6) % Ly, Ty COS(Ky) COS(PY) + Ly Ty STN(Ky) %
E Ly.n Ty COS(Ky) SIN(PY) = L, \ Ty COS(Ky) COS(P,) %

In order to express this column vector of thrust moments in conventional
functional form, the following two programming steps are required:

(C7) FOR I:1 THRU 3 DO ROW[IJ:FIRST(ROW((D6),1));
(C8) FOR I:1 THRU 3 DO (TM[IJ:ROW[IJ[11,DISPLAY(TM[I]))$

TM] = L3 N TN COS(KN) SIN(PN) - LZ,N TN SIN(KN)
TM2 = L3,N TN COS(KN) COS(PN) + L],N TN SIN(KN)
TM3 = L],N TN COS(KN) SIN(PN) - LZ,N TN' COS(KN) COS(PN)
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These equations give the moments produced by the nth thrust vector. When the
number of thrust generating systems is known, these equations can be summed on n
'to obtain the total thrust moments. :

6.29 SPATIAL ORIENTATION IN TERMS OF THE DIRECTION COSINES

The differential equations for the direction cosines can be obtained by first
entering a (3,1) column vector of direction cosines, with elements Djl , Dh, and A
Dy,, where I can assume the values 1,2,3, and by premultiplying this vector by the
angular velocity matrix. This operation is equivalent to the vector cross product of
the angular velocity vector and the unit vectors I J and K (ref. 9). The program-
ming steps and the displayed output are

(C1) ENTERMATRIX(3,1);

ROW 1 COLUMN 1 0[5,1];
ROW 2 COLUMN 1 D[I,2];
ROW 3 COLUMN 1 D[I,3];
MATRIX-ENTERED

(D1)

(C2) ENTERMATRIX(3,3);

ROW 1 COLUMN 1 0;

ROW 1 COLUMN 2 -P[3];
ROW 1 COLUMN 3 P[2];
ROW 2 COLUMN 1 P[3];
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ROW 2 COLUMN 2 0;

ROW 2 COLUMN 3 -P[1];
ROW 3 COLUMN 1 -P[2];
ROW 3 COLUMN 2 P[1];
ROW 3 COLUMN 3 0;
MATRIX-ENTERED

% 0 —P3 P2 il

(D2) E Py 0 -P %

[ -P P 0 ]

} [ 2 1 ]

The product of these two matrices is

(C3) (D2).(D1);

| E Py 01,37 P30, %

(03) E P3 01,1 - Py Dp 3 %

[ P,D -P,D ]

[ 1 71,2 2 1,1 ]

’I:he individual terms of this column vector can be evaluated for /=1,2,3 by
executing the following program statement:

'(C4) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
EV(C[I,J1:RON((D3),J))$

The evaluated terms can be printed out by using the now familiar display
statement '

(C5) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO DISPLAY(C[I,J])$

C = [D P -D P ]
1,1 [1,3 2 1,2 3]
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C = [D P -P D ]

1,2 [1,1 3 1 1,3]

C =[P D -D P ]
1,3 [1 1,2 1,1 2] -

C =[P D -D P ]

2,1 [2 2,3 2,2 3]

¢ =[0 P -P D ]

2,2 [2,1 3 1 2,3]

C =[P D  -P D ]

2,3 [ 1 2,2 2 2,1]

C =[P D -P D ]

3,7 [2 3,3 3 3,2]

c. =[P D -P D ]

3,2 [3 3,1 1 3,3]

C =[P D -P D ]

3,3 [1 3,2 2 3,1]

The dependence of the direction cosines on the indices [ and J and the time T can
be shown by using the DEPENDENCIES statement. The use of this statement
facilitates the formulation of the differential coefficients

(C6) DEPENDENCIES(D(I,J,T))$

It only remains to request that the differential coefficients of the direction
cosines DCyy with respect to the time 7 be added to the coefficients Cj; and
displayed as follows:

(C7) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO
DCLI,d]:C[1,d]+DIFF(D[1,d1,T)$

(C8) FOR I:1 THRU 3 DO FOR J:1 THRU 3 DO DISPLAY(DC[I,J])$
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6.29

This concludes the formulation of the simplified aeronautical model considered.
The formulation gave rise to 18 equations: 3 force equations; 3 moment equations;
9 direction cosine equations to determine the spatial orientation of the vehicle; and
3 equations to determine the geographical location of the vehicle relative to an
Earth-fixed reference frame. It is seen that the technique of symbolic mathematical
computation, as implemented by the MACSYMA system, can be used to facilitate
the formulation of complex mathematical models of physical systems and reduce
the errors to which human operators are prone. The versatility and simplicity of the
system make it attractive to programmers and nonprogrammers alike. Moreover, as
already noted, the capability of working interactively enhances the utility of the

system by permitting the user to modify the formulation as he proceeds.
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