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SUMMARY

In response to design requirements of the National Transonic Facil-
ity, aerodynamic tests were conducted to determine the pressure-drop, flow-
uniformity, and turbulence characteristics of various heat-exchanger configu-
rations as a function of Reynolds number. Data were obtained in air with an
indraft flow apparatus operated at ambient temperature and pressure. The unit
Reynolds number of the tests varied from about 0.06 x 106 to about 1.3 x 106 per
meter. The test models were designed to represent segments of full-scale tube
pundles and included bundles of round tubes with plate fins in both staggered
and inline tube arrays, round tubes with spiral fins, elliptical tubes with
plate fins, and an inline grouping of tubes with segmented fins.

Limited analysis of the data from this investigation shows that the down-
ward trend in pressure-drop characteristics as Reynolds number is increased is
nominally smooth and well-behaved for most of the configurations. Turbulence
data show a relatively homogeneous flow downstream of the heat exchanger with
decay occurring as distance from the heat exchanger is increased and show little
change with increased Reynolds number. Ranking the configurations in order of
pressure-drop and turbulence levels shows that an elliptical-tube plate-fin
configuration is the lowest and a round-tube spiral-fin configuration is the
highest. The levels of the other configurations tested fall between these two
extremes. Flow-uniformity data show that for most inflow conditions on all heat
exchangers, the spatial variation in dynamic pressure is less than 20 percent of
the average dynamic pressure, which would, in a wind tunnel with a 15 to 1 con-
traction ratio, result in test-section dynamic-pressure variations of less than
0.1 percent of the average free-stream dynamic pressure. And finally, incom-
ing flow at oblique angles, either parallel to the fins or parallel to the
tube axis, did not appreciably degrade the pressure-drop or turbulence
characteristics.

INTRODUCTION

The adoption of cryogenic operation has made it possible to achieve high
Reynolds number transonic test conditions in conventional pressurized, closed-
circuit, fan-driven wind tunnels. The National Transonic Facility (NTF) has
been designed to operate at temperatures ranging from ambient to cryogenic with
gaseous nitrogen as the test gas and cooling provided by the evaporation of
liquid nitrogen directly into the circuit (ref. 1). Additionally, a test capa-
bility in air as well as in nitrogen at near-ambient temperatures is provided
by using a chilled-water heat exchanger (cooling coil) for temperature control.
The Reynolds number range over which the wind tunnel operates in the cryo-
genic mode usually extends far beyond the range over which the cooling coil is
designed for operation in the near-ambient temperature mode. Consequently, it
is necessary to determine the aerodynamic characteristics of the cooling coils



throughout this extended Reynolds number range while maintaining as primary
design considerations the minimization of pressure loss and turbulence for a
given coil heat duty.

An experimental test program was initiated to provide a data base for
aerodynamic evaluation of a cooling-coil design. Wind-tunnel tests were made
to measure the pressure-drop, flow-uniformity, turbulence, and noise charac-
teristics as a function of Reynolds number for a series of geometric configu-
rations. The program was conducted in two phases. The first phase involved
tests in air using an indraft flow apparatus operated at near-ambient tempera-
ture and pressure over a range of unit Reynolds numbers from about 0.06 x 10°
to about 1.3 x 106 per meter. The second phase involved tests in the Langley
0.3-meter transonic cryogenic tunnel where selected configurations were tested
to Reynolds numbers of 28 x 106 per meter. The test models were designed to
represent segments of full-scale tube bundles and included bundles of round
tubes with plate fins in both staggered and inline tube arrays, round tubes
with spiral fins, elliptical tubes with plate fins, and an inline grouping
of tubes with segmented fins.

This report presents the results of the first phase of the test program
and includes data which show the cooling-coil pressure drop Apt/qm, the three
components of turbulence (u'/U, v'/U, and w'/U), and the flow uniformity
Ad/qayq for the low Reynolds number tests.

SYMBOLS

The measurements of this investigation are presented in the Interna-
tional System of Units (SI) with some U.S. Customary Units indicated in the
scales of figures 14 to 21. The measurements and calculations were made in
the U.S. Customary Units. Factors relating these two systems of units can
be found in reference 2.

Ape total pressure drop across coil model, Pa
q local dynamic pressure for each probe on survey rake, Pa
Qavg average dynamic pressure measured at survey station using

average wall static pressure and average total pressure
from the survey rake, Pa

q, free-stream dynamic pressure measured at upstream face of cooling-
coil model, Pa

Aq incremental dynamic pressure for each probe on survey rake,
q - qavgr Pa

R unit Reynolds number determined at upstream face of cooling-coil
model, per meter

U mean streamwise velocity



u',v, w' rms values of fluctuating velocity components in streamwise,
lateral, and vertical directions, respectively

Abbreviations:

o.C. on-center
0.D. outside diameter
rms root-mean-square

FLOW APPARATUS

A drawing of the flow duct used in the cooling-coil aerodynamic perfor-
mance tests is shown in figure 1. The indraft flow apparatus operated at near-
ambient temperature and pressure. Ambient-~condition air was drawn into the
bellmouth inlet from the large surrounding room which was vented to maintain
constant room air pressure. The tunnel exhausted to the outside of the build-
ing. The bellmouth inlet used the coordinates of the ASME long-radius nozzle
(ref. 3) attached to a straight duct approximately two inside diameters long.
Calibrations of similarly designed inlets showed very flat uniform flow profiles
at the end of this combination. A hexagonal cell honeycomb with a 6:1 ratio of
cell length to cell width was installed between the bellmouth inlet and transi-
tion section to reduce swirl or the effects of ground-vortex entrainment. The
transition from the round inlet to the square test section used straight-line
elements and was followed by a second 6:1 cell honeycomb and screen installa-
tion to further condition the incoming flow. The flow was then introduced to
the cooling-coil models through a square duct approximately 1.03 m long. This
duct could be adjusted to direct the flow onto the face of the coil model at
angles from 90° (normal) to 45° oblique. Downstream of the coil models a square
plexiglass duct was used to permit flow visualization. Since the coil models
were designed to represent full-scale tube bundles, the downstream duct was made
sufficiently long (approximately 2.03 m) to allow flow measurements at loca-
tions representative of full-scale distances behind the coil models. The flow
was then diffused through a reverse-transition and conical diffuser and left the
building through the variable-speed drive fan. Photographs of the flow duct and
installed instrumentation are shown in figure 2.

MODEL DESCRIPTION

All the cooling-coil models were designed to represent full-scale tube
bundles. Since heat transfer was not included in the aerodynamic tests, it was
not necessary to construct the tube bundles of actual tube hardware. Therefore,
most of the tube bundles were simulated by using thin flat metal sheets for fins
and spacers separating the fins for tubes. The bundles were held together with
threaded rods. Only the two tube bundles which did not have plate fins (the
spiral-fin tube and segmented-fin tube) were constructed with actual hardware.
The model segments were 46.36 cm square, with the streamwise depth of the
cooling~coil tube bundle sufficient for simulating a reference heat duty. After
testing was completed, it was discovered that the elliptical tube model had



streamwise depth sufficient for only about three-fourths of the reference heat
duty. The effect of this modeling deficiency on the test parameters is dis-
cussed with the data in the section entitled "Discussion of Results." Drawings
and photographs of the various cooling-coil configurations are shown in

figures 3 to 8.

TESTS AND MEASUREMENTS

Flow conditions within the test apparatus were established by setting
a range of drive-fan rotational speeds up to the maximum allowed for safe
fan operation. The resulting Reynolds number based on the speed of the incom-
ing flow at the face of the coil model varied from about 0.06 x 108 to about
1.3 x 106 per meter. For the clear duct the Reynolds number was somewhat
higher, ranging from 0.16 x 106 to 1.8 x 106 per meter.

In addition to the normal (90°) incoming flow tests, the cooling coils
were also tested with oblique (45°) flows to the face of the coil. The purpose
of these additional tests was to assess the effect of the flow near the walls
of ducts such as a wide-angle diffuser on the cooling-coil aerodynamic charac-
teristics. 1In order to obtain data on the coil characteristics with the oblique
flow parallel to either the fins or the tube axis (see fig. 9, conditions 90°
apart in an actual coil installation), the coil model was rotated the 90° within
the same duct structure shown in figure 1. Since the duct walls imposed physi-
cal boundaries on the flow immediately downstream of the tube bundles, the
modeling of the oblique flow conditions was probably inadequate. However,
within this limitation, the oblique flow characteristics were measured but
should be used for comparison purposes only.

The primary measurements made during this test were to determine the
pressure-drop, flow-uniformity, turbulence, and noise characteristics of the
various coil configurations. The location and arrangement of related instru-
mentation are shown in figure 10. Flow-uniformity and turbulence measurements
were made at four downstream stations (fig. 1) to determine any edge effects
which might influence measurements at a station (station 5) representing the
location of a typical installation of antiturbulence screens.

Pressure drop

The pressure drop across the cooling-coil models was obtained from single-
probe stagnation-pressure measurements upstream and downstream of the models,
recorded on a differential pressure cell, and time-averaged over 48 readings
in order to obtain the wvalue used for the data analysis. The location of the
downstream measurement was adjusted for each coil in order to maintain the same
distance from the downstream face of each coil. All upstream and downstream
measurements were 38.10 cm from the respective coil faces.

Flow uniformity

The flow uniformity was measured at four distances downstream of the
model with 65 stagnation pressure tubes in four arms of a cruciform rake which



spanned the 46.36-cm inside width and height of the flow duct. These pressures
were measured on mechanically stepped pressure scanners.

Tur bulence

The flow turbulence downstream of the coil models was measured using
two-component crossed hot-wire probes. The hot wires consisted of 5-micron,
platinum-coated, tungsten wire with an effective length-to-diameter ratio
of about 250. For the turbulence measurements, the hot wires were operated
in a constant-temperature mode. Because of physical limitations in the probe
support, the measurements of u' and w' were not made at the same location
in the duct cross section as the measurements of u' and v'. (See fig. 10.)

Noise

An attempt was made to determine the noise characteristics of the cooling-
coil models. Microphones were installed both in the airstream and flush with
the test-section sidewalls, both upstream and downstream of the coil model. The
signals were recorded on magnetic tape for off-line analysis. Because of the
drive-fan noise, the signal-to-background noise ratio was so low as to obscure
the interpretation of the data. Therefore, no noise data are included in this
report.

PRESENTATION OF RESULTS

The data are presented in the following figures:
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Flow uniformity at four downstream survey stations for
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Flow uniformity at 1.78-m station:
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Figure
Homogeneity of longitudinal turbulence with flow normal
to cooling-c0il configurations . . . v v v v 4 4 4 e e e 4 e e e . 23

Homogeneity of longitudinal turbulence with 45° oblique
flow parallel to fins of cooling-coil configurations . . . . . . . . 24

Homogeneity of longitudinal turbulence with 45° oblique
flow parallel to tube axis of cooling-coil configurations . . . . . . 25

Relative turbulence levels of cooling-coil configurations
in normal flow . . v v b b h e e e e e e e e e e e e e e e e e 26

Relative turbulence levels of cooling-coil configurations
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Relative turbulence levels of cooling-coil configurations
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DISCUSSION OF RESULTS

The aerodynamic pressure-drop characteristics of the various cooling-
coil configurations are presented in figures 11 to 13 for the flows that are
normal, 45° oblique parallel to fins, and 45° oblique parallel to tube axis,
respectively. The data are shown in nondimensional form Apt/qoo as a function
of the Reynolds number per meter. For all the coil configurations in the three
incoming flow conditions, the downward trend in pressure drop as Reynolds number
is increased is nominally smooth and well-behaved. Generally, this trend dimin-
ishes for most of the configurations and actually reverses for the baseline
configuration in normal flow for Reynolds numbers between 0.6 x 10% and 1 x 106,
The lower values of Apt/qm for the oblique-flow cases are not a result of an
actual lower loss, but of the higher q_ measured in the smaller 45° duct ahead
of the coil. (See fig. 1.) 1If the g, normal to the face of the coil had been
used, the coils would exhibit similar pressure-drop values. 1In general, ranking
the coil configurations in order of pressure drop shows the elliptical coil to
be the lowest, followed in order by the inline, baseline, staggered, segmented,
and spiral configurations. It should be noted, however, that the elliptical-
coil model had only three-fourths of the reference heat duty.

As stated earlier, flow-uniformity and turbulence measurements were made
at several downstream stations to determine any edge effects on these data.
Flow-uniformity data are shown in fiqure 14 at four downstream survey stations
for the staggered-coil configuration in the three incoming flow conditions. The
data show the variation of the parameter Aq/ang with probe position in the
cross section of the duct. As shown in the horizontal surveys of figures 14(a)
and 14(b), there appears to be a growing edge effect. This effect appears in
the vertical survey of figure 14(c), which indicates that it rotated with the
bundle. Therefore, this effect is attributable to the modeling of the tube bun-
dle, and not to the coil design itself. This effect does not influence the
region where measurements were made. (See fig. 10.) Flow-uniformity data
Aq/qavg, taken at the 1.78-m station for the clear duct and six cooling~coil
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configurations, are given in figures 15 to 21 as a function of probe location.
Generally, the repeatability of the data is within acceptable limits. The val-
ues of the flow-uniformity parameter are, for most inflow conditions on all
coils, within #0.20. This level in the settling chamber of a wind tunnel with
_a contraction ratio of 15 to 1 would result in a desired level of Ad/qyyg in
the test section of less than #0.001.

The decay of turbulence levels downstream of the staggered cooling-coil
configuration is shown in figure 22. All three components of the turbulence
are plotted as velocity ratios u'/U, v'/U, and w'/U against Reynolds number.
Generally, there is little change in turbulence with increasing R; however,
the change in turbulence with downstream distance shows a decay to about one-
fifth the original level as the distance changes from 55.88 cm to 177.80 cm.
The 45° oblique inflow does little to change these trends. As shown in fig-
ure 10 and stated previously, the mounting arrangement for the hot wire resulted
in two different locations being used to obtain the three components of turbu-
lence: the side mount yielded u' and v'; the top mount yielded w' and a
second u'. A comparison of the two u' values gives some indication of the
homogeneity of the flow. These data are shown in figures 23 to 25 for all coil
configurations in all inflow conditions as a function of R.  The data show
general agreement in the variation with Reynolds number for each coil but do
not always show agreement in the levels of the turbulence component u' for
the two different mounting positions. The relative turbulence levels of the
various cooling-coil configurations are presented in figures 26 to 28 for the
normal flow, 45° oblique flow parallel to fins, and 45° oblique flow parallel
to tube axis, respectively. The three components of turbulence are plotted as
the velocity ratios u'/U, v'/U, and w'/U against Reynolds number per meter.
In most cases, the level of turbulence is relatively stable as R increases.
The elliptical coil generally shows the lowest level of turbulence, followed
by the baseline, staggered, inline, segmented, and spiral configurations.
Again, it should be noted that the elliptical-coil model had only three-fourths
of the reference heat duty.

SUMMARY OF RESULTS

In response to design requirements of the National Transonic Facility,
wind-tunnel tests were conducted to determine the pressure-drop, flow-
uniformity, and turbulence characteristics of various heat-exchanger (cooling-
coil) configurations as a function of Reynolds number. Limited analysis of
the data from this investigation indicates the following results:

1. The downward trend in pressure-drop characteristics as Reynolds number
is increased is nominally smooth and well-behaved. However, this trend dimin-
ishes for most of the configurations and actually reverses for the baseline con-
figuration in normal flow for Reynolds numbers between 0.6 x 106 and 1 x 106,

2. Ranking the coil configurations in order of pressure drop shows the
elliptical coil to be the lowest, followed in order by the inline, baseline,
staggered, segmented, and spiral configurations. It should be noted, however,
that the elliptical-coil model had only three-fourths of the reference heat
duty.



3. Flow-uniformity data éq/qavg are, for most inflow conditions on
all coils, less than *0.20. This level in the settling chamber of a wind
tunnel with a contraction ratio of 15 to 1 would result in a level of Aq/qavg
in the test section of less than +0.001.

4. Turbulence data show a relatively homogeneous flow downstream of the
coil with decay occurring as distance from the coil is increased and show 1lit-
tle change with increased Reynolds number.

5. Ranking the coil configqurations in order of turbulence levels shows the
elliptical coil to be the lowest, followed by the baseline, staggered, inline,
segmented, and spiral configurations. As previously noted, the elliptical-coil
model had only three-fourths of the reference heat duty.

6. Oblique angles of inflow, either parallel to the fins or parallel to
the tube axis, did not appreciably degrade the pressure-drop or turbulence
characteristics.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

December 3, 1979
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Figure 1.- Drawing of flow duct used in cooling-coil performance tests.
(All dimensions are in centimeters.)
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(a) Normal flow duct assembly.

Figure 2.- Photographs of flow duct used for cooling coil.
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(b) Downstream survey stations.

Figure 2.- Concluded.
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(a) Geometric details.

Figure 3.- Staggered-tube cooling-coil configuration. (All dimensions are in centimeters.)
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(b) Photograph of complete tube bundle.

Figure 3.- Continued.
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(c) Detail photograph.

Figure 3.- Concluded.
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Figure 4.~ Inline-tube cooling-~coil configuration. (All dimensions are in centimeters.)
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(b) Photograph of complete tube

Figure 4.- Continued.

bundle.
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(c) Detail photograph

- Concluded
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Figure 5.- Elliptical-tube cooling-coil configuration.
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(b) Photograph of complete tube bundile.

Figure 5.- Continued.
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(c) Detail photograph.

Figure 5.- Concluded.
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(b) Photograph of complete tube bundle.

Figure 6.- Continued.
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(c) Detail photograph.

Figure 6.- Concluded.
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Figure 7.- Segmented-fin cooling-coil configuration.
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(b) Photograph of complete tube bundle.

Figure 7.- Continued.
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45° oblique flow parallel to tube axis.
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