LASER ANEMOMETER MEASUREMENTS
 IN A TRANSUNIC AXIAL FLOW COMPRESSOR ROTOR

Anthony J. Strazisar and 4
J. Anthony PowellLewis Research Center
Cleveland, Ohio
Prepared for theTwenty-fifth Annual International Gas 'Turioine Conference andthe Twenty-second Annual Fluids Engineering Conferencesponsored by the American Society of Mechanical EngineersNew Orleans, Louisiana, March 3-13, 1980

Anthony J. Strazisar and J. Anthony Powell
National Aeronautics and Space Administration
Lewls Research Cent:2r
Cleveland, Ohio

ABSTRACT

A laser anomometer system employing an efficient data acquisition technique has been used to make measurements upstream, within, and downstream of the compressor rotor. A fluorescent dye technique allowed measurements within endwali boundary layers. Adjustable laser bean orientation minimized shadowed regions and enabled radial velocity measurements outside of the blade row. The flow phenomena investigated include flow variations from passage to passage, the rotor shock system, three-dimensional flows in the blade wake, and the development of the outer endwall buundary layer. Laser anemometer measurements are compared to a numerical solution of the streamfunction equations and to measurements made with conventional instrumentation.

INTRODUCTION

Advances in the aerodynamic technology of turbomachinery are dependent on obtaining a comprehensive understanding of the complex physical phenomena which occur within the blade passages. Progress is being attained through improvements in both analytic and experimental techniques. With the increased availability of large scale computers significant advances in computational methods for compressor design and analysis are being made. As ad.ances in numerical methods continue, there is an increasing need to make detailed flow measurements inside blade rows. Such measurements will determine flow fhenomena such as the distribution of tuming and losses which are required inputs for some numerical methods. They will also generate data for use in verifying numerical solutions.

Cascade tests and the use of ratating instrumentation in low-speed machines are two experimental approaches to the measurement of intra-blade flowfields. Howaver, these approaches cannot provide data on the combined effects of high Mach number and high rotational speeds. High-response pressure measurements and non-intrusive optical measurement techniques such as laser anemometry and holographic interferometry are extending flow measurement capabilities in the high-speed testing regime beyond those avallable with conventional low-response instrumentation. Applications of laser anemometer (LA) systems to axial-flow turbomachinery employing fringe-type anemometers have been reported in [1-3]. ipplications involving time-of-filght anemometers have been reported in [4].

This paper describes the application of a LA system to a transonic axial-flow compressor rotor. The results of several types of measurements which demonstrate the systen's capability of measuring velocity and flow angle in a rotating blade row are discussed. However a comprehensive evaluation of the flow in this transonic compressor is beyond the scope of the present paper. A detailed description of this LA system is contained in [5]. Since transonic compressor testing requires a significant expenditure of both manpower and energy, a rapid data acquisition technique has been de-
veloped in order to minimize running time. The incorporation of four degrees of freedom in the laser beam orientation enables measurement of the radial component of velocity in some cases and the minimizetion of regions blocked from optical access by the complex blade geometry.

TEST COMPRESSOR AND INSTRUMENTATION

The test rotor of the present study was designed as an inlet rotur for a core compressor. The rotor design pressure ratio and mass flow are 1.67 and 215 $\mathrm{kg} / \mathrm{m}^{2} / \mathrm{s}$, respectively, at a tip speed of $426 \mathrm{~m} / \mathrm{s}$. The tip relative Mach number is 1.4 at design speed. The rotor has 52 blades, a tip chord length of 44.6 mm , and a tip solidity of 1.48 . The inlet tip diameter is 508 und and the hub-tip radius ratio is 0.7 . For the $L A$ application reported herein, the rotor was tested without inlet guide vanes and without a stator blade row. This configuration eliminates the circumferential variation in the flowfield induced by the stationary blade rows and thereby simplifies data acquisition and analysis.

Optical access is provided by a glass window which is 102 mm long in the axial direction and 51 mm wide (11 degrees arc) in the circumferential direction. The window material is 3 minick commercial window glass formed to the outer endwall contour. Static blade tip clearance was set at 1 mm under the window. Window washing is performed about once an hour during compressor operation by infecting automative window washing fluid into the endwall boundary layer through a row of 0.5 mm holes located 230 mm upstream of the window.

Laser anemometer measurementa were made along the design streamsurfaces shown in Fig. 1. Measurements are distributed at axial locations between $z=-25.4$ min and $z=50.8 \mathrm{~mm}$ as shown along streamsurface 2. Conventional probe survey measurements were made at stations 1 and 2 using a 6.4 win diameter combination probe. The probe used contains a thermocouple, total pressure tube, and null balancing static pressure holes for measurement of total temperature, total pressure, and flow angle. Details of the conventional survey data acquisition and reduction system are given in [6]. The operating points at which LA surveys were performed are shown in the performance map for the rotor as measured using the conventional instrumentation (Fig. 2).

LASER ANEMOMETER SYSTEM

The laser anemometer is a single-channel, dualbeam system with on-axis backscatter light collection. The LA system optical layout is shown in Fig. 3. The laser lipht source is a 1.6 W argon-ion laser operating at 514.5 nm . The beam crossing angle is 2.825 degrees and the fringe spacing is $10.4 \mu \mathrm{~m}$. The probe volume diameter based on the $1 / \mathrm{e}^{2}$ intensity points is $125 \mu \mathrm{~m}$. The length of common intersection of the crossing beams is about 4 mm . The effective length of the probe volume is reduced to about 2 mum placing a mask on the central portion of the focusing lens located in front
of the photomultiplier tube. Backscatter light is collected through an 11 dagree cone angle.

The ontire optical aystem is mounted on an $x-y$ travarsing table which is used to set the probe volume axial and radial position. A rotatable beam aplitter is used to rotate the plane of the laser beams for measurement of velocity componenta at various angles from the axial direction. The beans nominally enter the compressor rotor in the radial direction. A beam director mirror is used to direct the beam away from the radial direction by $t 10$ degrees to ninimize shadowed regions caused by blade twist as shown in Fig. 4. Without variable beam direction, 20\% to 30% of the blade-to-blade passage at the hub would be blocked due to blade twist at sactions AA and BB. Another advantage offered by the variable beam direction is that it gives some capability of measuring radial velocity components.

Keasurements to within 1 of the endwalls are made possible by using a fluorescent dye seed material and an optical filter. Wichout the fluorescent seed, reflected light from the andwall surfaces prevents measurements at radial positions less than 10 mm from either andwall. Seed particles are generated by sprayatomization and are injected into the inlet through a 6.4 mm diameter tube located 460 mm upstream of the rotor face. The seed material consists of rhodamine $6 G$ dye dissolved in a benzyl alcohol, ethylene glycol solution [7]. When a seed particle containing this dye crosses the LA fringe system the particle absorbs the green incident light and fluoresces orange. An orangepass filter placed in front of the photomultiplier tube optically filters out green light reflected from blade and endwall surfaces and passes orange light scattered from the seed particles.

DATA ACQUISITION

The data acquisition technique is efficient in that it allows free-runaing of the LA system. Unlike several other la systems used in turbomachinery research $[1,3,4]$, the optical system is not gated by a once-per-rev or once-per-blade signal, but is free to make velocity measurement whenever a seed particle crosses the probe volume. The technique is implemented by using a dedicated minicomputer to control data acquisition. The seed particle fringe crossing frequency (which is proportional to the particle velocity) is measured by a commercial counter-type processor. The rotor shaft position is generated by an elestronic shaft angle encoder which provides a continuous measure of the rotor shaft position relative to a ouce-per-rev signal obtained from the rotor disk. When a velocity measurement occurs the minicomputer records the frequency and shaft position as a data pair. At each axdal and radial position surveyed, data are recorded at 1000 different shaft positions. These positions are typically distributed as 50 positions per blade passage across 20 consecutive blade passages.

It is significant that the velocity measurements do not really occur at a discrete shaft position, but rather are made anywhere ulthin an interval between adjacent rotor ahaft positions maiked by the shaft angle encoder. With 50 intervals per blade passage, the interval length varies between 0.43 mm at the hub and 0.61 at the tip of the blade. In this paper the term 'shaft position' is used with the understanding that measurements attributed to a shaft position actually occur in an interval about that position.

A typical run conaists of collecting 30,000 measurements yielding an average of 30 measurements at each shaft position. Run times typicelly vary between 15 and 45 seconds. During data mequisition a graphics
terminal is used to generate a graphic display which is typically updated every 15 seconds based or the data accumulated to that point in the run. The display consists of a histogram of the number of measurements at each shaft position and a blade-to-blade velocity distribution averaged across the 20 measured blade passages along the circumferential measurement path. This real-time display adds to the efficiency of the system since it enables the operator to monitor the dala acquisiton process and terminate a run if necessary. At the conclusion of each run, a data table of N_{j},
$\sum_{i=1}^{N_{1}} f_{i}, \sum_{i=1}^{N_{i}} f_{i}^{2}$ is stored on disk. Subscript j is the shaft position number which runs from 1 to 1000 , N is the total number of measurements at position J , and f_{1} is the LA signal frequency of the $i^{\text {th }}$ measurement at position f. Further details of the data acquisition system can be found in reference [5].

data reduction

The measured particle fringe crossing frequency is converted to velocity by multiplying by the fringe spacing. The velocity is corrected to standard day conditions using the relation

$$
v_{c}=V \sqrt{T_{s} / T_{p}}
$$

where V_{c} is the corrected velocity, T_{p} is the temperature measured in a plenum chamber upstream of the compressor inlet, and T is the standard-day temperature. For each measured component of velocity the mean and standard deviation at each shaft position are then csiculated from

$$
\begin{aligned}
\bar{v} & =\sum_{i=1}^{N} v_{i} / N \\
V^{\prime} & =\left[\left(\sum_{i=1}^{N}\left(v_{i}-\bar{v}\right)^{2}\right) /(N-1)\right]^{1 / 2} \\
& =\left[\left(\sum_{i=1}^{N} v_{i}^{2}-N V^{2}\right) /(N-1)\right]^{1 / 2}
\end{aligned}
$$

The velocity magnitude and flow angle are calculated at each position using data from runs made at different beam orientations. The geometry of the beam orientation is shown in Fig. 5. The measured velocity component $V_{\text {m }}$ lies along line AA which is in the plane of the beams and perpendicular to the bisector of the crossing beams. The beam bisector can be deflected in an off-radial direction by the beam director mirror. The beam bisector is restricted to the (R, θ) plane and the deflection angle is denoted by ϕ_{1}. The rotatable beam splitter is used to rotate the direction of the fringe normals about the R'-axis (which is alined with the beam bisector). The angle between the fringe normals and the 2 -axis is denoted by ϕ_{2} and is measured in the ($2, \theta^{\prime}$) plane. The mean and standard deviation of the z, θ, r velocity components are calculated from the three equations
$V_{2} \cos \alpha_{1}+V_{\theta} \cos \beta_{1}+V_{r} \cos r_{1}=V_{m_{1}} \quad 1-1,2,3$ where subscript 1 denotes each different beam oriencation and
$\cos \alpha=\cos \phi_{z}$
$\cos \beta=\cos \phi_{I} \sin \phi_{Z}$
$\cos \gamma=\sin \phi_{I} \sin \phi_{Z}$

The two equations

$$
v_{z} \cos \alpha_{i}+v_{\theta} \cos \beta_{1}=v_{m_{1}} \quad 1=1,2
$$

can be used to calculate V_{z} and V_{θ} using data obtained during two runs made at different ϕ_{2} angles with $\phi_{r}=0$. In practice the ϕ_{r} angles for the two runs are equal but are set to some non-zero value in the range ± 4 degrees to minimize the blade shadow regions. Thus the calculated V_{θ} component of velocity actually lies along the θ^{\prime} direction. However, the difference between the calculated velocity in the θ^{\prime} direction and the velocity in the θ direction is small compared to the measurement error since the cosine of four degrees 180.9976.

The velocity distribution across the 20 measured blade passages is considered to be 20 separate observations of the flow in an average blade passage. Velocities at corresponding points relative to the blade in each individual blade passage are averaged together to yield a spatially-ensemble averaged blade-to-blade velocity distribution. The averaged velocity distribution may be compared to the velocity distribution in individual blade passages to assess passage-to-passage flow variations.

MEASUREMENT ERRORS

The error in axial and radial probe volume positioning is $\pm 0.05 \mathrm{~mm}$. The errors in setting the beam splitter and beam director angles are ± 0.03 degree and ± 0.01 degree, respectively. The exror in a single LA measurement is a function of flow turbulence intensity and random noise in the photomultiplier tube signal. It is difficult to make an error estimate for an individual measurement since this nolse is generated by background radiation which varies with each measurement. However, the statistical confidence $i n \mathrm{~N}$ individual measurements made at a given shaft position is

$$
k=\mathrm{cV}^{\prime} /(\overline{\mathrm{V}} \sqrt{\mathrm{~N}})
$$

where k is the length of the confidence interval and c is the confidence level. N is approximately 30 for each point in the velocity distribution across an individual blade passage. N is approximately 600 for each point in the ensemble-averaged velocity distribution, since the averaged distribution is calculated from the 20 individual blade-to-blade velocity distributions. All error bars which appear in this paper are for a 95% confidence level $(c=2)$. It should be noted that V^{\prime} results from the sum of the flow fluctustion effects such as those caused by turbulence, velocity varlations due to rotor speed drift, and velocity gradients in the tangential direction across the geasurement shaft position interval. plus the previously nentioned random noise in the photomultiplier tube sigial. The maximum velocity gradient in the tangential direction occurs across the passage shock during transonic operating conditions and 18 on the order of 1% per shaft position interval. Observations indicate that
the rotor speed drift during a run is on the order of 0.3\%.

Least squares polynomial curves are fit to the data prior to comparing velocity distributions. One advantage to this approach is that the fitted curve contains information from all 1500 measurements made in a blade passage (30 measurements at each of 50 points), while the data at a single shaft position are based un only about 30 measurements. Typically the difference berween lie tata and the fitted curve 181% to 2%.

Two additional sources of measurement error are statistical and angle biasing. Statistical biasing arises because of the following. First, the velocity magnitude varies with time. Second, for a uniformly seeded flow more particles cross the probe volume per unit time when the velocity is higher than the mean than when the velocity is lower than the mean. An arithmetic average of measurements made over a given period of time therefore yields a calculated mean velocity which is higher than the true mean. Statistical bias can be removed using the relation [8]

$$
\bar{v}=\bar{v}_{\mathrm{b}} /\left[\left[_{1}+\left(v^{\prime} / \overline{\mathrm{v}}\right)_{b}^{2}\right]\right.
$$

where subscript b denotes biased measurements. Typical values for $\left(V^{\prime} / \bar{V}\right)_{b}$ outside of blade wake and shock regions are 3% to 6%, which result in a 0.4% correc tion. Because this correction is small, the data have not been corrected for statistical bias.

Angle biasing [9] occurs because the flow direction fluctuates with time. More measurements per unit occur when the flow direction is parallel to the fringe normal direction than when the flow direction fluctuates away from the fringe normal direction. The error In an arithmetic average of the velocity measurements made over a given time period is proportional to the angle between the fringe normais and the mean flow direction. This error is 1% or less when the angle between the fringe normals and the mean flow direction is less than 20 degrees. In the present work the ϕ_{2} fringe orientation angle is set at ± 15 degrees from the average flow angle to minimize angle biasing error. However, the flow angle changes by 30 degrees across wakes and passage shocks. Therefore there are regions in which the angle between the fringe normals and the velocity vector is on the order of 45 degrees which could result in a 4% error in the measured velocity.

SEED PARTICLE DYNAMICS

The rotor passage shock can be used to determine particle lag and seed particle size using the method described in [3]. A Stokes drag model is used to predict the velocity response downstream of the shock for a particle of diameter D_{p}. The resulting equation is

$$
\begin{aligned}
& 18 v_{\mathrm{g}} \times / D_{p}\left(\left(_{p} / \rho_{\mathrm{g}}\right)=\left(c_{1}-c_{2}\right)\right. \\
& \quad-c_{2} \ln \left[\left(v_{u}-c_{2}\right) /\left(c_{1}-c_{2}\right)\right]-\left(v_{n}-c_{2}\right)
\end{aligned}
$$

where
$\begin{aligned} & C_{1}= \text { pre-shock gas velocity normal to the shock in the } \\ &(2, \theta) \text { plane }\end{aligned}$
$C_{2}=$ post-shock gas velocity normal to the shock in the (Z.日) plane
 the (Z, θ) plane

```
    - \(V_{\text {REL }} \ln \left(\beta_{\text {REI }}+a\right)\)
\(x_{n}\) - particle diotance normal to the ahock
- ece a
```

The relative flow angle $\beta_{\text {ngL }}$ and the mock incilantion angle a are defined in Fig. 6. The measure velocity component ∇_{n} en function of x_{n} is determined from the ansamble-averaged blade-to-blade distribution of relative velocity $V_{\text {REL }}$ uning tre geometry shown in Fig. 6, where a is the distance downstram of the shock along the circumferential measurement path. This procedure assumes that the distribution of V_{n} is uniform alons the face of the chock over the distance - an a. Typical values of and a used in the above calculation are 14 mind 10 degrees, respectively, which yield s. 10 a 2.4 mm .

The particle diameter D_{p} is determined in the following mancer: For varioup vajues of D_{p}, V_{n} is calculated at given values of x_{n} using the known valwes of $\rho_{p}, \rho_{g}, v_{g}, C_{1}$, and C_{2}. The particle diameter is then taken as the value of D_{p} which yields the best agree sint between the calculated and measured distribution of v_{n} a. a function of x_{n}. The results of two particle aize determinations are shown in Fig. 7. Each data point in the figure is based on approximately 600 messurements. The data were obtained under identical flow and signal processor conditions at two different axial stations. The only change made in the LA syatem between the two runs was the removal of the orange filter used in the fluorescent dye technique. The agreewent between the data obtained at axial station $\varepsilon=10.2$ mind $z=12.7$ mindicates that V_{n} is uniform along the face of the shock over distances of 2 to 3 mm . With the orange filter in place, the minimum diameter of the particies detacted by the optics is sbout $1.4 \mu \mathrm{~m}$, while the diameter of particles detected without the filter in place is $1.2 \mu \mathrm{~m}$. This difference in diameter reflecte the loss in aignal atrengith in passing through the orange filter. With the LA counter-processor threshold level held constant, a larger particle diameter is necessary to trigger the counter circuitry when the filter is in place.

The results shown in Fig. 7 indicate that the distance required for the particle velocity to decay to within 5\% of the post-ghock gas velocity is about 12 m normal to the shock. This is about 13 mm or 132 of the blade chord in the relative flow direction. Note that the flow angle as well as the velocity magnitude is in error in the lag region. Additional particle size determinations performed with the orange filter in place yielf particle sizen ranging from 1.2 to $1.5 \mu \mathrm{~m}$. A1though the minimum particle size detected by the optics increases with the orange filter in place, comparisons of blade-to-blade valocity distribution measured under identical flow conditions with and without the filter in place indicate no differences greater than the experimental error in the velocity distribution results due to the use of the filter.

The passage ahock is not the only region in the blade pagage where particle tracking may be a problam. Maxueli [10] analyzed seed particie flow in an axialflow compressor rotor similar to the tent rotor used in the present study. He obtained a numerical solution for the gan flowield and then integrated the particle equation of motion to determine the particle path and velocity. The results indicate that for $1.5 \mu \mathrm{~m}$ dis: ecer particles the particle-to-gas volocity ratiol are $0.90<V_{p} / V_{g}<0.96$ in the leading edge region and
$0.98 \leqslant V_{p} / V_{p} \leqslant 1.02$ through the ramainder of the blade passage. P Prticle anguiar deviation was found to be a maximum of 6 degrees along the suction aurface and acrose the biade passage at the traling edge.

gesults and discussion

Flow phenemane atudied during the initial application of the LA gyete: include variations in flow from passege-to-passaga, shock surface location, velocity changes across shock waven, three-dimanional flowa in the blade wake, and the development of the endvall boundary layer. In addition, L_{A} meadurementa vere compared to nuwerical results within the blade row and to conventional probe mesiarements at atatiuns outaide of the blade row. The reoults obtained will be brinfly discusced.

Passage-to-Paseage Flow Variations

One advantage of the currant data acquiaition scheme is the ability to record velocity measuremencs across consecutive individual blade pasaagan. Pasage-to-passage variations in flow conditions can be observed and analyzed by using date from the individual blade passages. As an axampie, the diatribution of absolute velocity across five consecutive blade pasangen is shown in Fig. 8 at four axisl atatione (givan in percent axial chord) aloug otreameurface 1 (near the tip). The operatiog point is near atall at 75\% of design speed. At -25% and 2% chord the flow in paraage 9 is clearly different from that in pascages 8 and 10. The variation in flow between panages at 2π chord may be caused by small variations in leading adge geometry and axial location. Least squares curve fite of the velocity distribution in pasages 8 and 9 are comparad to curve fits of the avaraged velucity distribution in Fig. 9 where the blade locations are denoted by the cross-hatched aress. The error bare in Fig. 9 represent twice the standard deviation between the fitted curve and the data and therefore encompane 95\% of the data points. Ueing the averaged curva ift as afar ence, we see that the flow variation between pasages 8 and 9 is a maximum of 20% near the leading edge. The data shown here represent the greateat paseage-topassage velocity varietion observed in the present work. At operating points near maximum afficiency the incidence angles are amall and there is lens turning around the blade leading adge relative to that for the near stall case. Passage-to-passage flow variation at these operating points are on the order of 5% or luns.

Blade-to-B1ade Velocity Distributions

It is generally deairable to use the anembleaveraged velocity distributions when performing data analyses because the onsemblaraveraged data att, which contains 50 pointe in the averaged velocity diatribution, is wuch smaller than the unavaraged data aet which contains 1000 pointa in the valocity distributions acrose 20 blade pasagges. A ponsible cource of error in ueing the averaged data is the tandency to amear out detaile of the velocity distribution by avaraging across the 20 blade pasiages. Howevar, comparison of the avaraged and unavaraged dietributions in Fig. 9, a worat-case exampla, indicates that valocity distribution detaila are not aignificantly modified by averagiag.

Ensembla-avaraged blade-to-blade diatributiona of velocity and flow angle masureci on stramarface 1 (near the tip) at 23\% chord under tranaonic oparating sonditions are shown in Fis, 10 . The oparating point 10 at dasign spead near stall mass flow. The pasase shock location in indicatod oy the rapid change in veiocity and flow ansle at mid-pansage. Note that the
absolute flow ramint axial until it encounters the ohock even though the masurement atation is located vell behind the leading edge. The hock turn the absolute flow by more than 30 degrees which represents 75% of the tuming measured at the blade trailing edge.

Rotor Shock Surface Mapping

The three-dimensionality of the rotor ehock aystem if shown graphically in Fig. 11 where the shock location on streamurfaces $1,2,3$ (near-tip, mid-span, and near-hub, respectively) is plotted for the maximum mass flow condition at 100% dasign speed. The inlet relative Mach number varies from 1.16 an the neer-hub streansurface to 1.39 on the near-tip streansurface. The blade aections and shocks are radially projected to eliminate the spanwise vaciation of blade spacing. The shock location is determined from velocity distributions of the type shown in Fig. 10. The flow behind the passage shock 18 supersonic on all three streamsurfaces. At mid-span and near the hub (streamsurfaces 2 and 3, respectively) the flow then diffuses to ubsonic velocities within the blade passage without passing through mother shock. Howaver on streamsurface 1 (near the tip) the flow passes through a norasl shock near the blade trasling edge.

The swept back blade leading edge creates a shock aurface which leans back in the flow direction from hub to tip. Flow turaing across the incilned shock in the meridional plane generates an increase in the radial velocity component toward the tip downstream of the shock. As noted in $[2,4]$, the values of relative velocity and flow angle measured ucross the shock do not satisfy the isentropic normal shock relations even after correction for particle lag effects. It is found that an outward radial velocity component upstream of the shock must be assumed in order to satisfy the shock relations. The corresponding calculated streamline slope just upstream of the shock in the meridional planc is on the order of 40 degrees. The calculations are sensitive to velocity magattude and flow angle and to shock inclination angle in the meridional plane. A 2% to 3% deviation in velocity results in a 15% deviation in the calculated atreamine slope. Although attempts to measure the radial velocity component near the passage shock were not successful, atrong deposition of seed particles was observed on the window in the outer casing around the passage shock region. This may indicate that a radial outward flow is present in the vicinity of the shock.

Rotor Wake Measurements

Averaged velocity distributions measured downstream of the rotor at 70% design speed and at both maximum efficiency and near-stall conditions are shown In Fig. 12. The measurements were made on streamsurface 1 (near the tip), at station 2. The averaged velocity distribution is repeated ao that the wake appears In the center of esch plot. The radial velocity V_{r} and streamine slope in the meridional plane a_{s} are defined as positive outward toward the tip. The streamine slope outside of the wake agrees with the design streamline slope of -12 degrees. Outward radial velocities in the blade wake are to be expected due to the radial pressure imbalance on the wake fluid. The radial outward flow: velative velocity defect, and wake width are all larger at the near-stall point than at the maximum efficiency operating point.

Endwall Boundary Layer Development
The development of the outer endwall boundary layer at design speed and maximum mass flow is shown in

Fig. 13. The effective probe volume length of 2 mm is indicated in the figure. The velocity at eech data point is obtained by arithmetically averaging all 30,000 measurements obtainad along the circumferential measurement paith. The apanwise location of each point is the location of the probe volume center. Averaging across the finite probe volume length results in measured velocities which are higher than the true velocity, particularly near the wall. The boundary layer downstream of the blade is thinner than that upscream of the blade. This thinaing of the boundary layer reflects the energy addition which occurs in passing through the rotor.

Comparison of LA Measurements and Numerical Results

The results of a finite difference solution [11] of the streamfunction equation on streamsurface 2 are compared to la measurements in Fig. 14. The measure ments were performed at 70% design speed near the maximum efficiency operating point. The cross-hatched areas near the blade surface denote regions in which no measurements were obtained. The numerical and experimental results diaplay reasonable agreement in the expansion region arourd the blade leading edge, but the LA weasurements indicate less diffusion than predicted by the numerical solution near the pressure side of the blade passage in the rear portion of the passage. This behavior may be due to the fact that the numerical model is inviscid and therefore cannot account for the displacement thickness effect of the blade wakes.

Comparison of LA and Conventional Probe Measurements

IA measurements are compared to conventional pressure survey measurements at stations 1 and 2 (see Fig. 1). The conventional instrumentation measures velocity and flow angle averaged along the entire circumference at a given axial and radial positon. All 30,000 LA measurements obtaincd along a circumferential measurement path are therefore arithmetically averaged for comparison with the conventional survey measurements. The LA and conventional measurements are not made simultaneously since different compressor casings are used for the la and survey runs, and measur ment repeatability is therefore a factor to be considered in comparing results. The measurement repeatablifty of eack instrumentation system when the compressor rig conditions are not changed is 1\%. The repeatability in resetting the compressor rig conditions 1s 2%. Two additional factors which affect the comparison of results are the p :esence of a seed injection probe wake during la measurements and probe blockage effects during pressure survey measurements. Although the seed infection probe is located 72 probe diameters upst-eam of station 1, a limited number of LA surveys made at station 1 in the θ-direction indicate that a 2% to 4% velocity defect from the seed infection probe is present at station 1. During pressure survey measurements there are four probes each at stations 1 and $?$ and eight additional probes downstream of station 2 . When the probes are fully extended for measurements near the hub, the total frontal area for the four probes at each station is 2% of the annulus ares at the rotor face. An observed decrease in wall static pressures during probe injection indicates that throughflow velocity varlations due to probe injection do exist.

The LA measurements of absolute velocity and flow angle at station 1 agree with the pressure aurvey measurements to within 4%. This is considered reasonable In view of the factors discussed above. The absolute velocities messured at station 2 by the LA and survey probe agree within 7\%, but the flow angles measured by the two systems disagree by as much as 14%. The disagreement between the measured flow angles is due to
differences in the measured V_{θ} velocity component. Agreasent between the V_{z} velocity component measured by the LA and the survey probe is comparable to the agrecment at station $l_{\text {, but the }} v_{\theta}$ component mesured by the LA is 10% to 15% lower than that masured by the aurvey probe. The reasons for this difference require further study.

SURTA RY AND CONCLUDING REPARKS

The application of aser anemometer aysten to the measurement of flow in a transonic axial flow compressor rotor is described. Use of a dedicated minicomputer to control data acquisition allowa rapid accumalation of data with high spatial resolution in the blade-to-blade direction and the recording of data across 20 individual blade passages. A fluorescent dye technique reduces problem due to incident light reflection from metal blade passage surfaces and allows measurements to be made in the endwall boundary layer. The ability to direct the input laser benms away from the radial direction allows minimization of blade blockage effects and enables the measurement of radial velocity compo nents.

Future research plans include holographic interferometric studies of the rotor shock system. Shock patterns measured by the holographic technique will be compared to those measured by the LA. Future LA rosearch will involve messurements in compressor stages with stator blades present so that both rotor and stator flowfields and the extent of the circumferential variations in the rotor flowfield induced by the stator may be investigated. Survey probe and LA measurementa will be made simultaneously to further investigate differences between the velocities measured by the two systems and to investigate the significance of survey probe blockage effects.

ACKONOLEDGEMENTS

The authors wish to acknowledge the contributions of Genevieve Esgar for running the numerical streamfunc:ion solutions used in comparison with the LA data and of Mark Laessig for assisting in data reduction and analysis.

NOMENCLATURE

c
confidence interval
C_{1} pre-shock gas velocity normal to the pasaage shock in the ($2, \theta$) plane
C_{2} post-shock gas velocity normal to the passage shock in the $(2, \theta)$ plane
D_{p} seed particle diameter
f seed particle fringe crossing frequency
in confidence interval length
N number of measurements
PR total pressure ratio across the rotor
PS blade pressure surface
\mathbf{r} radial distance
s distance along circumferential mensurement path
SS blade suction surface
Tp plenum temperature
$\mathbf{T}_{\mathbf{t}}$
standard day temperature, 518.7 degreea Rankine
wheel speed
$\begin{array}{ll}\text { U veel speed } \\ V & \text { velocity }\end{array}$
$V_{\text {ABS }}$ absolute flow velocity
particle velocity component normal to the passage thock in the (2,6) plane
$V_{R L L}$ relative flow velocity
compressor masa flow
particle distance normal to the pasaage shock
a, B, Y laser beam orientation angles measured from
the z, θ, r axes
$a_{\text {a }}$ streamline slope in the meridional plane
$B_{A B S}$
$B_{\text {REL }}$ relative flow angle
absolute flow angle
θ circumferential distance
$\checkmark \quad$ kinematic viacosity
ρ density

* angle between the beam bisector and the radial direction
ϕ_{2} angle between the fringe normals and the axial direction
Subscripts:
b biased
c corrected to standard day conditions
8 gas
1 denotes $i^{\text {th }}$ measurement at a given shaft
position
1 shaft position number
m measured
p particle
r radial direction
z axial direction
0 tangential direction
Superscripts:
- denotes mean quantity
- denotes fluctuating quantities

REFERENCES

1. Wisler, D.C. and Mossey, P.W., "Gas Velocity Measurement: Within a Compresser Rotor Passage Using the Laser Doppler Velocimeter," Journal of Engineering for Power, Vol. 95, No. 2, Apr. 1973, pp. 91-96.
2. Wisler, D.C., "Shock Wave and Flow Velocity Keasurements in a High Speed Fan Rotor Uaing the Laser Velocimeter," ASME Papar No. 76-GT-49, Mar. 1976.
3. Walker, D.A., Williams, M.C., and House, R.D., "Interblade Velocity Measurements in a Transonic Fan Utilizing a Laser Doppler Velocimeter," Minnssota Symposium on Laser Anemometry, E.R.G. Eckert, ed., University of Minnesota, Minneapolis, Minn., 1976, pp. 124-145.
4. Dunker, R.J., Strinaing, P.E., and Weyer, H. B., "Experimental Study of the Flow Field Within a Transonic Axial Compressor Rotor by Laser Velicimetry and Comparison with Through-Flow Calculations," Journal of Epgineering for Pover, Vol. 100, No. 2, Apr. 1978, pp. 279-286.
5. Powell, J.A., Strasiant, A.J., and Seasholt:, R.G., "Efficient Lacar Anmomater for Intra-Rotor Flow Mapping in Turbomehinury." To be Preanited at
 Componentin of Turborachanary: Gay Terbine Confer ance and Producte Shos: American Sociaty of Mechanical Enginears, New Orleans, La. , March 9-13, 1980.
6. Hoore, R.D., Lawle, G.W., Jr., and Oaborn, W.M., "Performance of a Tranconic Fan Stage Deaigne" for a Low Meridional Valocity Ratio." MASA TP-1298, 1978.
7. Stevenmon, W.H., doa Santos, R., and Metcler, S.C., "Fringe Mode Fluoresence Velocimetry," Applications of Non-Instruasive Instrumantation in Fluid Flow Research, ACARD-CP-193, 1976, PP. 20-1-20-9.
8. Bernatt, D.O. and Bantioy, H.T. : "Statiatical Blan of Individual Realisation Laser Valocineters," Second International Workwhop on Laear VelocinoEry, Vol. 1, H.D. Thompson and W. H. Stevenoon, ads., Purdue Uaiversity, 1974, pp. 428-444.
9. Seasholtz, R.G., "Laser Doppler Velocimeter System for Turbine Stator Caccede Studien and Analyais of Statistical Bianing Errore, " MASA TM D-8297, 1977.
10. Maxveli, A. R., "Tracer Particle Flow in a Compreacor Potor Paeage with Application to LDV." Amer tcan Inatitule of Angomautice and Antronaufici, Journel, Vol. 13, No. 9, Sapt. 1975, pp. 1141-1142.
11. Katsanis, T., "TORTRAN Progran for Culculating Tranconic Velocitiea on a Blade-to-Blade Stream Surface of a Turbomehinar," MASA TH D-5427, 1969.

Figure 1. - Test compressor flowpath and streamsurface locations.

Figure 2. - Test compressor periormance map.

Figure 3. - Laser anemometer system optical layout.

Figure 4. - Blade geometry showing shadowed regions due to blade twist.
 Figure 6 - Relation between the relative velocity $V_{\text {REL }}$ and t. shock normal

Figure 5. - Coordinate system and LA beam orientation.

Figure 9. - Comparison between curve fits of the ensembleaveraged and individual blade passage distributions of absolute velocity. Streamsurface 1, 75\% speed, PR • 1.33, W = $123 \mathrm{~kg} / \mathrm{m}^{2} / \mathrm{s}$.

Figure 10. - Ensamble-averaged Dlade-to-blade distribulions of velocity and flow angle across a passage shock. Stroamsurface 1, 23\% chord, 100\% speed, PR - 1.06, W - 190 $\mathrm{kg} / \mathrm{m}^{2} / \mathrm{s}$.

Figure 13. - Development of the outer endwall boundary, layer. 100\% speed, PR - 1.53. W = $205 \mathrm{~kg} / \mathrm{m}^{2} / \mathrm{s}$.

(a) LA MEASUREMENTS

Figure 14-Comparison of massured and calculated distribution of relative valocity. Stroum surface 2,70 percent speed, $P R-1.19, W-158 \mathrm{~kg} / \mathrm{m}^{2} / \mathrm{s}$. contours in ms.

