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Introduction.

This Report describes work dune oil 	 Spa ,--e Environment

and Lunar Surface Processes project by Ur. George M. Comstock

under NASA Contract NAS 9-15582 initiated March 15, 1978.

Our i .riwary accomplishment under this contract has been

the development of a general rock/soil model capable of simula-

ting in a self -consistent manner the mechanical and exposure

litstor^ of an assemblage of solid and loose material from sub-

micron to planetary size scales, applicable to lutiar and other

space-exposed planetary surfaces. The model has been incorpor-

ated into a new computer code called MESS.2 (Model for the

EvolnttOn of Space-exposed Surface's.) MESS.2 represents a con-

siderahle increase in sophistication and scope over previous

soil and rock surface models, as described in this Report.

CosmoScience Associates Technical Report TR-104 describing the

MESS.: model structure and operation and reprints of papers

published under Contract NAS 9-15582 are attached as part of

this Keport.

HESS.2 is currently beini; applied under NASA Contract

NASW 3273 to continue our study of planetary surface development

and ,pace environment characteristics.

Gener. ► 1 Rock/Soil Model.

It has been one of our long-range goals to develop a model-

ing techntyue for the nr,lItI -scale problem of space-exposed

surfaces whtch would be detailed, self consistent, and generally

applicable to a wide variety of planetary :surface conditions,
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both rock and soil, in order to put the interpretation of measured exposure

and maturation indices on a firm-* theoretical basis. We believe that

i
I	 MESS.2 will go a long way town-u achieving this goal. The model is actually

a system of programs that allow the problem to be broken down into tractable

parts, or scale regimes, with a consistent set of assumptions, while main-

taining accurately the interactions among different regimes. Within each

scale regime the surface and event characteristics, initial conditions, and

program bookkeeping can be flexibly tailored to suit the physical processes

important on that scale. Details of MESS.2 are discussed in the attached

summary; improvements made over the last year are described below.

Our previous models for soil (Comstock, 1977, 1978--attached) and for

rock (Comstock, 1978--attached) were designed to study specific problems.

The soil model (called RP.OSOL) demonstrated the relations among various

track density and density gradient statistics as a function of physical

near-surface exposure parameters; and the rock model (MESS.1) demonstrated

the effec t_ on track profiles of erosion scale and intermittent dust shielding.

These models also served as useful prototypes for new modeling techniques

and demonstrated the value of this approach, although as we pointed out in

our 1978 Progress Report, they were too limited in scope for many applications.

With this earlier work as a basis, considerable testing and background

work has been applied over the last year to increase the usefulness of the

model results.

Table 1 compares some of the capabilities of our previous models for

near-surface soil and dusty rock surfaces with the current general rock/soil

model MESS.2. All models treat individual cratering events chosen randomly

_	 from a size-frequency distribution of impact events and record residence

- -	 -- - --woman
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depths on a continuous depth scale. Important improvements are summarized

below.

Soil Model Upgraded--MESS.2 allows for the first time our full multi-

scale "bootstrap" technique to be applied to soil simulation, as we have

done for rock surfaces. This is important for modeling the intercorrelation

of maturation and mixing of soil over different depth and area scales, and

hence for studying the theoretical relation of soil statistics, evolutionary

paths, time variations, and core ch.onology. MESS.2 follows the lateral

movement of soil and provides areal correlations of soil atatistics, which

was not possible with our previous soil model. In addition MESS.2 tailors

crater shape and ejecta districtuion to local topography and slope for both

soil and rock surfaces.

Layered Medium--A basic improvement in MESS.2 is the capability of

handling a general layered medium where the layers may have different

strengths, such as loose material on a solid surface. different crater

morphologies are used for each layer where appropriate. The model generates

composite (e.g. bench) craters when the top layer is breached. All surface

statistics (exposure time, erosion accreta, etc.) are recorded for the upper

surface of each layer. The current application of this capability is to a

more detailed and complete study of the properties and effects of loose

grains and bonded accreta on rock surfaces. There are also larger-scale

applications, for example to shallow regoliths and small bodies, which we

will investigate.

Individual Particles--A very important new feature of MESS.2 is the

ability to follow an ensemble of individual loose particles of the appropriate

size range. These "particles" may be fine accreta, soil grains, fragments,

L
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rocks, or boulders depending on the scale size regime. When exposed, the

particles are subjected to finer-scale processes (impacts, accretion) and

their exposure times are recorded. Other statistics such as track and pit

densities also can be recorded for individual particles. Our previous soil

model followed only one grain at a time, so no correlation among local grain

histories was possible. MLSS.2 includes these correlations w'.tich are

important for studying the properties of in situ reworking vs. mixing over

larger depths and distances. These considerations are vital, for example

in isolating the effects of time variations in meteoroid and nuclear particle

fluxes from statistical fluctuations in exposure history.

This individual grain capability is equally important for rock surfaces

where an accurate derivation of surface exposure time distributions in the

presence of bonded accreta and loose dust depends on the distribution of

single- and few-gain layers. On a le.rger scale this capability allows a

derivation of the expected distribution and residence times of ejected

rocks. This would have implications for dating craters and would set con-

straints on the time variation of galactic cosmic rays used to determine

rock residence times and on the rate of impact events governing rock residence.

The cratering process is well understood when the crater size is either

much larger or much smaller than the particle size being impacted. The treatment

of individual grains allows us to better handle the difficult intermediate

case where crater size is less than about an order of magnitude larger than

the typical loose particle size, so that relatively few grains are involved.

This is a critical range important for thin layers (miniregoliths) on both

rock and soil surfaces where maturation processes predominawly operate.

I
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Consequently we have attempted in MESS.2 to pay careful attention to the fate

of individual brains on sub-centimeter size scales.

New R ecta Model--During the last year we have developed for MESS.2

a new ejecta origin and distribution model which allows exposure depth

histories, lateral movement, and the effect of local topography to be

simulated more accurately. The model uses an ejecta distribution map

given, on a horizontal surface, by the form:

r	 QR ((h/fH ) + (r/R )2]a
a	 c	 c	 c

where r is the final radial distance of the ejecta, R is the apparent
a	 c

crater rim radius, H	 0.411
c 

is the maximum depth of the final crater in
c 

loose material, Q, f, and a are shape parameters, and h and r are the pre-

ejection depth and radial distance, respectively, within the crater. This

:nap assumes that the ejecta origin contour surfaces for r
a
 within the crater

are paraboloids with respect to a horizontal surface. 	 a controls the

radial dispersion of ejecta, f controls the shape of the rim (takes account

t , f fallback) and Q controls the maximum ejecta range for "normal" ejecta

(not high velocity).

We tind that a good set of parameters is Q-10, f-1.2, and a -0.2.

These values produce an ejecta blanket, shown in Figure 6 of the attached

MESS.2 summary, which has a realistic rim shape and a height distribution

-3
proportional to (r a /R ` )	 (compare with McGetchin et al., 1973). This

also produces an ejecta origin map, shown in Figure 5 of the attached

summary, similar to experimental results (e.g., Piekutowski, 1975). The

model yields stratigraphy inversion and stretching similar to that observed

Stdffler et al., 1975); it is also similar to the model proposed

by Croft (1977) except that our form produces a more realistic ejecta origin
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(21	 map and explicitly includes the final rim shape.

Surface slope and curvature can be taken into account by assuming a

similar relation for ejection angle:

d - 9 - (6 - 0 )((h/fH ) + (r/R )2)B
a	 x	 x	 m	 c	 c

where 0 a 90 0, d	 100, and B	 a, and translating _ . a new ballistic
x

range assuming 'e same ejection velocity.

We believe the new ejects model can be applied to a wide range of size

scales, although this "normal" ejects becomes much less important in the

total cratering energy budget for smaller craters, where a very small

fraction of ejected mass apparently carries off most of the kinetic energy

at high velocities (e.g., Breslau, 1970).

MESS.2 applies this ideal model for each event to the actual distribution

of particles and soil and rock surface topography as described in the

attached summary. This ejects model will have an important application in

asteroid regolith studies.

Agglutination and Comminution--MESS.2 incorporates a tentative, first-

approximation model for b-uerating bonded accreta (e.g., "pancakes") and

agglutinates and keeps account of these. The material ejected from the

central pit of rock microcraters is identified with strongly bonded accreta.

Material ejected from a similar central region of small soil craters is only

partially melted and is assumed to form into agglutinates. MESS.2 assumes that

individual particles are broken up when they receive an impact that would

vield a crater of similar diameter.

Track Densities--The distribution of track densities is maintained

both in soil grains and in rock profiles as in our earlier models.

Statis t ical Scale Coupling,--The statistical techniques for coupling

finer-scale activity into the simulation of a given scale regime have been
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(	 improved and made more detailed. The previous rock and soil models assumed

constant, average rates for accretion and erosion, which could not yield

detailed Surface exposure distributions. Between discrete events in a

given size regime, MESS.2 chooses the finer-scale erosion or accretion for

each cell from a set of model-generated time-dependent depth-frequency

distributions appropriate to the environment at that cell 	 bare rock

or particle, or fine material). See the discussion and Figure 14 in the

attached summary. In each of these distributions a given depth change

has associated exposure statistics so that an accurate average exposure

time at the surface of each cell is maintained, including the effects of

finer-scale activity.

Multi-scale Correlations --The areal and frequency distributions of

surface features (e.b., microcraters, accreta, solar wind concentrations)

can be generated a d correlated as a function of time on any size scale

by using Lite exposure time distributions derived on that scale and the

time-dependent areal and frequency distributions derived for that feature

on its appropriate scale. These distributions can also be correlated against

track densities and profiles. These theoretical correlations between

processes operating on different scales, under various surface and flux

level conditions, are the results needed to help interpret rock and soil

measurements.

Cur rent Applications--We consider the MESS-2 system to be a general

research tool which has many applications. It is currently being applied

to study rock surface processes in greater detail. We are in the process

of generating the time-dependent areal and frequency distribution functions

for exposure time and other statistics as discussed in the previous sections,

over the subw1cron to centimeter size scales. Theoretical correlations

^t
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between microcrater and accreta densities and track profiles are among

the results to be obtained from these. We are seeking improved criteria

for locating production track profiles, determining micrometeoroid and

solar wind fluxes and exposure times, and identifying past variations in

these fluxes.

We also are applying the model to the maturation of lunar soil, to

derive theoretical correlations among maturation indices, identify the

effect of evolutionary paths--in situ reworking vs. mixing of pre-irradiated

soil--and to improve criteria for determing soil core chronology and soil

sources. The goal is to put many of the interpretations of soil measure-

ments on a sounder theoretical basis.
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TABLE 1. MODEL FEATURES

Model Feature RHOSOL MESS.1 MESS.L
(soil) (dusty rock) (rock/soil)

1977,78 1978 1979

Random,	 discrete	 impact events........ yes yes yes

G..ntinuous depth scale recorded....... yes yes yes

Multi-scale iteration technique....... partly yes yes
(single scale
with finer-
scale accretion)

Surface	 distribution	 recorded......... no yes yes

Topology-dependent crater and
ejecta	 morphology ..................... no partly yes

(crater)

Lay ered	 medium capability ............. no partly yes
(dust

thickness)

Ensemble of	 individual grains......... partly no yes
(single grain)

Ejecta origin and	 range monitored..... no no yes

Generation of bonding accreta
and	 ?gglutinates	 included ............. no no yes

Comminution	 included .................. no no yes

Distri'Dution of	 track	 densities....... yes ico yes

Time-dependent areal and frequency
distributions and correlations of
exposure times and of erosion and
accretion	 depths...................... no partly yes

(averages
used to
couple
scales)

IIs
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SUMMARY OF MESS.2 STRUCTURE AND OPERATION

Structure--Space-exposed surfaces are goad examples of a type of

environment governed by processes, such as meteoroid impacts, which operate

over a wide range of size and timt. scales, producing complex inter-scale

relationships between observable quantities- One general method of attacking

this type of multi-scale problem is to solve or model it for a restricted

range of size and/or time scales,parameterize the results it a form that

has meaning on the next larger scale, and reiterate the procedure on the

larger scale.

MESS.2 is a system of programs that uses this approach to analyze the

evolution of space-exposed surfaces, although the basic structure has appli-

cations to other multi-scale problems. Figure 1 summarizes the roles played

by the various programs in the system. Each program acts as a utility

routine to perform certain bookkeeping or physical simulation functions on

separate files that contain data on the surface and frequency distributions

of statistics, statistics for individual grains, and depth profiles. Further-

more each of these can be tailored for each size scale to suit the physical

processes important on that scale. The whole system can run automatically

or parts c--n be used individually to study the effect of eacri model process.

Some of the essential model fes`ures are described below.

Surface grid and size scale--For each size scale regime simulations are

carried out on a surface grid made up of hexagonal cells, illustrated in

Figure 2. Each cell has an effective radius S such that IrS 2 is the area

of one cell. S defines the scale or resolution of the size regime. The

location of a cell is identified by a special near-circular coordinate

system composed of hexagonal "rings" denoted by N, where N-0 is the central
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cell, and an angular cell count M whi^h ranges from M-1 to M-6N for ring N.

The hexagonal symmetry allows the grid to be divided into 6 sectors, each

containing N cells from each ring N. A grid of N rings contains 1+3N(N+1)

cells, or 279i cells for N -30, a convenient recorded grid size.

Individual events are chosen centered on a random cell and each event

is analyzed in a similar event-centered coordinate system (n,m). This allows

convenient handling of circularly symmetric cratering characteristics as

well as sectoring of the event to handle asymmetries, for example in topo-

graphy. Simple conversion algorithms relate (N,M) and (n,m). A special

algorithm can correct for the nori-circularity of the rings but does not change

the results significantly and is generally not worth the extra computation

time. It is found to be sufficient to treat each ring as representing an

average radial iistance, which encloses the same area, given by:

(1)	 R = 0+3N2 ) 1 '/2  S = V3 NS

Crater surface statistics are recorded for each cell. These include

elevation, exposure age, number of times excavated, and a surface condition

code describing the last event to affect the cell. The condition code is

used on output to help identify surface features generated, such as craters

aad bonded accreta.

Depth scale--Elevations at each cell are recorded on a continuous

scale, allowing fractions of S, and represent an average over the cell area.

Depth profiles (for examp le, track density) are monitored at a set of

sample points defined on a logarithmic depth scale. If the surface erodes

then the logarithmic depth scale is maintained by generating new sample

points by logarithmic interpolation between existing sample points. Depth

profiles are recorded only at certain cells, especially the central cell.

Excavated sample points are retained along with excavation time and depth

as well as initial depth.
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Time scale--Fur each size regime the model time scale is based on the

mean time T between individual impact events. Individual events occur at

time intervals t chosen from the distribution exp(-t/T) and constrained to

be multiples of a model time step dT-T/10. The use of a fixed model time

step is necessary to handle continuous events--track accumulation and

smaller-scale activity. The distributions used to simulate smaller-scale

activity are generated from smaller-scale simulations at time intervals of

dT so that one will match the event interval t. The exposure time for each

cell may actually contain a fraction of dT because smaller-scale activity

affects the average exposure time for each cell. Statistical distributions

are updated and permanently stored at specified time intervals and read out

either later or at specified intervals.

Event sizes--The range of event sizes that are treated individually

in a given size regime is chosen to maintain good resolution for the smallest

craters, which are generally the most abundant as well. The largest crater

considered, generally rare on the regime's time scale, is always smaller

than the smallest crater on the next larger size regime in the multi-scale

iteration sequence. Figure 3 stows three typical rock microcraters with

central pits and spall zones; n is a crater index referring to the number

of rings in the central pit. n=1 is the smallest crater considered and

u-11 is the largest when size regimes vary by a factor of 10 in scale size S.

The crater index is also referred to in this summary as N .
p

Within this size range every impact event is treated individually

if it excavates material from within the recorded grid even if its center

lies outside. Larger craters therefore call 	 a larger "impact parameter"

so all 	 weighted size-frequency distribution is used to determine

T and choose event sizes. Typical size-frequency distributions are dis-

cussed by Comstock (1918--attached). EJecta material deposited from more
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distant events with craters completely outside the recorded grid is treated

as part of "continuous activity". This is found to be a good approximation

that saves considerable time.

Layered medium--Either one or two surfaces may be defined--a top surface

and, optionally, a sub-surface which may have different characteristics.

All surface statistics are followed for both surfaces. Both surfaces together

define a distinct top layer over deeper material, for example a surface soil

layer over older soil, soil over rock, or weak rock over stronger rock. The

last two cases involve different cratering characteristics for each layer,

which often results in composite craters. The potential exists for defining

additional layers.

For the case of thin soil on rock surfaces Figure 4 shows to scale a

progression of nominal crater shapes as a function of soil thickness H. Pure

soil and rock microcraters are shown at top and bottom, respectively. Corres-

ponding soil and rock craters are related by the relation:

(2) R = R (P /P )1/3
c	 s	 r c

where P and P
c 
are rock and soil density, respectively, and

r 

(3) R = 4R = 4 Y N S
s	 p	 p

where N is the crater index. For microcraters MESS.2 forms composite crater
p

shapes by simple superposition of pure shapes.

Individual particles--Individual particles are defined in a particle list

which records the elevation of the particle center and other individual

particle attributes. These may include surface exposure time, track density,

pit density, and other statistics of interest. Each cell in the surface

grid has a pointer giving the position in the particle list of the topmost

particle at the cell. Each particle in the list has a pointer giving the

position in the list of the next particle down at that cell. Pointers and

elevations are reassigned as particles are excavated and redeposited.



F

- 6 -

Individual particles and soil matrix material ejected from the

grid area are generally returned to the grid either by individual events

centered outside or by more distant "continuous" activity. However it is

possible to define an exterior (larger-scale) slope for each sector which

controls the efficiency of this external contribution and determines the amount

of ejects thrown back. This can result in either net erosion or net accretion

for the recorded surface. Any extra particles needed for this are capied at

random from those in the particle list. This procedure allows rock and summit

erosion and crater fill-in to be simulated.

Normally particles are initially defined only for loose material between

the top surface and the sub-surface discussed above. New particles are

generated when the sub-surface is excavated and are given attributes con-

sistent with recorded sub-surface statistics and profiles.

Ejects mapping--Material is ejected by an impact event according to the

model relation:

(4) r  . (Q+i)R - QR [(h/fH ) + (r/R c )2]a
c	 c	 c 

where R is the crater rad'us, H is central depth, shape parameters are

	

c	 c

given the values Q= 10, f=1.2, and a -0.2 for lunar soil, r is initial radial

distance from impact point, h is initial depth below the local mean plane

surface (defined below), and r
a 

is the nominal emplacement distance from

impact on a horizontal surface.

On sloping surfaces or small bodies the actual ejects distance can be

found by further assuming in ejection angle given by:

(5) U  - 6x - (ex - 6m )[(h/fH c ) + (r/Rc)2]6

	

where we	 use 6x - 800 6m	 10, and e - a	 6a is measured with respect

to the local surface which may itself have a slope angle of 6 s . The cor-

rected ejects distance r  can be found for -n v size body by using the

spherical ballistic equation and assuming the same ejection velocity V:



- 7 -

(6) V2 - R g /(cos t 6 + sin 26 /2tan[(r a -r)/2R ])
a s	 a	 a	 a

Rs gs /(cos ` (6a + Us ) + sin 2(6 a + 6s)/2tan[(rs-r)/2Rs]).

In this relation R y , gs , Ra , and g  are the planetary radius and gravity

of the actual body and of the model reference body (the Moon), respectively.

For gs o g  and R s - R  >> r  Equation 6 reduces to:

(7) r - r + (r -r) sin2(6 + 6 )/sir.26
s	 a	 a	 s	 a

The actual ejecta distance can be finally adjusted for the surface elevation

near r  (farther downslope, nearer upslope) by taking 6 a + 6s as the incident

angle and searching along it from rs to find the surface. General downslope

movement will result from this process.

For soil the final crater shape is assumed to be parabolic with H
c	 c

- 0.4 R .

For rock microcraters a more complex pit and spall zone is used as shown in

Figure 3, with spall zone omitted for pits less than about 10 microns diameter

(see Comstock, 1978--attached).

The origin map of ejecta distances given by Equation 4 for a lunar

regolith crater on a horizontal surface is shown in Figure 5. The corres-

ponding radial dependence of the ejecta blanket height is shown in Figure 6.

For subcentimeter craters formed in soil the movement of individual particles--

grains and fragments--becomes important. Individual particles are considered

to be ejected when their centers are above the nominal crater bottom. The

depth of the particle center also determines the final distance of the

ejected particle.

Figures 7, 8, and 9 illustrate this for the idealized case of a flat

surface with neatly

Figure 7 shows ejec

crater indices N
p

100-micron diameter

1.0 mm. The dotted

packed particles all of radius S (the cell radius).

to origin maps for the two smallest crater sizes, with

1 and 2. Each box represents one ejected grain; for

grains these represent craters of radii about 0.5 mm and

lines are the nominal crater shapes, N is the initial
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+	 event-centered ring number, and the number in each box is the final ring

number of the ejected particle. Figures 8 and 9 show the resulting ejecta

patterns of the grains (dots) for N  - 1 and 2 craters, respectively.

Crater contours in units of 2S are also shown. The six "rays" are artifacts

of the grid geometry but they do mimic observed ray patterns. Figure 10

shows the result of a typical sequence A to D of five such events generated

randomly for a recorded grid of 30 rings. Event C has NP - 2 and the others

have NP - 1; event D is centered just outside the grid. In this case all

grains ejected from the grid have been thrown back in between events by

"continuous" activity exterior to the grid, as is appropriate for an infinite

horizontal surface where matter is conserved. Note the superposition of

events.

Event procedure--During a typical simulation individual events will be

more complicated than thole described above because the surface will not be

smooth and level, both loose and hard surfaces may be involved, and the loose

surface layer may include matrix material as well as individual particles.

The following event procedure is used:

1) The event location (cell L ) and size (crater index N ) are chosen at
e	 p

random as described earlier.

2) In event-centered coordinates, the crater is divided into 7 regions,

a central region of N
P	 P

rings and 6 sector portions extending from N to

N  (corresponding to crater radius R c ) as shown schematically in Figure 11.

The average surface elevation <E> in each region is determined and a local

slope for each sector, o f - tan 6s , is determined from <E> i - <E> c such

that volume under the sector surface is conserved.

3) The elevation of nominal rock and soil crater bottoms is determined in

+	 each sector relative to the local slope. A typical example is shown in

Figure 12 for it thin soil cover over rock. The soil in Figure 12 contains
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both individual particles and matrix material but the particles are not

shown, for clarity.

4) The actual composite crater bottom is determined from rock and individual

particle elevations.

5) Starting at the rim and working inward, and from surface down, to assure

proper stratigraphy inversion, material is taken out of the crater and re-

deposited at its ejecta distance, as described above, using its initial

height relative to the local slope.

6) Soil material taken from the central region is re-assigned as agglutinitic

fragments (partly melted, loosely bonded). Rock material from the central

region forms agglutinitic material if it lands on soil, bonded accreta if

it lands on bare rock. (These are first approximations subject to improve-

ment.)

Between individual events the next event time interval is chosen and

smaller-scale and other "continuous" activity is processed over that interval.

Continuous activity includes ejects throwback, subject to any external slope

as discussed earlier, and track accumulation in individual particles and in

rock profiles. At the end of the interval statistics may be compiled, saved,

and read out as needed. The next individual event is then processed.

Statistics and multi-scale coupling—Periodically, surface, particle,

and profile statistics are compiled and saved. To analyze activity on a given

size regime, distributions of exposure time, erosion and accretion rates,

number of impacts, etc. are compiled for both surfaces over most of the

recorded grid (a few rings near the rim are ignored to reduce edge effects).

To properly couple different size regimes, these statistics are also

compiled over "supercells" similar in area to the unit cell area of the

next larger-scale regime.

Figure 13 illustrates the procedure. Regimes I, II, and III represent
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successively larger size scales, in this case a factor of ten each step

or x100 in area. Suppose Regime II is currently being simulated. Statistics
i

for Regime II are averaged within each supercell outlined (5 rings, 91 cells

each) and the averages are formed into a distribution of supercell statistics,

along with the results of other trial runs if needed to form significantly

detailed distributions. As explained in the section on time scales, these

distributions are formed at time intervals most useful to the next larger-

scale Regime III. Similarly distributions formed when Regime I was simulated

are used by Regime II to simulate "continuous" smaller-scale activity.

Correlations between supercells are ignored but this is a good approximation.

Two basic statistics are essential to couple two regimes--a depth

change and an average exposure time. Other smaller-scale statistics can

be correlated with these on their appropriate scale to form over-all distri-

butions and correlations between scales. Figure 14 shows schematically the

types of depth change distributions that are generated for a given size

regime as a function of time and three general environments--eroding, stable,

and accreting. Each distribution has exposure time parameters correlated

with it (not shown).

A typical surface may shift locally from one condition to another so

the distributions tend to broaden. During the crater production phase much

of the surface is unaffected or only accreting lightly. These earlier phases

are generally the most important for micro-scale regimes because of the

meteoroid distribution knee at about 50 microns crater diameter (Comstock,

1978-- attached). Larger-scale regimes (e.g., whole rocks, craters filling and

eroding, rille edges eroding, etc.) need to be followed into the crater

saturation region for complete characterization.

For the particular time interval t between two events, the appropriate

distribution is applied to each cell to choose at random the smal'er-scale
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activity at that c0 1. The depth change chosen has associated with it two

parameters governing exposure time: the fraction F of area affected by

events during the appropriate time interval t and the average <t a > exposure

time for that fraction. These, together with the previous average exposure

time <Ta> at the cell, are used to calculate the new average exposure time

<Ta >' at that cell, just before the next event, according to the relation:

(8)	 <T >' - (1-F)(<T > + t) + F<t >
a	 a	 a

In this way the average exposure time for each cell is maintained with a

minimum of error compounding between size regimes.

Smaller-scale accreta is treated as matrix material. If the diameter

of an individual particle is reduced by 20% or more by smaller-scale erosion

then it is cansidered crushed and the remainder is re-assigned as matrix

material.

Depth profile development --Between events track densities are updated

for particles and depth profiles taking into account true (density reduced)

shielding depth below an average local exposure surface determiTsu' separately

for each sector. Depth profiles are maintained on a logarithmic scale as

described earlier. An example of profiles for bare rock generated as a

function of time is shown in Figure 15. Four sample points are illustrated

at a, b, c, and d. After production for (in this case) 4600 years profile

A is attained. Excavation at this time of a 230 micron chip (including

point a) results very briefly in profile B. After an additional 4700 years

profile C is attained, nearly regaining the production slope. Excavation

of 74 microns at this time gives profile D, with point b ejected. An

additional 110,000 years without further excavation yields profile Ei

Track production profiles typically used are discussed by Comstock

(1978--attached). Production profiles for other processes may be similarly

incorporated into the model.
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Applicability 7-MESS.2 is designed to be very flexible in

executing, monitoring, and permanently storing simulation

results so that they may be put to the greatest use. The model

system is designed as a research tool that can be tailored to

many applications of space-exposed surface conditions. The

stru .• ture of the system and many of its initialization, monitor-

ing, and output routines are general enough to be used for other

simulation problems. MESS.2 is currently being applied to rock

surface and soil development problems and the results will be

presented in future CosmoScience Associates Technical Reports.

Acknowledgement--This work has been supported by the
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NAS 9-15582.
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Figure Captions

Fig. 1.	 Major programs in MESS.2 sysl

Fig. 2.	 MESS.2 coordinate system sho%

angular cell count M.

Fig. 3.	 Typical model crater shapes

or glass surfaces; n-1 is th4

Stippled area is the central

- 13 -

Fig. 4.	 Series of model microcrater shapes in lavered medium

ranging from thick soil cover to bare rock.

Fig. 5.	 Model ejecta origin map for a soil crater. Ejecta

distance is r a, initial distance and depth are r and

h, respectively. H e and R c are crater depth and

apparent radius, respectively.

Fig. 6.	 Model height distribution for a continuous ejecta

blanket; h a is height, r  is distance from impact.

Fig. 7.	 Model ejecta origin maia for craters excavatiag two

and three layers of individual soil. grains.

Fig. 8.	 Final distribution of grains ejected from top crater

in Figure 7.
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Fig. 9.	 Final distributie , i of grains ejected from bottom

crater in Figure 8.

Fig. 10. Distribution of grains resulting from a typical

sequence of events similar to those in Figures 7-9.

Events occuring outside of the grid area shown are

taken into account.

Fig. 11. Sectoring of an impact event to determin,, local slopes

from average elevations <E> in each sector.

Fig. 12. Cross section of typic. : model im-act event in complex

soil-covered rock surface indicating construction of

final composite crater.

Fig. 13. Schematic representation of statistically coupling

different size regimes by averaging results over

supercells similar '.n area to individual cells on

the larger size scale.

Fig. 14. Schematic repreb°ntation of ypical ' epth change

distributions as a function of time for different

surface conditions.

Fig. 15. Example of a typical development with time (A to E)

of track density depth profiles in bare rock,

involving two impact excavations at profile site.

The evolutionary paths followed by four individual

I	 rock crystals (a-d) are shown; a and b are excavated.
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01 'TLINE OF MESS.2 STRUCTURE

Init ialization Package

M F S R V N
	

Defines basic model parameters

M E S B L D

M E S M O D

M E S R E C

M E S I N T

M E S T R L

Initializes adjustable "Run" parameters (scale
size, producti^^. rates, surface characteristics)
and builds various utility tables

Defines characteristics of individual events
(nominal crater shapes and e ,jecta maps)

Defines characteristics of "continuous" activity
(tailors distributions simulating finer-scale
activity and defines depth profile formats)

Run Package

Initializes data files (resets surface) for new
"trial", or picks up where previous trial left off

Controls simulation trial sequence and times

M E S C 0 N	 Processes continuous activity between individual
events

M E S U P D	 Generates statistical distributions as needed

M E S 0 U T	 Reads out statistical frequency distributions as
needed

M E S S E S	 Reads out surface distributions as needed

M E S C A T	 Processes individual events

FIGURE 1
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MINIREGOLITHS AND MONTE—CARLO MODELING
George M. Comstock, CosmoScience Associates,
21 Erland Road, Stony Brook, New York 11790

Modeling Methods--During this first decade of close—hand
observation of lunar materials it has become apparent that one
of the most striking characteristics of the lunar surface
environment is the great range of time and size scales over
which surface processes have been occurring. Most importantly,
the size distribution of meteoroid impact events is such that
properties of material at any given site can be influenced by
impacts of any size scale, from accumulated microscopic events
to single Imbrium—scale events. These properties are governed
by processes that are important on time scales ranging from very
short—lived (individual impacts, large solar flares) to geologic
(accumulated effects of many impacts, of solar wind and flare
activity and cosmic ray irradiation, geologic processes, etc.)

Since rliysical and chemical processes on each size and time
scale are modulated by mechanical processes operating on a wide
range of scales, there will be a complex feedback among various
scales of activity and complex, variable correlations among the
observable quantities (e.g., maturation indices, pit densities,
track parameters, gas content, stratigraphic profiles, etc.)
Because of this feedback between scales of activity and the
statistical nature of impact events, it is very difficult, if
not impossible, to obtain a complete understanding of lunar
rock and regolith properties by analytic methods alone or by
brute—force simulation of all scales at once, with details
severely truncated by computer limitations. These difficulties
have been discussed before (1-3).

This complexity can be made tractable by recognizing that
a series of events which are distinguishable, catastrophic
occurrences on one 1- 4 ,ne scale will appear as a gradual change
over a longer time scale, and a collection of objects which have
a discrete extent on one size scale can be represented as a
continuous medium on a larger size scale. We can then general-
ize to a bootstrap modeling technique whereby a given scale of
activity is simulated by considering individual catastrophic
events and discrete objects distinguishable on that scale and by
treating all shorter time scale events as gradual, continuous
changes and smaller size scale objects as an evolving continuous
matrix. The properties of these continuous features are
governed by statistical distributions derived by simulations on
smaller activity scales. In the other direction, larger scale
events and objects determine the general environment for a
particular activity and hence their effect can be included in
terms of local parameters or boundary conditions. These
parameters are not arbitrary or fixed but reflect statistical
properties of larger scale activity.

This modeling technique is very efficient, self—consistent,
' r
	

and demonstrates with good resolution the effects of each
process as a function of scale. After calibration against lunar
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measurements the results can be used ►.c: model any space-exposed
surface. By adjusting the processeF involved the technique
is applicable to the special surface--atmosphere-space interface
problems represented by various planetary surfaces. Like other
aspects of lunar research this approach i s p roseuting insights
into terrestrial problems as well.

Miniregoliths--We have been developing L;.js approach in an
extensive com[ater program called MESS (M-,del for the Evolution
of Space-exposed Surfaces). A simplified version of
MESS was used to simulate the erosion of lunar rocks and to
demonstrate the effect of intermittent dust coverings on the
evolving track density profiles in rocks (3,4). An earlier,
prototype model for soil has already provided new relationships
between track parameters and nea= surface soil history (2,4).
MESS may be applied to any scale of activity, however the larger
size scales have been more extensively modeled (e.g., 1, 5-8)
so we concentrate initially on sub-cm scales where many critical
surface processes occur and new data are becoming available
(e.g., 9-11).

To emphasize this we introduced last year (4) the general
concept of the "miniregolith", a sub-cm regime of loose material
either actively cov,2ring rocks, asteroid surfaces, or soil or
else buried in fossilized soil layers. MESS is currently being
applied to two miniregolith problems: exposure limitations by
dust on rocks and tae maturation of soil by sub-cm processes.
For dusty rocks we derive model surface exposure time distribu-
tions in the presence of dust and seek to establish model
relationships among, for example, the densities of solar wind
implanted gases, submicron pits, accreta, larger microcraters,
and particle tracks. Fir soil our goal is to derive relation-
ships among the various maturation parameters under various
surface conditions, in order to improve criteria for character-
izing ancient soil surfaces and soil mixtures and to allow us
to extract more information from the vast amount of lunar soil
data already available. Our results so far are closely related
to the concept of tdo evolutionary paths suggested by McKay et
al. (12).

The full version of MESS represents an integrated rock/soil
model which treats individual particles (grains, fragments,
rocks) as well as craters on a given scale. For miniregoliths
a particle size distribution and graininess of the soil are
taken into account. In this way we can include the crushing,
aggregation, and lateral and vertical movement of individual
particles, while keeping account of their orientation, surface
exposure, pit densities, and track densities. The behavior and
:volution of micron- to millimeter-sized particles can be
follo%.ed.

The cratering process is well understood when the crater
size is either much larger or much smaller than the particle
size being impacted. One of the main modeling difficulties
arises when the impact crater size is less than on order of
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magnetude larger than the typical loose particle size, so that
relatively few particles are involved. Most of these will be
ejected or shifted, some will be vaporized, melted, crushed, or
fractured, and some will be compressed and aggregated with
impact melt, or accrete to particle, rock, or glass surfaces.
This is often the case F or dusty rock surfaces and surface soil
layers, with grain sizes on the order of 1 micron to 100 microns
and dominate crater diameters on the order of 10 microns to lmm.
There is evidence that high velocity secondaries may also be
important (13). The MESS format is capable of taking these
processes into account to the extent that they are understood on
the scale involved and prove to be significant. Ultimately this
program will find application to the evolution of space-exposed
surfs--es at all stages of development, from bare rock, to
rubb.e, to fresh soil, to mature regolith.

This work is supported by NASA Contract NAS 9-15582.
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Miniregoliths I: Dusty lunar rocks and lunar soil layers

G. M. COMSTOCK

CosmoScience Associates
21 Erland Road, Stony Brook, New York 11790

Abstract—Using a detailed Monte-Carlo model for rock surface evolution we have verified that
erosion processes alone cannot account for the shapes of the solar flare particle track profiles
generally observed at depths of about 100 µm and less in rocks. We demonstrate that the observed
profiles are easily explained by a steady accumulation of fine dust at a rate of 0.3 to 3 mm/ 10" years,
depending on the micrometeoroid impact rate which controls the dust cover and results in maximum
dust thicknesses on the order of 100 µm to l mm.

We have derived the commonly used lunar soil track parameters ( p.o. pq, Pmea• NH/ N ) in terms of
parameters characterizing the exposure of soil grains in the few-millimeter-thick surface mixing and
maturation zone which is one form of miniregolith. We present p q vs. p_ and N H/N vs. pq plots
which allow us to determine the degree of mixing in soil samples and the amount of processing
(maturation) in surface miniregoliths. The ratio p q /pm ,,, is particularly sensitive to the mixing of soils
of different maturities and we use it to show that the sampling process often artificially mixes
together finer distinct layers, and that ancient miniregolith layers on the order of a millimetc, ;hick
are prooaoly common in the lunar soil.

1. INTRODUCTION

The history of exposure of material on any space-exposed surface determines
the extent of and correlation among many maturation processes, such as
microcrater formation, acereta collection, solar wind implantation and chemical
alterations, solar flare particle track accumulation, and glassy agglutinate
formation in soil. The details on this exposure history are governed primarily by
impact events that affect material within the first few millimeters of the surface
(Gault et al., 1974 for soil; Horz et al., 1974 for rock) and possibly by other
surface transport processes such as electrostatic effects (Criswell, 1972; Pelizzari
and Criswell, 1978.) We may define, therefore, a zone of a few millimeters thick
at space-exposed surfaces in which maturation actively takes place. Except for
rock surfaces constantly kept clean, this maturing zone will involve a layer of

„ loose, impacted material which we call a miniregolith. As part of a general study
of such miniregoliths we have been investigating the two types of space-exposed
lunar surfaces, rocks and soil, using Monte-Carlo calculations together with
primary particle track data.

In the case of rock surfaces we seek in this paper to establish the general
existence of thin, variable dust coatings. The possibility of occasional loose dust
on rocks has usually been accepted, but not studied systematically. The term dust
refers to rather fine-grained material that has been kicked, blown, levitated, or
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otherwise transported from one surface to another and settles loosely or sticks to
the surface.

The generally pitted and rounded aspect of rock surfaces exposed on the order
of a million years or more indicates that over a long time mass wastage by
primary impacts dominates the rock surface morphology on a scale of greater
than about a millimeter. Comparison of the density of etchable tracks left by
galactic cosmic ray iron nuclei with the concentration of cosmogenic nuclidcs
produced by cosmic ray protons yields an upper limit of 0.5-2 mm/ 10 1 years for	 t

	t 	 the mass wastage rate (Crozaz et al., 11474.)
Surface exposure history on a scale less than about l mm can be studied using

the depth profiles of solar flare particle track density. Some examples of depth
profiles in rocks and a review of the mechanisms involved can be found in
Fleischer et al. (1975). These profiles generally sh ,w an inverse power law
exponent of about 1 to within 10 gm of the present surface, and have been
explained as representing an equilibrium between rock erosion and track produc-
l ion (e.g., Crozaz et al., 1971.) However, such shallow equilibrium profiles can
be maintained down to 10 um or less only if the erosion mechanism removes chips
on a very tine size scale of less than about 10 µm. Moreover, the track density
attained by the equilibrium profile depends on the rate of this erosion and
measured profiles imply about 0.2-0.8 mm/ 10° years (see review by Fleischer et

al., 1975.)
A difficulty arises when we look for an erosion mechanism acting on a scale of

10 µm or less with this high rate. We will show in the nex. section that erosion by
micrometeoroid impacts alone cannot account for the observed track profiles at
depths 5100 um; it generally removes chips that are too large. Atomic sputtering
(e.g., McDonnell et al., 1972; McDonnell and Carey, 1975), thermal flaking
(Seitz and Wittels, 1971), and other fine-scale mechanisms are at least two
orders of magnitude too weak. Moreover, we hnd Rio direct evidence in the form
of gradual degradation of microcraters for any fine-scale surface erosion of the
required rate. These considerations force us to investigate other mechanisms
which affect the surface exposure history.

Fine-scale erosion is not the only mechanism which will produce the observed
r solar flare track profiles. Any process which leads to a distribution of exposure

depths roughly uniform on a scale of about 10 um increments will have the same
effect. The most likely such process would be a continual accumulation of small
dust grains (note that a single "slab" layer will not work). We know that dust
generated by relatively distant events is continually falling on the soil surround-
ing the rock. It is reasonable to assume That some of it will stick to the rock,
however loosel y , especially the smaller size fraction. This accumulation of dust
would be modified and occasionally knocked off by micrometeoroid impacts and
possibly by elecrostatic effects. A fraction of this accreta sticks well enough to be
observed after sampling and cleaning (McDonnell, 1977; Zook et al., 1978.)

We have modeled these processes with a Monte-Carlo computer program
called MESS (Model for the Evolution of Space-exposed Surfaces) and report
the first results in this paper. We shall show that for reasonable values of dust
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accumulation rates and micrometeoroid fluxes we can reproduce the observed
j solar flare particle track profiles and densities and account for a wide variation

from rock to rock while maintaining intermittent, variable dust coatings of -x100
µm to — 1 mm thickness.

In the case of lunar soil, previous model calculations (e.g., Gault et al., 1974;
Duraud et al., 1975; Comstock, 1977x) have included a surface mixing zone, or
lunar skin, but this has not been related in a generally useful way to the various
statistical track parameters (e.g., minimum, quartile, and median track densities)
often used to characterize the measurements in individual soil layers (see, for
example, Crozaz et al., 1970; Arrhenius et al., 1971; Bhandari et al., 1973;
Fleischer et al., 1974; Crozaz and Dust, 1977; and others.) Price et al. (1975)
and Goswami et al. (1976a) have used track parameters to identify microstra-
tigraphy in impregnated core tubes, which could represent ancient surface
maturation zones or miniregoliths. In the third part of this paper we derive
typical track parameters in terms of model parameters governing surface
exposure. The results allow us t j establish quantitative criteria for determining
the degree of mixing in individual soil samples and the amount of processing
through surface miniregoliths. The evidence suggests that ancient miniregolith
layers are common in the lunar soil.

2. How DUSTY ARE LUNAR ROCKS? EVIDENCE FROM TRACK PROFILES

Rock model

The rock surface calculations in this paper were made using a
new Monte-Carlo computer model which we have developed to serve as a general
vehicle for the simulation of surface-correlated processes in any size range. The
model uses a bootstrap technique which quickly generates an impacted surface of
an} desired scale and resolution while faithfully simulating topography and the
distribution over the surface of exposure ages and erosion rates, explicitly giving
the size-scale dependence of each. This model was first reported by Comstock
(1977b).

Our method is to divide the crater population into consecutive size regimes; in
the present case we use a factor of 10 in pit diameters: 0.4-4 µm, 4-40 µm,
40-400 µm, and so on. Starting with the smallest physically significant regime,
the model is run for each regime long enough to establish the effects of discrete
events in that size regime, that is until an equilibrium surface is well established.
Each such run tells us how the distribution of surface exposure times, surface
erosion, number of surviving -aters, and so on develop with time for that regime.
At each step the erosion in. • cation can be used as input for the next larger
regime in order to establish cumulative effects as follows. There is some variable
interval of time between simulated events for a given size regime. During that
time interval the cumulative effects of smaller-scale regimes are included by
assigning to each cell a depth change, or no change, dependent on that time
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inter v al and chosen from the distribution of erosion depths found by earlier runs
for smaller-scale regimes.

Clearl y this procedure can be extended to any size scale without either
consuming computer time, needlessly processing the much more numerous
smaller events, or ignoring them altogether. The time thus saved can be used to
compute other information, such as track accumulation. The limited size range of
each regime allows us to reduce the number of cells and to set a uniformly high
resolution; in each regime the smallest event considered can cover many cells, 91
in the present model. The total simulated surface area thus scales with the size
regime. This bootstrap procedure has an advantage over previous rock surface
calculations (Hartung et al., 1973; Hurz et al., 1974) which require the
processing of a great many small events before the effects of large events be,.-ome
statistically meaningful. Time limitations then prevent larger events from being
considered and computer size limitations prevent much small-scale resolution.
Hurz et al. (1974) use a cell size of 400 µm square. our smallest cell size used is
0.2 uni diameter and smaller size ranges could easily be considered.

We employ the nominal crater shape shown in Fig. I which has a central pit
(stippled) and spill zone (shaded). For a pit diameter D t„ the pit depth
H r = 2D t,/3, the spill zone diameter D, = 4D P at the original surface sloping
down to 3-) p at the bottom, which has a depth H, = 0.4D ` . The pit is formed by a
spherical bottom tangent to a cone with opening angle B e , = 40'. This shape is
based on obser v ed microcraters (Hurz et a.., 1974, 1975; Brownlee et al., 1975).
Although the central pit generally represents a small fraction of the microcrater
volume, we define it carefull y because the model records which cells represent pit
glass. In this way sur v iving microcraters may be identified by the same criterion
as is used experimentally, that is preser v ation of the central pit (Hartung et al.,
1973; Hartung et al., 1975). Thi: idealized crater shape is translated to the
quantized surface grid in such a way as to preser v e volume, as shown in Fig. 2 for
the smallest event (n = 1), the largest event (n = 11), and an intermediate size
(n = 6).

Other innovations are included in the model which we believe enhance its
faithfulness is simulating rock surface processes. We use a hexagonal close-
packed grid of cells, not the usual rectangular grid. A hexagonal grid possesses

DS
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HsFiP	
c+s c rt cTc

Fig. 1. Idealized cross-sectional shape of microcraters used in rock surface model,
Stippled area is glassN pit, shaded area is spill zone which tends to be absent for D. less

than -10 Nm
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l

F

the unique property that it has nearly circular symmetry, at least locally, about
any cell in the grid (and the noncircularity is easily corrected). This is very
efficient for reproducing the circular symmetries inherent in impact events. It
also conveniently enables us to divide the spall zone of each event into six
independent angular sectors each of which we allow to conform to the average
radial slope of the pre-spall surface in that sector while removing local high spots.
The result is more convincing topography and reliable results. Studies of
microcraters have shown (Horz et al., 1975) that pits of diameter on the order of
10 µm or less tend to lack spall zones, which decreases their erosion efficiency. In
the model all pits of less than 4 µm diameter have no spall zones, all pits of
greater than 40 µm have normal spall zones, and between 4 µm and 40 µm pits
have a probability ranging from 0 to 1, respectively, of having a spall zone in a
given angular sector.

Some impact pit production rates used with the model are shown in Fig. 3. The
distribution marked lunar rock data is essentially the same curve preferred by
Horz et al. (1974), extended to smaller pit diameters based on the measurements
of Morrison and Zinner (1977); we use an analytic form given by: N(>D)=
8.3 X 10- 'D- ' + 8.3 X 10-0(D + 0.005) -' where D is the pit diameter in em
and N is the cumulative crater production rate per cm'- — 10 6 years. Some
satellite measurements are indicated by solid points for comparison; see Horz et
al. (1975) for a complete discussion of satellite measurements and a compilation
of references.
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NUMBER OF CELLS FROM IMPACT POINT

Fig. 2. Examples of microcrater shapes on actual rock model grid. Within a given

size-scale regime, n = I is the smallest crater considered and n = I I is the largest, with

I I size steps altogether. The n = 1 crater has an area of 91 cells on the hexagonal grid

used.
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XXI11; H—HEOS 2; L—Lunar Explorer 35; M—Mariner ll; M4—Mariner Iv;
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The model accumulates track densities at sample points assigned on a
logarithmic depth scale; if these sample points are eroded away during the course
of a simulation run, the computer generates new points by interpolation to
maintain the logarithmic grid. In this way the track density profile is accumu-
lated elliciently over a wide depth range. Some track production profiles that
have been suggested are shown in Fig. 4 for a semi-infinite medium. Curves a, b,
and d are for solar flare particles, curve c is due to galactic cosmic rays.

Track profile data

A large number of particle track density vs. depth profiles have been measured
in lunar rocks by several groups since the first samples were returned. In order to
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Fig. 4. Iron-group track production rates suggested by lunar samples carefully chosen
to reduce the complicating effects of erosion and dust. All of these rates were tried in

the rock surface model.

present clearly the relevant features of these data we have plotted in Fig. 5 the
track density at a depth of 100 µm vs. the negative exponent (log-log slope) of the
depth profile at 100 um for 31 rocks reported in 21 papers (references are given
in Table 1). We have attempted to include in Fig. 5 most of the published data
measured in rock crystals; no measurements in glass are included. All data points
shown are based on our own fits to published data before authors' corrections for
any presumed recent chipping or dust shielding. Errors in track density are

a



.ir

_'ShJ
	

G. M. CoMSTMA

generally about 10% and errors in exrkment are 10%-20% depending on the
smoothness of the profile. Open circles refer to special samples originally chosen 	 t
to yield the production profile, with cxlkments of 1.8- 2.5. Most rocks show much
shallower profiles. Varying over a wide range within the parallelogram marked in
Fig. 5.

Model results: Clean rocks t
Sonic results of model calculations for impact-saturated rock surfaces kept

continuously clean are shown in Fig. 6 by circular points. The most important
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Fig. 5. Measured track densitN at 100 uni plotted against the negative exponent of the
depth profile at 100 µn1 for 31 rocks reported in 21 papers. References are given in
Table I. Open circles refer to special samples chosen to yield the track pr(Auction

profile.
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model parameters are a, the negative exponent of the solar flare track production
profile, and m, a meteoroid flux factor equal to the number of impacts pe:-
cm — 10° years with central pit diameter greater than 500 um. The parameter n is
a dust accumulation factor which is 0 for clean rocks. The rate 0 = 5 refers to
the crater production rate in Fig. 3 marked lunar rock data and 0 = 50 refers to
lunar X 10, which fits the satellite data better. The label Model I refers to the
shape of these two crater production curves. Exponent a = 1.8 represents the
shallowest track production profile suggested by lunar data (curve b in Fig. 4,
from Blanford et al., 1975) while a = 2.2 is a more representative model. The
dashed parallelogram outlines the normal rock data in Fig. 5. The "error bars"
show the total spread obtained in several trial computer runs for a given set of
parameter values and represents the variation expected for clean rocks. The
dotted arrows connect models of increasing meteoroid flux.

Figure 6 shows that only by taking the shallowest possible track production
profile, a = 1.8, and a high impact rate can we obtain results falling just within
the range of normal rock data, and even this case does not explain most of the
impact-saturated rock surfaces measured. Models with a2! 2 lie outside the data
range. All clean rock models are found to have the following properties.

Most of the erosion by microcratering is due to the formation of pits larger
than about 100 µm diameter. As a result, microcratering can produce enough
mass wastage to explain the track profiles at depths zl mm, but does not yield
appreciable erosion on a finer size scale. We find that this ef fect is caused by two
independent conditions, either one of which is sufficient to reduce the effect of
erosion on the track profile shape at depths <100 um. These ore: 1) the bend-over
in crater production below about 100 µm pit diameter (Fig. 3), and 2) the
tendency of pits smaller than — 10 µm diameter to lack full spall zones. The
occasional removal of large chips of 2100 µm size tempu.arily flattens that track

^. profile, but in the absence of fine-scale erosion the profile relatively quickly
regains nearly the production slope at 100 µm, with a smooth transition to an
erosion-shaped profile at depths greater than 100 µm. The occurrence of a recent,
large chip is too rare an event to explain the abundance of shallow track profiles
observed (Fig. 5), especially in view of the fact that track workers generally
attempt to measure the steepest track p rofile on each sample. During most of a
computer simulation run the calculated track profile has an exponent at 100 µm
depth, a,w, of 0-0.5 unit less than that of the track production profile, instead of
the 1 unit less predicted for fine-scale erosion equilibrium. Increasing the
cratering rate causes a decrease in track density as expected and also a slight

decrease in exponent because the profile has less time to recover between
chipping events.

Model results: Dusty rocks

In order to produce the kind of universal degradation shown in Fig. 5 we need
a mechanism which continually changes the exposure depth in increments of
much less than 100 µm. Impacts apparently do not do this efficiently, but fine

x-
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Table I. Tract, profile measurements in lunar rt" crystals.

Rock	 Reference	 Remark,

1(X11)3 Price and O'Sulh%an (19711)
IMP Fleischer er eel	 ( 1970)
It)057 ('roraz er at (1971) Average of dif ferent regions
RX)5R ('rose er it/. (1970) Extrapolated from 30 µm to 100 µm

12002 Bhandari er al. 11971)
12018 Mandan er eel. (1971)
12020 Mandan cr eel 0971)
12022 Barber et	 it

	
( 197 1)

12038 Mandan er at (19711
12054 Morrison and Zinner (1977) Feldspar crustal in glass coating
12063 ('rose et	 it 	 (11471)

14303 Bhandari et it/. (1972)
14310 ('roraz er at (1472)

15058 Bhandan er a/. (1973)
15076 Schneider et eel. (1472)
15(186 cl ce/	 ( 1976b)
15118 Bhandari er	 it (1973)
15499 HUtcheon cr eel. (1972) Bottom of a surface vug
15555 Bhandari ce al. (1973)
15927 Schneider cr at (1972_)

60502 Storver cr eel. ( 1973)
62295 Ihandart cr it (1973)
64455(x) Blanford er eel. (1975) Quench cnstal, raw data
6i455(b) BLcnt,crJ cr	 it (1975) Quench cnstal. normalized
67016 Bhandari er al. (1973)
68815 Dust and Croraz (1977) Three locations measured

70215 Goswaml and Lal (1974)
72315(a) Hutcheon et a/. (1974) Inside crevice, uncorrected
72315(h) Hutcheon er eel. (1974) Fresh cnstal in.ide crevice
72315(c) Hutcheon cr eeL (1974) Outside of boulder
73275 Goswamt and Lal (1974)
74275 Coswami and Lal (1974 ►
76015 Crozar e7 at ( 1974) Inside narrow cres ice
76215 Morrison and /inner (1977)

dust accumulation can. Lunar rocks reside in a dusty environment which
generally experiences a fine-scale accumulation rate of about 4 mm/ 10 6 years
(e.g., Comstock, 1977a). Assuming that only some fine fraction of this will stick,
however loosely, to rock surfaces, we may expect an accumulation on rocks of 0.3
to 3 mm/ 106 years. This accumulation would be modulated and occasionally
cleaned off by impacts. To evaluate this effect we included in the model a steady
accumulation of fine dust described by an efficiency parameter p, defined to be

t
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Fig. 6. Calculated track density at 100 µm plotted against the negative exponent of the

depth profile at 100 µm for models of impact-saturated rock surfaces which are assumed
to be continuously clean (no dust), along with two dusty rock models. p is a dust
accumulation rate parameter defined in the text. « is the track production profile
exponent. 0 is the number of impact pits per cm'-10° years with pit diameter >500 µm.
The parallelogram encloses the normal rock data in Fig. 5. Dashed arrows show the

effect of adding dust accumulation and dotted arrows show the effect of increasing the
meteoroid flux level.

the rate of dust accumulation divided by the rate	 removal (erosion) due to
impacts with central pits of less than 4 mm diameter.

For n = I we find that the dust is kept well in check by impact cleaning,
yielding intermittent, variable coverings less than 100 µm thick on a flat surface.
Two typical examples of this case are shown in Fig. 6, by the square for a dust
accumulation rate of 0.16 mm/ 10° years, and by the diamond for a 10-
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times-higher impact rate and a dust accumulation rate of 1.6 mm/ 10° years. The
dashed arrows indicate the effect of adding even a relatively small amount of dust
with other parameters constant.

If the rock surfaces are indeed usually covered with a dust layer, then this
layer will also partially shield the surface from micrometeoroids resulting in a
reduction in the apparent rate of smaller impact This reduction, or shielding
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Fig. 7. Calculated track density at 100 ,um plotted against the negative exponent of the
depth profile at 100 pm for self-consistent models of rock surfaces subjected to a steady
accumulation of dust. n is a dust accumulation rate parameter defined in the text. The
parallelogram encloses the normal rock data in Fig. S. Dashed arrows show the efrect of
increasing the dust accumulation efficiency with fixed impact rate and dotted arrows

show the effect of increasing impact end dust accumulation rates proportionally.
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factor, should be dependent on crater size for — 10  µm to 1 mm diameter pits,
' and dependent on the actual dust-free exposure time for micron and submicron

pits. Tracks profiles alone do not help much in determining this factor; a more
detriled analysis of the dust layer, the cratering process in a thin dust layer, and
the effect of surface condition is needed. A self-consistent model will therefore
involve some higher micrometeoroid flux. This could eliminate any need to
invoke a time-dependent meteoroid flux as has been suggested by satellite

? measurements (Fig. 3); but the reader is reminded that there are serious
difficulties in interpreting the satellite data (Harz et al., 1975), and it is not clear
how much disagreement there actually is between the lunar and satellite
micrometeoroid flux determinations. Finally, since dust accumulation is in
competition with removal by impacts, the strongest test case for the dust
hypothesis will assume the steepest plausible crater production size distribution.

In order to investigate these effects we have also tried in the model the steeper
crater production curves in Fig. 3 marked a, b, and c, which we refer to as Model
II. Curve a has the form !V(>D) = 8.3 X 10 -8D- ', where D is the pit diameter
in cm; curve b is 5 times higher; and curve c is 10 times higher. Considering the
satellite data in Fig. 3 it is likely that the true crater production curve does have
an inflection at 10-100 µm pit diameter, not primarily due to shielding. In fact
the model results show that we may tailor curves a, b, and c in Fig. 3 to bend over
below 50-100 µm, in order to follow the satellite data, without strongly altering
calculated track profiles at 100 µm depth, with or without dust. For example
:,urves b and c give results similar to the lunar X IO production curve.

Figure 7 shows some results for models assuming crater production curves a
(¢ = 5) or b (0 = 25), with or without a bend-over below 50-100 µm. These
results may be more appropriate for dusty rocks than those shown in Fig. 6. To
emphasize the effect of dust we have included in Fig. 7 a computer run with
n = 0 (clean rock) shown by the circle; this point also shows that the bend-over in
enter production is not the only factor preventing clean rock models from
matching observed track profiles at 100 µm depth. The dust accumulation rates,
before modulation by impacts, for the models shown in Fig. 7 are as fo!lows.
With = 5: 0.3, 0.6, and 0.9 MM/ 106 years for n = 1, 2, and 3, respectively;
with ( = 25: 1.5 and 3.0 mm/ 106 years for n = 1 and 2, respectively.

As before, n = 1 yields dust layers only up to ^-100 µm thick. For higher n the
dust begins to get the upper hand; for n = 3 only the larg:_ impacts are efficient
in cleaning dust off, and the covering can build to 1 mm on a flat surface. The
efficiency with which dust will stick to a rock surface should depend on the
orientation, roughness, and other surface conditions, so the rate of dust accumu-
iation will vary over a rock and from rock to rock, thus producing a wide
variation in track profi l es as is observed. Rocks in the lower part of the
parallelogram have clearly had a history of partial burial.

We have included in the present dust model only the effects of impacts on
removing accumulated dust. Electrostatic effects also may play an important role
in both the deposition and the removal of dust from rocks (see Pelizzari and
Criswell, 1978, and references therein).

a
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1, MODH I)FRIYATION of TRACK PARAMFTFRS IN LUNAR &111 LAYFRS

Track jauranwic,rs

In order to usefully characterize the great amount of particle truck density
data obtained from many soil samples we need to employ statistical track
parameters which are both convenient to measure and readily interpretable. The
most widely used parameters are p,,,,,,, the minimum track density; p q , quartile
density; p^, median density; N„/N, the fraction of grains with either p > 10'
cna -= or a track density gradient; and the fraction with n > Ill" cm' = which we
denote N,/N. p clearly can be used to estimate the maximum exposure time
for units deposited as a single layer and buried all at once (C rozaz rt al., 1970).
On the other hand, much of the soil appears to have been delK-Ksited and buried in
finer increments of less than about I rant, so a single irradiation depth cannot be
identified and it tine-scale burial rate together with surface mixing have more
significance than ;a single exposure time of a static layer (Comstock, 1977x). The
po,zsibilat, of multiple episodes near the surface (pre-irradiation) also complicates
the interpretation of track parameters (see Gault et al., 1974 for further
discussion).

In order to interpret the track parameters more quantitatively in such cases %yc

have derived them with a Monte-Carlo soil model developed by Comstock (1976,
1977;1) and used there to interpret track density gradient parameters. The model
charac t erizes soil lavers in trams of a fine-scale surface burial rate L. generally
atxnat 4 mm/10' )-cars, and the number of surface exlK-,surr episodes. Nsa:a:,
during which the soil has been exposed to solar flare particles within I nom of the
surface while subjected to micronaeteoroid gardening. Nsa, = 0 refers to soil
dchusitcd in a layer much thicker than 1 nun and never exposed to solar flare
particles; for these cases the track parameters depend simply on layer thic:mcss.
The severe depth dependence of impact gardening can result in the upper part of
a soil unit, the miniregolith. ha y ing Ns,, > 1 while the lower part has Ns„ = 0.
Hence pre-irradiated soil samples and disturbed units may be complex mixtures
of these "pure" mtKicls, no longer characterized by it single value of Nsa:a. or L.

Soil nu del

Our model treats individually all events with ;I depth greater than 100 Nm
whether lavcring or cxcav; tion, which roughly balance. The net accumulation of
material on a scale smaller than 100 µm is treated as a continuous nrocess which
will depend on local tolK)graphy and hence may vary from sample to sample.
Hence a range of valu,s is tried for the fine-scale burial rate 1. from 1 to 10
nun/101 years. A detailed desc-iption of this model is given by Comstock
(19771t). The cratering event rate distribution used in the model is given by
Conasti. k (1977x, Fig. 6) and is t • .sed primarily on the meteoroid flux used by
Gault et al. (1974). The track proKiuction rate used is given by Comstock (1977,1,
Fig. 8) and is based on the revised energy spectra given by Walker and Yuhas
(1971) and by Hutchcon et al. (1974). No time -ariations in either micrometcor-

a



Miniregoliths 1: Dusty lunar rocks and lunar soil layers 	 2571

oid flux or charged particle flux are assumed. The present model also includes the
contribution of galactic cosmic rays as a layer is continuously buried through
several centimeters depth. This contribution will vary if a layer is catastrophically
buried or re-exposed by relatively larger events; in any case, it is generally much
less than the solar flare particle track accumulation, except for soil never exposed
within I mm of the surface.

The history of emplacement of a particular sample near the surface is governed
by one (for fresh soil) or a few relatively rare, large events, hence we expect any
distribution and mixture of N J1 : 1- values from 0 for immature samples to <50 for
mature samples since a purely statistical model can place no strong constraints on
what sequence of characteristics we might expect to find in a particular series of
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soil samples. Our approach therefore is not to generate poss-ble sequences of
simulated soil layers, out to use NSE: as a meaningful track maturation
parameter derived with the help of the model from measured track parameters
such as pm ; n , pq , pm,d , and NH/N.

Results

The results of these calculations are most usefully presented as correlation
plots between measured parameters. Figure 8 shows a plot of p q vs. pm;. calculated
by the soil model for the various parameter values indicated, along with some soil
data selected to show the wide variation observed among real soil layers. The
model points are based on 100 simulated grains of 100 µm diameter; data points
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are generally based on about 25 measured grains of similar size. Pure models,
those represented by single values of L and NSLL, all lie near the solid lines in Fig.
8. The two models marked L = 1-10 mm/10° years incorporated a different,
random L value for each surface exposure episode simulated. The dart marked
NSFL = 0 refers to units of the thicuness indicated, in cm, and is calculated for a
representative burial rate of L = 4 mm/ 10° years; lower or higher values of L
will slide the dart proportionally up or down the diagonal, respectively. The width

S	 of the dart represents the difference between sampling the whole thick unit or
only the bottom part of it.

In general a soil sample will be some mixture of components with different
NsLL values, or maturity, and will lie on a mixing line with p,,,,,, similar to that of
the least-irradiated component measured and p, t less than that of the most-
irradiated component. For example, when a sam p le with no solar flare exposure
from a unit a few cm thick, indicated by the letter A in Fig. 8, is mixed with a
highly irradiated sample at point B the mixture will lie somewhere along the line
A-C-D and have a much broader distribution of track densities. The data shown

10 1 	10'	 111	 111
Pq, QUARTILE TRACK DENSITY (crrm 2)

Fig. 10. Results of the soil model calculations for the correlation between the track
parame t ers N t j/N and p„ plotted together with soil data. Pure models lie along the solid
lines; three examples of mixing lines between two pure model components are shown by
dashed lines. (a) Arrhenius et al. (1971), (b) Bhandari et al. (1971), (c) Goswami et al.
(1976x), (d) Crorar and Dust (1977), (e) Goswami and Lal (1974), (f) Crorar et al.

(1974), (g) Goswami and Lal (1977).
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in Fig. 8 imply that material from thick units are less involved in mixtures.
Individual soil samples are well characterized by their position on a p,, vs. pm;n	 ^^ 1

plot, and it is clear which samples are more homogeneous and which are
mixtures, and approximately what the components are. Only a fraction of the
available data is shown in Fig. 8; we find that each sample site tends to have a
particular signature on a pq vs. pm;n plot, so we cannot define an average soil.
Plotting pq vs. p,,,, emphasizes the lightly-irradiated component of a mixture; we
could also plot P, ­d vs. pmm which brings out the more irradiated components.

One interesting result complicates the interpretation of soil samples. When
many dif ferent samples are plotted on a p q vs. pm;n diagram we find that scoop
samples tend to lie further from the pure model line and millimeter-by-millimeter
samples from impregnated cores tend to lie the closest to this line. This effect is
illustrated best in Fig. 9, where we have separated all available soil data into
three categories according to the type of sample, corresponding roughly to
thickness sampled: impregnated cores (1 mm intervals), regular core samples
(0.5-2 cm intervals), and scoop samples (^-5 cm thick) and determined for each
category the median value of the ratios p, /pm,, obtained from individual samples.
The ratios pq /pm,n calculated for pure models and for mixtures are also indicated
for comparison. The range of p q/pn„n for pure models is very small,
1.2 S pq/pmin S 2.0, because p,/pm,,, is nearly independent of L and NsEE. It is also
independent of time variations in the track production rate and nearly indepen-
dent of time variations in the impact rate. pq /Pm n is strongly increased only by
mixing. The trend evident in Fig. 9 suggests that the sampling procedure itself
hss artificially mixed thin layers with different surface exposure histories,
implying the general existence of microstratigraphy on a size scale similar to that
of the surface maturation zone or miniregolith and with track properties similar
to those derived for miniregoliths.

Goswami and Lal (1974) introduced the N H /N vs. pq diagram in an attempt to
isolate evidence for a time variation in the micrometeoroid flux. The result of our
calculations deriving N„/N vs. pq are shown in Fig. 10. Pure models are
connected by the solid line and three examples of mixing lines between pure
models are shown. This type of plot is somewhat less useful than P. vs. p,,,, n for
two reasons. First, the definition of N, j /N forces the data and models to follow a
general trend similar to that shown because the region with both p q > 10” cm
and N„/N < 0.75 is forbidden. Secondly, the mixing lines connecting pure
models tend to lie close to the pure model line so it is difficult to distinguish
mixtures unless one component has had no solar flare irradiation, in which case
N H /N is a good indicator of a small admixture of highly irradiated soil. The
spread of data in Fig. 10 is consistent with calculated models and mixing lines,
without the need to invoke time variations. Time variations are not ruled out.
However, their record is obscured by the complicating effects of mixing.

4. CONCLUSIONS

Our analysis of solar flare particle track profiles in lunar rocks indicates that
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erosion mechanisms alone are insufficient to account for the observed profiles at
depths less than a few hundred microns. A Monte-Carlo model which includes
the steady accumulation of dust at rates of 0.3 to 3 mm/ 101 years, depending on
sticking efficiency, readily explains the magnitude, slope, and wide variation of
observed track profiles. Variable dust layers with thicknesses from 100 um to 1
mm are expected, depending on sticking efficiency and impact rates. The details
of this dust layer and its effects on rock surface exposure need to be studied
further; the dust cover is capable of drastically reducing the surface exposure
time.

Using a Monte-Carlo soil model we have derived common statistical particle
track parameters such as p m ,,,, py , and N tt /N in terms of physical parameters
characterizing the exposure of soil grains in surface mixing and maturation
zones, a form of miniregolith, a few millimeters thick. A plot of p y vs. Pm;n is very
useful for determining the degree of mixing and surface exposure for individual
soil samples; the ratio p,/pm,, is a good indicator of mixing. It is concluded that
remnants of ancient surface miniregoliths are common in lunar soil, and often
have been artificially mixed together upon sampling.

These results are important for the general study of miniregoliths on space-
exposed surfaces, including the correlations among the various maturation
indices and the evolution of asteroidal and meteorite parent body surfaces.
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